JP2002355938A - Composite film, its manufacturing method, and separator for battery using the same or filter - Google Patents

Composite film, its manufacturing method, and separator for battery using the same or filter

Info

Publication number
JP2002355938A
JP2002355938A JP2001162047A JP2001162047A JP2002355938A JP 2002355938 A JP2002355938 A JP 2002355938A JP 2001162047 A JP2001162047 A JP 2001162047A JP 2001162047 A JP2001162047 A JP 2001162047A JP 2002355938 A JP2002355938 A JP 2002355938A
Authority
JP
Japan
Prior art keywords
membrane
polyolefin
heat
resistant polymer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001162047A
Other languages
Japanese (ja)
Inventor
Koichi Kono
公一 河野
Kotaro Takita
耕太郎 滝田
Kazuhiro Yamada
一博 山田
Tetsuro Nogata
鉄郎 野方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Tonen Sekiyu Kagaku KK
Priority to JP2001162047A priority Critical patent/JP2002355938A/en
Publication of JP2002355938A publication Critical patent/JP2002355938A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a composite film which can be used as a high quality separator in which a coating layer itself is not liable to heat melt in a field of a chemical battery such as a lithium cell or the like, and which can be used as a filter not liable to lower a performance even when the film is contacted with a high temperature chemical for a long time even in a field of a separate film, and to provide a method for manufacturing the same. SOLUTION: The composite film comprises a coating layer made of a porous material (B) of a heat resistant polymer on at least one surface of a polyolefin microporous film (A) in such a manner that a mean pore size of the porous material (B) is larger than a maximum pore size of the microporous film (A). The method for manufacturing the composite film comprises a step of coating a heat resistant polymer substance solution or precursor solution on at least one surface of the film (A), a step of contacting the coating surface with their poor solvent to phase separate the solution, and a step of forming a coating layer made of the porous material (B) of the heat resistant polymer substance by heating and drying the phase separated surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合膜、その製造
方法及びそれを用いた電池用セパレータ又はフィルター
に関し、さらに詳しくは、リチウム電池のような化学電
池の分野では、被覆層自身が熱溶融しにくく高品質セパ
レータとして使用でき、さらに分離膜の分野でも、高温
の薬液と長時間接触しても性能が低下しにくい濾過フィ
ルターとして使用することのできる複合膜、その製造方
法及びそれを用いた電池用セパレータ又はフィルターに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite membrane, a method for producing the same, and a battery separator or filter using the same. More particularly, in the field of a chemical battery such as a lithium battery, the coating layer itself is thermally fused. A composite membrane that can be used as a high-quality separator that is difficult to be used, and can be used as a filtration filter whose performance is hardly deteriorated even in contact with a high-temperature chemical solution for a long time in the field of separation membrane, a method for producing the same, and a method using the same. The present invention relates to a battery separator or filter.

【0002】[0002]

【従来の技術】従来、様々な多孔膜が開発されており、
フィルター、電解膜、非水溶媒型電池のセパレータとし
て使用されている。リチウム二次電池の分野では、反応
性の高い活物質を使用しているために、電池あるいは使
用機器においては、各種の安全装置が設けられ、外部回
路の短絡、過充電等により電池の発熱、発火、あるいは
破裂事故等を防止するための一つの手段として、正極と
負極を分離するセパレータにおいても、用いられている
ポリエチレン、ポリプロピレン製の微多孔性膜の孔が、
異常時の発熱によって閉塞され、セパレータを通じた電
池反応を停止する機能とともに、高温になってもセパレ
ータとしての形状を維持し、正極物質と負極物質が直接
反応する危険な事態を防止する機能を有することが要求
されている。特に、近年需要が増加している大容量のリ
チウムイオン二次電池では、容量が大きいために内部短
絡を起こすとその箇所が発熱し、内部ショートが拡大す
るので、このような場合に発生しがちな事故の危険性を
回避し得る高性能なセパレータの出現が渇望されてい
た。さらに、現在、広く用いられている延伸によって製
造した微多孔性のセパレータは、膜形状維持特性が低
く、高温でも膜形状維持特性の大きなセパレータが求め
られていた。
2. Description of the Related Art Conventionally, various porous membranes have been developed.
They are used as filters, electrolytic membranes, and separators for non-aqueous solvent batteries. In the field of lithium secondary batteries, since active materials with high reactivity are used, various safety devices are provided in the batteries or used equipment, and short-circuiting of an external circuit, overcharging, etc. As one means for preventing ignition or a burst accident, etc., the separator of the positive electrode and the negative electrode is also used, the polyethylene, the pores of the polypropylene microporous membrane used,
In addition to the function of stopping the battery reaction through the separator when closed due to heat generation at the time of abnormality, it has the function of maintaining the shape of the separator even at high temperatures and preventing the dangerous situation where the cathode material and the anode material react directly. Is required. In particular, in the case of large-capacity lithium-ion secondary batteries, which have been increasing in demand in recent years, if the internal short circuit occurs due to the large capacity, the location will generate heat and the internal short circuit will increase. There has been a desire for a high-performance separator capable of avoiding the danger of accidents. Further, microporous separators manufactured by stretching, which are widely used at present, have low film shape retention characteristics, and a separator having high film shape retention characteristics even at high temperatures has been demanded.

【0003】一方、分離膜の分野でも、ポリオレフィン
微多孔膜は、その特性である微細孔構造を活かし、従来
からガス分離、液液分離、固液分難などの分離膜として
使用されてきたが、近年の分離操作で重要視されるよう
になってきた耐溶剤性、耐薬品性等の要求される用途に
おいては、特に被分離対象の流体が高温であっても、分
離機能を維持したままで十分な耐性を維持し得るよう
に、分離膜としてのポリオレフィン微多孔膜の性能を改
良すべく要請が高まっていた。
On the other hand, in the field of separation membranes, polyolefin microporous membranes have been conventionally used as separation membranes for gas separation, liquid-liquid separation, solid-liquid separation, etc. by utilizing their characteristic micropore structure. In applications requiring solvent resistance, chemical resistance, etc., which have come to be regarded as important in recent separation operations, the separation function is maintained even if the fluid to be separated is at a high temperature. There has been an increasing demand for improving the performance of a polyolefin microporous membrane as a separation membrane so that sufficient resistance can be maintained.

【0004】こうした従来のポリオレフィン微多孔膜の
もつ問題点を解消するために、これまで種々の試みがな
され、その1つとして、ポリオレフィン微多孔膜を基材
としてその上にポリオレフィンよりも融点の高い耐熱性
樹脂層を積層して複合膜にする検討もなされているが、
いずれも強度や耐久性など機能面で十分に目的を達成し
たものとはいえなかった。
Various attempts have been made to solve the problems of the conventional microporous polyolefin membrane. One of the attempts is to use a polyolefin microporous membrane as a base material having a higher melting point than polyolefin. Studies have been made to laminate heat-resistant resin layers into composite films,
In any case, the objectives were not sufficiently achieved in terms of functions such as strength and durability.

【0005】例えば、特開平5−62662号では、電
池用セパレータとして、ポリオレフィンからなる多孔質
膜に、耐熱性の高いポリイミド樹脂を複合化したネッ
ト、シートを用いることにより、微少短絡による発熱の
ためポリオレフィンが溶融した場合でも、ポリイミド樹
脂は溶融せずに残り、正極と負極を接触させず二次的な
大面積での短絡を防止し、短絡にともなう電池の急激な
温度上昇を防ぐ手段が提案されているが、構成材料であ
るポリオレフィン多孔質膜、ポリイミド樹脂については
平均孔径など詳細が開示されていないので、このような
製品を市場へ安定的に供給するのは困難であった。ま
た、特開平11−144697号にも、ポリオレフィン
多孔質体としてポリエチレン微多孔膜を、ポリイミド多
孔質体の不織布ではさみ、サンドイッチ構造にしたセパ
レータを用いた非水電解質電池が提案されている。この
ようにすれば、微多孔膜のシャットダウン機能を改善で
き、シャットダウンの際に完全溶融や溶融亀裂を防止し
うるが、ポリイミド多孔質体を如何にして製造するかは
明らかにしていない。
[0005] For example, in Japanese Patent Application Laid-Open No. 5-62662, the use of a net or sheet in which a highly heat-resistant polyimide resin is combined with a porous film made of polyolefin as a battery separator causes heat generation due to a minute short circuit. Even if the polyolefin melts, the polyimide resin remains without melting, preventing contact between the positive electrode and the negative electrode to prevent a secondary short circuit in a large area, and a means to prevent a sudden temperature rise of the battery due to the short circuit is proposed. However, it is difficult to stably supply such products to the market because details such as an average pore diameter of the polyolefin porous membrane and the polyimide resin as constituent materials are not disclosed. Japanese Patent Application Laid-Open No. 11-144697 also proposes a nonaqueous electrolyte battery using a separator having a sandwich structure in which a microporous polyethylene film is sandwiched between nonwoven fabrics of a polyimide porous body as a polyolefin porous body. By doing so, the shutdown function of the microporous film can be improved, and complete melting and melt cracking can be prevented at the time of shutdown. However, it is not clear how to produce the polyimide porous body.

【0006】こうした状況下、近年では、ポリオレフィ
ン微多孔膜のもつ電池用セパレータとしての性能や分離
膜としての性能を拡充、向上させるために、ポリオレフ
ィン微多孔膜の上に耐熱性高分子からなる多孔質被覆層
を形成した複合膜およびその製造方法の開発が切望され
ている。
Under these circumstances, in recent years, in order to expand and improve the performance of a polyolefin microporous membrane as a battery separator and as a separation membrane, a porous polyolefin microporous membrane made of a heat-resistant polymer has been formed. The development of a composite membrane having a porous coating layer and a method for producing the same has been desired.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、前述
した従来技術の問題に鑑み、リチウム電池のような化学
電池の分野では、被覆層自身が熱溶融しにくく高品質の
セパレータとして使用でき、さらに、分離膜の分野で
も、高温の薬液と長時間接触しても低下しにくい濾過フ
ィルターとして使用することのできる複合膜、その製造
方法及びそれを用いた電池用セパレータ又はフィルター
を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, the object of the present invention is to provide a coating layer which is hardly melted by heat and can be used as a high quality separator in the field of chemical batteries such as lithium batteries. Further, in the field of separation membranes, a composite membrane which can be used as a filtration filter which is hardly reduced even when it is brought into contact with a high-temperature chemical solution for a long time, a method for producing the same, and a battery separator or filter using the same are provided. It is in.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた結果、ポリオレフィ
ン微多孔膜の少なくとも片面に耐熱性高分子物質の多孔
質体からなる被覆層を形成してなる複合膜において、微
多孔膜上に耐熱性高分子溶液、又はその前駆体を塗布
後、相分離し多孔化することで、多孔質体の平均孔径を
特定の範囲に調整したところ、従来にない高品質な電池
用セパレータ、分離膜として利用できる複合膜が得られ
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, have found that at least one surface of a polyolefin microporous film has a coating layer made of a porous material of a heat-resistant polymer. In a composite membrane formed by forming a heat-resistant polymer solution, or a precursor thereof, on a microporous membrane, and then phase-separating and making the porous body, the average pore diameter of the porous body was adjusted to a specific range. However, they have found that a composite membrane usable as an unprecedented high-quality battery separator and separation membrane can be obtained, and have completed the present invention.

【0009】すなわち、本発明の第1の発明によれば、
ポリオレフィン微多孔膜(A)の少なくとも片面に耐熱
性高分子の多孔質体(B)からなる被覆層を形成してな
る複合膜において、多孔質体(B)の平均孔径がポリオ
レフィン微多孔膜(A)の最大孔径よりも大きいことを
特徴とする複合膜が提供される。
That is, according to the first aspect of the present invention,
In a composite membrane in which a coating layer made of a porous body (B) of a heat-resistant polymer is formed on at least one surface of a polyolefin microporous membrane (A), the porous body (B) has an average pore size of the polyolefin microporous membrane ( A composite membrane is provided which is larger than the maximum pore size of A).

【0010】また、本発明の第2の発明によれば、第1
の発明において、耐熱性高分子が、ポリイミド、ポリエ
ーテルエーテルケトン、ポリアミド、ポリエーテルスル
ホン、ポリエーテルイミド、ポリスルホン、及びポリフ
ェニレンスルフィドからなる群から選ばれる少なくとも
1種以上であることを特徴とする複合膜が提供される。
Further, according to the second aspect of the present invention, the first aspect
Wherein the heat-resistant polymer is at least one selected from the group consisting of polyimide, polyetheretherketone, polyamide, polyethersulfone, polyetherimide, polysulfone, and polyphenylene sulfide. A membrane is provided.

【0011】さらに、本発明の第3の発明によれば、第
1の発明又は第2の発明において、膜厚がポリオレフィ
ン微多孔膜(A)の1.01倍〜10倍で、かつ透気度
がポリオレフィン微多孔膜(A)の1.01倍〜10倍
であることを特徴とする複合膜が提供される。
Further, according to the third invention of the present invention, in the first invention or the second invention, the thickness of the polyolefin microporous membrane (A) is 1.01 to 10 times, and the air permeability is 1.0 to 10 times. A composite membrane having a degree of 1.01 to 10 times the microporous polyolefin membrane (A) is provided.

【0012】一方、本発明の第4の発明によれば、ポリ
オレフィン微多孔膜(A)の少なくとも片方の面に耐熱
性高分子溶液又はその前駆体溶液を塗布する工程と、該
塗布面を該高分子又はその前駆体の貧溶剤に接触させる
ことにより相分離させる工程と、該相分離させた面を加
熱、乾燥することにより、耐熱性高分子の多孔質体
(B)からなる被覆層を形成させる工程とからなること
を特徴とする複合膜の製造方法が提供される。
According to a fourth aspect of the present invention, on the other hand, a step of applying a heat-resistant polymer solution or a precursor solution thereof to at least one surface of the microporous polyolefin membrane (A); A step of contacting the polymer or its precursor with a poor solvent to cause phase separation, and heating and drying the phase-separated surface to form a coating layer comprising a heat-resistant polymer porous body (B). Forming a composite film.

【0013】また、本発明の第5の発明によれば、ポリ
オレフィン微多孔膜(A)の少なくとも片方の面に耐熱
性高分子又はその前駆体、及びそれらの良溶剤と貧溶剤
の混合物に溶解した溶液を塗布する工程と、当該塗布面
から良溶剤を選択的に蒸発飛散させることにより相分離
させる工程と、該相分離した面に残留する貧溶剤を除去
することにより、耐熱性高分子の多孔質体(B)からな
る被覆層を形成させる工程とからなることを特徴とする
複合膜の製造方法が提供される。
According to the fifth aspect of the present invention, the polyolefin microporous membrane (A) has at least one surface which is dissolved in a mixture of a heat-resistant polymer or a precursor thereof, and a mixture of a good solvent and a poor solvent. Step of applying the obtained solution, and a step of phase separation by selectively evaporating and scattering a good solvent from the coating surface, and removing the poor solvent remaining on the phase-separated surface, thereby removing the heat-resistant polymer. Forming a coating layer made of a porous body (B).

【0014】さらに、本発明の第6の発明によれば、ポ
リオレフィン微多孔膜(A)の少なくとも片方の面に耐
熱性高分子溶液、又はその前駆体溶液を塗布する工程
と、該塗布面を冷却することにより相分離させる工程
と、該相分離させた面を加熱、乾燥させることにより耐
熱性高分子の多孔質体(B)からなる被覆層を形成させ
る工程とからなることを特徴とする複合膜の製造方法が
提供される。
Further, according to the sixth aspect of the present invention, a step of applying a heat-resistant polymer solution or a precursor solution thereof to at least one surface of the microporous polyolefin membrane (A), It is characterized by comprising a step of performing phase separation by cooling, and a step of forming a coating layer made of a porous body (B) of a heat-resistant polymer by heating and drying the surface subjected to phase separation. A method for manufacturing a composite membrane is provided.

【0015】一方、本発明の第7の発明によれば、第1
〜3の発明のいずれかに記載の複合膜を用いてなる電池
用セパレータが提供される。
On the other hand, according to the seventh aspect of the present invention, the first aspect
A battery separator comprising the composite membrane according to any one of the inventions (1) to (3).

【0016】さらに、本発明の第8の発明によれば、第
1〜3の発明のいずれかに記載の複合膜を用いてなるガ
ス分離、液液分離、又は固液分離用のフィルターが提供
される。
Further, according to an eighth aspect of the present invention, there is provided a filter for gas separation, liquid-liquid separation or solid-liquid separation using the composite membrane according to any one of the first to third aspects. Is done.

【0017】本発明は、上述したように複合膜等に関す
るものであるが、その好ましい態様としては、以下に示
すものも包含される。 (1) ポリオレフィン微多孔膜(A)に用いられるポ
リオレフィンが、重量平均分子量1×10〜15×1
であることを特徴とする複合膜。 (2) ポリオレフィン微多孔膜(A)に用いられるポ
リオレフィン又はポリオレフィン組成物の重量平均分子
量/数平均分子量(Mw/Mn)が5〜300であるこ
とを特徴とする前記複合膜。 (3) ポリオレフィン微多孔膜(A)に用いられるポ
リオレフィン又はポリオレフィン組成物に使用されるポ
リオレフィンが、ポリプロピレン又はポリエチレンであ
ることを特徴とする前記複合膜。 (4) ポリオレフィン微多孔膜(A)に用いられるポ
リオレフィンが、重量平均分子量50万以上のポリオレ
フィンを含有するポリオレフィン組成物である前記複合
膜。 (5) ポリオレフィン微多孔膜(A)に用いられる重
量平均分子量50万以上のポリオレフィンを含有するポ
リオレフィン組成物が、重量平均分子量50万以上の超
高分子畳ポリエチレンと重量平均分子量1万以上50万
未満の高密度ポリエチレンからなる組成物であることを
特徴とする前記複合膜。 (6) ポリオレフィン微多孔膜(A)に用いられる重
量平均分子量50万以上のポリオレフィンを含有するポ
リオレフィン組成物が.重量平均分子量50万以上の超
高分子量ポリエチレンと重量平均分子量1万以上50万
未満の高密度ポリエチレンとシャットダウン機能を付与
するポリオレフィンとからなり、一方、該シャットダウ
ン機能を付与するポリオレフィンが、低密度ポリエチレ
ン、線状低密度ポリエチレン、分子量1000〜400
0の低分子量ポリエチレン又はシングルサイト触媒を用
いて製造されたエチレン−αーオレフィン共重合体の中
から選ばれる少なくとも1種であることを特徴とする前
記複合膜。 (7) ポリオレフィン微多孔膜(A)の透気度が20
00秒/100cc以下であることを特徴とする前記複
合膜。 (8) ポリオレフィン微多孔膜(A)の引張強度が、
80MPa以上で、突刺強度が3000mN/25μm
以上であることを特徴とする前記複合膜。 (9) 多孔質体(B)を構成する耐熱性高分子物質
が、ポリイミドであることを特徴とする前記複合膜。 (10) 多孔質体(B)を構成する耐熱性高分子物質
がポリイミドであって、無水ピロメリット酸(PMD
A)、ベンゾフェノンテトラカルボン酸二無水物(BT
DA)、スルホニル・ノルボルナンジカルボン酸二無水
物(SNDC)、ビフェニルテトラカルボン酸二無水物
(BPDA)、トリカルボキシシクロペンチル二無水物
(TCDA)の1種以上から選ばれる酸若しくは酸無水
物と、ジアミノジフェニルエーテル(DADE)、ジア
ミノジフェニルメタン(DDM)、ジアミノジフェニル
チオエーテル(DDS)、ビスアミノフェニルフェノキ
シプロパン(BAPP)、ジアミノジプロピルテトラメ
チルジシロキサン(DMS)の1種以上から選ばれたジ
アミノ化合物と、ジメチルアセトアミド溶剤から得られ
たポリアミック酸を原料としたポリイミドである前記複
合膜。 (11) 多孔質体(B)の最大孔径が0.1μm以上
であることを特徴とする前記複合膜。
Although the present invention relates to a composite membrane and the like as described above, preferred embodiments thereof include the following. (1) The polyolefin used for the polyolefin microporous membrane (A) has a weight average molecular weight of 1 × 10 6 to 15 × 1.
Composite film which is a 0 6. (2) The composite membrane, wherein the weight average molecular weight / number average molecular weight (Mw / Mn) of the polyolefin or polyolefin composition used in the microporous polyolefin membrane (A) is from 5 to 300. (3) The composite membrane, wherein the polyolefin used for the polyolefin microporous membrane (A) or the polyolefin used for the polyolefin composition is polypropylene or polyethylene. (4) The composite membrane, wherein the polyolefin used for the polyolefin microporous membrane (A) is a polyolefin composition containing a polyolefin having a weight average molecular weight of 500,000 or more. (5) A polyolefin composition containing a polyolefin having a weight-average molecular weight of 500,000 or more used for the microporous polyolefin membrane (A) is composed of ultra-high molecular weight polyethylene having a weight-average molecular weight of 500,000 or more and a weight-average molecular weight of 10,000 to 500,000 The composite membrane, wherein the composition is a composition comprising less than high density polyethylene. (6) A polyolefin composition containing a polyolefin having a weight-average molecular weight of 500,000 or more used for the microporous polyolefin membrane (A). An ultra-high molecular weight polyethylene having a weight average molecular weight of 500,000 or more, a high density polyethylene having a weight average molecular weight of 10,000 to less than 500,000 and a polyolefin having a shutdown function, while the polyolefin having the shutdown function is a low density polyethylene. , Linear low density polyethylene, molecular weight 1000-400
0. The composite membrane, wherein the composite membrane is at least one selected from low-molecular-weight polyethylene of 0 or an ethylene-α-olefin copolymer produced using a single-site catalyst. (7) The air permeability of the microporous polyolefin membrane (A) is 20
The composite membrane, wherein the time is not more than 00 seconds / 100 cc. (8) The tensile strength of the microporous polyolefin membrane (A) is
At 80MPa or more, puncture strength is 3000mN / 25μm
The composite membrane as described above. (9) The composite film, wherein the heat-resistant polymer substance constituting the porous body (B) is polyimide. (10) The heat-resistant polymer substance constituting the porous body (B) is polyimide, and pyromellitic anhydride (PMD)
A), benzophenonetetracarboxylic dianhydride (BT)
DA), an acid or acid anhydride selected from one or more of sulfonyl-norbornanedicarboxylic dianhydride (SNDC), biphenyltetracarboxylic dianhydride (BPDA), and tricarboxycyclopentyl dianhydride (TCDA); A diamino compound selected from at least one of diphenyl ether (DADE), diaminodiphenylmethane (DDM), diaminodiphenylthioether (DDS), bisaminophenylphenoxypropane (BAPP), and diaminodipropyltetramethyldisiloxane (DMS); The above composite film, which is a polyimide obtained from a polyamic acid obtained from an acetamide solvent. (11) The composite membrane, wherein the porous body (B) has a maximum pore diameter of 0.1 µm or more.

【0018】[0018]

【発明の実施の形態】以下、本発明の複合膜およびその
製造方法等について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a composite film of the present invention and a method for producing the same will be described in detail.

【0019】1.ポリオレフィン微多孔膜(A) 本発明の複合膜の基材として用いられるポリオレフィン
微多孔膜は、特に限定されるものではなく、公知のもの
ならば、いかなる材質の、いかなる製法によるものであ
ってもよい。ポリオレフィン微多孔膜に使用されるポリ
オレフィンとしては、エチレン、プロピレン、1−ブテ
ン、4−メチル−1−ペンテン、1−ヘキセンなどを重
合した結晶性の単独重合体または共重合体が挙げられ
る。その際、これらの単独重合体または共重合体は、単
独で使用することができるが、2種以上のものを配合し
て用いてもよい。
1. Polyolefin Microporous Membrane (A) The polyolefin microporous membrane used as the base material of the composite membrane of the present invention is not particularly limited, and may be made of any known material and any method. Good. Examples of the polyolefin used for the microporous polyolefin membrane include a crystalline homopolymer or copolymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, or the like. At this time, these homopolymers or copolymers can be used alone, but two or more of them may be used in combination.

【0020】これらの中では、微多孔の形成性および機
械的強度の観点などから、高分子量ポリエチレン、特に
重量平均分子量が1×10〜15×10となるもの
を含有し、重量平均分子量/数平均分子量(Mw/M
n)が5〜300の高密度の超高分子量ポリエチレンが
好ましい。このようなポリエチレンは、単体または組成
物のいずれであってもかまわない。
Among these, from the viewpoints of microporous formability and mechanical strength, high molecular weight polyethylenes, especially those having a weight average molecular weight of 1 × 10 6 to 15 × 10 6 are contained, / Number average molecular weight (Mw / M
High density ultra high molecular weight polyethylene with n) of 5-300 is preferred. Such polyethylene may be either a simple substance or a composition.

【0021】ここで、2種以上のポリオレフィンを配合
する好ましい態様としては、重量平均分子量50万以上
の超高分子畳ポリエチレンと重量平均分子量1万以上5
0万未満の高密度ポリエチレンとからなる組成物があ
る。その際、該組成物中に、さらに、シャットダウン機
能を付与することのできる第3のポリオレフィン成分と
して、低密度ポリエチレン、線状低密度ポリエチレン、
分子量1000〜4000の低分子量ポリエチレン又は
シングルサイト触媒を用いて製造されたエチレン−αー
オレフィン共重合体の中から選ばれる少なくとも1種の
ポリオレフィンを配合してもよい。
Here, as a preferred embodiment in which two or more kinds of polyolefins are blended, an ultra high molecular weight tatami polyethylene having a weight average molecular weight of 500,000 or more and a weight average molecular weight of 10,000 or more 5
There are compositions consisting of less than 100,000 high density polyethylene. At that time, in the composition, as a third polyolefin component capable of imparting a shutdown function, low-density polyethylene, linear low-density polyethylene,
At least one polyolefin selected from low molecular weight polyethylene having a molecular weight of 1,000 to 4,000 or an ethylene-α-olefin copolymer produced using a single-site catalyst may be blended.

【0022】また、ポリオレフィン微多孔膜の製造方法
は、限定されるものではないが、例えば、重量平均分子
量が5×10〜2.5×10、重量平均分子量/数
平均分子量が10未満のポリオレフィン5〜50重量%
と、溶媒95〜50重量%からなる溶液を調製し、該溶
液をダイより押出し、冷却してゲル状組成物を形成し、
該ゲル状組成物をポリオレフィンの融点+10℃以下の
温度で延伸し、しかる後に残存溶媒を除去することによ
り製造したポリオレフィン微多孔膜を使用することが好
ましい。
The method for producing the microporous polyolefin membrane is not limited. For example, the weight average molecular weight is 5 × 10 5 to 2.5 × 10 6 and the weight average molecular weight / number average molecular weight is less than 10. 5-50% by weight of polyolefin
And preparing a solution consisting of 95 to 50% by weight of a solvent, extruding the solution from a die, cooling to form a gel-like composition,
It is preferable to use a microporous polyolefin membrane produced by stretching the gel composition at a temperature equal to or lower than the melting point of the polyolefin + 10 ° C. and then removing the residual solvent.

【0023】本発明に用いるポリオレフィン微多孔膜と
しては、通常、空孔率が30〜95%、膜厚25μmで
の透気度が2000秒/100cc以下、好ましくは8
00秒/100cc以下、平均貫通孔径が0.005〜
1μm、引張破断強度が80MPa以上、好ましくは1
00MPa以上、突刺強度が3000mN以上、好まし
くは5500mN以上の機械物性を有する微多孔膜が望
ましい。
The microporous polyolefin membrane used in the present invention usually has a porosity of 30 to 95%, a gas permeability of not more than 2000 seconds / 100 cc at a thickness of 25 μm, preferably 8
00 seconds / 100 cc or less, average through hole diameter is 0.005 to
1 μm, tensile strength at break of 80 MPa or more, preferably 1
A microporous membrane having mechanical properties of not less than 00 MPa and a piercing strength of not less than 3000 mN, preferably not less than 5500 mN is desirable.

【0024】なお、ポリオレフィン微多孔膜の厚さは、
適宜選択されるが、通常、0.1〜50μm、好ましく
は1〜25μm程度である。厚さが0.1μm未満で
は、膜の機械的強度不足から実用に供することが難し
く、50μmを超えると、実効抵抗が大きくなり過ぎて
好ましくない。
The thickness of the microporous polyolefin membrane is as follows:
Although it is appropriately selected, it is usually about 0.1 to 50 μm, preferably about 1 to 25 μm. If the thickness is less than 0.1 μm, it is difficult to put the film into practical use due to insufficient mechanical strength. If the thickness exceeds 50 μm, the effective resistance becomes too large, which is not preferable.

【0025】2.多孔質体(B) 本発明の複合膜の被覆層として用いられる、耐熱性高分
子物質の多孔質体(B)は、電池やフィルターを使用す
る一般的条件において熱的に安定であれば特に限定され
るものではない。リチウム電池では約200℃以上でセ
パレータの熱溶融が問題となることが多いので、特に約
200〜600℃の範囲で耐熱性のある多孔質体(B)
を採用する。
2. Porous Body (B) The porous body (B) made of a heat-resistant polymer used as a coating layer of the composite membrane of the present invention is particularly stable as long as it is thermally stable under the general conditions of using batteries and filters. It is not limited. In the case of lithium batteries, thermal melting of the separator often becomes a problem at about 200 ° C. or higher, so that the porous body (B) having heat resistance particularly in the range of about 200 to 600 ° C.
Is adopted.

【0026】2−1.耐熱性高分子 本発明の複合膜の多孔質体を構成する耐熱性高分子とし
ては、特に限定されず、種々の公知の樹脂が挙げられる
が、例えば、本発明の複合膜をリチウム電池等の電池用
セパレータに利用する場合は、電解液に対して親和性を
有すると同時に電解液や電池反応に対しても安定である
必要があって、ポリオレフィン徴多孔膜の透過抵抗に比
べて低い透過抵抗であり、十分な耐熱性をもたせる必要
がある。このような要求に応えるものとして、ポリイミ
ド、ポリエーテルエーテルケトン、ポリアミド、ポリエ
ーテルスルフィド、ポリエーテルイミド、ポリスルホ
ン、及びポリフェニレンスルフィドなどを例示できる。
その際、これらは直鎖状ポリマー単独でもよいが、モノ
マーやオリゴマーやプレポリマーなど前駆体の状態であ
ることが好ましく、これらを加熱などの方法で後重合さ
せて架橋体としてもよい。
2-1. Heat-resistant polymer The heat-resistant polymer that constitutes the porous body of the composite membrane of the present invention is not particularly limited, and includes various known resins. When used as a battery separator, it must have affinity for the electrolyte and be stable to the electrolyte and the battery reaction, and its permeation resistance is lower than the permeation resistance of the polyolefin porous membrane. Therefore, it is necessary to have sufficient heat resistance. Polyimide, polyether ether ketone, polyamide, polyether sulfide, polyether imide, polysulfone, polyphenylene sulfide, and the like can be exemplified as those meeting such demands.
At this time, these may be a linear polymer alone, but are preferably in the form of a precursor such as a monomer, oligomer or prepolymer, and may be post-polymerized by a method such as heating to form a crosslinked product.

【0027】これら耐熱性ポリマーの中では、電池用セ
パレータや分離膜としての性能、機械的強度、成形加工
性などの観点から、融点がポリオレフィン以上、例えば
約200〜500℃にあるポリイミドが好ましい。特に
融点が約250〜450℃にあるポリイミドが最適とい
える。被覆層を構成する多孔質体の平均孔径は、通常、
0.1μm以上、好ましくは0.2μm以上である。
Among these heat-resistant polymers, polyimide having a melting point equal to or higher than that of polyolefin, for example, about 200 to 500 ° C., is preferable from the viewpoints of performance as a battery separator and a separator, mechanical strength, moldability, and the like. In particular, polyimide having a melting point of about 250 to 450 ° C. can be said to be optimal. The average pore diameter of the porous body constituting the coating layer is usually
It is 0.1 μm or more, preferably 0.2 μm or more.

【0028】2−2.多孔化方法 ポリオレフィン徴多孔膜の少なくとも片方の表面に、上
記耐熱性高分子物質の多孔質体からなる被覆層を形成さ
せる方法としては、分離膜の製法に一般的に用いられる
製法である相分離法の他に、抽出法、延伸法、荷電粒子
照射法などの利用が考えられるが、その形成過程でポリ
オレフィン徴多孔膜に損傷を与えたり、その形成により
ポリオレフィン徴多孔膜の特性を阻害することは好まし
くない。そこで、ポリオレフィンの融点を越えるような
温度に晒すことなく、化学劣化や放射線劣化を伴なわな
い、ポリオレフィン徴多孔膜の機械的特性や物質透過特
性を損なわない方法として、例えば、以下の(a)〜
(c)に示すような高分子物質の相分離による多孔化方
法が選択的に利用できる。すなわち、
2-2. A method for forming a porous layer of the above-mentioned heat-resistant polymer substance on at least one surface of the polyolefin porous membrane includes a phase separation method generally used in the production of a separation membrane. In addition to the method, the extraction method, stretching method, charged particle irradiation method, etc. can be used.However, the formation process may damage the polyolefin-based porous membrane, or the formation may impair the properties of the polyolefin-based porous membrane. Is not preferred. Therefore, as a method that does not impair the mechanical properties and the material permeation properties of the polyolefin porous membrane without exposing it to a temperature exceeding the melting point of the polyolefin without causing chemical deterioration or radiation deterioration, for example, the following (a) ~
(C) A method of making a polymer porous by phase separation can be selectively used. That is,

【0029】(a)ポリオレフィン微多孔膜の少なくと
も片方の表面へ良溶剤に溶解した高分子物質を塗布し、
貧溶剤に接触させることにより相分離した後、乾燥する
ことにより多孔性高分子物質で少なくとも表面を被覆さ
れた複合膜を製造する方法。 (b)ポリオレフィン徴多孔膜の少なくとも片方の表面
に良溶剤と貧溶剤の混合溶剤に溶解した高分子物質を塗
布し、良溶剤を選択的に蒸発飛散させることにより相分
離した後、残留する溶剤を除去することにより、多孔性
高分子物質で少なくとも表面を被覆された複合膜を製造
する方法。 (c)ポリオレフィン徴多孔膜の少なくとも片方の表面
へ良溶剤に溶解した高分子物質を塗布し、冷却すること
により相分離した後、乾燥することにより多孔性高分子
物質で少なくとも表面を被覆された複合膜を製造する方
法。
(A) A polymer substance dissolved in a good solvent is applied to at least one surface of the microporous polyolefin membrane,
A method for producing a composite membrane having at least a surface coated with a porous polymer substance by drying after drying after phase separation by contact with a poor solvent. (B) A polymer substance dissolved in a mixed solvent of a good solvent and a poor solvent is applied to at least one surface of the polyolefin porous membrane, and the solvent remaining after the good solvent is selectively separated by evaporation and phase separation. A composite membrane of which at least the surface is coated with a porous polymer substance by removing the compound. (C) A polymer substance dissolved in a good solvent is applied to at least one surface of the polyolefin porous membrane, phase-separated by cooling, and then dried to coat at least the surface with the porous polymer substance. A method for producing a composite membrane.

【0030】その際、(a)〜(c)における高分子物
質の塗布は、通常、慣用の流延または塗布方法、例え
ば、ロールコーター、エヤナイフコーター、ブレードコ
ーター、ロッドコーター、バーコーター、コンマコータ
ー、グラビアコーター、シルクスクリーンコーター、ダ
イコーター、マイクログラビアコーター法などにより行
われる。
In this case, the application of the polymer substance in (a) to (c) is usually performed by a conventional casting or coating method, for example, a roll coater, an air knife coater, a blade coater, a rod coater, a bar coater, a comma. It is performed by a coater, a gravure coater, a silk screen coater, a die coater, a microgravure coater method, or the like.

【0031】本発明において好ましい耐熱性高分子であ
るポリイミドを製造するには、カルボン酸成分とジアミ
ン成分とをモノマーとして用いこれらを重合反応させ
る。
In order to produce a polyimide, which is a preferred heat-resistant polymer in the present invention, a carboxylic acid component and a diamine component are used as monomers, and these are polymerized.

【0032】カルボン酸成分は、トリカルボン酸、テト
ラカルボン酸、これらの無水物から適宜選択される。こ
のような成分としては無水ピロメリット酸(PMD
A)、ベンゾフェノンテトラカルボン酸二無水物(BT
DA)、スルホニル・ノルボルナンジカルボン酸二無水
物(SNDC)、ビフェニルテトラカルボン酸二無水物
(BPDA)、トリカルボキシシクロペンチル二無水物
(TCDA)が挙げられる。カルボン酸は、無水酢酸で
再結晶化し脱水閉環により酸無水物とするのが望まし
い。スルホニル・ノルボルナンジカルボン酸二無水物
(SNDC)の場合は、80℃付近で無水酢酸と反応
後、濾別し無水酢酸を除去することで精製して用いると
よい。
The carboxylic acid component is appropriately selected from tricarboxylic acids, tetracarboxylic acids, and anhydrides thereof. Such components include pyromellitic anhydride (PMD)
A), benzophenonetetracarboxylic dianhydride (BT)
DA), sulfonyl norbornane dicarboxylic dianhydride (SNDC), biphenyltetracarboxylic dianhydride (BPDA), and tricarboxycyclopentyl dianhydride (TCDA). The carboxylic acid is desirably recrystallized with acetic anhydride and dehydrated to form an acid anhydride by ring closure. In the case of sulfonyl norbornane dicarboxylic dianhydride (SNDC), it is preferable to react with acetic anhydride at about 80 ° C., then filter and remove acetic anhydride for purification.

【0033】ジアミン成分としては、芳香族環やシロキ
サン結合を有するジアミン化合物が使用できる。このよ
うな化合物として、ジアミノジフェニルエーテル(DA
DE)、ジアミノジフェニルメタン(DDM)、ジアミ
ノジフェニルチオエーテル(DDS)、ビスアミノフェ
ニルフェノキシプロパン(BAPP)、ジアミノジプロ
ピルテトラメチルジシロキサン(DMS)などを挙げる
ことができる。
As the diamine component, a diamine compound having an aromatic ring or a siloxane bond can be used. Such compounds include diaminodiphenyl ether (DA
DE), diaminodiphenylmethane (DDM), diaminodiphenylthioether (DDS), bisaminophenylphenoxypropane (BAPP), diaminodipropyltetramethyldisiloxane (DMS), and the like.

【0034】上記塗布液の溶剤は、次に示すように、耐
熱性高分子の性状に応じ、どの相分離による多孔化方法
を採用するかにより適宜選択される。
As described below, the solvent of the coating solution is appropriately selected depending on which phase separation method is used depending on the properties of the heat-resistant polymer.

【0035】例えば、耐熱性高分子がポリイミドである
場合、良溶剤としては、シクロヘキサノン、γ−ブチロ
ラクトン、エチレンカーボネート、ジメチルホルムアミ
ド、ジメチルアセトアミド、N−メチルピロリドン、ジ
メチルスルホキシド、ジメチルスルホン、ヘキサメチル
ホスホルアミド、テトラメチル尿素等が挙げられ、特に
好ましいのは、ジメチルホルムアミド、ジメチルアセト
アミド、N−メチルピロリドンである。純度が低い場合
は、使用する前に減圧蒸留などにより精製しておくこと
が望ましい。また、水分が存在する場合は、加熱・脱水
したモレキュラーシーブで処理することで、これを除去
しておくことが好ましい。一方、貧溶剤としては、メタ
ノール、エタノールなどのアルコール類、ベンゼン、メ
チルイソブチルケトン、ジメチルホルムアミド、水、等
が挙げられ、好ましいのはアルコール類である。
For example, when the heat-resistant polymer is polyimide, good solvents include cyclohexanone, γ-butyrolactone, ethylene carbonate, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, dimethylsulfone, and hexamethylphosphorus. Examples thereof include amide and tetramethylurea, and particularly preferred are dimethylformamide, dimethylacetamide and N-methylpyrrolidone. When the purity is low, it is desirable to purify the product by vacuum distillation or the like before use. If water is present, it is preferable to remove the water by treating it with a heated and dehydrated molecular sieve. On the other hand, examples of the poor solvent include alcohols such as methanol and ethanol, benzene, methyl isobutyl ketone, dimethylformamide, water, and the like. Preferred are alcohols.

【0036】また、ポリエーテルエーテルケトン、ポリ
アミド、ポリエーテルスルホン、ポリエーテルイミド、
ポリスルホン、ポリフェニレンスルフィドの場合、良溶
剤としては、前記のシクロヘキサノン、γ−ブチロラク
トン、エチレンカーボネート、ジメチルホルムアミド、
ジメチルアセトアミド、N−メチルピロリドン、ジメチ
ルスルホキシド、ジメチルスルホン等が挙げられ、一
方、貧溶剤としては、メタノール、エタノールなどのア
ルコール類等が挙げられる。
Also, polyetheretherketone, polyamide, polyethersulfone, polyetherimide,
In the case of polysulfone and polyphenylene sulfide, good solvents include the above-mentioned cyclohexanone, γ-butyrolactone, ethylene carbonate, dimethylformamide,
Examples thereof include dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and dimethylsulfone. On the other hand, examples of the poor solvent include alcohols such as methanol and ethanol.

【0037】次に耐熱性高分子のポリイミドを例にとっ
て、塗布層を相分離することによる多孔化方法の概要を
説明する。前記のとおり、塗布後の塗膜は、(a)貧溶
剤を用いる方法、(b)良溶剤を蒸発飛散させる方法、
(c)冷却させる方法のいずれかによって溶液からポリ
マーを相分離させる。
Next, an outline of a method for forming a porous layer by phase-separating a coating layer will be described with reference to polyimide as a heat-resistant polymer as an example. As described above, the applied coating film is (a) a method using a poor solvent, (b) a method of evaporating and scattering a good solvent,
(C) phase-separating the polymer from the solution by any of the cooling methods;

【0038】カルボン酸(その無水物)成分、ジアミン
成分からなるモノマーは、それぞれ等量を採り、室温付
近で溶解させ約25〜35重量%の原料溶液を構成す
る。これを数分〜数時間かけて重合すれば、本発明の塗
布層として好適なポリアミック酸が形成される。これは
ポリイミドの前駆体であるが、塗布前に重合反応させな
いように不活性ガス雰囲気下で保存する必要がある。ポ
リアミック酸には、熱可塑性ポリイミドとして総称され
る市販品があり、溶液タイプ、フィルムタイプ、パウダ
ータイプなどが知られている。本発明に使用しうるポリ
アミック酸は、実用上、微多孔膜に塗布しうる溶液タイ
プが好ましく、このようなものに焼付けワニスがある。
溶液タイプ以外のものは良溶剤への再溶解が必要とな
る。
The monomers consisting of the carboxylic acid (anhydride) component and the diamine component are used in equal amounts, and dissolved at around room temperature to form a raw material solution of about 25 to 35% by weight. When this is polymerized for several minutes to several hours, a polyamic acid suitable as a coating layer of the present invention is formed. Although this is a precursor of polyimide, it must be stored under an inert gas atmosphere so as not to cause a polymerization reaction before coating. As the polyamic acid, there is a commercially available product generally referred to as a thermoplastic polyimide, and a solution type, a film type, a powder type, and the like are known. As the polyamic acid that can be used in the present invention, a solution type that can be applied to a microporous film is preferable for practical use. Such a type includes a baking varnish.
Those other than the solution type need to be redissolved in a good solvent.

【0039】なお、塗布液中の高分子物質の含有量は、
塗布方法および形成すべき薄膜の厚みによって適宜調整
されるが、通常、約1〜20重量%である。ポリアミッ
ク酸の場合は約5〜15重量%に希釈すると塗布しやす
いようである。ポリオレフィン微多孔膜をガラス板、ス
テンレスメッシュ板などの平滑な板に貼り付け、この上
に耐熱性高分子又は前駆体の溶液を約50〜100μm
程度の厚さに塗布すればよい。
The content of the polymer substance in the coating solution is as follows:
It is appropriately adjusted depending on the coating method and the thickness of the thin film to be formed, but is usually about 1 to 20% by weight. In the case of polyamic acid, it seems to be easy to apply when diluted to about 5 to 15% by weight. A polyolefin microporous membrane is adhered to a smooth plate such as a glass plate or a stainless steel mesh plate, and a heat-resistant polymer or precursor solution is coated on the plate with a thickness of about 50 to 100 μm.
What is necessary is just to apply to the thickness of about.

【0040】相分離するために行われる第一の方法は、
(a)貧溶剤を用いる方法であるが、これは貧溶剤とし
て例えば大量のメタノールなどを用い、これを塗膜と接
触させる方法である。第二の方法は、(b)良溶剤を蒸
発飛散させる方法であり、塗膜から良溶剤が蒸発飛散す
るように、塗膜表面へ不活性ガスを流通したり、加熱、
減圧する手段が採用できる。第三の方法は、(c)冷却
させる方法であって、塗膜を冷却することにより、ポリ
マーの溶解度を低下させて微多孔膜上に沈積させる方法
である。
The first method performed for phase separation is:
(A) The method using a poor solvent is a method in which, for example, a large amount of methanol or the like is used as a poor solvent and this is brought into contact with a coating film. The second method is (b) a method in which a good solvent is evaporated and scattered, and an inert gas is circulated to the surface of the coating film, or heated, so that the good solvent is evaporated and scattered from the coating film.
Means for reducing the pressure can be employed. The third method is (c) a method of cooling, in which the coating film is cooled to lower the solubility of the polymer and deposit the polymer on the microporous membrane.

【0041】相分離した塗膜は引き続いて、重合反応さ
せポリイミド化するとともに、多孔化工程を完結させ
る。この工程は、ポリオレフィンの融点以下、例えば6
0〜100℃において、1分〜数時間熱処理し、乾燥さ
せる工程である。テトラカルボン酸成分が芳香族環をも
つポリアミック酸の中には重合しにくいものがあるが、
このようなものは、比較的高温、長時間の加熱を必要と
する。テトラカルボン酸成分がビフェニルテトラカルボ
ン酸二無水物であれば、60〜90℃の範囲で良く、熱
処理時間は10分以内で済むために好適である。カルボ
ン酸成分が芳香族環をもたないポリアミック酸であれ
ば、無水酢酸、ピリジンを触媒としてモノマー成分に対
し5〜7倍モル加え、塗布後、窒素雰囲気下、100〜
150℃にて数時間加熱することで効率的に重合できる
ことが多い。
The phase-separated coating film is subsequently polymerized to form a polyimide and complete the porous process. This step is performed at a temperature lower than the melting point of the polyolefin, for example, 6
This is a step of performing heat treatment at 0 to 100 ° C. for 1 minute to several hours and drying. Some polyamic acids whose tetracarboxylic acid component has an aromatic ring are difficult to polymerize,
These require relatively high temperatures and long heating times. If the tetracarboxylic acid component is biphenyltetracarboxylic dianhydride, the temperature may be in the range of 60 to 90 ° C, and the heat treatment time is preferably within 10 minutes, which is preferable. If the carboxylic acid component is a polyamic acid having no aromatic ring, acetic anhydride and pyridine are used as catalysts in a molar amount of 5 to 7 times the amount of the monomer component.
By heating at 150 ° C. for several hours, polymerization can often be performed efficiently.

【0042】ポリイミド以外の耐熱性高分子について
も、2種の原料モノマーを含む溶液を調製し、これをポ
リオレフィン微多孔膜上に塗布して、上記と同様な工程
を踏むことによって相分離させれば、微多孔膜上で容易
に多孔化することができる。
With respect to the heat-resistant polymer other than polyimide, a solution containing two kinds of raw material monomers is prepared, applied to a polyolefin microporous membrane, and subjected to the same steps as above to cause phase separation. For example, it can be easily made porous on a microporous membrane.

【0043】このようにしてポリオレフィン微多孔膜の
少なくとも一方の面に形成される、多孔質体からなる被
覆層の厚みは、ポリオレフィン微多孔膜の孔径や空孔率
によっても異なるが、通常、0.001〜50μmであ
る。被覆層の厚みが0.001μmよりも少ないと、欠
陥の発生を避けることが困難となり、一方、50μmを
超えると、物質透過抵抗が無視できなくなるので望まし
くない。
The thickness of the coating layer formed of a porous material and formed on at least one surface of the microporous polyolefin membrane in this manner varies depending on the pore diameter and porosity of the polyolefin microporous membrane. 0.001 to 50 μm. If the thickness of the coating layer is less than 0.001 μm, it is difficult to avoid the occurrence of defects.

【0044】本発明の複合膜の最も特徴とするところ
は、多孔質体(B)の平均孔径がポリオレフィン微多孔
膜(A)の最大孔径よりも大きくなければならないとい
う点にある。本発明では、この要件は技術的に重要な意
義をもち、この要件を満たすと、物質透過抵抗の大きな
増大をきたすことなく複合膜に所望の機能を賦与するこ
とが可能となるのに対し、この要件を満たさなければ、
物質透過抵抗が大きくなり目的を達成することができな
い。また、このような複合膜を得るには、微多孔膜へ耐
熱性高分子溶液、又は前駆体溶液を塗布後、相分離させ
ることで多孔化する方法を採用することが必須と言え
る。
The most characteristic feature of the composite membrane of the present invention is that the average pore size of the porous body (B) must be larger than the maximum pore size of the polyolefin microporous membrane (A). In the present invention, this requirement has a technically significant significance, and satisfying this requirement makes it possible to impart a desired function to the composite membrane without significantly increasing the material permeation resistance. If you do not meet this requirement,
The material permeation resistance increases and the object cannot be achieved. In order to obtain such a composite membrane, it is essential to adopt a method of applying a heat-resistant polymer solution or a precursor solution to a microporous membrane and then phase-separating the microporous membrane to make the microporous membrane porous.

【0045】3.複合膜 以上のようにして得られた複合膜は、ポリオレフィン微
多孔膜(A)の少なくとも片面に耐熱性高分子物質の多
孔質体(B)からなる被覆層を具備することにより、ポ
リオレフィン微多孔膜自体の特性を維持したまま、その
問題点が是正されるため、ニッケル−水素電池、ニッケ
ル−カドミウム電池、ニッケル−亜鉛電池、銀−亜鉛電
池、リチウム2次電池、リチウムポリマー2次電池など
のような2次電池の分野では、高温で膜形状維持特性が
大きいことから、非常に高品質のセパレータとして使用
できるばかりでなく、さらには、分離膜の分野でも、薬
液に長時間接触させても性能が低下しにくい濾過フィル
ターとしても有効に使用することができる。
3. Composite membrane The composite membrane obtained as described above is provided with a coating layer made of a porous body (B) of a heat-resistant polymer substance on at least one surface of the polyolefin microporous membrane (A), thereby obtaining a polyolefin microporous membrane. Since the problems are corrected while maintaining the characteristics of the film itself, the nickel-hydrogen battery, nickel-cadmium battery, nickel-zinc battery, silver-zinc battery, lithium secondary battery, lithium polymer secondary battery, etc. In the field of such a secondary battery, the film shape maintaining property at a high temperature is large, so that it can be used not only as a very high quality separator, but also in the field of a separation membrane, even if it is brought into contact with a chemical solution for a long time. It can also be used effectively as a filtration filter whose performance is unlikely to decrease.

【0046】なお、本発明の複合膜の膜厚は、使用用
途、対象等によって幾分異なるが、通常は、基材として
用いられるポリオレフィン微多孔膜の1.01〜10
倍、好ましくは、1.05〜5倍であり、一方、その透
気度も、ポリオレフィン微多孔膜の1.01〜10倍、
特に1.05〜5倍であることが望ましい。
The thickness of the composite membrane of the present invention varies somewhat depending on the intended use, the object, and the like, but is usually from 1.01 to 10 of the microporous polyolefin membrane used as the substrate.
Times, preferably 1.05 to 5 times, while its air permeability is 1.01 to 10 times that of the polyolefin microporous membrane,
In particular, it is desirably 1.05 to 5 times.

【0047】[0047]

【実施例】以下に、実施例に基づき本発明を具体的に説
明するが、本発明はこれら実施例により何ら限定される
ものではない。なお、実施例、比較例における測定は下
記方法に依った。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples. In addition, the measurement in the Example and the comparative example was based on the following method.

【0048】[1.多孔体の平均孔径] 試験片となる
被覆層の表面を走査型電子顕微鏡(SEM)で5000
倍の倍率で観察し、無作為に10箇所の空隙の間隔を測
定し、それらの平均値を求めた後、その数値を平均孔径
とした。
[1. Average Pore Diameter of Porous Body] The surface of the coating layer serving as a test piece is measured with a scanning electron microscope (SEM) at 5000.
Observation was performed at a magnification of ×, and the intervals of 10 voids were measured at random. The average value was obtained, and the numerical value was defined as the average pore diameter.

【0049】[2.透気度]JIS P8117に準拠
して測定した(単位:sec/100cc)。また、
[3.破膜温度]は、四方を金枠に固定した状態で最高
200℃までの温度に設定したエアーオーブンに10分
間入れた後、取り出し、破膜の有無を目視で確認する方
法で、破膜が確認される最低温度とした。
[2. Air permeability] It was measured according to JIS P8117 (unit: sec / 100 cc). Also,
[3. Film rupture temperature] is a method of fixing the four sides to a metal frame, placing it in an air oven set at a temperature of up to 200 ° C. for 10 minutes, removing it, and visually checking the presence or absence of rupture. The lowest temperature that was confirmed.

【0050】参考例1 実施例、比較例で用いる塗布溶液を次の方法で製造し
た。カルボン酸無水物モノマー成分として、BPDA
(ビフェニルテトラカルボン酸二無水物)、又はTCD
A(トリカルボキシシクロペンチル酢酸二無水物)のい
ずれかを選んで、これをジアミンモノマー成分であるD
ADE(ジアミノジフェニルエーテル)の等量と組合
せ、全量に対して約30%のジメチルアセトアミドを加
え、ポリアミック酸を重合した。得られたポリアミック
酸溶液を約10%まで希釈し、濾過した。テトラカルボ
ン酸成分が芳香族を有するBPDA(ビフェニルテトラ
カルボン酸二無水物)はイミド化反応で不溶化するの
で、得られたポリアミック酸溶液はそのまま塗布液とし
て使用することになる。テトラカルボン酸成分が芳香族
を有さないTCDA(トリカルボキシシクロペンチル酢
酸二無水物)は、約10%のジメチルアセトアミド溶液
を調製し、これに無水酢酸とピリジンを添加、反応させ
てポリイミドを得てこれを塗布溶液とした。
Reference Example 1 The coating solutions used in Examples and Comparative Examples were produced by the following method. BPDA as a carboxylic acid anhydride monomer component
(Biphenyltetracarboxylic dianhydride) or TCD
A (tricarboxycyclopentyl acetic acid dianhydride) is selected, and this is added to the diamine monomer component D
In combination with an equal amount of ADE (diaminodiphenyl ether), about 30% of dimethylacetamide was added to the total amount to polymerize the polyamic acid. The resulting polyamic acid solution was diluted to about 10% and filtered. Since BPDA (biphenyltetracarboxylic dianhydride) having an aromatic tetracarboxylic acid component is insolubilized by an imidization reaction, the obtained polyamic acid solution is used as it is as a coating solution. For TCDA (tricarboxycyclopentyl acetic acid dianhydride) in which the tetracarboxylic acid component does not have an aromatic, a dimethylacetamide solution of about 10% is prepared, acetic anhydride and pyridine are added and reacted to obtain a polyimide. This was used as a coating solution.

【0051】実施例1 ポリエチレン微多孔膜(東燃化学(株)社製、膜厚2
3.5μm、最大孔径0.03μm、透気度878se
c/100cc、破膜温度165℃)を平滑なステンレ
スメッシュ板(50メッシュ)に貼り付け、室温にてコ
ントロールコーターを用いて、BPDA−DMDAポリ
アミック酸のジメチルアセトアミド(DMAc)溶液を
75μmの厚さに塗布した後、室温にてメタノールに浸
漬して相分離し、次いで室温にて風乾してから、80℃
のエアーオーブンで乾燥した。得られた複合膜上に形成
された塗布層を5000倍の走査型電子顕微鏡(SE
M)で観測したところ、平均0.50μmの空隙からな
る疎な多孔性構造であることが確認できた。さらに、得
られた複合膜の膜厚、および複合膜の透気度を測定した
ところ、下記の表1に示すとおりであった。
Example 1 Microporous polyethylene membrane (manufactured by Tonen Chemical Co., Ltd., film thickness 2)
3.5 μm, maximum pore size 0.03 μm, air permeability 878 sec
c / 100 cc, and a rupture temperature of 165 ° C.) were attached to a smooth stainless steel mesh plate (50 mesh), and a dimethylacetamide (DMAc) solution of BPDA-DMDA polyamic acid in a thickness of 75 μm was used at room temperature using a control coater. After immersion in methanol at room temperature, the phases were separated and then air-dried at room temperature.
And dried in an air oven. The coating layer formed on the obtained composite film was subjected to a 5000 × scanning electron microscope (SE).
Observation in M) confirmed that the porous structure had a sparse porous structure composed of voids having an average of 0.50 μm. Furthermore, when the film thickness of the obtained composite film and the air permeability of the composite film were measured, they were as shown in Table 1 below.

【0052】実施例2 実施例1のBPDA−DMDAポリアミック酸溶液を、
TCDA−DMDAポリイミド溶液に代えた以外は、前
記と同様な条件で、ポリエチレン微多孔膜に塗布し複合
膜を得た。この塗布層を5000倍の走査型電子顕微鏡
(SEM)で観測したところ、平均0.20μmの空隙
からなる疎な多孔性構造であることが確認できた。さら
に、得られた複合膜の膜厚、および複合膜の透気度を測
定したところ、下記の表1に示すとおりであった。
Example 2 The BPDA-DMDA polyamic acid solution of Example 1 was
A composite film was obtained by coating the microporous polyethylene film under the same conditions as described above, except that the solution was replaced with a TCDA-DMDA polyimide solution. Observation of this coating layer with a scanning electron microscope (SEM) at a magnification of 5,000 times confirmed that the coating layer had a sparse porous structure having an average gap of 0.20 μm. Furthermore, when the film thickness of the obtained composite film and the air permeability of the composite film were measured, they were as shown in Table 1 below.

【0053】比較例1 ポリエチレン微多孔膜(東燃化学(株)社製、膜厚2
3.5μm、最大孔径0.03μm、空孔率38%、透
気度878sec/100cc)をガラス板に貼り付
け、室温にてコントロールコーターを用いて、BPDA
−DADEアミック酸のジメチルアセトアミド(DMA
c)溶液を75μmの厚さに塗布した後、室温にて風乾
してから、室温にて真空乾燥後、80℃のエアーオーブ
ンで乾燥した。得られた複合膜上に形成された被覆層を
5000倍の走査型電子顕微鏡(SEM)で観測したと
ころ、多孔性構造は確認されなかった。また、得られた
複合膜の膜厚は31.5μmであったが、透気度は測定
不能であり、有効な透過性は認められなかった。
Comparative Example 1 Microporous polyethylene membrane (manufactured by Tonen Chemical Co., Ltd., film thickness 2)
3.5 μm, maximum pore diameter 0.03 μm, porosity 38%, air permeability 878 sec / 100 cc) were adhered to a glass plate, and BPDA was applied at room temperature using a control coater.
Dimethylacetamide of DADE amic acid (DMA
c) The solution was applied to a thickness of 75 μm, air-dried at room temperature, vacuum-dried at room temperature, and then dried in an air oven at 80 ° C. When the coating layer formed on the obtained composite film was observed under a scanning electron microscope (SEM) at 5000 times, no porous structure was confirmed. Further, although the thickness of the obtained composite membrane was 31.5 μm, the air permeability could not be measured, and no effective permeability was observed.

【0054】[0054]

【表1】 [Table 1]

【0055】上記表1に示すように、実施例1、2で得
られた本発明の複合膜では、塗布層の平均孔径がポリエ
チレン微多孔膜の最大孔径よりも大きく、破膜温度が2
00℃以上と高い。その結果、透気度がポリエチレン微
多孔膜の透気度の約1〜2倍に抑えられているのに対
し、比較例では、塗布層に実質的に孔が観測されず、透
過性が妨げられている。このことから、本発明の複合膜
によれば、透過性を大きく妨げることなく、十分な耐熱
性を賦与できることが容易に判る。
As shown in Table 1, in the composite membranes of the present invention obtained in Examples 1 and 2, the average pore diameter of the coating layer was larger than the maximum pore diameter of the polyethylene microporous membrane, and the membrane rupture temperature was 2
High as 00 ° C or higher. As a result, while the air permeability was suppressed to about 1 to 2 times the air permeability of the polyethylene microporous membrane, in the comparative example, substantially no pores were observed in the coating layer, and the permeability was hindered. Have been. From this, it is easily understood that the composite membrane of the present invention can impart sufficient heat resistance without significantly impairing the permeability.

【0056】[0056]

【発明の効果】本発明によれば、ポリオレフィン微多孔
膜の少なくとも片面に耐熱性高分子の多孔質体からなる
被覆層を形成してなる複合膜において、多孔質体の平均
孔径をポリオレフィン微多孔膜の最大孔径よりも大きく
なるように調整した。このため、リチウム電池のような
化学電池の分野では、高温でも膜形状維持特性が大きい
高品質セパレータとして使用でき、さらに分離膜の分野
でも、高温の薬液と長時間接触しても性能が低下しにく
い濾過フィルターとして使用することのできる複合膜が
得られ、その工業的価値は極めて大きい。
According to the present invention, there is provided a composite membrane comprising a porous layer of a heat-resistant polymer formed on at least one surface of a microporous polyolefin membrane. It was adjusted to be larger than the maximum pore size of the membrane. For this reason, in the field of chemical batteries such as lithium batteries, it can be used as a high-quality separator with large membrane shape retention characteristics even at high temperatures, and in the field of separation membranes, the performance deteriorates even after prolonged contact with a high-temperature chemical solution. A composite membrane that can be used as a difficult filtration filter is obtained, and its industrial value is extremely large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 71/66 B01D 71/66 71/68 71/68 B32B 5/32 B32B 5/32 31/00 31/00 H01M 2/16 H01M 2/16 P // H01M 10/40 10/40 Z (72)発明者 滝田 耕太郎 神奈川県横浜市磯子区岡村4−17−21 (72)発明者 山田 一博 神奈川県港北区下田町5−8−424 (72)発明者 野方 鉄郎 神奈川県川崎市川崎区本町1−13−11 ダ イパレス801 Fターム(参考) 4D006 GA01 GA41 GA44 MA03 MA09 MA21 MA31 MB11 MB15 MB18 MC22X MC23 MC45 MC47 MC54X MC58X MC61 MC62 MC63 MC88 NA05 NA10 NA34 NA40 NA46 NA62 NA64 PA05 PB13 PC80 4F100 AK01B AK01C AK03A AK04 AK46B AK46C AK49B AK49C AK55B AK55C AK56B AK56C AK57B AK57C BA02 BA03 BA10B BA10C DC11A DC11B DC11C EH462 EJ422 EJ862 GB41 JD02 JJ03B JJ03C YY00 5H021 BB01 BB12 BB13 CC04 EE02 EE04 HH03 HH09 5H029 AJ11 AJ12 CJ02 CJ22 DJ04 DJ13 EJ12 HJ04 HJ06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 71/66 B01D 71/66 71/68 71/68 B32B 5/32 B32B 5/32 31/00 31 / 00 H01M 2/16 H01M 2/16 P // H01M 10/40 10/40 Z (72) Inventor Kotaro Takida 4-17-21 Okamura, Isogo-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Kazuhiro Yamada Kohoku, Kanagawa Prefecture 5-8-424 Shimoda-cho, Ward (72) Inventor Tetsuro Nogata 1-13-11 Honcho, Kawasaki-ku, Kawasaki-shi, Kanagawa Pref. 801 F-term (reference) 4D006 GA01 GA41 GA44 MA03 MA09 MA21 MA31 MB11 MB15 MB18 MC22X MC23 MC45 MC47 MC54X MC58X MC61 MC62 MC63 MC88 NA05 NA10 NA34 NA40 NA46 NA62 NA64 PA05 PB13 PC80 4F100 AK01B AK01C AK03A AK04 AK46B AK46C AK49B AK49C AK55B AK55C AK56B AK56C AK57B DC11 BA11 DC02 BA03 DC11 2 EJ862 GB41 JD02 JJ03B JJ03C YY00 5H021 BB01 BB12 BB13 CC04 EE02 EE04 HH03 HH09 5H029 AJ11 AJ12 CJ02 CJ22 DJ04 DJ13 EJ12 HJ04 HJ06

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン微多孔膜(A)の少なく
とも片面に耐熱性高分子の多孔質体(B)からなる被覆
層を形成してなる複合膜において、多孔質体(B)の平
均孔径がポリオレフィン微多孔膜(A)の最大孔径より
も大きいことを特徴とする複合膜。
1. A composite membrane comprising a microporous polyolefin membrane (A) and a coating layer comprising a porous body (B) made of a heat-resistant polymer on at least one surface, wherein the average pore diameter of the porous body (B) is A composite membrane characterized by being larger than the maximum pore size of the polyolefin microporous membrane (A).
【請求項2】 耐熱性高分子が、ポリイミド、ポリエー
テルエーテルケトン、ポリアミド、ポリエーテルスルホ
ン、ポリエーテルイミド、ポリスルホン、及びポリフェ
ニレンスルフィドからなる群から選ばれる少なくとも1
種以上であることを特徴とする請求項1に記載の複合
膜。
2. The heat-resistant polymer is at least one selected from the group consisting of polyimide, polyetheretherketone, polyamide, polyethersulfone, polyetherimide, polysulfone, and polyphenylene sulfide.
The composite membrane according to claim 1, wherein the composite membrane is at least one species.
【請求項3】 膜厚がポリオレフィン微多孔膜(A)の
1.01倍〜10倍で、かつ透気度がポリオレフィン微
多孔膜(A)の1.01倍〜10倍であることを特徴と
する請求項1又は2に記載の複合膜。
3. The film thickness is 1.01 to 10 times that of the microporous polyolefin membrane (A), and the air permeability is 1.01 to 10 times that of the microporous polyolefin membrane (A). The composite membrane according to claim 1 or 2, wherein
【請求項4】 ポリオレフィン微多孔膜(A)の少なく
とも片方の面に耐熱性高分子溶液又はその前駆体溶液を
塗布する工程と、該塗布面を該高分子又はその前駆体の
貧溶剤に接触させることにより相分離させる工程と、該
相分離させた面を加熱、乾燥することにより、耐熱性高
分子の多孔質体(B)からなる被覆層を形成させる工程
とからなることを特徴とする複合膜の製造方法。
4. A step of applying a heat-resistant polymer solution or a precursor solution thereof to at least one surface of the microporous polyolefin membrane (A), and contacting the coated surface with a poor solvent for the polymer or a precursor thereof. And a step of forming a coating layer comprising a porous body (B) of a heat-resistant polymer by heating and drying the phase-separated surface. A method for producing a composite membrane.
【請求項5】 ポリオレフィン微多孔膜(A)の少なく
とも片方の面に耐熱性高分子又はその前駆体、及びそれ
らの良溶剤と貧溶剤との混合物に溶解した溶液を塗布す
る工程と、当該塗布面から良溶剤を選択的に蒸発飛散さ
せることにより相分離させる工程と、該相分離した面に
残留する貧溶剤を除去することにより、耐熱性高分子の
多孔質体(B)からなる被覆層を形成させる工程とから
なることを特徴とする複合膜の製造方法。
5. A step of applying, on at least one surface of the polyolefin microporous membrane (A), a solution prepared by dissolving a heat-resistant polymer or a precursor thereof, and a mixture of a good solvent and a poor solvent, and applying the solution. A phase separation step by selectively evaporating and scattering a good solvent from the surface, and a coating layer comprising a porous body (B) of a heat-resistant polymer by removing the poor solvent remaining on the phase-separated surface. Forming a composite film.
【請求項6】 ポリオレフィン微多孔膜(A)の少なく
とも片方の面に耐熱性高分子溶液、又はその前駆体溶液
を塗布する工程と、該塗布面を冷却させることにより相
分離させる工程と、該相分離させた面を加熱、乾燥させ
ることにより耐熱性高分子の多孔質体(B)からなる被
覆層を形成させる工程とからなることを特徴とする複合
膜の製造方法。
6. A step of applying a heat-resistant polymer solution or a precursor solution thereof to at least one surface of the polyolefin microporous membrane (A), a step of cooling the applied surface to cause phase separation, Forming a coating layer comprising a porous body (B) of a heat-resistant polymer by heating and drying the phase-separated surface.
【請求項7】 請求項1〜3のいずれかに記載の複合膜
を用いてなる電池用セパレータ。
7. A battery separator using the composite membrane according to claim 1.
【請求項8】 請求項1〜3のいずれかに記載の複合膜
を用いてなるガス分離、液液分離、又は固液分離用のフ
ィルター。
8. A filter for gas separation, liquid-liquid separation or solid-liquid separation using the composite membrane according to claim 1.
JP2001162047A 2001-05-30 2001-05-30 Composite film, its manufacturing method, and separator for battery using the same or filter Pending JP2002355938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162047A JP2002355938A (en) 2001-05-30 2001-05-30 Composite film, its manufacturing method, and separator for battery using the same or filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162047A JP2002355938A (en) 2001-05-30 2001-05-30 Composite film, its manufacturing method, and separator for battery using the same or filter

Publications (1)

Publication Number Publication Date
JP2002355938A true JP2002355938A (en) 2002-12-10

Family

ID=19005231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162047A Pending JP2002355938A (en) 2001-05-30 2001-05-30 Composite film, its manufacturing method, and separator for battery using the same or filter

Country Status (1)

Country Link
JP (1) JP2002355938A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190792A (en) * 2003-12-25 2005-07-14 Asahi Kasei Chemicals Corp Separator for battery
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JP2006027024A (en) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP2006059733A (en) * 2004-08-23 2006-03-02 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
WO2006038503A1 (en) * 2004-10-04 2006-04-13 Nitto Denko Corporation Process for producing composite reverse osmosis membrane
JP2006525624A (en) * 2003-05-30 2006-11-09 エルジー・ケム・リミテッド Lithium secondary battery using separator membrane partially coated with gel polymer
JP2007026676A (en) * 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2007125821A (en) * 2005-11-04 2007-05-24 Toyobo Co Ltd Composite porous membrane, manufacturing method thereof, and battery separator using the same, battery, and capacitor
WO2007097249A1 (en) * 2006-02-20 2007-08-30 Daicel Chemical Industries, Ltd. Porous film and layered product including porous film
JP2007227364A (en) * 2006-01-24 2007-09-06 Sony Corp Separator and battery
WO2007125944A1 (en) * 2006-04-28 2007-11-08 Asahi Kasei Chemicals Corporation Gas separation membrane
JPWO2005088011A1 (en) * 2004-03-12 2008-01-31 三菱製紙株式会社 Heat resistant nonwoven fabric
WO2008062727A1 (en) 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
US7399556B2 (en) * 2003-12-30 2008-07-15 Electronics And Telecommunications Research Institute Lithium cationic single-ion conducting filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
WO2008149895A1 (en) 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
WO2009054460A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Gas separation membrane
JP2009187702A (en) * 2008-02-04 2009-08-20 Sony Corp Nonaqueous electrolyte battery
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery
JP2009286820A (en) * 2008-05-27 2009-12-10 Asahi Kasei E-Materials Corp Modified polyketone molded article, and thermally modified polyketone formed article
WO2010021248A1 (en) * 2008-08-19 2010-02-25 帝人株式会社 Separator for nonaqueous secondary battery
JP2010050024A (en) * 2008-08-25 2010-03-04 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
JP2010067358A (en) * 2008-09-08 2010-03-25 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
EP2260523A2 (en) * 2008-04-08 2010-12-15 SK Energy Co., Ltd. Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
WO2010147407A2 (en) * 2009-06-17 2010-12-23 Sk Energy Co., Ltd. Microporous polyethylene film with thermally stable hybrid-composite layers
JP2011519385A (en) * 2008-04-08 2011-07-07 エスケー エナジー カンパニー リミテッド Polyolefin-based composite microporous membrane having a high heat-resistant porous coating layer
US20120034509A1 (en) * 2008-09-03 2012-02-09 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
US8189674B2 (en) 2006-07-26 2012-05-29 Sony Corporation Decoding method, program for decoding method, recording medium with recorded program for decoding method, and decoding device
US8409747B2 (en) 2005-07-25 2013-04-02 Teijin Limited Nonaqueous secondary battery separator and process for its fabrication
JP2013077385A (en) * 2011-09-29 2013-04-25 Dexerials Corp Separator sheet for battery, method for manufacturing the same, and battery
KR101269203B1 (en) 2008-01-23 2013-05-30 에스케이이노베이션 주식회사 Microporous polyolefin film with a thermally stable layer at high temperature
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
JP2014500144A (en) * 2011-05-20 2014-01-09 エルジー・ケム・リミテッド Method for producing reverse osmosis separation membrane and reverse osmosis separation membrane produced thereby
WO2014021635A1 (en) * 2012-08-01 2014-02-06 제일모직주식회사 Separation membrane comprising coating layer and battery using same
WO2014021634A1 (en) * 2012-08-01 2014-02-06 제일모직주식회사 Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
KR20140091107A (en) 2012-12-28 2014-07-21 에스케이이노베이션 주식회사 micro-porous hybrid film having electro-chemical stability and method for preparing the same
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
JP2015066790A (en) * 2013-09-27 2015-04-13 積水化学工業株式会社 Heat-resistant microporous film, and separator and cell using the same
WO2016024533A1 (en) * 2014-08-12 2016-02-18 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film and method for manufacturing same, separator for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
KR20160143665A (en) 2014-04-07 2016-12-14 유니티카 가부시끼가이샤 Laminated porous film and production method therefor
US9562164B2 (en) 2011-11-03 2017-02-07 Sk Innovation Co., Ltd. Micro-porous polyolefin composite film having excellent heat resistance and stability and method for producing the same
US9570725B2 (en) 2010-10-29 2017-02-14 Teijin Limited Separator for nonaqueous electrolyte battery, and non-aqueous electrolyte secondary battery
EP3357109A4 (en) * 2015-12-18 2018-10-31 BYD Company Limited Composite film, method of preparing the same and lithium battery having the same
JP2022527738A (en) * 2019-03-22 2022-06-06 エルジー・ケム・リミテッド Polyolefin separation membrane and its manufacturing method
WO2024014285A1 (en) * 2022-07-15 2024-01-18 日東電工株式会社 Separation membrane and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914494B2 (en) * 1976-12-14 1984-04-04 旭化成株式会社 Method of manufacturing porous film
JPH08236093A (en) * 1995-02-27 1996-09-13 Mitsubishi Chem Corp Battery separator
JPH11207888A (en) * 1998-01-22 1999-08-03 Nitto Denko Corp Composite porous body
JP2000223107A (en) * 1998-11-26 2000-08-11 Sumitomo Chem Co Ltd Separator for nonaqueous electrolyte secondary battery
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914494B2 (en) * 1976-12-14 1984-04-04 旭化成株式会社 Method of manufacturing porous film
JPH08236093A (en) * 1995-02-27 1996-09-13 Mitsubishi Chem Corp Battery separator
JPH11207888A (en) * 1998-01-22 1999-08-03 Nitto Denko Corp Composite porous body
JP2000223107A (en) * 1998-11-26 2000-08-11 Sumitomo Chem Co Ltd Separator for nonaqueous electrolyte secondary battery
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003263B2 (en) 2003-05-30 2011-08-23 Lg Chem, Ltd. Rechargeable lithium battery using separator partially coated with gel polymer
JP2006525624A (en) * 2003-05-30 2006-11-09 エルジー・ケム・リミテッド Lithium secondary battery using separator membrane partially coated with gel polymer
JP4587270B2 (en) * 2003-12-25 2010-11-24 旭化成イーマテリアルズ株式会社 Battery separator
JP2005190792A (en) * 2003-12-25 2005-07-14 Asahi Kasei Chemicals Corp Separator for battery
USRE44264E1 (en) * 2003-12-30 2013-06-04 Electronics And Telecommunications Research Institute Lithium cationic single-ion conducting filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
US7399556B2 (en) * 2003-12-30 2008-07-15 Electronics And Telecommunications Research Institute Lithium cationic single-ion conducting filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JPWO2005088011A1 (en) * 2004-03-12 2008-01-31 三菱製紙株式会社 Heat resistant nonwoven fabric
JP4739186B2 (en) * 2004-03-12 2011-08-03 三菱製紙株式会社 Heat resistant nonwoven fabric
JP2006027024A (en) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP2007026676A (en) * 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2006059733A (en) * 2004-08-23 2006-03-02 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
KR100885591B1 (en) * 2004-10-04 2009-02-24 닛토덴코 가부시키가이샤 Process for producing composite reverse osmosis membrane
JP2006130497A (en) * 2004-10-04 2006-05-25 Nitto Denko Corp Production method of composite reverse osmosis membrane
WO2006038503A1 (en) * 2004-10-04 2006-04-13 Nitto Denko Corporation Process for producing composite reverse osmosis membrane
JP4656511B2 (en) * 2004-10-04 2011-03-23 日東電工株式会社 Method for producing composite reverse osmosis membrane
US8409747B2 (en) 2005-07-25 2013-04-02 Teijin Limited Nonaqueous secondary battery separator and process for its fabrication
JP2007125821A (en) * 2005-11-04 2007-05-24 Toyobo Co Ltd Composite porous membrane, manufacturing method thereof, and battery separator using the same, battery, and capacitor
JP2007227364A (en) * 2006-01-24 2007-09-06 Sony Corp Separator and battery
WO2007097249A1 (en) * 2006-02-20 2007-08-30 Daicel Chemical Industries, Ltd. Porous film and layered product including porous film
US8294040B2 (en) 2006-02-20 2012-10-23 Daicel Chemical Industries, Ltd. Porous film and multilayer assembly using the same
JPWO2007125944A1 (en) * 2006-04-28 2009-09-10 旭化成ケミカルズ株式会社 Gas separation membrane
JP5507079B2 (en) * 2006-04-28 2014-05-28 旭化成ケミカルズ株式会社 Gas separation membrane
KR101162403B1 (en) 2006-04-28 2012-07-04 아사히 가세이 케미칼즈 가부시키가이샤 Gas separation membrane
JP2013091065A (en) * 2006-04-28 2013-05-16 Asahi Kasei Chemicals Corp Gas separation membrane
US8092581B2 (en) 2006-04-28 2012-01-10 Asahi Kasei Chemicals Corporation Gas separation membrane
WO2007125944A1 (en) * 2006-04-28 2007-11-08 Asahi Kasei Chemicals Corporation Gas separation membrane
US8189674B2 (en) 2006-07-26 2012-05-29 Sony Corporation Decoding method, program for decoding method, recording medium with recorded program for decoding method, and decoding device
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
WO2008062727A1 (en) 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
US8906538B2 (en) 2006-11-20 2014-12-09 Teijin Limited Separator for non-aqueous secondary battery, process for producing the same, and non-aqueous secondary battery
US8906537B2 (en) 2006-11-20 2014-12-09 Teijin Limited Separator for non-aqueous secondary battery, process for producing same, and non-aqueous secondary battery separator for non-aqueous secondary battery, process for producing same, and non-aqueous secondary battery
US7892672B2 (en) 2007-06-06 2011-02-22 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
WO2008149895A1 (en) 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
JP2015037791A (en) * 2007-10-26 2015-02-26 旭化成ケミカルズ株式会社 Gas separation membrane
JPWO2009054460A1 (en) * 2007-10-26 2011-03-10 旭化成ケミカルズ株式会社 Gas separation membrane
WO2009054460A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Gas separation membrane
US8206493B2 (en) 2007-10-26 2012-06-26 Asahi Kasei Chemicals Corporation Gas separation membrane
KR101151189B1 (en) 2007-10-26 2012-06-08 아사히 가세이 케미칼즈 가부시키가이샤 gas separation membrane
KR101269203B1 (en) 2008-01-23 2013-05-30 에스케이이노베이션 주식회사 Microporous polyolefin film with a thermally stable layer at high temperature
JP2009187702A (en) * 2008-02-04 2009-08-20 Sony Corp Nonaqueous electrolyte battery
JP2014017261A (en) * 2008-02-06 2014-01-30 Sony Corp Separator and battery including the same
US8231999B2 (en) 2008-02-06 2012-07-31 Sony Corporation Separator and battery using the same
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
CN102017233A (en) * 2008-04-08 2011-04-13 Sk能源株式会社 Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
US8795826B2 (en) 2008-04-08 2014-08-05 Sk Innovation Co., Ltd. Microporous polyolefin composite film with a thermally stable porous layer at high temperature
EP2260523A4 (en) * 2008-04-08 2011-11-02 Sk Energy Co Ltd Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
JP2011519385A (en) * 2008-04-08 2011-07-07 エスケー エナジー カンパニー リミテッド Polyolefin-based composite microporous membrane having a high heat-resistant porous coating layer
EP2260523A2 (en) * 2008-04-08 2010-12-15 SK Energy Co., Ltd. Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
JP2011516684A (en) * 2008-04-08 2011-05-26 エスケー エナジー カンパニー リミテッド Method for producing polyolefin composite microporous membrane having high heat resistant coating layer
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery
JP2009286820A (en) * 2008-05-27 2009-12-10 Asahi Kasei E-Materials Corp Modified polyketone molded article, and thermally modified polyketone formed article
US8815435B2 (en) 2008-08-19 2014-08-26 Teijin Limited Separator for nonaqueous secondary battery
US20110143185A1 (en) * 2008-08-19 2011-06-16 Teijin Limited Separator for nonaqueous secondary battery
TWI478420B (en) * 2008-08-19 2015-03-21 Teijin Ltd Non - water - based battery separator
CN102160211A (en) * 2008-08-19 2011-08-17 帝人株式会社 Separator for nonaqueous secondary battery
WO2010021248A1 (en) * 2008-08-19 2010-02-25 帝人株式会社 Separator for nonaqueous secondary battery
JP4653849B2 (en) * 2008-08-19 2011-03-16 帝人株式会社 Non-aqueous secondary battery separator
JP2010092881A (en) * 2008-08-19 2010-04-22 Teijin Ltd Separator for nonaqueous secondary battery
KR20110050517A (en) 2008-08-19 2011-05-13 데이진 가부시키가이샤 Separator for nonaqueous secondary battery
JP2010050024A (en) * 2008-08-25 2010-03-04 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
US20150357619A1 (en) * 2008-09-03 2015-12-10 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
US20120034509A1 (en) * 2008-09-03 2012-02-09 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
EP2333876B1 (en) 2008-09-03 2016-08-03 LG Chem, Ltd. Separator having porous coating layer and electrochemical device containing the same
US9960400B2 (en) 2008-09-03 2018-05-01 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
US9142819B2 (en) * 2008-09-03 2015-09-22 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
JP2010067358A (en) * 2008-09-08 2010-03-25 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
WO2010147407A3 (en) * 2009-06-17 2011-03-31 Sk Innovation Co., Ltd. Microporous polyethylene film with thermally stable hybrid-composite layers
WO2010147407A2 (en) * 2009-06-17 2010-12-23 Sk Energy Co., Ltd. Microporous polyethylene film with thermally stable hybrid-composite layers
US9570725B2 (en) 2010-10-29 2017-02-14 Teijin Limited Separator for nonaqueous electrolyte battery, and non-aqueous electrolyte secondary battery
JP2014500144A (en) * 2011-05-20 2014-01-09 エルジー・ケム・リミテッド Method for producing reverse osmosis separation membrane and reverse osmosis separation membrane produced thereby
JP2013077385A (en) * 2011-09-29 2013-04-25 Dexerials Corp Separator sheet for battery, method for manufacturing the same, and battery
US9562164B2 (en) 2011-11-03 2017-02-07 Sk Innovation Co., Ltd. Micro-porous polyolefin composite film having excellent heat resistance and stability and method for producing the same
WO2014021635A1 (en) * 2012-08-01 2014-02-06 제일모직주식회사 Separation membrane comprising coating layer and battery using same
US20150207123A1 (en) * 2012-08-01 2015-07-23 Samsung Sdi Co., Ltd. Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
US10050247B2 (en) 2012-08-01 2018-08-14 Samsung Sdi Co., Ltd. Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
US20150155542A1 (en) * 2012-08-01 2015-06-04 Samsung Sdi Co., Ltd. Separation membrane comprising coating layer and battery using same
US11814483B2 (en) 2012-08-01 2023-11-14 Samsung Sdi Co., Ltd. Separation membrane comprising coating layer, method of preparing same, and battery using same
WO2014021634A1 (en) * 2012-08-01 2014-02-06 제일모직주식회사 Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
KR20140091107A (en) 2012-12-28 2014-07-21 에스케이이노베이션 주식회사 micro-porous hybrid film having electro-chemical stability and method for preparing the same
US9853273B2 (en) 2012-12-28 2017-12-26 Sk Innovation Co., Ltd. Micro-porous hybrid film having electro-chemical stability and method for preparing the same
US10608225B2 (en) 2012-12-28 2020-03-31 Sk Innovation Co., Ltd. Micro-porous hybrid film having electro-chemical stability and method for preparing the same
JP2015066790A (en) * 2013-09-27 2015-04-13 積水化学工業株式会社 Heat-resistant microporous film, and separator and cell using the same
JPWO2015156261A1 (en) * 2014-04-07 2017-04-13 ユニチカ株式会社 Laminated porous film and method for producing the same
KR20160143665A (en) 2014-04-07 2016-12-14 유니티카 가부시끼가이샤 Laminated porous film and production method therefor
JPWO2016024533A1 (en) * 2014-08-12 2017-05-25 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing the same, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2016024533A1 (en) * 2014-08-12 2016-02-18 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film and method for manufacturing same, separator for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
EP3357109A4 (en) * 2015-12-18 2018-10-31 BYD Company Limited Composite film, method of preparing the same and lithium battery having the same
JP2022527738A (en) * 2019-03-22 2022-06-06 エルジー・ケム・リミテッド Polyolefin separation membrane and its manufacturing method
JP7450635B2 (en) 2019-03-22 2024-03-15 エルジー・ケム・リミテッド Polyolefin separation membrane and its manufacturing method
WO2024014285A1 (en) * 2022-07-15 2024-01-18 日東電工株式会社 Separation membrane and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2002355938A (en) Composite film, its manufacturing method, and separator for battery using the same or filter
JP5057419B2 (en) Composite microporous membrane, production method and use thereof
JP5635970B2 (en) Method for producing polyolefin composite microporous membrane having high heat resistant coating layer
RU2406612C2 (en) Multilayer microporous polyolefin membrane and storage battery separator
JP5156158B2 (en) Composite membrane and manufacturing method thereof
JP2006289657A (en) Multilayered porous film
JP6218931B2 (en) Laminated porous film and method for producing the same
JP5089831B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
KR20160121535A (en) Laminated porous film and non-aqueous electrolyte secondary cell
JP2011519385A (en) Polyolefin-based composite microporous membrane having a high heat-resistant porous coating layer
WO2019086034A1 (en) Separators, electrochemical devices comprising the separator, and methods for producing the separator
WO1997023554A1 (en) Short circuit-resistant polyethylene microporous film
KR20180132630A (en) Polyolefin microporous membrane and production method thereof, separator for battery, and battery
TW201629123A (en) Porous polyimide film and production method thereof
JP2006027024A (en) Multi-layer porous film
JP5664022B2 (en) Aromatic polyamide porous membrane, porous film and battery separator
TW201223759A (en) Separator
JP2012119224A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
KR101465243B1 (en) Heat-resistant nano web membrane and method for production thereof
JP2013173862A (en) Laminated porous film, battery separator and battery
JP2012119225A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2013206560A (en) Nonaqueous secondary battery separator
JP2012099324A (en) Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR101296109B1 (en) Menufacturing Method of Meta-Aramid Based Porous Membrane for Secondary Battery and Porous Membrane thereby
JP2018181546A (en) Nonaqueous electrolyte secondary battery separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322