JPS5914494B2 - Method of manufacturing porous film - Google Patents

Method of manufacturing porous film

Info

Publication number
JPS5914494B2
JPS5914494B2 JP14943576A JP14943576A JPS5914494B2 JP S5914494 B2 JPS5914494 B2 JP S5914494B2 JP 14943576 A JP14943576 A JP 14943576A JP 14943576 A JP14943576 A JP 14943576A JP S5914494 B2 JPS5914494 B2 JP S5914494B2
Authority
JP
Japan
Prior art keywords
polymer
film
aromatic polyamide
porous film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14943576A
Other languages
Japanese (ja)
Other versions
JPS5374571A (en
Inventor
栄二 佐藤
義昭 花田
英男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14943576A priority Critical patent/JPS5914494B2/en
Publication of JPS5374571A publication Critical patent/JPS5374571A/en
Publication of JPS5914494B2 publication Critical patent/JPS5914494B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids

Description

【発明の詳細な説明】 本発明は、多孔性フィルムを製造する方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing porous films.

更に詳しくは、特に電池用セパレーター膜15として有
用な耐熱性、耐薬品性、寸法安定性にすぐれ、かつ、内
部抵抗の小さい多孔性フィルムを製造する方法に関する
。従来、電池用セパレーター素材としては、、木材、多
孔性エボナィト板等が利用されていたが、耐薬フ0 品
性に劣り、またセパレーターとして目的を達成する為に
は数關の厚みを必要とし、電池が大型化する等の欠点を
有していた。
More specifically, the present invention relates to a method for producing a porous film having excellent heat resistance, chemical resistance, dimensional stability, and low internal resistance, which is particularly useful as a battery separator membrane 15. Conventionally, wood, porous ebonite plates, etc. have been used as separator materials for batteries, but they have poor chemical resistance and require several thicknesses to achieve their purpose as separators. This had drawbacks such as the battery becoming larger.

これらの欠点を補うものとして、セロファン、ナイロン
不織布、あるいはポリ塩化ビニル、ポリスチレン系など
のノ5 樹脂の使用が提案されて来た。近年電気機器の
革新などに伴つて、充放電効率の高い高性能電池、例え
ばニッケル−カドミウム系、あるいは酸化銀−亜鉛系な
どの所謂アルカリ電池等の要求が高まりつつある。それ
に伴つて、鉛電池等の比較的温ノ0 和な条件で使用さ
れて来た従来のセパレーター素材では、耐薬品性、耐熱
性、あるいは寸法安定性などが不充分であり、高性能電
池本来の特性を充分に発揮できないという欠点が指摘さ
れた。一方、最近合成重合体、特に芳香族系重合体はノ
5 耐熱性、耐薬品性あるいは力学的性質にすぐれ、か
つ電気的特性にもすぐれている為電気関係分野の材料素
材としての用途開発が盛んに行われ、これらの所謂芳香
族系重合体のシート状物をこのようなセパレーター膜と
して使用する試みがなされている。しかしかかる重合体
は不融性であり、成型法として溶液成型法以外に適当な
成型法がなく、従来の溶液成型法では、脱溶媒に際して
この重合体が凝集沈澱する為に不均一なミクロボードが
発生し、更にその為に引張り強度などの力学的性質に劣
つた成型品しか得られず、電池用セパレーター膜あるい
はその他の均一な多孔性を必要とする透析膜等として使
用出米ないという欠点を有していた。
In order to compensate for these drawbacks, the use of cellophane, nylon nonwoven fabric, polyvinyl chloride, polystyrene resins, etc. has been proposed. BACKGROUND ART In recent years, with innovations in electrical equipment, there has been an increasing demand for high-performance batteries with high charging and discharging efficiency, such as so-called alkaline batteries such as nickel-cadmium batteries or silver-zinc oxide batteries. Along with this, conventional separator materials that have been used in relatively mild conditions such as lead batteries have insufficient chemical resistance, heat resistance, or dimensional stability, which is inherent in high-performance batteries. The drawback was pointed out that it could not fully demonstrate its characteristics. On the other hand, recently synthetic polymers, especially aromatic polymers, have excellent heat resistance, chemical resistance, mechanical properties, and electrical properties, so they are being developed for use as materials in electrical fields. Attempts have been made to use sheets of so-called aromatic polymers as such separator membranes. However, such polymers are infusible, and there is no suitable molding method other than solution molding.With conventional solution molding, the polymer aggregates and precipitates during solvent removal, resulting in non-uniform microboards. Furthermore, because of this, only molded products with inferior mechanical properties such as tensile strength can be obtained, and they cannot be used as separator membranes for batteries or other dialysis membranes that require uniform porosity. It had

本発明は、かかる欠点のない、均一多孔性であり、耐熱
性、耐薬品性にすぐれ、かつ、力学的性質にすぐれたフ
イルムを得るため、鋭意研究を進めた結果、耐熱性を有
する芳香族ポリアミド系重合体とアミド系溶媒とから実
質的になる溶液を、この溶液が固化する温度以下の薄膜
状となし、この温度を保つたまま溶媒を抽出除去するこ
とにより、極めて均一多孔性、力学的性質にすぐれたフ
イルムが得られることを見い出し、本発明法を完成した
ものである。すなわち、本発明は耐熱性を有する芳香族
ポリアミド系重合体とアミド系溶媒とから実質的になる
重合体溶液をフイルムに流延し、この溶液の固化温度以
下に至らしめて固化溶液のフイルムを形成せしめ、固化
温度以下の温度下に維持しつつ前記アミド系溶媒を抽出
除去することを特徴とする耐熱性を有する芳香族ポリア
ミド系重合体の多孔性フイルムの製造方法である。
The present invention was developed as a result of intensive research to obtain a film that is free from such drawbacks, has uniform porosity, has excellent heat resistance and chemical resistance, and has excellent mechanical properties. By forming a solution consisting essentially of a polyamide polymer and an amide solvent into a thin film at a temperature below the solidification temperature of the solution, and then extracting and removing the solvent while maintaining this temperature, extremely uniform porosity and mechanical properties can be achieved. They discovered that a film with excellent physical properties could be obtained and completed the method of the present invention. That is, in the present invention, a polymer solution consisting essentially of a heat-resistant aromatic polyamide polymer and an amide solvent is cast onto a film, and the temperature is lowered to below the solidification temperature of the solution to form a film of the solidified solution. The method for producing a porous film of an aromatic polyamide polymer having heat resistance is characterized in that the amide solvent is extracted and removed while maintaining the temperature below the solidification temperature.

なお、本発明における「固化」とは、溶媒がこの溶液の
系外にほとんど移動することなく固体状あるいはガラス
状になることを意味するものであり、従つて通常溶液中
でみられるような重合体分子の運動が極度に阻害されて
いるか、あるいは停止されている状態にあるものを意味
する。
In addition, "solidification" in the present invention means that the solvent hardly moves out of the solution system and becomes solid or glassy, and therefore it does not become heavy or glassy as normally seen in solutions. It means that the movement of the combined molecules is extremely inhibited or stopped.

本発明においては、少くとも固化温度以下にあるフイル
ムからこの温度を保つたまま、すなわち重合体分子の運
動が極度に阻害されるかあるいは実質的に停止されたま
ま脱溶媒されるため、通常の溶液から脱溶媒成型される
際にみられるような、重合体が凝集沈澱することによつ
ておこる不均一なミクロボードの発現がなく、極めて均
一性に富んだ、空孔率が高く、かつ、均一多孔性の故に
力学的性質にすぐれた多孔質フイルムを得ることが出米
る。
In the present invention, the solvent is removed from the film at least below the solidification temperature while maintaining this temperature, that is, while the motion of the polymer molecules is extremely inhibited or substantially stopped. It is extremely uniform and has a high porosity, without the appearance of non-uniform microboards caused by coagulation and precipitation of polymers, which occurs when solvent-free molding is performed from a solution. Because of the uniform porosity, it is possible to obtain a porous film with excellent mechanical properties.

更に孔径は、重合体溶液の濃度、冷却速度を変えること
によつて容易に変えられるという大きな利点をも有して
いる。本発明にいう耐熱性を有する芳香族ポリアミド系
重合体とは、主鎖のかなりの部分が芳香環よりなり、少
くとも150℃以上、好ましくは250℃以上の軟化点
を有し、少くとも150℃以上好ましくは180℃以上
の温度で空気中で長時間使用しても大きな物性の変化を
生じない重合体を意味する。
Furthermore, the pore size has the great advantage that it can be easily changed by changing the concentration of the polymer solution and the cooling rate. The aromatic polyamide polymer having heat resistance as used in the present invention means that a considerable portion of the main chain is composed of aromatic rings, has a softening point of at least 150°C or higher, preferably 250°C or higher, and has a softening point of at least 150°C or higher, preferably 250°C or higher. It means a polymer that does not cause any major change in physical properties even when used in air for a long time at a temperature of 180° C. or higher, preferably 180° C. or higher.

かかる重合体としては例えば次のようなものがあげられ
る。
Examples of such polymers include the following.

1.芳香族ポリアミド 1芳香族環を有するジカルボン酸の好適には酸ハライド
等の高活性誘導体と芳香族環を有するジアミンとから得
られる芳香族ポリアミド。
1. Aromatic polyamide 1 An aromatic polyamide obtained from a highly active derivative of a dicarboxylic acid, preferably an acid halide, having an aromatic ring and a diamine having an aromatic ring.

芳香族ジアミンとしては、下式〔1〕及び〔2〕で表わ
される芳香族ジアミン、例えばメタフエニレンジアミン
、パラフエニレンジアミン、トリレンジアミン、4・4
!−ジアミノジフエニルエーテル、4・47−ジアミノ
ジフエニルスルフオン、4・4′−ジアミノジフエニル
メタン等があげられる。
Examples of aromatic diamines include aromatic diamines represented by the following formulas [1] and [2], such as metaphenylenediamine, paraphenylenediamine, tolylenediamine, 4.4
! -diaminodiphenyl ether, 4,47-diaminodiphenyl sulfone, 4,4'-diaminodiphenylmethane, and the like.

〔但し式〔1〕、〔2〕中、Rは水素、炭素数1〜5の
低級アルキル基、メトキシ基、エトキシ基あるいはハロ
ゲン原子である。
[However, in formulas [1] and [2], R is hydrogen, a lower alkyl group having 1 to 5 carbon atoms, a methoxy group, an ethoxy group, or a halogen atom.

xは一CH2−、−0− −CO− −SO2一S−で
ある。
x is -CH2-, -0- -CO- -SO2-S-.

〕また芳香族環を有するジカルボン酸としては、テレフ
タル酸、イソフタル酸あるいはこれらの核置換誘導体等
があげられる。
] Examples of the dicarboxylic acid having an aromatic ring include terephthalic acid, isophthalic acid, and nuclear-substituted derivatives thereof.

これらの芳香族ジアミンあるいは芳香族二塩基酸ジハラ
イド等は、夫々1種のみからなる場合は勿論2種以上の
混合物であつても良い。2芳香族環を有するアミノカル
ボン酸を好適には活性化して縮合した芳香族ポリアミド
These aromatic diamines, aromatic dibasic acid dihalides, etc. may be composed of only one type of each, or may be a mixture of two or more types. An aromatic polyamide obtained by activating and condensing an aminocarboxylic acid having two aromatic rings.

例えばアミノカルボン酸として、パラあるいはメタアミ
ノ安息香酸、パラアミノメチル安息香酸を使用した1種
のみからのホモポリマーであつても良く、2種以上のア
ミノカルボン酸の共重合ポリマーであつても良い。3前
記12を共重合した芳香族ポリアミド。
For example, it may be a homopolymer of only one type of aminocarboxylic acid, such as para- or meta-aminobenzoic acid or para-aminomethylbenzoic acid, or it may be a copolymer of two or more types of aminocarboxylic acids. 3. Aromatic polyamide copolymerized with 12 above.

代表的なものとして、例えばメタフエニレンジアミン、
イソフタル酸シクロラード、パラアミノ安息香酸クロラ
イド塩酸塩の3成分からなるポリアミド等があげられる
。2.含窒素ポリ複素環状化合物 1芳香族ポリアミドイミド 1−1の芳香族ジアミンと下式〔3〕であられされる芳
香族三塩基酸の高活性誘導体との反応により得られる式
〔4〕で表わされる単位を有する芳香族ポリアミドイミ
ド。
Representative examples include metaphenylenediamine,
Examples include polyamides consisting of three components: isophthalic acid cyclolade and para-aminobenzoic acid chloride hydrochloride. 2. Nitrogen-containing polyheterocyclic compound 1 Represented by formula [4] obtained by reaction of aromatic diamine of aromatic polyamideimide 1-1 with a highly active derivative of aromatic tribasic acid represented by the following formula [3] Aromatic polyamideimide with units.

芳香族三塩基酸としては例えばトリメリツト酸無水物が
あげられる。(但し式〔3〕中、Xはハロゲン原子であ
る。
Examples of aromatic tribasic acids include trimellitic anhydride. (However, in formula [3], X is a halogen atom.

2芳香族ポリアミドヒドラジド。2 aromatic polyamide hydrazide.

例えば、テレフタル酸あるいはイソフタ ル酸等の芳香族二塩基酸ジヒドラジドと、芳香族二塩基
酸ジハライドとの縮合反応によつて得られる式〔5〕の
構造単位を有するポリアミドヒドラジド。
For example, a polyamide hydrazide having a structural unit of formula [5] obtained by a condensation reaction between an aromatic dibasic acid dihydrazide such as terephthalic acid or isophthalic acid and an aromatic dibasic acid dihalide.

これらぱメチル基、アルコキシル基、ハロゲン原子等の
不活性の置換基を有しても差し支えない。特に好ましい
耐熱性を有する芳香族系重合体としては、重合体構成単
位の少なくとも50モルパーセント以上が芳香族ポリア
ミドからなるものである。
These may have an inert substituent such as a methyl group, an alkoxyl group, or a halogen atom. Particularly preferred aromatic polymers having heat resistance are those in which at least 50 mole percent of the polymer structural units are composed of aromatic polyamide.

殊に、耐熱性を有する芳香族系重合体中にメタフエニレ
ンイソフタルアミドが80モルパーセント以上の場合に
最も好ましい多孔性フイルムを製造することができる。
また耐熱性を有する芳香族系重合体の構成単位の少なく
とも80モルパーセン,ト以上が平行軸(共軸)系全芳
香族系ポリアミドの場合も良好な多孔性フイルムを与え
る。
In particular, the most preferable porous film can be produced when the heat-resistant aromatic polymer contains 80 mol percent or more of metaphenylene isophthalamide.
Also, when at least 80 mole percent or more of the constituent units of the heat-resistant aromatic polymer are parallel-axis (coaxial) wholly aromatic polyamides, a good porous film can be obtained.

本発明において、これらの耐熱性を有する芳香族ポリア
ミド系重合体を溶解する溶媒としては、例えばN−N−
ジメチルアセトアミド、N−N−ジメチルホルムアミド
、N−メチル−2−ピロリドン、N−アセチルピロリジ
ン、テトラメチル尿素、ヘキサメチルボスボルトリアミ
ド等のいわゆるアミド系溶媒あるいはジメチルスルJャ
Iキシドがあげられる。
In the present invention, examples of solvents for dissolving these heat-resistant aromatic polyamide polymers include N-N-
So-called amide solvents such as dimethylacetamide, N-N-dimethylformamide, N-methyl-2-pyrrolidone, N-acetylpyrrolidine, tetramethylurea, hexamethylvosvoltriamide, or dimethylsulfur
Ixide is given.

これらの溶媒は単独で使用され得ることは勿論、2種以
上の混合物であつても良いし、必要に応じて溶解性を向
上させる為に例えば塩化リチウム、塩化カルシウムある
いは塩化マグネシウム等の少量の無機塩を添加しても良
い。本発明法においてフイルムを形成するための重合体
溶液は、前述のアミド系溶媒に、この重合体を溶解する
ことによつて得られるが、更にはアミド系溶媒中、溶液
重合法によつて得られた溶液そのまま、あるいは希釈、
濃縮、中和などの処理をほどこしたものであつても良い
。このようにして得られた溶液の重合体濃度は、重合体
の構造、溶媒等により異なるが、2重量パーセント以下
であると溶液の粘度が低く薄膜状フイルムにする為の成
型が困難であり、得られるフイルムの性能あるいは生産
性が低下し好ましくない。また30重量パーセント以上
となると不溶部分を生じるようになり、フイルムの多孔
性に悪影響を及ぼすばかりか、操業上困難となる。従つ
て好適な溶液の濃度範囲は2重量パーセント〜30重量
パーセント、特に5〜25重量パーセントであるのが好
ましい。このようにして得られた重合体溶液が固化する
温度は、重合体の構造、濃度、溶媒の構造あるいはこれ
らの組合せ等により異なるが、通常の場合、室温以下、
主にO℃以下であり、特にこの重合体溶液を構成する溶
媒の融点以下であれば、固体状もしくはガラス状となる
。このような重合体溶液から成膜する為には、この重合
体溶液を固化温度以上の温度で、スリツトダイ等を通し
て押し出し成型したのち、少くとも固化温度以下にある
不活性な非凝固性気体中で可能な限りすみやかに固化せ
しめる方法、固化温度以下にある不活性な非凝固性気体
中に押し出し成型固化させる方法、あるいは液体窒素等
の低温不活性冷媒中で、この重合体が凝集沈澱する以前
に成型、固化させる方法等いずれでも良い。
These solvents can of course be used alone or in a mixture of two or more, and if necessary, a small amount of an inorganic substance such as lithium chloride, calcium chloride or magnesium chloride may be used to improve solubility. Salt may be added. The polymer solution for forming a film in the method of the present invention can be obtained by dissolving this polymer in the above-mentioned amide solvent, but it can also be obtained by solution polymerization in an amide solvent. Use the solution as it is, or dilute it,
It may also be one that has been subjected to treatments such as concentration and neutralization. The polymer concentration of the solution obtained in this way varies depending on the structure of the polymer, the solvent, etc., but if it is less than 2% by weight, the viscosity of the solution is low and it is difficult to mold it into a thin film. This is undesirable because the performance or productivity of the resulting film is reduced. If the amount exceeds 30% by weight, insoluble portions will be formed, which will not only adversely affect the porosity of the film but also cause operational difficulties. A suitable solution concentration range is therefore between 2 weight percent and 30 weight percent, particularly between 5 and 25 weight percent. The temperature at which the polymer solution obtained in this way solidifies varies depending on the structure and concentration of the polymer, the structure of the solvent, or a combination of these, but in general, it is below room temperature,
If the temperature is mainly below 0° C., especially below the melting point of the solvent constituting this polymer solution, it becomes solid or glassy. In order to form a film from such a polymer solution, the polymer solution is extruded through a slit die or the like at a temperature higher than the solidification temperature, and then molded in an inert non-solidifying gas at least below the solidification temperature. A method of solidifying the polymer as quickly as possible, a method of extrusion molding into an inert non-solidifying gas below the solidification temperature, or a method of solidifying the polymer in a low temperature inert refrigerant such as liquid nitrogen before the polymer coagulates and precipitates. Any method such as molding or solidification may be used.

更にこのような方法によつて一担固化させた成型物の固
化を完全に行うために、より低温の不活性な非凝固性気
体、あるいは液状冷媒により冷却することはむしろ好ま
しいことであるが、いずれの方法によつても、本発明の
目的を達成する為には、固化以前に溶液から溶媒が蒸発
するなどによつて揮散し、組成が著しく変化することは
好ましくない。尚ここにあげた不活性な非凝固性気体と
は、実質的にこの気体が溶媒に溶解、反応しないもので
あり、例えば空気、窒素、ヘリウム等があげられるが、
少量であれば、反応性気体、例えば水蒸気、炭酸ガス等
を含んでいても差し支えない。このようにして得られた
、固化温度以下にある成型物から溶媒を除去するには、
この溶媒の抽出剤中に投じ抽出除去する方法が採用され
る。
Furthermore, in order to completely solidify the molded product that has been solidified by this method, it is rather preferable to cool it with a lower temperature inert non-solidifying gas or a liquid refrigerant. In either method, in order to achieve the object of the present invention, it is not preferable that the solvent evaporates from the solution before solidification, causing a significant change in composition. The inert non-coagulable gases mentioned here are gases that do not substantially dissolve or react with solvents, such as air, nitrogen, helium, etc.
A small amount of reactive gas, such as water vapor or carbon dioxide gas, may be included. To remove the solvent from the molded product obtained in this way, which is below the solidification temperature,
A method of extraction and removal by pouring into an extractant of this solvent is adopted.

その際少くとも溶媒量の50重量パーセント以上が抽出
されるまでは固化温度以下に保つことが必要である。5
0重量パーセント以上含有している場合には室温付近に
もどした際に再溶解化、重合体分子の運動の活発化等が
おこり、均一多孔性あるいはフイルムの力学的性質を低
下させ、本発明の目的を十分に達成することは出来ない
At this time, it is necessary to maintain the temperature below the solidification temperature until at least 50% by weight of the solvent has been extracted. 5
If the content exceeds 0% by weight, re-dissolution and activation of the movement of polymer molecules occur when the temperature is returned to around room temperature, resulting in a decrease in uniform porosity or mechanical properties of the film, and The goal cannot be fully achieved.

50重量パーセント以下の含有率であるフイルムは、室
温付近にもどしても低温で形成された多孔性は保持され
ており、十分な性能を発揮する多孔性フイルムを製造す
ることが可能である。
A film with a content of 50% by weight or less retains the porosity formed at low temperature even when the temperature is returned to around room temperature, and it is possible to produce a porous film that exhibits sufficient performance.

このように固化温度以下にて使用される抽出剤としては
、重合体の溶媒を、固化温度以下で溶解しうる不活性な
液状媒体であればよく、例えばドライアイス−アセトン
、ドライアイス−メタノール等の冷媒があげられる。こ
のようにして得られた残溶媒量が50重量パーセント以
下であるフイルムは、更にこの冷媒中あるいは室温以下
の温度にある通常の沈澱剤、抽出剤等によつて脱溶媒さ
れ、ついで水洗により脱溶媒が完了される。ここでいう
通常の沈澱剤、抽出剤とは、実質的に重合体を溶解せず
、かつこの溶媒に相溶性のものであれば良く、例えば、
メタノール、エタノール、エチレングリコール、プロピ
レングリコール、グリセリン等の1価アルコール類、多
価アルコール及びその水溶液、アミド系溶媒の水溶液、
塩化カルシウム、塩化リチウム、塩化マグネシウム、硝
酸カルシウム等の無機塩の水溶液あるいはこれらの塩と
アミド系溶媒、水との3成分からなる組成液等があげら
れる。特に経済上、取扱い操作上から、水若しくは無機
塩の水溶液、無機塩一アミド系溶媒水溶液、メタノール
、エタノール、及びこれらの低級アルコールの水溶液が
好ましい。このようにして得られたフイルムは、このま
ま実用に供されるが、必要な場合には力学的性質を向上
させる目的で、延伸及び/又は熱処理がほどこされる。
The extractant used below the solidification temperature may be any inert liquid medium that can dissolve the polymer solvent at a temperature below the solidification temperature, such as dry ice-acetone, dry ice-methanol, etc. There are several refrigerants. The film thus obtained with a residual solvent amount of 50% by weight or less is further desolvated in this refrigerant or with a conventional precipitant, extractant, etc. at a temperature below room temperature, and then desolvated by washing with water. Solvent is completed. The usual precipitants and extractants mentioned here may be those that do not substantially dissolve the polymer and are compatible with this solvent, for example,
Monohydric alcohols such as methanol, ethanol, ethylene glycol, propylene glycol, and glycerin, polyhydric alcohols and their aqueous solutions, aqueous solutions of amide solvents,
Examples include aqueous solutions of inorganic salts such as calcium chloride, lithium chloride, magnesium chloride, and calcium nitrate, and liquid compositions consisting of three components of these salts, an amide solvent, and water. Particularly from the viewpoint of economy and handling, water or aqueous solutions of inorganic salts, aqueous solutions of inorganic salt-amide solvents, methanol, ethanol, and aqueous solutions of lower alcohols thereof are preferred. The film thus obtained can be put to practical use as is, but if necessary, it may be stretched and/or heat treated to improve its mechanical properties.

熱処理の条件は重合体の構造、フイルムの用途等により
詳細は異なるが、加熱によつて数パーセント収縮を起こ
すので、緊張下に150℃以上で行うか、またはたて方
向、よこ方向、あるいはたて、よこ両方向に延伸しなが
ら行う方法が好ましい。加熱は熱板加熱、雰囲気加熱、
赤外線加熱、マイクロ波加熱などのいずれの方法でも良
いが、特に250℃以上の高温で処理する場合には熱劣
化を防ぐ為に、窒素、ヘリウム、アルゴン等の不活性気
体中で行うことが望ましい。以上の方法によつて得られ
た多孔性フイルムの孔径は、走査型電子顕微鏡によつて
測定されるが、数λ乃至100μであり、空孔率は次式
(1)で測定算出される値で30パーセント以上である
The details of heat treatment conditions vary depending on the structure of the polymer, the purpose of the film, etc., but since heating causes shrinkage of several percent, heat treatment should be carried out under tension at 150°C or higher, or in the vertical, horizontal, or vertical direction. Therefore, a method in which stretching is performed in both horizontal and lateral directions is preferred. Heating is by hot plate heating, atmosphere heating,
Any method such as infrared heating or microwave heating may be used, but especially when processing at a high temperature of 250°C or higher, it is preferable to carry out the process in an inert gas such as nitrogen, helium, or argon to prevent thermal deterioration. . The pore diameter of the porous film obtained by the above method is measured using a scanning electron microscope, and is from several λ to 100 μ, and the porosity is a value measured and calculated using the following formula (1). It is more than 30%.

空孔率但し式(1)中ρ。Porosity, provided that ρ in formula (1).

:フイルム形成する重合体の密度ρf:得られた多孔性
フイルムの見かけ密度またJISC23l3の方法によ
り測定される電池用セパレーター膜としての電気抵抗は
0.004Ω・100cd/枚、多くの場合0.002
Ω・100cd/枚以下であつて、極めてすぐれたセパ
レーター膜としての性質を示す。
:Density of the polymer forming the film ρf:The apparent density of the obtained porous film and the electrical resistance as a battery separator film measured by the method of JISC23l3 is 0.004Ω・100cd/sheet, in most cases 0.002
It is Ω·100 cd/sheet or less and exhibits extremely excellent properties as a separator film.

本発明法によつて製造された多孔性フイルムは前述の電
池用セパレーター膜以外の用途として、力学的性質、耐
熱、耐薬品性等にすぐれていることから、逆浸透用膜、
タンパク質溶液の濃縮、電気透析用膜等の各種f過膜あ
るいは多孔性を利用した吸着材として広く使用すること
が出来る。
The porous film produced by the method of the present invention has excellent mechanical properties, heat resistance, chemical resistance, etc., and can be used as a reverse osmosis membrane, in addition to the above-mentioned battery separator membrane.
It can be widely used for concentration of protein solutions, various types of membranes such as membranes for electrodialysis, or adsorption materials utilizing porosity.

次に本発明における主要な測定値について、測定方法の
説明、及び実施例によつてより詳細に説明する。固有粘
度(ηInh):95%硫酸中で濃度0.57/100
m1として30℃で測定した。
Next, the main measured values in the present invention will be explained in more detail by explaining the measurement method and examples. Intrinsic viscosity (ηInh): concentration 0.57/100 in 95% sulfuric acid
It was measured at 30°C as m1.

引張り強伸度;JISP8ll3の方法に準じて行いK
9/M7l及びパーセントで表わした。
Tensile strength and elongation: Performed according to the method of JISP8ll3 K
Expressed as 9/M7l and percentage.

電気抵抗;JISC23l3の方法に準じて行いΩ・1
00cd/枚で表わした。空孔率;重合体の密度と得ら
れたフイルムの見かけ密度より本文中(1)式により算
出しパーセントで表わした。
Electrical resistance: Ω・1 according to the method of JISC23l3
It was expressed as 00 cd/sheet. Porosity: Calculated from the density of the polymer and the apparent density of the obtained film using formula (1) in the text and expressed as a percentage.

孔 径;走査型電子顕微鏡により測定しλあるいはμで
表わした。
Pore diameter: Measured using a scanning electron microscope and expressed as λ or μ.

実施例 1 塩化リチウム157を含むN−Nジメチルアセトアミド
4.10m1に、固有粘度ηInhl.52であるポリ
メタフエニレンイソフタルアミド1107を室温下で溶
解した。
Example 1 4.10 ml of N-N dimethylacetamide containing 157 ml of lithium chloride was added with an intrinsic viscosity ηInhl. 52, polymetaphenylene isophthalamide 1107, was dissolved at room temperature.

この溶液をガラス板上に流延し、−72℃の窒素雰囲気
中で冷却固化させた。ついで得られたこのガラス状物を
ドライアイス−アセトン中(−78℃)に入れ、4時間
溶媒を抽出した。終了後得られたフイルムの1部より残
溶媒量を求めたところ21%であつた。このプール′ム
をついで水中で洗浄し、脱溶媒を完了した。
This solution was cast onto a glass plate, and cooled and solidified in a nitrogen atmosphere at -72°C. The resulting glass was then placed in dry ice-acetone (-78°C) and the solvent was extracted for 4 hours. After the completion of the process, the amount of residual solvent was determined from a portion of the film and found to be 21%. The pool was then washed in water to complete the desolvation.

得られたフイルムの物性測定の結果は次のとおりであつ
た。フイルム厚さ;80μ 孔径;0.05〜0.25μ 空孔率;48% 引張り強度;4.3k9/Md 引張り伸度;26.5% 電気抵抗;0.0005Ω.100cd/枚実施例 2
実施例1で得られたフイルムをステンレス製の枠に張り
、200℃の熱風乾燥機中で熱処理を行つた結果、引張
り強度9.8k9/Md、引張り伸度11.7%であり
、熱処理により力学的性質が向上することが認められた
The results of measuring the physical properties of the obtained film were as follows. Film thickness: 80μ Pore diameter: 0.05-0.25μ Porosity: 48% Tensile strength: 4.3k9/Md Tensile elongation: 26.5% Electrical resistance: 0.0005Ω. 100cd/disc Example 2
The film obtained in Example 1 was stretched on a stainless steel frame and heat treated in a hot air dryer at 200°C. As a result, the tensile strength was 9.8k9/Md and the tensile elongation was 11.7%. It was observed that the mechanical properties were improved.

比較例 実施例1で得られた溶液を、同様に−72℃の窒素雰囲
気中で冷却固化した。
Comparative Example The solution obtained in Example 1 was similarly cooled and solidified in a nitrogen atmosphere at -72°C.

ついでドライアイス−アセトン中に投入し1時間溶媒抽
出を行つた。得られたフイルムを室温中に放置したとこ
ろ一部再溶解化がおこり、ガラス棒で触れると粘ばつい
た。一部をとつて残溶媒量を測定した結果、68%であ
つた。このフイルムを水洗する為に水に投入したところ
、部分的に失透し、不均一で、引張り強度も2.1k9
/Mdと低く、粗悪なフイルムであつた。実施例 3 1000m1(7)N−メチル−2−ピロリドンに塩化
カルシウム33.3y及びパラフエニレンジアミン16
.27を溶解し、O℃に冷却した。
The mixture was then poured into dry ice-acetone and subjected to solvent extraction for 1 hour. When the obtained film was left at room temperature, a portion of it redissolved and became sticky when touched with a glass rod. As a result of measuring the amount of residual solvent in a portion, it was found to be 68%. When this film was put into water for washing, it partially devitrified, was uneven, and had a tensile strength of 2.1k9.
/Md was low, and the film was of poor quality. Example 3 1000ml (7)N-methyl-2-pyrrolidone with 33.3y of calcium chloride and 16y of paraphenylenediamine
.. 27 was dissolved and cooled to 0°C.

ついで粉末状のテレフタル酸シクロラード31.59を
一時に加えて重合させた。得られた重合体溶液の一部を
とり出し、ミキサー内の水中に投じて、重合体を沈澱さ
せ、洗浄乾燥後固有粘度ηInhを測定したところ3.
18であつた。残りの重合体溶液をガラス板上に流延し
、−30′Cの窒素雰囲気中で固化させた。ついで実施
例1と同様に処理をし、フイルムを得た。フイルムの物
性は次の通りであつた。孔径:0,001〜0.005
μ 空孔率;37% 引張り強度;11.4kg/Md 引張り伸度:3.7% 電気抵抗;0.0018Ω.100cd/枚実施例 4
トリメリツト酸無水物クロライド、及び4・4′−ジァ
ミノジフエニルメタンとから得られた固有粘度1.17
の芳香族ポリアミドイミドを濃度が87%になるように
した以外は実施例1と全く同様の方法によりフイルムを
得た。
Then, 31.59 ml of powdered terephthalic acid cyclolad was added at once to polymerize. A portion of the obtained polymer solution was taken out and poured into water in a mixer to precipitate the polymer, and after washing and drying, the intrinsic viscosity ηInh was measured.3.
I was 18. The remaining polymer solution was cast onto a glass plate and solidified in a nitrogen atmosphere at -30'C. The film was then treated in the same manner as in Example 1 to obtain a film. The physical properties of the film were as follows. Pore diameter: 0,001-0.005
μ Porosity: 37% Tensile strength: 11.4kg/Md Tensile elongation: 3.7% Electrical resistance: 0.0018Ω. 100cd/disc Example 4
Intrinsic viscosity 1.17 obtained from trimellitic anhydride chloride and 4,4'-diaminodiphenylmethane
A film was obtained in exactly the same manner as in Example 1, except that the aromatic polyamideimide was used at a concentration of 87%.

孔径;0.05〜0.5μ 空孔率:43% 引張り強度;4.9k9/M7l 引張り伸度;7.9% 電気抵抗;0.0025Ω. 100cd/枚Pore diameter: 0.05~0.5μ Porosity: 43% Tensile strength: 4.9k9/M7l Tensile elongation: 7.9% Electrical resistance; 0.0025Ω. 100cd/disc

Claims (1)

【特許請求の範囲】 1 耐熱性を有する芳香族ポリアミド系重合体とアミド
系溶媒とから実質的になる重合体溶液をフィルムに流延
し、この溶液の固化温度以下に至らしめて固化溶液のフ
ィルムを形成せしめ、固化温度以下の温度下に維持しつ
つ前記アミド系溶媒を抽出除去することを特徴とする耐
熱性を有する芳香族ポリアミド系重合体の多孔性フィル
ムの製造方法。 2 特許請求の範囲第1項において、耐熱性を有する芳
香族ポリアミド系重合体の重合体構成単位の少くとも5
0モルパーセント以上が芳香族ポリアミドであることを
特徴とする多孔性フィルムの製造方法。 3 特許請求の範囲第2項において、耐熱性を有する芳
香族ポリアミド系重合体の重合体構成単位の少くとも8
0モルパーセント以上がメタフェニレンイソフタルアミ
ドからなることを特徴とする多孔性フィルムの製造方法
。 4 特許請求の範囲第2項において耐熱性を有する芳香
族ポリアミド系重合体の重合体構成単位の少くとも80
モルパーセント以上が平行軸(共軸)系全芳香族ポリア
ミドからなることを特徴とする多孔性フィルムの製造方
法。 5 特許請求の範囲第1項において、抽出除去温度をア
ミド系溶媒の融点以下に維持することを特徴とする多孔
性フィルムの製造方法。
[Claims] 1. A polymer solution consisting essentially of a heat-resistant aromatic polyamide polymer and an amide solvent is cast onto a film, and the temperature is lowered to below the solidification temperature of the solution to form a film of the solidified solution. 1. A method for producing a porous film of an aromatic polyamide polymer having heat resistance, which comprises forming a porous film of an aromatic polyamide polymer having heat resistance, and extracting and removing the amide solvent while maintaining the temperature below the solidification temperature. 2. In claim 1, at least 5 of the polymer constituent units of the aromatic polyamide polymer having heat resistance
A method for producing a porous film, characterized in that 0 mole percent or more is aromatic polyamide. 3 In claim 2, at least 8 of the polymer constitutional units of the aromatic polyamide polymer having heat resistance
A method for producing a porous film, characterized in that 0 mole percent or more is metaphenylene isophthalamide. 4 At least 80 polymer constituent units of the aromatic polyamide polymer having heat resistance in claim 2
A method for producing a porous film, characterized in that at least a mole percent of the film is comprised of a parallel-axis (coaxial) wholly aromatic polyamide. 5. The method for producing a porous film according to claim 1, characterized in that the extraction removal temperature is maintained below the melting point of the amide solvent.
JP14943576A 1976-12-14 1976-12-14 Method of manufacturing porous film Expired JPS5914494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14943576A JPS5914494B2 (en) 1976-12-14 1976-12-14 Method of manufacturing porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14943576A JPS5914494B2 (en) 1976-12-14 1976-12-14 Method of manufacturing porous film

Publications (2)

Publication Number Publication Date
JPS5374571A JPS5374571A (en) 1978-07-03
JPS5914494B2 true JPS5914494B2 (en) 1984-04-04

Family

ID=15475041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14943576A Expired JPS5914494B2 (en) 1976-12-14 1976-12-14 Method of manufacturing porous film

Country Status (1)

Country Link
JP (1) JPS5914494B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757071A3 (en) * 1995-07-18 1997-02-19 Sumitomo Chemical Company, Limited Para-aromatic polyamide porous film
JP2002355938A (en) * 2001-05-30 2002-12-10 Tonen Chem Corp Composite film, its manufacturing method, and separator for battery using the same or filter
US7407702B2 (en) 1999-09-13 2008-08-05 Teijin Limited Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101541A (en) * 1984-10-24 1986-05-20 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー Gas separation membrane and its production
JPH10338809A (en) * 1997-04-08 1998-12-22 Sumitomo Chem Co Ltd Composite film comprising low-permittivity resin and p-directing polyamide, prepreg thereof and use thereof
JP6398304B2 (en) * 2013-08-09 2018-10-03 東レ株式会社 Aromatic polyamide porous membrane and battery separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757071A3 (en) * 1995-07-18 1997-02-19 Sumitomo Chemical Company, Limited Para-aromatic polyamide porous film
US7407702B2 (en) 1999-09-13 2008-08-05 Teijin Limited Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator
JP2002355938A (en) * 2001-05-30 2002-12-10 Tonen Chem Corp Composite film, its manufacturing method, and separator for battery using the same or filter

Also Published As

Publication number Publication date
JPS5374571A (en) 1978-07-03

Similar Documents

Publication Publication Date Title
JP5176318B2 (en) Aromatic polyamide porous film, method for producing aromatic polyamide porous film, and secondary battery
JPS5827963B2 (en) Method for manufacturing selectively permeable membrane
JPH0910567A (en) Gas separation membrane of novel sulfonated polyamide
JPS6139976B2 (en)
US20100028779A1 (en) Porous Polyimide Membrane, Battery Separator, Battery, and Method
Chang et al. Effect of solvent on the dipole rotation of poly (vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths
US4070433A (en) Casting films of poly(meta-phenylene isophthalamide) and its copolymers
JPH05508106A (en) Porous polybenzoxazole and polybenzothiazole membranes
JPS5914494B2 (en) Method of manufacturing porous film
JP2553282B2 (en) Aromatic polyamide film composite
JP2008056905A (en) Method for producing polymeric porous membrane and the resultant polymeric porous membrane
CN112439319A (en) Solvent-resistant PBO nanofiltration membrane and preparation method thereof
Yin et al. Synthesis and gas permeation properties of star-like poly (ethylene oxide) s using hyperbranched polyimide as central core
KR102152278B1 (en) BCDA-based semi-alicyclic polyimide membrane materials for gas separation and the preparation method thereof
JPS5936939B2 (en) Method for manufacturing porous film
Lee et al. Selective separation of water from aqueous alcohol solution through fluorine-containing aromatic polyamide membranes by pervaporation
CN114797506B (en) Preparation method and application of ionized polyimide gas separation membrane
JPH024840A (en) Microporous asymmetric film of syndiotactic vinyl aromatic polymer
JPH08143699A (en) Production of microporous membrane
US4598099A (en) Process for the production of polybenzimidazole foams
JP3405022B2 (en) Aromatic polyamide composition
JP2936676B2 (en) Heat resistant film
JP2884665B2 (en) Aromatic polycarbonate / aromatic polyamide block copolymer composition
JPS5837024A (en) Composite membrane for gas separation
JP3440632B2 (en) Aromatic polyimide, semipermeable membrane and method for producing the same