JP2003028392A - High purity hydrogen chloride for semiconductor manufacture - Google Patents

High purity hydrogen chloride for semiconductor manufacture

Info

Publication number
JP2003028392A
JP2003028392A JP2001315180A JP2001315180A JP2003028392A JP 2003028392 A JP2003028392 A JP 2003028392A JP 2001315180 A JP2001315180 A JP 2001315180A JP 2001315180 A JP2001315180 A JP 2001315180A JP 2003028392 A JP2003028392 A JP 2003028392A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
purity hydrogen
cylinder
gas
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001315180A
Other languages
Japanese (ja)
Inventor
Kazunari Ishida
一成 石田
Yoshihiko Kanbara
芳彦 神原
Toshihiko Sakamoto
年彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001315180A priority Critical patent/JP2003028392A/en
Publication of JP2003028392A publication Critical patent/JP2003028392A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high purity hydrogen chloride filled in a gas cylinder suitable for semiconductor manufacture of not causing metal pollution during manufacture of a silicon epitaxial wafer or an integrated circuit, and where 90 wt.% or more to a filling capacity can be used for semiconductor manufacture. SOLUTION: The high purity hydrogen chloride is filled in the gas cylinder when a moisture concentration of a gaseous phase measured by a diode laser type absorption photometer using a cell with a measured wavelength of 1368 nm and an optical path length of >=5 m is 0.1 ppm-0.7 ppm at a start of usage of the high purity hydrogen chloride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高圧ガス容器に充
填した高純度塩化水素に関し、より詳しくは、高集積用
半導体デバイスなどの電子材料製造工程に用いられる低
水分塩化水素に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-purity hydrogen chloride filled in a high-pressure gas container, and more particularly to low-moisture hydrogen chloride used in the manufacturing process of electronic materials such as highly integrated semiconductor devices.

【0002】[0002]

【従来の技術】高純度塩化水素は液化ガス状で、高圧ガ
ス容器(以下、ボンベ)に充填され流通している。製品
の形態としては、47リットルのボンベに25Kg詰
め、900リットルのボンベに500Kg詰めが一般的
である。高純度塩化水素は、半導体製造において、シリ
コンエピウエハのリアクターチューブやサセプターの洗
浄及び集積回路を製造する際の腐食液などに使用されて
いる。近年、金属汚染レベルが小さく、生産性に優れた
シリコンエピウエハの需要が高まったことから、高純度
でしかも低水分である塩化水素が要求されている。特
に、シリコンエピウエハの製造工程に於いては使用する
塩化水素中の水分濃度が高いと、それが接触する配管、
多枝管、弁等を腐食させるため、頻繁に交換する必要が
生じる。また腐食による塩化水素ガス中の金属分の増加
など特に低水分品の要求が強い。製造工程では、十分に
高純度の塩化水素が得られているが配管でそのまま使用
される工程に運ばれることは殆どなく、遠く離れた使用
工程にボンベに充填して運ばれる。
2. Description of the Related Art High-purity hydrogen chloride is in the form of a liquefied gas and is filled in a high-pressure gas container (hereinafter, a cylinder) for distribution. As a product form, it is common to pack 25 kg in a 47-liter cylinder and 500 kg in a 900-liter cylinder. High-purity hydrogen chloride is used as a corrosive liquid for cleaning a reactor tube and a susceptor of a silicon epi-wafer and manufacturing an integrated circuit in semiconductor manufacturing. In recent years, there has been an increasing demand for silicon epiwafers having a low metal contamination level and excellent productivity, so that hydrogen chloride having high purity and low water content is required. In particular, when the concentration of water in hydrogen chloride used in the manufacturing process of silicon epiwafers is high, the pipes that it contacts,
Since it will corrode multi-branched pipes, valves, etc., frequent replacement is required. There is also a strong demand for low-moisture products, such as an increase in metal content in hydrogen chloride gas due to corrosion. In the manufacturing process, hydrogen chloride of sufficiently high purity is obtained, but it is rarely transported to a process where it is used as it is in a pipe, and it is transported while being filled into a cylinder for a distant use process.

【0003】しかし、ボンベに充填され半導体の製造に
供される充填高純度塩化水素は、充填に際しボンベに含
まれている水分、充填作業時の空気中の水分が混入する
などの原因で低水分の状態のまま充填し使用するのは現
実には極めて困難である。これに対しては、例えば、特
開平11−139805号公報に記載されているハロゲ
ン化水素から水分を除去するための組成物とその方法や
特公平7−53221号公報に記載されている、塩化水
素酸流の除湿剤の水分除去装置を通して使用する技術な
どの使用に際して再度脱水する方法が公知である。しか
し、これらはその操作や管理が煩瑣で、満足できるもの
ではない。実際に液状で充填されたボンベより、塩化水
素をガス状で取出し使用する場合には、使用開始直後に
は上述の電子材料用の用途にも十分に使用可能な低水分
の塩化水素ガスが得られるが、途中で製品の性能が低下
(エピ膜の電気抵抗の低下)するなどの問題があり、問
題の発生するタイミングがボンベごとに異なるという問
題があった。大量に液状塩化水素が残った状態で使用を
中断することでこの問題は回避できるが、極めてコスト
高となると共に残りの塩化水素を廃棄しなければならな
いという問題がある。
However, the filled high-purity hydrogen chloride filled in the cylinder and used for the manufacture of semiconductors has a low moisture content due to the moisture contained in the cylinder during filling, the moisture in the air during the filling operation, and the like. In reality, it is extremely difficult to fill and use as it is. On the other hand, for example, a composition for removing water from hydrogen halide described in JP-A No. 11-139805 and a method therefor, and a chloride described in JP-B-7-53221. A method of re-dehydrating upon use is known, such as a technique of using a dehumidifying agent of a hydro-acid stream through a water removing device. However, the operation and management of these are complicated and not satisfactory. When hydrogen chloride is taken out as a gas from a cylinder filled with a liquid, it is possible to obtain a low-moisture hydrogen chloride gas that can be used for the above-mentioned electronic materials immediately after use. However, there is a problem that the performance of the product deteriorates (the electric resistance of the epi film decreases) during the process, and there is a problem that the timing at which the problem occurs varies from cylinder to cylinder. Although this problem can be avoided by stopping the use in the state where a large amount of liquid hydrogen chloride remains, there is a problem that the cost becomes extremely high and the remaining hydrogen chloride must be discarded.

【0004】[0004]

【発明が解決しようとする課題】充填された塩化水素
が、プロセス上使用可能な範囲(圧力変化などの問題の
ない範囲)で十分に使用できるような充填高純度塩化水
素ガスがあると、電子材料用に無駄なく使用可能であり
そのようなものが望まれる。
If there is a filled high-purity hydrogen chloride gas that allows the filled hydrogen chloride to be used sufficiently within the process usable range (the range where there is no problem such as pressure change), the It can be used without waste for material and such is desired.

【0005】[0005]

【課題を解決する為の手段】本発明者らは、上記課題を
解決するため鋭意検討した結果、本発明に至った。すな
わち、本発明は、耐圧容器に液相が存在する条件下に充
填された高純度塩化水素であり、充填後24時間以上経
過した後測定した気相の水分が0.7ppm以下である
半導体製造用高純度塩化水素である。本発明は、また、
塩化水素ガスの水分を、波長1368nmの吸光度で測
定して5.8ppm未満であることを確認しながら塩化
水素ガスを用いる半導体製造用高純度塩化水素の使用方
法である
Means for Solving the Problems The present inventors have completed the present invention as a result of extensive studies to solve the above problems. That is, the present invention is a semiconductor manufacturing method in which high-purity hydrogen chloride is filled under the condition that a liquid phase is present in a pressure-resistant container, and the water content in the gas phase measured after 24 hours or more has been 0.7 ppm or less. High purity hydrogen chloride for use. The present invention also provides
A method of using high-purity hydrogen chloride for semiconductor manufacturing, which uses hydrogen chloride gas while confirming that the water content of the hydrogen chloride gas is less than 5.8 ppm by measuring the absorbance at a wavelength of 1368 nm.

【0006】[0006]

【発明の実施の形態】本発明でいう高圧ガス容器とは、
一般的には、ボンベという名称で販売されている耐圧金
属容器である。ボンベに使用される材料は、高圧ガス保
安法の規定に基づく、容器保安規則に適合するものが用
いられる。すなわち、ステンレス鋼、炭素鋼、マンガン
鋼、クロムモリブデン鋼、アルミニウム合金(JIS−
H4000の種類 5052、及び5056と同一化学
成分のもの)等の材料に適応され、金属容器であればこ
れらに制限されるものではない。なかでも特に炭素鋼、
マンガン鋼、クロムモリブデン鋼が価格や重量または耐
食性の面から好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The high-pressure gas container referred to in the present invention is
Generally, it is a pressure-resistant metal container sold under the name of cylinder. The material used for the cylinder is one that complies with the container safety regulations based on the provisions of the High Pressure Gas Safety Act. That is, stainless steel, carbon steel, manganese steel, chrome molybdenum steel, aluminum alloy (JIS-
It is applicable to materials such as H4000 types 5052 and 5056 (having the same chemical composition as H4000), and is not limited to these as long as it is a metal container. Especially carbon steel,
Manganese steel and chrome molybdenum steel are preferable in terms of price, weight and corrosion resistance.

【0007】高純度塩化水素の製品は、ボンベに充填し
て出荷・流通している。容器保安規則第7章充てん第4
5条液化ガスの質量計算方法によれば、 G=V/C G:液化ガスの質量Kg V:容器の内
容積L C=1.67 である。一般的に流通している47リットル、900リ
ットルのボンベでは、それぞれ28Kg、538Kg充
填可能であるが、実際の製品では25Kg詰め、500
Kg詰めで出荷される。従って、液状塩化水素ガスにお
いては外気温が20℃程度では、充填量の90%を越え
る量を使用した時点で圧力が変化するなどのプロセス上
の問題が発生する。従って、最大充填量の90%程度使
用したときでも品質上の問題が発生しない水分量を見極
めることが重要である。ガス中の水分の測定には近赤外
分光光度計を使用することが簡便であり、水分の吸収波
長に吸収を持たないガスでは、光路長を長くすることで
高精度水分量を測定することが可能である。具体的に
は、波長1368nmの光を用い、光路長が5m以上の
セルを用いて測定する。例えば、エア・リキード社製D
IODELASER HYDROMETERでは30c
mのマルチパスセスを17回往復することで10mの光
路長となる(図5参照)。このような長光路のセルを用い
ることではじめて本発明に必要な検出下限0.1ppm
で水分量が測定できる。
Products of high-purity hydrogen chloride are filled in cylinders for shipping and distribution. Container Safety Regulations Chapter 7 Filling 4
According to the method for calculating the mass of liquefied gas of Article 5, G = V / C G: mass of liquefied gas Kg V: internal volume of container L C = 1.67. In the 47 liter and 900 liter cylinders that are generally distributed, it is possible to fill 28 kg and 538 kg, respectively, but in the actual product, 25 kg and 500 kg can be filled.
Shipped in Kg packs. Therefore, when the ambient temperature of liquid hydrogen chloride gas is about 20 ° C., a process problem occurs such that the pressure changes when an amount exceeding 90% of the filling amount is used. Therefore, it is important to determine the amount of water that does not cause a quality problem even when about 90% of the maximum filling amount is used. It is easy to use a near-infrared spectrophotometer to measure the water content in a gas, and for a gas that has no absorption at the absorption wavelength of water, the high-precision water content can be measured by lengthening the optical path length. Is possible. Specifically, measurement is performed using light having a wavelength of 1368 nm and a cell having an optical path length of 5 m or more. For example, Air Liquide D
30c for IODELAYER HYDROMETER
An optical path length of 10 m is obtained by reciprocating 17 times of a multipath process of m (see FIG. 5). The detection lower limit of 0.1 ppm necessary for the present invention is firstly obtained by using such a cell having a long optical path.
The water content can be measured with.

【0008】本発明においては、重要なのは、水分濃度
測定値が高純度塩化水素の使用開始時に0.1ppmか
ら0.7ppmであることである。ボンベに充填された
液状の高純度塩化水素はガスとして使用していくと、ガ
ス中の水分は気液平衡により水分は低濃度から徐々に濃
度が増加していく。一方、電子材料用、特に半導体製造
用、特に、水分に敏感なエピ膜の製造に際し使用する塩
化水素ガスとしては、種々の不具合が発生する限界的な
水分の量は発明者らの検討によれば5.8ppmであっ
た。種々検討したところ使用開始時に0.7ppm以下
であると、初期充填量の90重量%まで使用してもガス
中の水分濃度が5.8ppmより少なくなり、半導体製
造用として使用可能のレベルにある。なお、0.1pp
mより少なくても格別のメリットはなく、ボンベの充填
の点を考慮すれば好ましいのは0.1〜0.7ppmで
ある。また、上述のような、近赤外吸収強度で水分を測
定する方法はリアルタイムで塩化水素ガス中の水分を測
定することが可能であるので、水分量をモニターしなが
ら塩化水素ガスを使用することで5.8ppmより少な
い水分の塩化水素ガスの利用ができる。高純度塩化水素
製造法の一例を挙げると、水素と塩素を混合燃焼させて
得た塩化水素を超純水に吸収させ、一旦塩酸とした後、
加熱蒸発させて塩化水素とする。その後、硫酸と接触さ
せることで脱水した後、更に蒸留精製して得ることがで
きる。蒸留精製して得られた高純度塩化水素中の水分濃
度は通常0.7ppm以下である。かくして製造された
高純度塩化水素は、貯蔵タンク気相ラインより圧縮ポン
プで高純度塩化水素ガスを圧縮してボンベに充填して製
品となる。
In the present invention, it is important that the measured water concentration is 0.1 ppm to 0.7 ppm at the start of use of high-purity hydrogen chloride. When the liquid high-purity hydrogen chloride filled in the cylinder is used as a gas, the water content in the gas gradually increases from a low concentration due to gas-liquid equilibrium. On the other hand, for hydrogen chloride gas used for electronic materials, especially for semiconductor manufacturing, especially for manufacturing a moisture-sensitive epi film, the limit of the amount of water causing various problems is determined by the inventors. It was 5.8 ppm. As a result of various investigations, if the concentration is 0.7 ppm or less at the start of use, the water concentration in the gas will be less than 5.8 ppm even if it is used up to 90% by weight of the initial filling amount, which is at a level usable for semiconductor manufacturing. . In addition, 0.1pp
There is no particular merit even if it is less than m, and 0.1 to 0.7 ppm is preferable in consideration of the filling of the cylinder. In addition, since the method of measuring water by near infrared absorption intensity as described above can measure the water content in hydrogen chloride gas in real time, use hydrogen chloride gas while monitoring the water content. It is possible to use hydrogen chloride gas having a water content of less than 5.8 ppm. To give an example of a high-purity hydrogen chloride production method, hydrogen chloride obtained by mixing and burning hydrogen and chlorine is absorbed in ultrapure water, and once converted to hydrochloric acid,
Evaporate to heat to hydrogen chloride. Then, it can be obtained by dehydration by contact with sulfuric acid, and further by distillation purification. The water concentration in high-purity hydrogen chloride obtained by distillation purification is usually 0.7 ppm or less. The high-purity hydrogen chloride thus produced is compressed into high-purity hydrogen chloride gas from a storage tank vapor phase line with a compression pump and filled into a cylinder to become a product.

【0009】本発明の充填高純度塩化水素は、特に、半
導体製造用に利用すると効果が大きく好適である。ここ
で、半導体製造用とは、例えば、特公昭61−7332
1号公報に記載されているシリコンエピタキシャルウエ
ハや特開平10−79393号開報に記載されているよ
うなエピタキシャル成長層を持つシリコンウエハ及びそ
の製造方法ならびにそのウエハを用いた半導体装置にお
いて、シリコンエピウエハ製造の際、チャンバ(リアク
ターチューブ)及びサセプターのエッチング(洗浄)用
に使用されるような用途をいう。本発明において重要な
のは、高純度の塩化水素を高純度のままボンベに充填し
充填高純度塩化水素とした点であり、容器として特定の
ものを用いることが重要である。ここで特定の容器と
は、容器の内面を、ショットブラスト研磨、湿式研磨、
電解複合研磨、電解研磨等の研磨処理で処理する工程を
有するものである。
The filled high-purity hydrogen chloride of the present invention is particularly effective when used for semiconductor production, and is suitable. Here, semiconductor manufacturing means, for example, Japanese Patent Publication No. 61-7332.
In the silicon epitaxial wafer described in Japanese Unexamined Patent Application Publication No. 1-35, a silicon wafer having an epitaxial growth layer as described in Japanese Unexamined Patent Publication No. 10-79393, a method for manufacturing the same, and a semiconductor device using the wafer, a silicon epitaxial wafer is manufactured. In this case, it is used for etching (cleaning) the chamber (reactor tube) and the susceptor. What is important in the present invention is that a high-purity hydrogen chloride is filled into a cylinder as high-purity to obtain a filled high-purity hydrogen chloride, and it is important to use a specific container. Here, the specific container means that the inner surface of the container is shot blasted, wet-polished,
It has a step of performing a polishing treatment such as electrolytic composite polishing and electrolytic polishing.

【0010】ここで、ショットブラスト研磨とは、例え
ば、最新表面処理技術総覧144〜152頁(1988
年産業技術サービスセンター発行)に記載されているよ
うな所謂加圧式ブラスト法、例えば、ボンベ内部にスチ
ールショットを窒素ガス圧力を応用して高速で噴射し
て、ボンベ内面を研磨する方法である。湿式研磨とは、
例えば、最新表面処理技術総覧127〜131頁に記載
されている様な所謂機械的表面処理のバレル研磨法の一
種、即ち、例えば、ボンベ内部に研磨材と水及びコンパ
ウンドを収容した状態で水平に支持し、ボンベをその軸
心周りで右周りに自転させつつ、水平軸心周りで左周り
に公転させるバレル研磨装置〔図6参照(いわゆる遠心
式研磨機)〕に取り付けてバレル研磨を行う研磨法であ
る。このようなバレル研磨装置によれば、前記研磨材は
遠心力によって公転軌跡外方側に集中し、その研磨材に
対してボンベ内面が相対的に回転移動するので、ボンベ
内面が前記研磨材と接触しボンベ内面が研磨される。
Here, the shot blast polishing refers to, for example, the latest surface treatment technology guide, pages 144 to 152 (1988).
This is a so-called pressure blasting method as described in "Industrial Technology Service Center", for example, a method in which steel shot is injected into the inside of the cylinder at high speed by applying nitrogen gas pressure to polish the inner surface of the cylinder. What is wet polishing?
For example, a kind of so-called barrel polishing method of so-called mechanical surface treatment as described in the latest Surface Treatment Technology Guide, pages 127 to 131, that is, for example, in a state that an abrasive, water and compound are accommodated inside a cylinder, Polishing for barrel polishing by supporting and rotating the cylinder around its axis to the right while revolving to the left about the horizontal axis [see Fig. 6 (so-called centrifugal polishing machine)] Is the law. According to such a barrel polishing apparatus, the polishing material is concentrated on the outer side of the revolving locus by centrifugal force, and the inner surface of the cylinder relatively rotates with respect to the polishing material. The inner surface of the cylinder is contacted and polished.

【0011】本発明に用いるボンベは、ついで、塩基性
洗浄液または酸化剤を含む塩基性洗浄液にて洗浄処理さ
れる。通常、次いで純水洗浄を行い、更に有機溶剤で洗
浄処理し、これを加熱真空、または、窒素、アルゴン等
の不活性ガスで置換除去し清浄化することにより、高純
度塩化水素充填用ボンベとして使用できるものになる。
ここで使用される塩基性洗浄液としては、各種の無機塩
基類から選ばれる少なくとも一種、又は各種有機塩基類
から選ばれる少なくとも一種、あるいは脂肪酸塩及び脂
肪酸アミドからそれぞれ選ばれる少なくとも一種の混合
物を含む溶液である。好ましくは、モノエタノールアミ
ン、ジエタノールアミン及びトリエタノールアミンから
選ばれる少なくとも一種の有機塩基類、又は苛性ソー
ダ、苛性カリウム及びアンモニアから選ばれる少なくと
も一種の無機塩基類、あるいは脂肪酸塩の少なくとも一
種及び脂肪酸アミドの少なくとも一種を含む溶液であ
る。
The cylinder used in the present invention is then washed with a basic cleaning liquid or a basic cleaning liquid containing an oxidizing agent. Usually, it is washed with pure water, and then washed with an organic solvent, which is then vacuum-heated or replaced with an inert gas such as nitrogen or argon to remove and clean it to obtain a high-purity hydrogen chloride filling cylinder. It will be usable.
The basic cleaning liquid used here is a solution containing at least one selected from various inorganic bases, or at least one selected from various organic bases, or a mixture of at least one selected from fatty acid salts and fatty acid amides. Is. Preferably, at least one organic base selected from monoethanolamine, diethanolamine and triethanolamine, or at least one inorganic base selected from caustic soda, caustic potassium and ammonia, or at least one fatty acid salt and at least a fatty acid amide. It is a solution containing one kind.

【0012】また、上記塩基性洗浄液は、更に酸化剤を
含む溶液として使用することで、安定して高い効果を得
ることが出来る。酸化剤としては、過炭酸ソーダ、過ホ
ウ酸ソーダ、重クロム酸カリウム、過硫酸カリウム、過
酸化水素、過マンガン酸カリウムから選ばれる少なくと
も一種が好ましく、これら酸化剤の使用量は使用水に対
して1〜30重量%、更には1〜5重量%が好ましい。
また、加熱乾燥とは、例えば、100℃〜350℃の電
気炉中にボンベを入れ、窒素、アルゴン等の不活性ガス
で置換しながら水分を除去することによりボンベを加熱
乾燥することができる。加熱温度は、特に、180℃〜
250℃が好ましい。
Further, by using the above basic cleaning liquid as a solution further containing an oxidizing agent, a stable and high effect can be obtained. As the oxidizing agent, at least one selected from sodium percarbonate, sodium perborate, potassium dichromate, potassium persulfate, hydrogen peroxide, potassium permanganate is preferable, and the amount of these oxidizing agents to be used is based on the water used. 1 to 30% by weight, more preferably 1 to 5% by weight.
The heating and drying can be carried out by heating and drying the bomb by placing the bomb in an electric furnace at 100 ° C. to 350 ° C. and removing water while replacing it with an inert gas such as nitrogen or argon. The heating temperature is, in particular, 180 ° C to
250 ° C is preferred.

【0013】かくして得られたボンベに、適切な脱水工
程(吸着あるいは蒸留など)を経て製造された高純度塩
化水素を大気中から水分が混入しないように高純度窒素
ガスなどでバージするなどの適切な水分濃度管理のもと
で上記特殊なボンベ充填量まで充填し、次いで、ガス状
で取出した場合、ガス中の水分濃度は波長1368n
m、光路長が5m以上のセルを用いたダイオードレーザ
ー式吸光光度計で測定すると、当該高純度塩化水素の使
用開始時では0.1ppmから0.7ppmである。こ
の濃度は充填後時間が経過しても変化がなく、ボンベの
内表面の欠陥などがある場合には充填後24時間で上記
範囲を超える。上記濃度範囲であれば、使用開始時の高
純度塩化水素充填量の90重量%程度までシリコンエピ
ウエハのリアクターチューブやサセプターの洗浄及び集
積回路を製造する際の腐食液などに使用できる。特に、
金属汚染レベルが小さく、生産性に優れたシリコンエピ
ウエハの製造に好適に使用することができる。言い換え
れば、使用中塩化水素ガス中の水分が5.8ppmを越
えないと言える。格別の処理を施さないボンベを使用し
通常の管理条件で充填する従来方法では充填24時間後
のガス中の水分は1ppmである。本発明の充填高純度
塩化水素を使用すると高集積用半導体デバイスに用いら
れるシリコンエピウエハとして好ましい比抵抗値は20
00Ωcm以上、より好ましい2500Ωcm以上であ
るのに対し、従来の充填塩化水素を使用すると使用の途
中でエピ膜の比抵抗値が2000Ωcmを下回ることに
なる。
The cylinder thus obtained is suitably subjected to high-purity hydrogen chloride produced through an appropriate dehydration process (adsorption or distillation) by high-purity nitrogen gas or the like so that moisture is not mixed in from the atmosphere. When the gas is filled up to the above-mentioned special cylinder filling amount under proper water concentration control and then taken out in a gas state, the water concentration in the gas is 1368n wavelength.
When measured by a diode laser type absorptiometer using a cell having m and an optical path length of 5 m or more, the high purity hydrogen chloride is 0.1 ppm to 0.7 ppm at the start of use. This concentration does not change even after a lapse of time after filling, and exceeds 24 hours after filling if the inner surface of the cylinder has defects. Within the above concentration range, up to about 90% by weight of the high-purity hydrogen chloride filling amount at the start of use, it can be used as a corrosive liquid for cleaning the reactor tube and susceptor of a silicon epiwafer and manufacturing an integrated circuit. In particular,
It can be preferably used for manufacturing a silicon epi-wafer having a low metal contamination level and excellent productivity. In other words, it can be said that the water content in the hydrogen chloride gas during use does not exceed 5.8 ppm. In the conventional method in which a cylinder not subjected to any special treatment is used and filling is carried out under normal control conditions, the water content in the gas 24 hours after the filling is 1 ppm. When the filled high-purity hydrogen chloride of the present invention is used, a preferable specific resistance value is 20 as a silicon epitaxial wafer used for a highly integrated semiconductor device.
While it is 00 Ωcm or more, and more preferably 2500 Ωcm or more, when the conventional filled hydrogen chloride is used, the specific resistance value of the epi film falls below 2000 Ωcm during use.

【0014】[0014]

【実施例】以下、実施例により本発明を更に具体的に説
明する。 実施例1 <高純度塩化水素ボンベの調製>炭素鋼製で気相及び液
相採取口付き、容量900リットルボンベの内部を湿式
研磨した後、ボンベ内部にセラミックス製ボールと塩基
性洗浄液として、ラウリル酸ジエタノールアミド及びミ
リスチン酸ジエタノールアミンの1対1混合物の3wt
%水溶液440リットルを入れ、ボンベを水平状態に保
ち、その軸心周りに約1時間自転させる。その後、ボン
ベの内容物を外部に出し、ボンベの口を真下にしてスラ
イド式ノズルをボンベ内に挿入して250Kgf/cm
の高圧純水を噴射して内部を洗浄する。次に、150
Kgf/cmのイソプロピルアルコールで同様に洗浄
する。更に5Kgf/cmの窒素を吹き込み雰囲気を
窒素に置換しながら200℃で加熱乾燥する。このよう
に処理したボンベに弁を装着後、気密試験でガスのリー
クが無い事を確認する。このボンベに高純度塩化水素を
500Kg充填する。 <水分測定>ボンベの気相採取口に減圧弁を接続し、ガ
ス圧力を0.1MPaから0.5MPaに調整する。減
圧弁からダイオードレーザー式吸光光度計の試料導入口
まではステンレス製の配管を接続する。その配管には除
湿された窒素ガスで配管内の水分を予めパージするため
の窒素配管を接続して置き、試料採取前に配管内の水分
を除去する。更に除湿を確実に行う目的で試料採取配管
には加熱用のヒーター線を巻きつけ、また真空ポンプを
接続する。配管を50℃から100℃に加熱後、100
0Pa以下に減圧して水分を除く、このようにして水分
フリーとなった試料採取配管に塩化水素を1L/分から
5L/分で流す。流し初めて30分から60分後、水分
計に塩化水素ガスの一部を導入し、セル光路長10mの
エア・リキード社製DIODE LASER HYDR
OMETERに導入して、1368nmの水分吸収ピー
クを測定する。予め求めた水分吸収ピークと水分量の検
量線より水分濃度を測定する。水分分析は使用開始直
後、その後、使用量50Kg、100Kg、150K
g、200Kg、250Kg、300Kg、350K
g、400Kg、430Kg、450Kg時点の11回
実施した。 <半導体の製造と評価>使用量350Kgと450Kg
時点の2回、図7のフローでシリコンエピ膜を製造後、
図8のフローでシリコンエピ膜の比抵抗を測定した。結
果は図1の通り、水分値は使用開始直後0.1ppmで
あり、使用量450Kg時点で1.0ppmであった。
使用開始時の高純度塩化水素の90重量%以上使用して
もガス中の水分濃度が5.8ppm以下が保たれてい
た。また、使用量350Kgと450Kg時点における
シリコンエピ膜の比抵抗も両方とも2800Ωcmで高
品質を保っていた。
The present invention will be described in more detail with reference to the following examples. Example 1 <Preparation of high-purity hydrogen chloride cylinder> After wet-polishing the inside of a 900 liter cylinder made of carbon steel with a vapor phase and liquid phase sampling port, a ceramic ball inside the cylinder and lauryl as a basic cleaning liquid 3 wt of a 1 to 1 mixture of acid diethanolamide and myristate diethanolamine
% Aqueous solution (440 liters) is added, the cylinder is kept horizontal, and the cylinder is rotated about its axis for about 1 hour. After that, the contents of the cylinder are taken out to the outside, the mouth of the cylinder is directly below, and the slide type nozzle is inserted into the cylinder, and 250 kgf / cm.
High-pressure pure water ( 2 ) is sprayed to clean the inside. Then 150
Similarly, wash with Kgf / cm 2 isopropyl alcohol. Further, while blowing nitrogen of 5 kgf / cm 2 and replacing the atmosphere with nitrogen, it is heated and dried at 200 ° C. After mounting the valve on the cylinder treated in this way, confirm that there is no gas leak by an airtight test. The cylinder is filled with 500 kg of high-purity hydrogen chloride. <Measurement of Water Content> A pressure reducing valve is connected to the gas phase sampling port of the cylinder to adjust the gas pressure from 0.1 MPa to 0.5 MPa. A stainless steel pipe is connected from the pressure reducing valve to the sample introduction port of the diode laser absorptiometer. A nitrogen pipe for preliminarily purging water in the pipe with dehumidified nitrogen gas is connected to the pipe and placed, and the water in the pipe is removed before sampling. Furthermore, for the purpose of surely dehumidifying, a heater wire for heating is wound around the sampling pipe, and a vacuum pump is connected. After heating the pipe from 50 ℃ to 100 ℃,
Water is removed by reducing the pressure to 0 Pa or less, and hydrogen chloride is flowed at a rate of 1 L / min to 5 L / min through the water-free sampling pipe. After 30 to 60 minutes for the first time of flowing, a part of hydrogen chloride gas was introduced into the moisture meter, and a cell optical path length of 10 m manufactured by Air Liquide DIODE LASER HYDR.
Introduced into OMETER, the water absorption peak at 1368 nm is measured. The water concentration is measured from a previously obtained water absorption peak and a calibration curve of water content. Moisture analysis immediately after the start of use, then the amount used 50Kg, 100Kg, 150K
g, 200Kg, 250Kg, 300Kg, 350K
g, 400 Kg, 430 Kg, 450 Kg. <Manufacturing and evaluation of semiconductors> Used amount 350 kg and 450 kg
After the silicon epitaxial film is manufactured by the flow of FIG.
The resistivity of the silicon epitaxial film was measured by the flow of FIG. As shown in FIG. 1, the water content was 0.1 ppm immediately after the start of use, and was 1.0 ppm when the amount used was 450 kg.
Even when 90% by weight or more of high-purity hydrogen chloride at the start of use was used, the water concentration in the gas was kept at 5.8 ppm or less. Further, the specific resistance of the silicon epi film at the usage amounts of 350 Kg and 450 Kg was 2800 Ωcm, and high quality was maintained.

【0015】実施例2 <高純度塩化水素ボンベの調製>実施例1と同様に行っ
た。 <水分の添加後、高純度塩化水素の充填>このボンベに
6gの水分を添加後、高純度塩化水素を500Kg充填
する。 <水分測定>水分分析を使用開始直後と使用量450K
g時点の2回実施した以外は実施例1と同様に行った。 <半導体の製造と評価>また使用量350Kgと450
Kg時点の2回、図7のフローでシリコンエピ膜を製造
後、図8のフローでシリコンエピ膜の比抵抗を測定し
た。結果は、水分値は使用開始直後0.7ppmであ
り、使用量450Kg時点で5.5ppmであった。使
用開始時の高純度塩化水素の90重量%以上使用しても
ガス中の水分濃度が5.8ppm以下が保たれていた。
また、使用量350Kgと450Kg時点におけるシリ
コンエピ膜の比抵抗も両方とも2800Ωcmで高品質
を保っていた。
Example 2 <Preparation of high-purity hydrogen chloride cylinder> The same procedure as in Example 1 was carried out. <Filling of High Purity Hydrogen Chloride After Addition of Water> After adding 6 g of water to this cylinder, 500 kg of high purity hydrogen chloride is filled. <Measurement of water content> Immediately after starting the water content analysis and the amount used 450K
The same procedure as in Example 1 was repeated except that the test was performed twice at time point g. <Manufacturing and evaluation of semiconductors> Used amount of 350 kg and 450
After the silicon epitaxial film was manufactured by the flow of FIG. 7 twice at the time of Kg, the specific resistance of the silicon epitaxial film was measured by the flow of FIG. As a result, the water content was 0.7 ppm immediately after the start of use, and was 5.5 ppm when the amount used was 450 kg. Even when 90% by weight or more of high-purity hydrogen chloride at the start of use was used, the water concentration in the gas was kept at 5.8 ppm or less.
Further, the specific resistance of the silicon epi film at the usage amounts of 350 Kg and 450 Kg was 2800 Ωcm, and high quality was maintained.

【0016】実施例3 <5回使用の高純度塩化水素ボンベの調製>炭素鋼製で
気相及び液相採取口付き、容量900リットルボンベの
内部を湿式研磨した後、ボンベ内部にセラミックス製ボ
ールと塩基性洗浄液として、ラウリル酸ジエタノールア
ミド及びミリスチン酸ジエタノールアミンの1対1混合
物の3wt%水溶液440リットルを入れ、ボンベを水
平状態に保ち、その軸心周りに約1時間自転させる。そ
の後、ボンベの内容物を外部に出し、ボンベの口を真下
にしてスライド式ノズルをボンベ内に挿入して250K
gf/cmの高圧純水を噴射して内部を洗浄する。次
に、150Kgf/cmのイソプロピルアルコールで
同様に洗浄する。更に5Kgf/cmの窒素を吹き込
み、雰囲気を窒素に置換しながら200℃で加熱乾燥す
る。このように処理したボンベに弁を装着後、気密試験
でガスのリークが無い事を確認する。このボンベに高純
度塩化水素を500Kg充填し、450Kgまで使用し
た。ボンベ中の残量50Kg塩化水素をサイホン管より
抜き取り、その後、50℃〜65℃にボンベを加熱しな
がら2時間真空引きして更にボンベ内部の水分を除去す
る。このボンベに高純度塩化水素を500Kg充填し、
再び450Kgまで使用する。このように500Kg充
填と450Kg使用を計5回繰り返した後、6回目に5
00Kg充填する。 <水分測定>水分分析を使用開始直後と使用量450K
g時点の2回実施した以外は実施例1と同様に行った。
Example 3 <Preparation of High Purity Hydrogen Chloride Cylinder for Five Times Use> Wet-polishing the inside of a 900 liter cylinder made of carbon steel with a gas phase and liquid phase sampling port, and then making a ceramic ball inside the cylinder. Then, as a basic cleaning liquid, 440 liters of a 3 wt% aqueous solution of a 1: 1 mixture of lauric acid diethanolamide and myristate diethanolamine is added, the cylinder is kept horizontal, and the cylinder is rotated about its axis for about 1 hour. After that, take out the contents of the cylinder to the outside, insert the slide type nozzle into the cylinder with the mouth of the cylinder directly below, and set it to 250K.
High-pressure pure water of gf / cm 2 is sprayed to clean the inside. Next, it is similarly washed with 150 Kgf / cm 2 of isopropyl alcohol. Further, nitrogen of 5 Kgf / cm 2 is blown in, and the atmosphere is replaced with nitrogen, and heat drying is performed at 200 ° C. After mounting the valve on the cylinder treated in this way, confirm that there is no gas leak by an airtight test. This cylinder was filled with 500 kg of high-purity hydrogen chloride and used up to 450 kg. The residual amount of 50 kg of hydrogen chloride in the bomb is extracted from the siphon tube, and then the bomb is heated to 50 ° C. to 65 ° C. for 2 hours while being vacuumed to further remove water inside the bomb. Filling this cylinder with 500 kg of high-purity hydrogen chloride,
Use again up to 450 Kg. In this way, after filling 500 kg and using 450 kg 5 times in total,
Fill with 00 kg. <Measurement of water content> Immediately after starting the water content analysis and the amount used 450K
The same procedure as in Example 1 was repeated except that the test was performed twice at time point g.

【0017】<半導体の製造と評価>また使用量350
Kgと450Kg時点の2回、図7のフローでシリコン
エピ膜を製造後、図8のフローでシリコンエピ膜の比抵
抗を測定した。結果は、水分値は使用開始直後0.2p
pmであり、使用量450Kg時点で1.6ppmであ
った。使用開始時の高純度塩化水素の90重量%以上使
用してもガス中の水分濃度が5.8ppm以下が保たれ
ていた。また、使用量350Kgと450Kg時点にお
けるシリコンエピ膜の比抵抗も両方とも2800Ωcm
で高品質を保っていた。
<Manufacturing and Evaluation of Semiconductor> Used amount 350
After the silicon epitaxial film was manufactured by the flow of FIG. 7 twice at Kg and 450 Kg, the resistivity of the silicon epitaxial film was measured by the flow of FIG. As a result, the water content is 0.2p immediately after the start of use.
It was pm and was 1.6 ppm at the time of use amount of 450 Kg. Even when 90% by weight or more of high-purity hydrogen chloride at the start of use was used, the water concentration in the gas was kept at 5.8 ppm or less. Further, the specific resistance of the silicon epi film at the usage amounts of 350 kg and 450 kg is both 2800 Ωcm.
And kept high quality.

【0018】比較例1 <高純度塩化水素ボンベの調整>炭素鋼製で気相及び液
相採取口付き、容量900リットルボンベを純水洗浄
し、スチーム乾燥した後、乾燥空気を吹き込み、水分を
除去して乾燥する。こうして処理したボンベに弁を装着
後、気密試験でガスのリークが無い事を確認する。その
後、50℃〜65℃にボンベを加熱しながら2時間真空
引きして更にボンベ内部の水分を除去する。このボンベ
に高純度塩化水素を500Kg充填する。 <水分及び鉄分測定>ボンベの気相採取口に減圧弁を接
続し、ガス圧力を0.1MPaから0.5MPaに調整
する。減圧弁からダイオードレーザー式水吸光光度計の
試料導入口まではステンレス製の配管を接続する。その
配管には除湿された窒素ガスで配管内の水分を予めパー
ジするための窒素配管を接続して置き、試料採取前に配
管内の水分を除去する。更に除湿を確実に行う目的で試
料採取配管には加熱用のヒーター線を巻きつけ、また真
空ポンプを接続する。配管を50℃から100℃に加熱
後、1000Pa以下に減圧して水分を除く、このよう
にして水分フリーとなった試料採取配管に塩化水素を1
L/分から5L/分で流す。流し初めて30分から60分
後、水分計に塩化水素ガスの一部を導入し、セル光路長
10mのエア・リキード社製DIODE LASER
HYDROMETERに導入して、1368nmの水分
吸収ピークを測定する。予め求めた水分吸収ピークと水
分量の検量線より水分濃度を測定する。並行して気相の
塩化水素ガスを超純水に吸収させて採取する。その後、
ICP−質量分析法で鉄イオン濃度の分析を行った。水
分測定と鉄イオン濃度分析は使用開始直後、その後、使
用量50Kg、100Kg、150Kg、200Kg、
250Kg、300Kg、350Kg、370Kg、4
00Kg、430Kg、450Kg時点の12回実施し
た。 <半導体の製造と評価>また使用量350Kgと450
Kg時点の2回、図7のフローでシリコンエピ膜を製造
後、図8のフローでシリコンエピ膜の比抵抗を測定し
た。 <結果>図2の通り、水分値は使用開始直後は1.0p
pmであるが、使用量450Kgの時点で7.8ppm
まで上昇した。水分値5.8ppm以上になれば配管等
の腐食が始まり、鉄分が著しく増加した。鉄分の増加と
共にシリコンエピ膜の比抵抗値が塩化水素の使用量35
0Kg時点では2800Ωcmであったが、使用量45
0Kgの時点では1500Ωcmとなった。
Comparative Example 1 <Preparation of High Purity Hydrogen Chloride Cylinder> A 900 liter cylinder made of carbon steel with a vapor phase and liquid phase sampling port was washed with pure water, steam-dried, and then dry air was blown to remove water. Remove and dry. After mounting the valve on the cylinder thus treated, confirm that there is no gas leak by air tightness test. Then, while heating the cylinder at 50 ° C. to 65 ° C., the container is vacuumed for 2 hours to further remove water in the cylinder. The cylinder is filled with 500 kg of high-purity hydrogen chloride. <Measurement of water content and iron content> A pressure reducing valve is connected to the gas phase sampling port of the cylinder to adjust the gas pressure from 0.1 MPa to 0.5 MPa. A stainless steel pipe is connected from the pressure reducing valve to the sample introduction port of the diode laser water absorptiometer. A nitrogen pipe for preliminarily purging water in the pipe with dehumidified nitrogen gas is connected to the pipe and placed, and the water in the pipe is removed before sampling. Furthermore, for the purpose of surely dehumidifying, a heater wire for heating is wound around the sampling pipe, and a vacuum pump is connected. After heating the pipe from 50 ° C to 100 ° C, depressurize it to 1000 Pa or less to remove water.
Run from L / min to 5 L / min. After 30 to 60 minutes for the first time of flowing, a part of hydrogen chloride gas was introduced into the moisture meter, and a cell optical path length of 10 m, manufactured by Air Liquide, DIODE LASER.
Introduced in HYDROMETER, the water absorption peak at 1368 nm is measured. The water concentration is measured from a previously obtained water absorption peak and a calibration curve of water content. In parallel, gas phase hydrogen chloride gas is absorbed in ultrapure water and collected. afterwards,
The iron ion concentration was analyzed by ICP-mass spectrometry. Immediately after the start of use, the amount of water used and the amount of iron ion analyzed were 50 Kg, 100 Kg, 150 Kg and 200 Kg.
250 kg, 300 kg, 350 kg, 370 kg, 4
It was carried out 12 times at 00 Kg, 430 Kg and 450 Kg. <Manufacturing and evaluation of semiconductors> Used amount of 350 kg and 450
After the silicon epitaxial film was manufactured by the flow of FIG. 7 twice at the time of Kg, the specific resistance of the silicon epitaxial film was measured by the flow of FIG. <Results> As shown in FIG. 2, the water content is 1.0 p immediately after the start of use.
pm, but 7.8 ppm when the amount used is 450 Kg
Rose to. When the water content was 5.8 ppm or more, corrosion of piping and the like started, and the iron content significantly increased. As the iron content increases, the specific resistance value of the silicon epitaxial film becomes 35
It was 2800 Ωcm at the time of 0 kg, but the amount used was 45
It became 1500 Ωcm at the time of 0 kg.

【0019】参考例1 気相ガスの水分計として浜田式露点計DH−880HA
を使用した以外は、比較例1と同様に行った。結果は図
3の通り、水分値は使用開始直後から使用量450Kg
に至るまで全て露点計の検出限界である1ppm以下を
示した。露点計では半導体用の高純度塩化水素の品質評
価ができないことが判明した。
Reference Example 1 Hamada-type dew point meter DH-880HA as a moisture meter for gas phase gas
The same procedure as in Comparative Example 1 was performed except that was used. The results are as shown in Fig. 3. The water content is 450 kg immediately after the start of use.
Up to 1 ppm, the dew point detection limit was 1 ppm or less. It was found that the dew point meter cannot evaluate the quality of high-purity hydrogen chloride for semiconductors.

【0020】参考例2 気相ガスの水分計をセル長50cmのダイオードレーザ
ー式吸光光度計を使用した以外は、比較例1と同様に行
った。結果は図4の通り、水分値は使用開始直後から使
用量150Kgに至るまで全て短光路50cmダイオー
ドレーザー式吸光光度計の検出限界である1ppm以下
を示した。短光路50cmダイオードレーザー式吸光光
度計では半導体用の高純度塩化水素の品質評価ができな
いことが判明した。
Reference Example 2 The procedure of Comparative Example 1 was repeated, except that a diode laser type absorptiometer having a cell length of 50 cm was used as a moisture meter for gas phase gas. The results are shown in FIG. 4, and the water content was 1 ppm or less, which is the detection limit of the short optical path 50 cm diode laser absorptiometer immediately after the start of use up to the usage amount of 150 kg. It was found that the short-path 50 cm diode laser type absorptiometer cannot evaluate the quality of high-purity hydrogen chloride for semiconductors.

【0021】実施例4 比較例1において、水分の測定を連続的に行い、分析値
が5.8ppmとなった時点(塩化水素として430K
g使用していた。)で別のボンベに切り替え水分が1.
0ppmであることを確認して引き続き使用した。切り
替え直前、切り替え直後とも製作されたシリコンのエピ
膜の比抵抗は2800Ωcmであった。
Example 4 In Comparative Example 1, the water content was continuously measured, and when the analysis value became 5.8 ppm (430 K as hydrogen chloride)
g was used. ) Switch to another cylinder and the water content is 1.
After confirming that it was 0 ppm, it was used continuously. Immediately before switching and immediately after switching, the specific resistance of the silicon epitaxial film produced was 2800 Ωcm.

【0022】[0022]

【発明の効果】本発明の高純度塩化水素は、これを原料
として製造されたシリコンエピウエハーの金属汚染レベ
ルが低く、且つ、配管等の腐食がないため、配管等の交
換頻度が減少する。また、使用開始時の高純度塩化水素
充填量の90重量%以上まで使用できるため、使用コス
トも削減できる。加えて、高価な除湿装置も不要とな
り、産業に利する事が大である。
EFFECTS OF THE INVENTION The high-purity hydrogen chloride of the present invention has a low level of metal contamination in a silicon epiwafer manufactured using it as a raw material and does not corrode pipes and the like, so that the frequency of replacement of the pipes and the like is reduced. Further, since it can be used up to 90% by weight or more of the high-purity hydrogen chloride filling amount at the start of use, the use cost can be reduced. In addition, an expensive dehumidifying device is not required, which is very advantageous for the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の水分値と比抵抗の測定結果を示
す。
FIG. 1 shows measurement results of water content and specific resistance of Example 1.

【図2】 比較例1の水分値と比抵抗の測定結果を示
す。
FIG. 2 shows measurement results of water content and specific resistance of Comparative Example 1.

【図3】 参考例1の水分値と比抵抗の測定結果を示
す。
FIG. 3 shows measurement results of water content and specific resistance of Reference Example 1.

【図4】 参考例2の水分値と比抵抗の測定結果を示
す。
FIG. 4 shows measurement results of water content and specific resistance of Reference Example 2.

【図5】 本発明の高純度塩化水素中の水分濃度測定に
用いるマルチパスセルを有するダイオードレーザー式吸
光光度計の例を示す。
FIG. 5 shows an example of a diode laser type absorptiometer having a multipass cell used for measuring the water concentration in high-purity hydrogen chloride of the present invention.

【図6】 本発明に好適に用いられるボンベの内部研磨
に用いる遠心式研磨機を示す。
FIG. 6 shows a centrifugal polishing machine used for internal polishing of a cylinder suitably used in the present invention.

【図7】 シリコンエピ膜の製造フローを示す。FIG. 7 shows a manufacturing flow of a silicon epitaxial film.

【図8】 シリコンエピ膜の比抵抗の測定フローを示
す。
FIG. 8 shows a measurement flow of the specific resistance of the silicon epitaxial film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 年彦 大阪府高石市高砂1−6 三井化学株式会 社内 Fターム(参考) 3E072 AA01 BA06 CA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshihiko Sakamoto             1-6 Takasago, Takaishi-shi, Osaka Mitsui Chemicals Stock Association             In-house F-term (reference) 3E072 AA01 BA06 CA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐圧容器に液相が存在する条件下に充填
された高純度塩化水素であり、充填後24時間以上経過
した後測定した気相の水分が0.7ppm以下である半
導体製造用高純度塩化水素。
1. A semiconductor manufacturing method, which is high-purity hydrogen chloride filled under a condition where a liquid phase is present in a pressure-resistant container, and has a water content of 0.7 ppm or less measured in a gas phase after 24 hours or more have been filled. High-purity hydrogen chloride.
【請求項2】 水分が、波長1368nmの吸光度で測
定した価であり、水分量として、0.1〜0.7ppm
である請求項1記載の高純度塩化水素。
2. The water content is a value measured by the absorbance at a wavelength of 1368 nm, and the water content is 0.1 to 0.7 ppm.
The high-purity hydrogen chloride according to claim 1.
【請求項3】 耐圧容器が、主として鉄からなる金属か
ら構成された容器であって、その内面を研磨処理した
後、塩基性洗浄液または塩基性洗浄液に酸化剤を含む溶
液で処理した後、加熱乾燥して得られたものである請求
項1記載の半導体製造用高純度塩化水素。
3. The pressure-resistant container is a container mainly composed of a metal made of iron, the inner surface of which is polished, treated with a basic cleaning liquid or a solution containing an oxidizing agent in the basic cleaning liquid, and then heated. The high-purity hydrogen chloride for semiconductor production according to claim 1, which is obtained by drying.
【請求項4】 塩化水素ガスの水分を、波長1368n
mの吸光度で測定して5.8ppm未満であることを確
認しながら塩化水素ガスを用いる半導体製造用高純度塩
化水素の使用方法。
4. The water content of hydrogen chloride gas is adjusted to a wavelength of 1368n.
A method of using high-purity hydrogen chloride for semiconductor production, which uses hydrogen chloride gas while confirming that it is less than 5.8 ppm as measured by the absorbance of m.
JP2001315180A 2001-05-10 2001-10-12 High purity hydrogen chloride for semiconductor manufacture Pending JP2003028392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315180A JP2003028392A (en) 2001-05-10 2001-10-12 High purity hydrogen chloride for semiconductor manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-139716 2001-05-10
JP2001139716 2001-05-10
JP2001315180A JP2003028392A (en) 2001-05-10 2001-10-12 High purity hydrogen chloride for semiconductor manufacture

Publications (1)

Publication Number Publication Date
JP2003028392A true JP2003028392A (en) 2003-01-29

Family

ID=26614869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315180A Pending JP2003028392A (en) 2001-05-10 2001-10-12 High purity hydrogen chloride for semiconductor manufacture

Country Status (1)

Country Link
JP (1) JP2003028392A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242884A (en) * 2009-04-07 2010-10-28 Tsurumi Soda Co Ltd Method of washing vessel valve and washing agent
JP2016109171A (en) * 2014-12-03 2016-06-20 住友精化株式会社 High-pressure gas container cleaning method and high-pressure gas container
WO2017110412A1 (en) * 2015-12-22 2017-06-29 昭和電工株式会社 Hydrogen chloride mixture, and production method therefor and container filled therewith
JPWO2017221594A1 (en) * 2016-06-22 2019-04-11 昭和電工株式会社 Hydrogen sulfide mixture, method for producing the same, and filled container
EP2395127B1 (en) * 2010-06-11 2020-12-23 Versum Materials US, LLC Cylinder surface treatment for monochlorosilane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266399A (en) * 1988-08-30 1990-03-06 Semiconductor Energy Lab Co Ltd Gas charging vessel and manufacture thereof
JPH0599845A (en) * 1991-10-08 1993-04-23 Nippon Sanso Kk Water content analysis device using semiconductor laser
JPH06347398A (en) * 1993-06-04 1994-12-22 Tsurumi Soda Co Ltd Determination method for moisture in gas
JPH08159964A (en) * 1994-12-02 1996-06-21 Tsurumi Soda Co Ltd Determination method of moisture in gas, and sample vessel
JP2000257795A (en) * 1999-03-10 2000-09-19 Mitsui Chemicals Inc Inner surface treatment method of high pressure gas container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266399A (en) * 1988-08-30 1990-03-06 Semiconductor Energy Lab Co Ltd Gas charging vessel and manufacture thereof
JPH0599845A (en) * 1991-10-08 1993-04-23 Nippon Sanso Kk Water content analysis device using semiconductor laser
JPH06347398A (en) * 1993-06-04 1994-12-22 Tsurumi Soda Co Ltd Determination method for moisture in gas
JPH08159964A (en) * 1994-12-02 1996-06-21 Tsurumi Soda Co Ltd Determination method of moisture in gas, and sample vessel
JP2000257795A (en) * 1999-03-10 2000-09-19 Mitsui Chemicals Inc Inner surface treatment method of high pressure gas container

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242884A (en) * 2009-04-07 2010-10-28 Tsurumi Soda Co Ltd Method of washing vessel valve and washing agent
EP2395127B1 (en) * 2010-06-11 2020-12-23 Versum Materials US, LLC Cylinder surface treatment for monochlorosilane
TWI680022B (en) * 2014-12-03 2019-12-21 日商住友精化股份有限公司 Cleaning method of high-pressure gas container and high-pressure gas container
JP2016109171A (en) * 2014-12-03 2016-06-20 住友精化株式会社 High-pressure gas container cleaning method and high-pressure gas container
KR20200043494A (en) * 2015-12-22 2020-04-27 쇼와 덴코 가부시키가이샤 Production method for hydrogen chloride mixture
US20180354790A1 (en) * 2015-12-22 2018-12-13 Showa Denko K.K. Hydrogen chloride mixture, method for producing the same, and filling container
EP3395759A4 (en) * 2015-12-22 2019-05-22 Showa Denko K.K. Hydrogen chloride mixture, method for producing the same, and filling container
CN108290734A (en) * 2015-12-22 2018-07-17 昭和电工株式会社 Hydrogen chloride mixture and its manufacturing method and filling container
TWI615355B (en) * 2015-12-22 2018-02-21 Showa Denko Kk Hydrogen chloride mixture, manufacturing method thereof and filling container
WO2017110412A1 (en) * 2015-12-22 2017-06-29 昭和電工株式会社 Hydrogen chloride mixture, and production method therefor and container filled therewith
KR102219162B1 (en) * 2015-12-22 2021-02-23 쇼와 덴코 가부시키가이샤 Production method for hydrogen chloride mixture
CN108290734B (en) * 2015-12-22 2021-11-26 昭和电工株式会社 Hydrogen chloride mixture, method for producing same, and filling container
JPWO2017221594A1 (en) * 2016-06-22 2019-04-11 昭和電工株式会社 Hydrogen sulfide mixture, method for producing the same, and filled container

Similar Documents

Publication Publication Date Title
EP0604393B1 (en) Diluted anhydrous hydrogen fluoride gas generator for use in dry etching apparatus
KR100263958B1 (en) Nitrogen trifluoride-oxygen thermal cleaning process
EP3476799B1 (en) Hydrogen sulfide mixture, method for producing same, and filled container
JPH0625822A (en) Treatment for surface passivation of stainless steel
US5332555A (en) Ozone beam generation apparatus and method for generating an ozone beam
JP2007109928A (en) Cleaning method and cleaning apparatus for component of apparatus for manufacturing nitride semiconductor
JP2003028392A (en) High purity hydrogen chloride for semiconductor manufacture
EP1761460A2 (en) Method and apparatus for purifying inorganic halides and oxyhalides using zeolites
Ohmi et al. Trace moisture analysis in specialty gases
JP4744017B2 (en) Analysis method of trace impurities in high purity fluorine gas
JP3998018B2 (en) Silanol group concentration measuring method and measuring cell
JP2004160312A (en) Pfc gas decomposition system and method used for the same
JP2003133381A (en) Method and apparatus for etching silicon wafer and impurity analyzing method
WO2007063938A1 (en) Method and purification of unsaturated fluorinated carbon compound, method for formation of fluorocarbon film, and method for manufacture of semiconductor device
JP3326559B2 (en) CVD apparatus and its purging method
JPH03215656A (en) Metallic material with passivating fluoride film and its production and equipment using same
JP2559195B2 (en) Use of oxalyl chloride for producing chloride-doped silicon dioxide films on silicon substrates
CN105110327A (en) Superhard abrasive material surface high-cleaning treatment method
KR20020020647A (en) Plasma drying and passivation of compressed gas cylinders
JPH0859210A (en) Ozonizer
EP3395759B1 (en) Hydrogen chloride mixture, method for producing the same, and filling container
JP3708980B2 (en) How to remove moisture from gas
JP2788102B2 (en) Arsenic cleaning method using fluorine or chlorine fluoride gas
Chmel et al. Si Cl groups in chlorine-impregnated silica
JP3587606B2 (en) Method for measuring water content in hydrogen iodide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070928