JP6218931B2 - Laminated porous film and method for producing the same - Google Patents

Laminated porous film and method for producing the same Download PDF

Info

Publication number
JP6218931B2
JP6218931B2 JP2016512729A JP2016512729A JP6218931B2 JP 6218931 B2 JP6218931 B2 JP 6218931B2 JP 2016512729 A JP2016512729 A JP 2016512729A JP 2016512729 A JP2016512729 A JP 2016512729A JP 6218931 B2 JP6218931 B2 JP 6218931B2
Authority
JP
Japan
Prior art keywords
layer
porous film
solvent
laminated
laminated porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016512729A
Other languages
Japanese (ja)
Other versions
JPWO2015156261A1 (en
Inventor
健太 柴田
健太 柴田
直史 藤岡
直史 藤岡
山田 宗紀
宗紀 山田
朗 繁田
朗 繁田
雅弘 細田
雅弘 細田
良彰 越後
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Publication of JPWO2015156261A1 publication Critical patent/JPWO2015156261A1/en
Application granted granted Critical
Publication of JP6218931B2 publication Critical patent/JP6218931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、積層多孔質フィルムおよびその製造方法に関する。この積層多孔質フィルムは、例えば、リチウム二次電池用セパレータ等、蓄電素子用のセパレータとして好適に用いることができる。   The present invention relates to a laminated porous film and a method for producing the same. This laminated porous film can be suitably used as a separator for a storage element such as a separator for a lithium secondary battery.

リチウム二次電池は、エネルギー密度が高いので電気自動車やパーソナルコンピュータ、携帯電話などの電子機器に用いる電池として広く使用されている。   Lithium secondary batteries are widely used as batteries used in electronic devices such as electric vehicles, personal computers, and mobile phones because of their high energy density.

このリチウム二次電池は、電池の破損等により内部短絡または外部短絡が生じた場合には、大電流が流れて異常発熱することがある。そのため、リチウム二次電池には一定以上の発熱を防止し、高い安全性を確保することが重要である。この安全性確保手段として、異常発熱の際に、セパレータに、電極間のイオンの通過を遮断して、発熱を防止するシャットダウン機能を持たせる方法が広く実用化されている。   In the lithium secondary battery, when an internal short circuit or an external short circuit occurs due to damage of the battery, a large current may flow to cause abnormal heat generation. Therefore, it is important for lithium secondary batteries to prevent heat generation beyond a certain level and to ensure high safety. As a means for ensuring safety, a method in which a separator has a shutdown function for preventing heat generation by blocking the passage of ions between electrodes in the event of abnormal heat generation has been widely put into practical use.

このシャットダウン機能を有するセパレータとしては例えば、ポリオレフィンからなる多孔質フィルムが用いられる。この多孔質フィルムからなるセパレータは、電池の異常発熱時には、110〜160℃でポリオレフィンが溶融して無孔化するためイオンの通過をシャットダウンすることができる。しかしながら、このポリオレフィン製セパレータは、高温になると収縮や破断が起こりやすいので、場合によっては、正極と負極が直接接触して、短絡を起こすおそれがあり、短絡による異常発熱を抑制できないことがある。   As the separator having the shutdown function, for example, a porous film made of polyolefin is used. The separator made of this porous film can shut down the passage of ions because the polyolefin melts and becomes nonporous at 110 to 160 ° C. during abnormal heat generation of the battery. However, since this polyolefin separator tends to shrink or break at a high temperature, in some cases, the positive electrode and the negative electrode may be in direct contact with each other to cause a short circuit, and abnormal heat generation due to the short circuit may not be suppressed.

このような問題を解決する方法として、前記ポリオレフィンからなる多孔質フィルム層の片面または両面(以下、「表面」と略記することがある)にポリフッ化ビニリデン等のフッ素系樹脂からなる多孔質層を積層することにより、高温での形状安定性を確保する方法が提案されている。この積層セパレータは、耐熱層を構成するフッ素系樹脂そのものの耐熱性が低いので、高温時での収縮による形状安定性は必ずしも充分ではなかった(例えば、特許文献1、2)。そこで、前記ポリオレフィンからなる多孔質フィルム層にポリイミドやアラミド等の耐熱性樹脂からなる多孔質層を積層することにより、高温での形状安定性を確保する方法が提案されている。   As a method for solving such a problem, a porous layer made of a fluorine-based resin such as polyvinylidene fluoride is provided on one side or both sides of the porous film layer made of polyolefin (hereinafter sometimes abbreviated as “surface”). A method for securing shape stability at a high temperature by laminating has been proposed. Since this laminated separator has low heat resistance of the fluororesin itself constituting the heat resistant layer, shape stability due to shrinkage at high temperature is not always sufficient (for example, Patent Documents 1 and 2). Therefore, a method has been proposed in which shape stability at high temperature is ensured by laminating a porous layer made of a heat-resistant resin such as polyimide or aramid on the porous film layer made of polyolefin.

耐熱性多孔質層を形成する方法としては、耐熱性樹脂(例えばアラミド樹脂)とその良溶媒(例えばアミド系溶媒)や貧溶媒(例えばアルコール系溶媒)を含む溶液をポリオレフィンからなる多孔質フィルム層の表面に塗工後、これを前記耐熱性樹脂の貧溶媒(例えば、アルコール系溶媒や水)からなる凝固浴に浸漬して、相分離を起こさせて多孔質化を図る方法が提案されている(例えば、特許文献3〜6)。   As a method for forming a heat resistant porous layer, a porous film layer comprising a polyolefin containing a solution containing a heat resistant resin (for example, an aramid resin) and a good solvent (for example, an amide solvent) or a poor solvent (for example, an alcohol solvent). After the coating on the surface of the resin, a method is proposed in which it is immersed in a coagulation bath made of a poor solvent (for example, an alcohol solvent or water) of the heat-resistant resin to cause phase separation to make it porous. (For example, Patent Documents 3 to 6).

しかしながら、前記したような方法で得られた積層多孔質フィルムは、耐熱性樹脂中に含まれていたアルコール系溶媒や、相分離を起こさせる際用いられたアルコール系溶媒が、形成された耐熱多孔質層に、微量残留することがあった。アルコール系溶媒の水酸基のプロトンは、化学的に活性である。そのため、このような多孔質フィルムを、前記したリチウム二次電池セパレータ等に用いた場合、残留していた微量のアルコール系溶媒が、リチウム二次電池の電解液中に溶出し、通常、電解質として用いられているLiPFのようなフルオロリン酸塩、LiBFのようなフルオロホウ素酸塩、LiAsFのようなフルオロヒ素酸塩等と反応する懸念があった。すなわち、これらの電解質が、活性プロトンを有するアルコール系溶媒と反応すると、分解してフッ化水素が発生するため、電池特性を損なう虞があった(例えば、特許文献7、8およびその引用文献)。また、前記したような製造方法においては、相分離のために用いた凝固浴から、良溶媒および貧溶媒を含む廃液が大量に発生するため、環境適合性の観点から問題があった。However, the laminated porous film obtained by the method as described above has a heat-resistant porous film in which the alcohol-based solvent contained in the heat-resistant resin or the alcohol-based solvent used for causing phase separation is formed. A small amount of residue may remain in the quality layer. The proton of the hydroxyl group of the alcohol solvent is chemically active. Therefore, when such a porous film is used for the above-described lithium secondary battery separator or the like, a small amount of remaining alcohol-based solvent is eluted in the electrolyte solution of the lithium secondary battery, and is usually used as an electrolyte. There was a concern of reacting with a fluorophosphate such as LiPF 6 used, a fluoroborate such as LiBF 4 or a fluoroarsenate such as LiAsF 6 . That is, when these electrolytes react with an alcoholic solvent having active protons, hydrogen fluoride is generated by decomposition, which may impair battery characteristics (for example, Patent Documents 7 and 8 and references cited therein). . In addition, the above-described production method has a problem from the viewpoint of environmental compatibility because a large amount of waste liquid containing a good solvent and a poor solvent is generated from the coagulation bath used for phase separation.

特許第4127989号公報Japanese Patent No. 4127989 特許第4588286号公報Japanese Patent No. 4588286 特開2002−355938号公報JP 2002-355938 A 特開2005−209570号公報JP 2005-209570 A 特開2006−32246号公報JP 2006-32246 A 特開2010−50024号公報JP 2010-50024 A 特開2002−75440号公報JP 2002-75440 A 特開2005−243458号公報JP 2005-243458 A

そこで、本発明の課題は、リチウム二次電池用セパレータとして用いた際、電池特性を損なう虞のない耐熱性の積層多孔質フィルムを提供することにある。さらに、環境適合性が良好な積層多孔質フィルムの製造方法を提供することにある。   Then, the subject of this invention is providing the heat resistant laminated porous film which does not have a possibility of impairing a battery characteristic, when it uses as a separator for lithium secondary batteries. Furthermore, it is providing the manufacturing method of a laminated porous film with favorable environmental compatibility.

本発明者らは、上記課題を解決すべく鋭意検討した結果、ポリオレフィンからなる多孔質層の表面に、特定の構成としたイミド系高分子からなる多孔質層が形成された積層フィルムとすることにより、前記課題が解決されることを見出し、本発明に到達した。   As a result of intensive studies to solve the above problems, the inventors of the present invention have a laminated film in which a porous layer made of an imide polymer having a specific configuration is formed on the surface of a porous layer made of polyolefin. Thus, the inventors have found that the above-mentioned problems can be solved, and have reached the present invention.

すなわち、本発明は、下記を要旨とするものである。
<1>ポリオレフィンからなる多孔質層の表面に、イミド系高分子からなる多孔質層が形成された積層多孔質フィルムであって、以下の特性を有することを特徴とする積層多孔質フィルム:
1) 通気度が、JIS規格P8117に基づくガーレ値で、10秒/100cc以上、1000秒/100cc以下である;
2) イミド系高分子からなる多孔質層に、アルコール系溶媒が残留していない;
3) イミド系高分子からなる多孔質層の厚みが、1μm以上、20μm以下である。
<2> <1>に記載の積層多孔質フィルムを用いてなるリチウム二次電池用セパレータ。
<3> ポリオレフィンからなる多孔質層の表面に、イミド系高分子と、アミド系溶媒およびエーテル系溶媒を含む混合溶媒とからなる塗液を塗布して塗膜を形成した後、前記塗膜中の溶媒を加熱除去することにより塗膜内で相分離を起こさせて多孔質層を形成せしめることにより、ポリオレフィンからなる多孔質層とイミド系高分子からなる多孔質層とを積層一体化することを特徴とする<1>に記載の積層多孔質フィルムの製造方法。
That is, the present invention has the following gist.
<1> A laminated porous film in which a porous layer made of an imide polymer is formed on the surface of a porous layer made of polyolefin, and having the following characteristics:
1) The air permeability is a Gurley value based on JIS standard P8117 and is 10 seconds / 100 cc or more and 1000 seconds / 100 cc or less;
2) No alcohol solvent remains in the porous layer made of the imide polymer;
3) The thickness of the porous layer made of an imide polymer is 1 μm or more and 20 μm or less.
<2> A separator for a lithium secondary battery using the laminated porous film according to <1>.
<3> After applying a coating liquid comprising an imide polymer and a mixed solvent containing an amide solvent and an ether solvent to the surface of the porous layer made of polyolefin, a coating film is formed. The porous layer made of polyolefin and the porous layer made of imide-based polymer are laminated and integrated by causing phase separation within the coating film by removing the solvent of the resin by heating to form a porous layer. The method for producing a laminated porous film according to <1>, wherein:

耐熱性に優れたイミド系高分子からなる多孔質層が、ポリオレフィンからなる多孔質層の表面に積層されてなる本発明の積層多孔質フィルムは、通気性が良好であり、かつイミド系高分子からなる多孔質層には、アルコール系溶媒が残留していないので、フィルムは、リチウム二次電池用セパレータとして好適に用いることができる。
また、本発明の製造方法によれば、加熱による溶媒除去という簡単な操作で、積層多孔質フィルムを得ることができる。
The laminated porous film of the present invention in which a porous layer made of an imide polymer having excellent heat resistance is laminated on the surface of a porous layer made of polyolefin has good air permeability and an imide polymer. Since the alcohol-based solvent does not remain in the porous layer made of the film, the film can be suitably used as a separator for a lithium secondary battery.
Moreover, according to the manufacturing method of this invention, a lamination | stacking porous film can be obtained by simple operation of the solvent removal by heating.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の積層多孔質フィルムは、ポリオレフィンからなる多孔質層の表面に、イミド系高分子からなる多孔質層が形成されたものである。この積層多孔質フィルムは、例えば、ポリオレフィンからなる多孔質層(以下、「S層」と略記することがある)の表面にイミド系高分子を含む塗液を塗布して塗膜を形成し、しかる後、前記塗膜中の溶媒を加熱除去して、イミド系高分子からなる多孔質層((以下、「P層」と略記することがある)をS層に積層一体化することにより得ることができる。   The laminated porous film of the present invention is obtained by forming a porous layer made of an imide polymer on the surface of a porous layer made of polyolefin. The laminated porous film is formed by, for example, applying a coating liquid containing an imide polymer to the surface of a porous layer made of polyolefin (hereinafter sometimes abbreviated as “S layer”), Thereafter, the solvent in the coating film is removed by heating, and a porous layer made of an imide polymer (hereinafter sometimes abbreviated as “P layer”) is laminated and integrated with the S layer. be able to.

S層は、その内部に連結した細孔を有する構造を持ち、一方の面から他方の面に気体や液体が透過可能な、ポリオレフィンからなる多孔質フィルムであり、本発明の積層多孔質フィルムの基材となるものである。   The S layer is a porous film made of polyolefin having a structure having pores connected to the inside thereof and allowing gas and liquid to permeate from one surface to the other surface. It becomes a base material.

S層におけるポリオレフィン成分の割合は、90体積%以上であることが好ましく、95体積%以上であることがより好ましい。ポリオレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどのオレフィンを重合した単独重合体又は共重合体が挙げられる。これらの中でもエチレンを単独重合したポリエチレンが好ましく、重量平均分子量100万以上の高分子量ポリエチレンがより好ましい。また、プロピレンを単独重合したポリプロピレンもポリオレフィンとして好ましい。   The proportion of the polyolefin component in the S layer is preferably 90% by volume or more, and more preferably 95% by volume or more. Examples of the polyolefin include homopolymers or copolymers obtained by polymerizing olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene. Among these, polyethylene obtained by homopolymerizing ethylene is preferable, and high molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is more preferable. Polypropylene obtained by homopolymerizing propylene is also preferable as the polyolefin.

S層の通気度は、ガーレ値(JIS規格P8117)で、10秒/100cc以上、500秒/100cc以下とすることが好ましく、100秒/100cc以上、300秒/以下とすることがより好ましい。S層の通気度をこのように設定することにより、P層を積層した際に、リチウム二次電池用セパレータとして好適な通気性を確保することができる。S層の気孔率は、電解液の保持量を高めると共に、シャットダウン機能を確保する観点から、20〜80体積%が好ましく、30〜75体積%がより好ましい。   The air permeability of the S layer is preferably 10 seconds / 100 cc or more and 500 seconds / 100 cc or less, more preferably 100 seconds / 100 cc or more and 300 seconds / less or less in terms of Gurley value (JIS standard P8117). By setting the air permeability of the S layer in this way, air permeability suitable as a separator for a lithium secondary battery can be ensured when the P layer is laminated. The porosity of the S layer is preferably 20 to 80% by volume, more preferably 30 to 75% by volume from the viewpoint of increasing the amount of electrolyte retained and ensuring the shutdown function.

S層の孔径は、積層多孔質フィルムをリチウム二次電池用セパレータとした際に、十分な通気性が得られ、また、正極や負極への粒子の混入を防止する観点から、3μm以下が好ましく、1μm以下がより好ましい。S層の厚みは、シャットダウンによる絶縁性確保の観点から、8〜50μmが好ましく、10〜30μmがより好ましい。ここで、S層の厚みは、前記積層多孔質フィルムの素材としてのS層の厚みであり、JIS規格(K7130−1992)に基づいて測定されるものである。   The pore size of the S layer is preferably 3 μm or less from the viewpoint of obtaining sufficient air permeability when the laminated porous film is used as a separator for a lithium secondary battery and preventing mixing of particles into the positive electrode and the negative electrode. 1 μm or less is more preferable. The thickness of the S layer is preferably 8 to 50 μm, more preferably 10 to 30 μm, from the viewpoint of ensuring insulation by shutdown. Here, the thickness of the S layer is the thickness of the S layer as the material of the laminated porous film, and is measured based on the JIS standard (K7130-1992).

S層は、ポリオレフィンが主成分であれば特に限定されず、1層のみからなる単層構造であってもよいし、2層以上の層から構成される多層構造であってもよい。多層構造としては、例えば、あるポリオレフィンからなるポリオレフィン層の少なくとも一方の面に、他のポリオレフィンからなるポリオレフィン層が積層された構造などが挙げられる。その中でも、ポリエチレンを主成分とするポリエチレン層の両面に、ポリプロピレンを主成分とするポリプロピレン層が積層された構造(ポリプロピレン層/ポリエチレン層/ポリプロピレン層)が好ましい。   The S layer is not particularly limited as long as polyolefin is a main component, and may have a single layer structure composed of only one layer or a multilayer structure composed of two or more layers. Examples of the multilayer structure include a structure in which a polyolefin layer made of another polyolefin is laminated on at least one surface of a polyolefin layer made of a certain polyolefin. Among them, a structure (polypropylene layer / polyethylene layer / polypropylene layer) in which a polypropylene layer mainly composed of polypropylene is laminated on both surfaces of a polyethylene layer mainly composed of polyethylene is preferable.

S層に用いられる前記ポリオレフィンからなる多孔質フィルムは、市販品を利用することができる。市販品としては、SK社やCelgard社のポリエチレン製多孔質フィルム、Celgard社のポリプロピレン製多孔質フィルム等を例示することができる。これらの市販多孔質フィルムは、厚みが9〜25μmでシャットダウン機能を有するものである。   A commercially available product can be used as the porous film made of the polyolefin used for the S layer. Examples of commercially available products include polyethylene porous films from SK and Celgard, polypropylene porous films from Celgard, and the like. These commercially available porous films have a thickness of 9 to 25 μm and have a shutdown function.

P層を形成するイミド系高分子とは、主鎖にイミド結合を有する高分子もしくはその前駆体のことである。主鎖にイミド結合を有する高分子の代表例としては、ポリイミド、ポリアミドイミド、ポリエステルイミド等が挙げられるがこれらに限定されるものではない。   The imide polymer forming the P layer is a polymer having an imide bond in the main chain or a precursor thereof. Typical examples of the polymer having an imide bond in the main chain include, but are not limited to, polyimide, polyamideimide, and polyesterimide.

前記イミド系高分子の中で、例えば、ポリイミドまたはポリアミドイミドおよびこれらの混合物を好ましく用いることができる。ここで、ポリイミドとしては、可溶性ポリイミド(溶媒に可溶なポリイミド)を好ましく用いることができる。これらイミド系高分子の中でも、力学的特性や耐熱性に優れた芳香族ポリイミドおよび芳香族ポリアミドイミドが好ましい。前記芳香族ポリイミドおよび芳香族ポリアミドイミドは、熱可塑性であっても非熱可塑性であってもよい。これらのイミド系高分子のガラス転移温度は、200℃以上であることが好ましく、220℃以上であることがより好ましい。このようにすることにより、積層多孔質フィルムの良好な耐熱性を確保することができる。ここで、ガラス転移温度(Tg)は、DSC(示差熱分析)により確認することができる。   Among the imide-based polymers, for example, polyimide or polyamideimide and a mixture thereof can be preferably used. Here, as polyimide, soluble polyimide (polyimide soluble in a solvent) can be preferably used. Among these imide polymers, aromatic polyimides and aromatic polyamideimides excellent in mechanical properties and heat resistance are preferable. The aromatic polyimide and aromatic polyamideimide may be thermoplastic or non-thermoplastic. The glass transition temperature of these imide polymers is preferably 200 ° C. or higher, and more preferably 220 ° C. or higher. By doing in this way, the favorable heat resistance of a laminated porous film is securable. Here, the glass transition temperature (Tg) can be confirmed by DSC (differential thermal analysis).

本発明の積層多孔質フィルムを製造するには、例えば、以下のような方法で製造することができる。すなわち、イミド系高分子溶液を、溶媒を用いて製造する際に、イミド系高分子を溶解するアミド系溶媒(良溶媒)と、溶解しないエーテル系溶媒(貧溶媒)とからなる混合溶媒を用いる。ここで、良溶媒とは、イミド系高分子に対し、25℃で、1質量%以上の溶解度を示す溶媒をいう。また、貧溶媒とは、イミド系高分子に対する溶解度が、1質量%未満である溶媒をいう。イミド系高分子をこの混合溶媒に溶解した溶液(以下、「イミド系塗液」と略記することがある)をS層の表面に塗布、乾燥することにより、積層多孔質フィルムを容易に得ることができる。   In order to produce the laminated porous film of the present invention, for example, it can be produced by the following method. That is, when an imide polymer solution is produced using a solvent, a mixed solvent composed of an amide solvent (good solvent) that dissolves the imide polymer and an ether solvent (poor solvent) that does not dissolve is used. . Here, the good solvent refers to a solvent that exhibits a solubility of 1% by mass or more at 25 ° C. with respect to the imide polymer. Moreover, a poor solvent means the solvent whose solubility with respect to an imide type polymer is less than 1 mass%. A laminated porous film can be easily obtained by applying a solution obtained by dissolving an imide polymer in this mixed solvent (hereinafter sometimes abbreviated as “imide coating solution”) to the surface of the S layer and drying. Can do.

イミド系塗液の混合溶媒は、本発明の効果を損なわない範囲において、他の溶媒を含んでもよい。   The mixed solvent of the imide-based coating liquid may contain other solvents as long as the effects of the present invention are not impaired.

このような混合溶媒を用いることにより、アルコール系溶媒を含有しない塗膜が得られるので、この塗膜を乾燥して得られる多孔質層にアルコール系溶媒が残留することはない。   By using such a mixed solvent, a coating film that does not contain an alcohol solvent is obtained, so that the alcohol solvent does not remain in the porous layer obtained by drying the coating film.

このイミド系塗液を、S層の表面に塗布し、しかる後、塗膜中の溶媒を加熱除去する際、塗膜中に共存しているエーテル系溶媒(貧溶媒)の作用により相分離が起こり、塗膜内に気孔が形成されるので、S層にP層が積層一体化された多孔質フィルムを得ることができる。ここで、溶媒を加熱除去する温度としては、100〜150℃とすることが好ましい。乾燥に際しては、非加湿状態の窒素ガスまたは空気気流中で行うことが好ましい。このようにすることにより、塗膜への水分の混入を防止することができる。なお、エーテル系溶媒は、化学的に活性なプロトンを含有しないので、乾燥後の塗膜には、エーテル系溶媒が、微量残留していても問題はない。   When this imide-based coating liquid is applied to the surface of the S layer and then the solvent in the coating film is removed by heating, phase separation is caused by the action of the ether solvent (poor solvent) coexisting in the coating film. As a result, pores are formed in the coating film, so that a porous film in which the P layer and the S layer are laminated and integrated can be obtained. Here, the temperature at which the solvent is removed by heating is preferably 100 to 150 ° C. The drying is preferably performed in a non-humidified nitrogen gas or air stream. By doing in this way, mixing of the water | moisture content to a coating film can be prevented. Since the ether solvent does not contain chemically active protons, there is no problem even if a small amount of the ether solvent remains in the dried coating film.

前記アミド系溶媒としては、例えば、N−メチル−2−ピロリドン(NMP 沸点:202℃)、N,N−ジメチルホルムアミド(沸点:153℃)、N,N−ジメチルアセトアミド(DMAc 沸点:166℃)が挙げられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、NMP、DMAcが好ましい。   Examples of the amide solvent include N-methyl-2-pyrrolidone (NMP boiling point: 202 ° C.), N, N-dimethylformamide (boiling point: 153 ° C.), N, N-dimethylacetamide (DMAc boiling point: 166 ° C.). Is mentioned. These may be used alone or in combination of two or more. Among these, NMP and DMAc are preferable.

アミド系溶媒の配合量としては、イミド系高分子の溶解の観点から、全溶媒量に対して10質量%以上、特に10〜70質量%とすることが好ましく、20〜40質量%とすることがより好ましい。   The blending amount of the amide solvent is preferably 10% by mass or more, particularly preferably 10 to 70% by mass, and preferably 20 to 40% by mass with respect to the total solvent amount from the viewpoint of dissolution of the imide polymer. Is more preferable.

前記エーテル系溶媒は、前記アミド系溶媒よりも沸点が高いものを用いることが好ましく、その沸点差は、5℃以上が好ましく、20℃以上がより好ましく、50℃以上が更に好ましい。具体的には、ジエチレングリコールジメチルエーテル(沸点:162℃)、トリエチレングリコールジメチルエーテル(TRGM 沸点:216℃)、テトラエチレングリコールジメチルエーテル(TEGM 沸点:275℃)等を挙げることができる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、TEGM、TRGMが特に好ましい。   The ether solvent preferably has a boiling point higher than that of the amide solvent, and the difference in boiling point is preferably 5 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 50 ° C. or higher. Specific examples include diethylene glycol dimethyl ether (boiling point: 162 ° C.), triethylene glycol dimethyl ether (TRGM boiling point: 216 ° C.), tetraethylene glycol dimethyl ether (TEGM boiling point: 275 ° C.), and the like. These may be used alone or in combination of two or more. Among these, TEGM and TRGM are particularly preferable.

エーテル系溶媒の配合量としては、通気度の観点から、全溶媒量に対して30質量%以上、特に30〜90質量%とすることが好ましく、60〜80質量%とすることがより好ましい。   The blending amount of the ether solvent is preferably 30% by mass or more, particularly preferably 30 to 90% by mass, and more preferably 60 to 80% by mass with respect to the total solvent amount from the viewpoint of air permeability.

イミド系塗液は、例えば、ユニチカ株式会社から多孔質形成用として市販されているUイミドワニスSP(多孔質形成用ポリイミドワニス)等のポリイミド塗液、およびUイミドワニスIP(多孔質形成用ポリアミドイミドワニス)等のポリアミドイミド塗液を利用することができる。   Examples of the imide-based coating liquid include polyimide coating liquids such as Uimide varnish SP (polyimide varnish for porous formation) commercially available from Unitika Ltd. for porous formation, and Uimide varnish IP (polyamideimide varnish for porous formation). ) And the like can be used.

ポリイミド塗液は、前記したような市販品を用いてもよいが、原料であるテトラカルボン酸二無水物成分およびジアミン成分を略等モルで配合し、重合反応させて得られる可溶性ポリイミド粉体を、前記混合溶媒に溶解させた溶液も用いることができる。この重合反応は、テトラカルボン酸二無水物成分およびジアミン成分を反応させて得られるポリアミック酸(ポリイミド前駆体)溶液を加熱して行う。この際、ポリアミック酸からポリイミドが生成する際の副生成物である水を、例えば共沸等により除去しながら行うことが好ましい。水を除去しつつイミド化反応を行うポリイミドの重合方法の詳細については、例えば、米国特許3422061号明細書、特開昭58−49726号公報等を参照することができる。   Commercially available products such as those described above may be used as the polyimide coating liquid, but soluble polyimide powder obtained by blending the raw material tetracarboxylic dianhydride component and diamine component in approximately equimolar amounts and subjecting them to a polymerization reaction. A solution dissolved in the mixed solvent can also be used. This polymerization reaction is performed by heating a polyamic acid (polyimide precursor) solution obtained by reacting a tetracarboxylic dianhydride component and a diamine component. At this time, it is preferable to carry out while removing water, which is a by-product when the polyimide is produced from the polyamic acid, for example by azeotropic distillation. For details of the polymerization method of polyimide in which the imidization reaction is performed while removing water, reference can be made to, for example, US Pat. No. 3,422,061, JP-A-58-49726, and the like.

テトラカルボン酸二無水物成分は芳香環を有する芳香族テトラカルボン酸二無水物が好ましい。芳香族テトラカルボン酸二無水物成分としては、例えば、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸(BPDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ジフェニルスルホンテトラカルボン、酸、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸(ODPA)、2,3,3,4−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,4,5,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、3,3’,4,4’−ジフェニルメタンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、3,4,9,10−テトラカルボキシペリレン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン等の二無水物が用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、BPDA、ODPAが好ましい。   The tetracarboxylic dianhydride component is preferably an aromatic tetracarboxylic dianhydride having an aromatic ring. Examples of the aromatic tetracarboxylic dianhydride component include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid (BPDA), and 3,3 ′, 4,4′-benzophenone tetracarboxylic acid. 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic acid, acid, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic acid (ODPA), 2,3,3,4-benzophenone tetracarboxylic acid, 2 , 3,6,7-naphthalenetetracarboxylic acid, 1,4,5,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-diphenylmethanetetra Carboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3, , 9,10-tetracarboxyperylene, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexa A dianhydride such as fluoropropane is used. These may be used alone or in combination of two or more. Among these, BPDA and ODPA are preferable.

ポリイミドのジアミン成分は芳香環を有する芳香族ジアミンが好ましい。ポリイミドの芳香族ジアミン成分としては、例えば、p−フェニレンジアミン、m−フェニレンジアミン(MPD)、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル(DADE)、4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、1,2−ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエート、ジアミノジフェニルスルフィド、2,2−ビス(p−アミノフェニル)プロパン、2,2−ビス(p−アミノフェニル)ヘキサフルオロプロパン、1,5−ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4’−ビス(p−アミノフェノキシ)ビフェニル、ジアミノアントラキノン、4,4’−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、1,3−ビス(アニリノ)ヘキサフルオロプロパン、1,4−ビス(アニリノ)オクタフルオロブタン、1,5−ビス(アニリノ)デカフルオロペンタン、1,7−ビス(アニリノ)テトラデカフルオロヘプタンが用いられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、DADE、BAPPが好ましい。   The diamine component of the polyimide is preferably an aromatic diamine having an aromatic ring. Examples of the aromatic diamine component of polyimide include p-phenylenediamine, m-phenylenediamine (MPD), 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether (DADE), and 4,4'-diaminodiphenylmethane. 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 1,2-bis (anilino) ethane, diaminodiphenylsulfone , Diaminobenzanilide, diaminobenzoate, diaminodiphenyl sulfide, 2,2-bis (p-aminophenyl) propane, 2,2-bis (p-aminophenyl) hexafluoropropane, 1,5-diaminonaphthalene, diaminotoluene, Diaminobenzotriflu Ride, 1,4-bis (p-aminophenoxy) benzene, 4,4′-bis (p-aminophenoxy) biphenyl, diaminoanthraquinone, 4,4′-bis (3-aminophenoxyphenyl) diphenylsulfone, 1, 3-bis (anilino) hexafluoropropane, 1,4-bis (anilino) octafluorobutane, 1,5-bis (anilino) decafluoropentane, 1,7-bis (anilino) tetradecafluoroheptane is used. These may be used alone or in combination of two or more. Among these, DADE and BAPP are preferable.

ポリイミド塗液中におけるポリイミドの固形分濃度としては、1〜50質量%が好ましく、5〜25質量%がより好ましい。   As solid content concentration of the polyimide in a polyimide coating liquid, 1-50 mass% is preferable and 5-25 mass% is more preferable.

ポリイミド塗液中に含まれるポリイミドは、ポリアミック酸が部分的にイミド化されたものでもよい。ポリイミド塗液の30℃における粘度は、1〜150Pa・sが好ましく、10〜100Pa・sがより好ましい。   The polyimide contained in the polyimide coating solution may be one in which polyamic acid is partially imidized. The viscosity at 30 ° C. of the polyimide coating solution is preferably 1 to 150 Pa · s, and more preferably 10 to 100 Pa · s.

本明細書中、上記のような芳香族テトラカルボン酸二無水物成分および芳香族ジアミン成分を重合反応させてなるポリイミドを「芳香族ポリイミド」と呼ぶものとする。   In the present specification, a polyimide obtained by polymerizing the aromatic tetracarboxylic dianhydride component and the aromatic diamine component as described above is referred to as “aromatic polyimide”.

ポリアミドイミド塗液としては、前記したような市販品を用いてもよいが、原料であるトリカルボン酸成分(各種トリカルボン酸またはその無水物、酸クロライド誘導体)およびジアミン成分(各種ジアミンまたはそのジイソシアネート誘導体)を略等モルで配合し、重合反応させて得られるポリアミドイミド粉体を前記した混合溶媒に溶解させた溶液も用いることができる。ポリアミドイミドの重合方法としては、無水トリカルボン酸とジイソシアネートとを原料とするイソシアナート法、無水トリカルボン酸クロライドとジアミンとを原料とする酸クロライド法を用いることができるが、重合度の高いポリアミドイミド粉体を得るには酸クロライド法を用いることが好ましい。重合方法の詳細については、特公昭50−33120号公報(イソシアナート法)、特公昭42−15637号公報(酸クロライド法)等を参照することができる。   As the polyamide-imide coating solution, commercially available products as described above may be used, but the raw materials are tricarboxylic acid components (various tricarboxylic acids or anhydrides thereof, acid chloride derivatives) and diamine components (various diamines or diisocyanate derivatives thereof). A solution obtained by dissolving the polyamideimide powder obtained by blending at approximately equimolar amounts and carrying out the polymerization reaction in the above mixed solvent can also be used. As a method for polymerizing polyamideimide, an isocyanate method using tricarboxylic anhydride and diisocyanate as raw materials and an acid chloride method using tricarboxylic anhydride chloride and diamine as raw materials can be used. Polyamideimide powder having a high degree of polymerization. In order to obtain a body, it is preferable to use the acid chloride method. For details of the polymerization method, reference can be made to JP-B-50-33120 (isocyanate method), JP-B-42-15637 (acid chloride method) and the like.

トリカルボン酸成分は芳香環を有する芳香族トリカルボン酸が好ましい。芳香族トリカルボン酸成分としては、トリメリット酸クロライド(TMC)、無水トリメリット酸(TMA)、ヘミメリット酸クロライド、無水ヘミメリット酸が挙げられる。中でもTMC、TMAが好ましい。また、芳香族トリカルボン酸成分は、その一部をピロメリット酸、ベンゾフェノンテトラカルボン酸、またはビフェニルテトラカルボン酸等のテトラカルボン酸成分で置換することができる。   The tricarboxylic acid component is preferably an aromatic tricarboxylic acid having an aromatic ring. Examples of the aromatic tricarboxylic acid component include trimellitic acid chloride (TMC), trimellitic anhydride (TMA), hemimellitic acid chloride, and hemimellitic anhydride. Of these, TMC and TMA are preferable. In addition, a part of the aromatic tricarboxylic acid component can be substituted with a tetracarboxylic acid component such as pyromellitic acid, benzophenone tetracarboxylic acid, or biphenyltetracarboxylic acid.

ポリアミドイミドのジアミン成分は芳香環を有する芳香族ジアミンが好ましい。ポリアミドイミドの芳香族ジアミン成分としては、例えば、m−フェニレンジアミン(MPD)、p−フェニレンジアミン、4,4’−ジフェニルメタンジアミン、4,4’−ジアミノジフェニルエーテル(DADE)、ジフェニルスルホン−4,4’−ジアミン、ジフェニルー4,4’−ジアミン、o−トリジン、2,4−トリレンジアミン、2,6−トリレンジアミン、キシリレンジアミン、ナフタレンジアミンまたはこれらのジイソシアネート誘導体を用いることができる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、DADE、MPDが好ましい。   The diamine component of the polyamideimide is preferably an aromatic diamine having an aromatic ring. Examples of the aromatic diamine component of polyamideimide include m-phenylenediamine (MPD), p-phenylenediamine, 4,4′-diphenylmethanediamine, 4,4′-diaminodiphenyl ether (DADE), and diphenylsulfone-4,4. '-Diamine, diphenyl-4,4'-diamine, o-tolidine, 2,4-tolylenediamine, 2,6-tolylenediamine, xylylenediamine, naphthalenediamine or diisocyanate derivatives thereof can be used. These may be used alone or in combination of two or more. Among these, DADE and MPD are preferable.

ポリアミドイミド塗液中におけるポリアミドイミドの固形分濃度は、1〜50質量%が好ましく、10〜30質量%がより好ましい。   1-50 mass% is preferable and, as for the solid content density | concentration of the polyamide-imide in a polyamide-imide coating liquid, 10-30 mass% is more preferable.

ポリアミドイミド塗液の30℃における粘度は、1〜150Pa・sが好ましく、5〜100Pa・sがより好ましい。   The viscosity at 30 ° C. of the polyamideimide coating solution is preferably 1 to 150 Pa · s, more preferably 5 to 100 Pa · s.

本明細書中、上記のような芳香族トリカルボン酸成分および芳香族ジアミン成分を重合反応させてなるポリアミドイミドを「芳香族ポリアミドイミド」と呼ぶものとする。   In the present specification, a polyamideimide obtained by polymerizing an aromatic tricarboxylic acid component and an aromatic diamine component as described above is referred to as an “aromatic polyamideimide”.

イミド系塗液には、必要に応じて、各種界面活性剤や有機シランカップリング剤のような公知の添加物を添加してもよい。また、必要に応じて、前記イミド系塗液に、イミド系高分子以外の他のポリマーを添加してもよい。   You may add well-known additives, such as various surfactant and an organic silane coupling agent, to an imide type coating liquid as needed. Moreover, you may add other polymers other than an imide type polymer to the said imide type coating liquid as needed.

イミド系塗液をS層の表面に塗布して塗膜を形成するに際しては、ロールツーロールによる連続的に塗布する方法、枚様で塗布する方法が採用でき、いずれの方法でもよい。この時に用いられる塗布装置としては、例えば、ダイコータ、多層ダイコータ、グラビアコータ、コンマコータ、リバースロールコータ、ドクタブレードコータ、バーコータ等を使用することができる。前記したように、得られた塗膜中の溶媒を加熱除去することにより、S層と積層一体化したP層を形成させることができる。ここで、塗布面は、S層の片面であっても両面であってもよい。   When an imide-based coating liquid is applied to the surface of the S layer to form a coating film, a roll-to-roll continuous coating method or a sheet-by-sheet coating method can be employed, and any method may be used. As a coating apparatus used at this time, for example, a die coater, a multilayer die coater, a gravure coater, a comma coater, a reverse roll coater, a doctor blade coater, a bar coater, or the like can be used. As described above, a P layer laminated and integrated with the S layer can be formed by heating and removing the solvent in the obtained coating film. Here, the application surface may be one side or both sides of the S layer.

本発明の積層多孔質フィルムの通気度は、ガーレ値(JIS規格P8117)で、10秒/100cc以上、1000秒/100cc以下であり、100秒/100cc以上、600秒/以下とすることが好ましく、100秒/100cc以上、500秒/以下とすることがさらに好ましい。通気度をこのように設定することにより、リチウム二次電池用セパレータとして好適に使用することができる。すなわち、ガーレ値が10秒/100ml未満であるとリチウムイオン二次電池内で負極に析出した金属リチウム等により、正極と短絡することがある。一方、ガーレ値が1000秒/100mlを超えると、電池の内部抵抗が高くなり、高い出力密度を得られないことがある。   The laminated porous film of the present invention has a Gurley value (JIS standard P8117) of 10 seconds / 100 cc or more and 1000 seconds / 100 cc or less, preferably 100 seconds / 100 cc or more and 600 seconds / less or less. More preferably, it is 100 seconds / 100 cc or more and 500 seconds / less. By setting the air permeability in this way, it can be suitably used as a separator for a lithium secondary battery. That is, when the Gurley value is less than 10 seconds / 100 ml, there may be a short circuit with the positive electrode due to lithium metal deposited on the negative electrode in the lithium ion secondary battery. On the other hand, if the Gurley value exceeds 1000 seconds / 100 ml, the internal resistance of the battery increases, and a high output density may not be obtained.

本発明の積層多孔質フィルムは、P層にアルコール系溶媒が残留していない。ここで、「アルコール系溶媒が残留していない」とは、実質的にアルコール系溶媒が残留していないという意味であり、本発明の効果を損なわない範囲であれば、アルコール系溶媒は、微量残留していてもよい。アルコール系溶媒とは、メタノール、エタノール、プロパノール、イソプロピルアルコール、1―ブタノール、エチレングリコール、トリプロピレングリコール、グリセリン等をいう。   In the laminated porous film of the present invention, no alcohol solvent remains in the P layer. Here, “the alcoholic solvent does not remain” means that the alcoholic solvent does not substantially remain, and the alcoholic solvent is in a trace amount as long as the effects of the present invention are not impaired. It may remain. The alcohol solvent means methanol, ethanol, propanol, isopropyl alcohol, 1-butanol, ethylene glycol, tripropylene glycol, glycerin and the like.

本発明の多孔質積層フィルムにおいて、P層の厚みは、1μm以上、20μm以下であり、1.5μm以上、15μm以下とすることがより好ましく、2μm以上、10μm以下とすることがさらに好ましい。このようにすることによりP層の良好な通気性を確保するとともに、P層が積層された多孔質フィルムの耐熱性を確保することができる。P層の厚みが薄すぎると、多孔質フィルムの耐熱性を確保できない。一方、P層の厚みが厚すぎると、通気性を確保できない。ここで、P層の厚みは、積層多孔質フィルムの厚みから、前記S層の厚みを減じて算出される厚みであり、積層多孔質フィルムの厚みは、JIS規格(K7130−1992)に基づいて測定されるものである。   In the porous laminated film of the present invention, the thickness of the P layer is 1 μm or more and 20 μm or less, more preferably 1.5 μm or more and 15 μm or less, and further preferably 2 μm or more and 10 μm or less. By doing in this way, while ensuring favorable air permeability of P layer, the heat resistance of the porous film in which P layer was laminated | stacked can be ensured. If the thickness of the P layer is too thin, the heat resistance of the porous film cannot be ensured. On the other hand, if the P layer is too thick, air permeability cannot be ensured. Here, the thickness of the P layer is a thickness calculated by subtracting the thickness of the S layer from the thickness of the laminated porous film, and the thickness of the laminated porous film is based on the JIS standard (K7130-1992). It is to be measured.

P層の気孔率は、30〜90体積%とすることが好ましく、40〜80体積%とすることがより好ましい。気孔率をこのように設定することにより、より一層良好な力学的特性と通気性を有する積層多孔質フィルムとすることができる。ここで、気孔率の調整は、前記エーテル系溶媒の配合量や溶媒除去条件等を選ぶことにより行うことができる。なお、P層の気孔率は、P層の見掛け密度とP層構成するイミド系高分子の真密度(比重)とから算出される値である。具体的には、気孔率(体積%)は、P層の見掛け密度がA(g/cm)、イミド系高分子の真密度がB(g/cm)の場合、次式により算出される。The porosity of the P layer is preferably 30 to 90% by volume, and more preferably 40 to 80% by volume. By setting the porosity in this way, a laminated porous film having even better mechanical properties and air permeability can be obtained. Here, the porosity can be adjusted by selecting the blending amount of the ether solvent, solvent removal conditions, and the like. The porosity of the P layer is a value calculated from the apparent density of the P layer and the true density (specific gravity) of the imide polymer constituting the P layer. Specifically, the porosity (volume%) is calculated by the following equation when the apparent density of the P layer is A (g / cm 3 ) and the true density of the imide polymer is B (g / cm 3 ). The

Figure 0006218931
Figure 0006218931

P層の孔径は、積層多孔質フィルムをリチウム二次電池用セパレータとした際に、十分な通気性が得られ、また、正極や負極への粒子の混入を防止する観点から、3μm以下が好ましく、1μm以下がより好ましい。   The pore size of the P layer is preferably 3 μm or less from the viewpoint of obtaining sufficient air permeability when the laminated porous film is used as a separator for a lithium secondary battery and preventing mixing of particles into the positive electrode and the negative electrode. 1 μm or less is more preferable.

以上述べた如く、得られた積層多孔質フィルムは、通気性と耐熱性に優れ、かつP層にアルコール系溶媒が残留しないので、リチウム二次電池用セパレータとして、好適に使用することができる。また、本発明の積層多孔質フィルム製造方法によれば、凝固浴を使用しない簡単なプロセスで積層多孔質フィルムを容易に製造することができる。   As described above, the obtained laminated porous film is excellent in air permeability and heat resistance, and no alcohol solvent remains in the P layer. Therefore, it can be suitably used as a separator for a lithium secondary battery. Moreover, according to the method for producing a laminated porous film of the present invention, the laminated porous film can be easily produced by a simple process without using a coagulation bath.

以下、実施例に基づき本発明を更に具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited only to these Examples.

[実施例1]
S層を形成する多孔質フィルムとして、Celgard社製「Celgard2500」を用意した。この多孔質フィルムは、ポリプロピレンからなり、厚みは25μm、通気度を示すガーレ値(JIS規格P8117)は180秒/100ccであった。次に、イミド系塗液として、ユニチカ株式会社製「UイミドワニスIP」を用意した。この塗液は、溶質として、DSCによるTgが280℃の芳香族ポリアミドイミド、溶媒として、NMPとTEGMとの混合溶媒が用いられ、アルコール系溶媒は含まないものであった。また、固形分濃度としては、15質量%であった。この塗液を、前記多孔質フィルムの片面に、バーコータを用いて塗布し、140℃の非加湿状態の窒素ガス気流中で30分乾燥することにより、溶媒を加熱除去し、S層表面に、厚み8μmの多孔質ポリアミドイミドからなるP層が一体化された積層多孔質フィルム(L−1)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Example 1]
As a porous film for forming the S layer, “Celgard 2500” manufactured by Celgard was prepared. This porous film was made of polypropylene, had a thickness of 25 μm, and had a Gurley value (JIS standard P8117) indicating air permeability of 180 seconds / 100 cc. Next, “Uimide varnish IP” manufactured by Unitika Co., Ltd. was prepared as an imide coating solution. This coating solution used was an aromatic polyamideimide having a Tg of 280 ° C. by DSC as a solute, a mixed solvent of NMP and TEGM as a solvent, and no alcohol solvent. Moreover, as solid content concentration, it was 15 mass%. This coating solution is applied to one side of the porous film using a bar coater, and dried in a non-humidified nitrogen gas stream at 140 ° C. for 30 minutes to remove the solvent by heating, and on the surface of the S layer, A laminated porous film (L-1) in which P layers made of porous polyamideimide having a thickness of 8 μm were integrated was obtained. Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[実施例2]
P層の厚みを4μmとしたこと以外は、実施例1と同様に行い、積層多孔質フィルム(L−2)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Example 2]
A laminated porous film (L-2) was obtained in the same manner as in Example 1 except that the thickness of the P layer was 4 μm. Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[実施例3]
P層の厚みを15μmとしたこと以外は、実施例1と同様に行い、積層多孔質フィルム(L−3)を得た。この積層多孔質フィルムおよびP層の特性を評価した結果を表1に示す。
[Example 3]
A laminated porous film (L-3) was obtained in the same manner as in Example 1 except that the thickness of the P layer was 15 μm. Table 1 shows the results of evaluating the characteristics of this laminated porous film and P layer.

[実施例4]
乾燥窒素ガス雰囲気下、ガラス製反応容器に、DADE0.07モル、MPD0.03モルを入れ、これにNMPとトリエチルアミン0.1モルを加え、撹拌することにより固形分濃度が15質量%のNMP溶液を得た。その後、この溶液を10℃以下に保ちつつ、TMC 0.1モルのNMP溶液(固形分濃度:20質量%)を、撹拌下、ゆっくりと滴下した。滴下終了後、溶液を室温に戻し、2時間攪拌を続けた。得られた溶液を、大量の水に投入して、ポリアミドイミドの沈殿を生じせしめ、これを濾過、洗浄することにより、黄色の固体を得た後、200℃で12時間加熱して、乾燥とイミド化を行うことによりポリアミドイミド粉体(AP)を得た。APのDSCによるTgは285℃であった。次に、APをNMPとTEGMとの混合溶媒に溶解し、固形分濃度が12質量%のポリアミドイミド塗液(A−1)を得た。ここでNMPとTEGMの混合比率は、TEGM量を混合溶媒質量に対し70質量%とした。塗液(A−1)を用い、実施例1と同様にして塗布を行い、S層表面に多孔質ポリアミドイミドからなるP層(厚みは3μmとした)が一体化された積層多孔質フィルム(L−4)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Example 4]
Under a dry nitrogen gas atmosphere, put 0.07 mol of DADE and 0.03 mol of MPD in a glass reaction vessel, add NMP and 0.1 mol of triethylamine to this, and stir the NMP solution with a solid content concentration of 15% by mass. Got. Thereafter, while maintaining this solution at 10 ° C. or lower, 0.1 mol of TMC (solid content concentration: 20% by mass) was slowly added dropwise with stirring. After completion of the dropwise addition, the solution was returned to room temperature and stirring was continued for 2 hours. The obtained solution was poured into a large amount of water to cause precipitation of polyamideimide, which was filtered and washed to obtain a yellow solid, which was then heated at 200 ° C. for 12 hours, dried and dried. A polyamide-imide powder (AP) was obtained by imidization. The Tg of the AP by DSC was 285 ° C. Next, AP was dissolved in a mixed solvent of NMP and TEGM to obtain a polyamideimide coating liquid (A-1) having a solid content concentration of 12% by mass. Here, the mixing ratio of NMP and TEGM was such that the amount of TEGM was 70% by mass with respect to the mass of the mixed solvent. Using the coating liquid (A-1), coating was performed in the same manner as in Example 1, and a laminated porous film in which a P layer (thickness was 3 μm) made of porous polyamideimide was integrated on the surface of the S layer ( L-4) was obtained. Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[実施例5]
NMPとTEGMの混合比率を、TEGM量を混合溶媒質量に対し80質量%としたこと以外は、実施例4と同様にして、固形分濃度が12質量%のポリアミドイミド塗液(A−2)を得た。塗液(A−2)を用い、実施例1と同様にして塗布を行い、S層表面に多孔質ポリアミドイミドからなるP層(厚みは3μmとした)が一体化された積層多孔質フィルム(L−5)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Example 5]
Polyamideimide coating liquid (A-2) having a solid content concentration of 12% by mass in the same manner as in Example 4 except that the mixing ratio of NMP and TEGM was 80% by mass with respect to the mass of the mixed solvent. Got. Using the coating liquid (A-2), the application was carried out in the same manner as in Example 1, and a laminated porous film in which a P layer (thickness 3 μm) made of porous polyamideimide was integrated on the surface of the S layer ( L-5) was obtained. Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[実施例6]
イミド系塗液としてユニチカ株式会社製「UイミドワニスSP」を用意した。この塗液は、溶質として、DSCによるTgが225℃の芳香族ポリイミド、溶媒としては、NMPとTEGMとの混合溶媒が用いられ、アルコール系溶媒は含まないものであった。また、固形分濃度としては、15質量%であった。この塗液を、前記多孔質フィルムの片面に、バーコータを用いて塗布し、140℃の非加湿状態の窒素ガス気流中で30分乾燥することにより、溶媒を加熱除去し、S層表面に、厚み4μmの多孔質ポリイミドからなるP層が一体化された積層多孔質フィルム(L−6)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Example 6]
“Uimide varnish SP” manufactured by Unitika Ltd. was prepared as an imide coating solution. This coating liquid used was an aromatic polyimide having a Tg of 225 ° C. by DSC as a solute, and a mixed solvent of NMP and TEGM as a solvent, and did not contain an alcohol solvent. Moreover, as solid content concentration, it was 15 mass%. This coating solution is applied to one side of the porous film using a bar coater, and dried in a non-humidified nitrogen gas stream at 140 ° C. for 30 minutes to remove the solvent by heating, and on the surface of the S layer, A laminated porous film (L-6) in which a P layer made of porous polyimide having a thickness of 4 μm was integrated was obtained. Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[実施例7]
乾燥窒素ガス雰囲気下、ガラス製反応容器中に、BPDA0.04モル、ODPA0.06モルを入れ、NMPと共に投入し、溶液としたのち、DADE0.1モルのNMP溶液を投入し、撹拌下、BPDA0.04モル、ODPA0.06モルを徐々に加え、50℃で4時間反応させて、ポリアミック酸のNMP溶液(固形分濃度 15質量%)を得た。このポリアミック酸溶液にトルエンを添加して、固形分濃度を13質量%の溶液とした。この溶液を200℃に加熱して、反応の進行に伴ってトルエンと共沸してきた水分を分離しながら3時間イミド化反応を行った。その後、トルエンを留去して得られたポリイミド溶液を大量の水中に投入して、ポリイミドの沈殿を生じせしめ、これを濾過、洗浄、解砕後、120℃で5時間加熱することにより、可溶性ポリイミド粉体(BP)を得た。粉体BPのDSCによるTgは231℃であった。次に、粉体BPをDMAcとTEGMとの混合溶媒に溶解し、固形分濃度が12質量%のポリイミド塗液(B−1)を得た。ここでDMAcとTEGMの混合比率は、TEGM量を混合溶媒質量に対し70質量%とした。塗液(B−1)を用い、実施例6と同様に塗布して、S層表面に多孔質ポリイミドからなるP層(厚みは3μmとした)が一体化された積層多孔質フィルム(L−7)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Example 7]
In a dry nitrogen gas atmosphere, 0.04 mol of BPDA and 0.06 mol of ODPA were placed in a glass reaction vessel, and added together with NMP to obtain a solution. Then, 0.1 mol of DADE was added to the NMP solution, and BPDA0 was stirred. 0.04 mol and ODPA 0.06 mol were gradually added and reacted at 50 ° C. for 4 hours to obtain an NMP solution of polyamic acid (solid content concentration 15% by mass). Toluene was added to this polyamic acid solution to obtain a solution having a solid content concentration of 13% by mass. This solution was heated to 200 ° C., and an imidization reaction was performed for 3 hours while separating water azeotroped with toluene as the reaction progressed. Thereafter, the polyimide solution obtained by distilling off toluene was poured into a large amount of water to cause precipitation of polyimide, which was filtered, washed and crushed, and then heated at 120 ° C. for 5 hours, thereby being soluble. A polyimide powder (BP) was obtained. The Tg of the powder BP by DSC was 231 ° C. Next, the powder BP was dissolved in a mixed solvent of DMAc and TEGM to obtain a polyimide coating liquid (B-1) having a solid content concentration of 12% by mass. Here, the mixing ratio of DMAc and TEGM was set so that the amount of TEGM was 70% by mass with respect to the mass of the mixed solvent. Using the coating liquid (B-1), a laminated porous film (L-) coated in the same manner as in Example 6 and integrated with a P layer (thickness 3 μm) made of porous polyimide on the surface of the S layer. 7) was obtained. Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[実施例8]
DMAcとTEGMの混合比率を、TEGM量を混合溶媒質量に対し60質量%としたこと以外は、実施例4と同様にして、固形分濃度が12質量%の塗液(B−2)を得た。塗液(B−2)を用い、実施例7と同様にして、S層表面に、厚み3μmの多孔質ポリイミドからなるP層が一体化された積層多孔質フィルム(L−8)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Example 8]
A coating liquid (B-2) having a solid content concentration of 12 mass% was obtained in the same manner as in Example 4 except that the mixing ratio of DMAc and TEGM was changed to 60 mass% with respect to the mass of the mixed solvent. It was. Using the coating liquid (B-2), in the same manner as in Example 7, a laminated porous film (L-8) in which a P layer made of porous polyimide having a thickness of 3 μm was integrated on the surface of the S layer was obtained. . Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[実施例9]
TEGMをTRGMとしたこと以外は、実施例7と同様にして、固形分濃度が12質量%の塗液(B−3)を得た。塗液(B−3)を用い、実施例7と同様にして、S層表面に、厚み3μmの多孔質ポリイミドからなるP層が一体化された積層多孔質フィルム(L−9)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Example 9]
A coating liquid (B-3) having a solid content concentration of 12% by mass was obtained in the same manner as in Example 7 except that TEGM was changed to TRGM. Using the coating liquid (B-3), in the same manner as in Example 7, a laminated porous film (L-9) in which the P layer made of porous polyimide having a thickness of 3 μm was integrated on the surface of the S layer was obtained. . Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[比較例1]
P層の厚みを25μmとしたこと以外は、実施例1と同様に行い、積層多孔質フィルム(M−1)を得た。この積層多孔質フこの積層多孔質フィルムおよびP層の特性を評価した結果を表1に示す。
[Comparative Example 1]
A laminated porous film (M-1) was obtained in the same manner as in Example 1 except that the thickness of the P layer was 25 μm. The results of evaluating the characteristics of the laminated porous film and the P layer are shown in Table 1.

[比較例2]
実施例4で用いたポリアミドイミド粉体(AP)をNMPに溶解し、固形分濃度が12質量%のポリアミドイミド塗液(A−3)を得た。塗液(A−3)を用い、実施例1と同様にして塗布を行い、S層表面にポリアミドイミドからなるP層(厚みは3μmとした)が一体化された積層多孔質フィルム(M−2)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Comparative Example 2]
The polyamideimide powder (AP) used in Example 4 was dissolved in NMP to obtain a polyamideimide coating liquid (A-3) having a solid content concentration of 12% by mass. Using the coating liquid (A-3), coating was performed in the same manner as in Example 1, and a laminated porous film (M-) in which a P layer (thickness 3 μm) made of polyamideimide was integrated on the surface of the S layer. 2) was obtained. Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[比較例3]
NMPとTEGMの混合比率を、TEGM量を混合溶媒質量に対し25質量%としたこと以外は、実施例4と同様にして、固形分濃度が12質量%のポリアミドイミド塗液(A−4)を得た。塗液(A−4)を用い、実施例1と同様にして塗布を行い、S層表面に多孔質ポリアミドイミドからなるP層(厚みは3μmとした)が一体化された積層多孔質フィルム(M−3)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Comparative Example 3]
Polyamideimide coating liquid (A-4) having a solid content concentration of 12% by mass in the same manner as in Example 4 except that the mixing ratio of NMP and TEGM was 25% by mass with respect to the mass of the mixed solvent. Got. Using the coating liquid (A-4), coating was carried out in the same manner as in Example 1, and a laminated porous film in which a P layer (thickness 3 μm) made of porous polyamideimide was integrated on the surface of the S layer ( M-3) was obtained. Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[比較例4]
実施例4で用いたポリアミドイミド粉体(AP)を、NMPとトリプロピレングルコール(TPG)との混合溶媒に溶解し、固形分濃度が12質量%のポリアミドイミド塗液(A−5)を得た。ここでNMPとTPGの混合比率は、TPG量を混合溶媒質量に対し25質量%とした。塗液(A−5)を用い、実施例1と同様にして塗布を行い、S層表面に多孔質ポリアミドイミドからなるP層(厚みは3μmとした)が一体化された積層多孔質フィルム(M−4)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Comparative Example 4]
The polyamideimide powder (AP) used in Example 4 was dissolved in a mixed solvent of NMP and tripropylene glycol (TPG), and a polyamideimide coating liquid (A-5) having a solid content concentration of 12% by mass was obtained. Obtained. Here, the mixing ratio of NMP and TPG was such that the amount of TPG was 25% by mass with respect to the mass of the mixed solvent. Using the coating liquid (A-5), the application was carried out in the same manner as in Example 1, and a laminated porous film in which a P layer (thickness 3 μm) made of porous polyamideimide was integrated on the surface of the S layer ( M-4) was obtained. Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[比較例5]
実施例4で用いたポリアミドイミド粉体(AP)を、NMPとTPGとの混合溶媒に溶解させてポリアミドイミド塗液を作成し、積層多孔質フィルム(M−5)を得ようとしたが、均一な溶液を得ることができなかった。ここでNMPとTPGの混合比率は、TPG量を混合溶媒質量に対し70質量%とした。
[Comparative Example 5]
The polyamideimide powder (AP) used in Example 4 was dissolved in a mixed solvent of NMP and TPG to create a polyamideimide coating solution, and an attempt was made to obtain a laminated porous film (M-5). A uniform solution could not be obtained. Here, the mixing ratio of NMP and TPG was such that the amount of TPG was 70% by mass with respect to the mass of the mixed solvent.

[比較例6]
実施例7で用いたポリイミド粉体(BP)を、DMAcとTPGとの混合溶媒に溶解し、固形分濃度が12質量%のポリイミド塗液(B−4)を得た。ここでDMAcとTPGの混合比率は、TPG量を混合溶媒質量に対し25質量%とした。塗液(B−4)を用い、実施例1と同様にして塗布を行い、S層表面にポリイミドからなるP層(厚みは3μmとした)が一体化された積層多孔質フィルム(M−6)を得た。この積層多孔質フィルム特性およびP層の特性を評価した結果を表1に示す。
[Comparative Example 6]
The polyimide powder (BP) used in Example 7 was dissolved in a mixed solvent of DMAc and TPG to obtain a polyimide coating liquid (B-4) having a solid content concentration of 12% by mass. Here, the mixing ratio of DMAc and TPG was such that the amount of TPG was 25 mass% with respect to the mass of the mixed solvent. Using the coating liquid (B-4), coating was carried out in the same manner as in Example 1, and a laminated porous film (M-6) in which a P layer made of polyimide (thickness 3 μm) was integrated on the surface of the S layer ) Table 1 shows the results of evaluating the properties of the laminated porous film and the properties of the P layer.

[比較例7]
実施例7で用いたポリイミド粉体(BP)を、DMAcとTPGとの混合溶媒に溶解させてポリイミド塗液を作成し、積層多孔質フィルム(M−7)を得ようとしたが、均一な溶液を得ることができなかった。ここでDMAcとTPGの混合比率は、TPG量を混合溶媒質量に対し70質量%とした。
[Comparative Example 7]
The polyimide powder (BP) used in Example 7 was dissolved in a mixed solvent of DMAc and TPG to prepare a polyimide coating solution, and an attempt was made to obtain a laminated porous film (M-7). A solution could not be obtained. Here, the mixing ratio of DMAc and TPG was such that the amount of TPG was 70% by mass with respect to the mass of the mixed solvent.

実施例で示した様に、ポリオレフィンからなる多孔質層の片面または両面に、イミド系高分子からなる多孔質層が形成されている本発明の積層多孔質フィルムは、耐熱性に優れたイミド系高分子からなる多孔質層がポリオレフィンからなる多孔質層の表面に積層されており、この耐熱多孔質層は、気孔率が高く、通気性が良好であるので、これを積層した積層多孔質フィルムも通気性に優れる。さらに、この耐熱多孔質層は、アルコール系溶媒が残留していないものである。従い、本発明の積層多孔質フィルムは、リチウム二次電池用セパレータとして好適に用いることができる。
また、本発明の製造方法によれば、加熱による溶媒除去という簡単な操作で、積層多孔質フィルムを得ることができる。ここでは、貧溶媒を含む凝固浴を用いないので、凝固浴からの廃液が発生しない。従い、環境適合性が良好である。
As shown in the Examples, the laminated porous film of the present invention in which a porous layer made of an imide polymer is formed on one or both sides of a porous layer made of polyolefin is an imide type having excellent heat resistance. A porous layer made of a polymer is laminated on the surface of a porous layer made of polyolefin, and since this heat-resistant porous layer has a high porosity and good air permeability, a laminated porous film in which this is laminated Also excellent in breathability. Further, this heat-resistant porous layer is one in which no alcohol solvent remains. Therefore, the laminated porous film of the present invention can be suitably used as a separator for a lithium secondary battery.
Moreover, according to the manufacturing method of this invention, a lamination | stacking porous film can be obtained by simple operation of the solvent removal by heating. Here, since a coagulation bath containing a poor solvent is not used, waste liquid from the coagulation bath is not generated. Therefore, environmental compatibility is good.

Figure 0006218931
Figure 0006218931

本発明の積層多孔質フィルムは、例えば、リチウム二次電池用セパレータ等、蓄電素子用のセパレータとして有用である。   The laminated porous film of the present invention is useful as a separator for a storage element such as a separator for a lithium secondary battery.

Claims (4)

ポリオレフィンからなる多孔質層の片面または両面に、塗液を塗布して塗膜を形成した後、前記塗膜中の溶媒を加熱除去することにより塗膜内で相分離を起こさせて多孔質層を形成せしめることにより、ポリオレフィンからなる多孔質層とポリアミドイミドからなる多孔質層とを積層一体化する、積層多孔質フィルムを製造するための塗液であって、
前記塗液が、ポリアミドイミドと、アミド系溶媒と、エーテル系溶媒としてのトリエチレングリコールジメチルエーテルおよび/またはテトラエチレングリコールジメチルエーテルと、からなることを特徴とする積層多孔質フィルム製造用塗液。
After applying a coating liquid on one or both sides of a porous layer made of polyolefin to form a coating film, the solvent in the coating film is removed by heating to cause phase separation in the coating film. the by allowed to form, integrally laminated to a porous layer made of a porous layer and a polyamide-imide comprising a polyolefin, a coating liquid for producing a product layer porous film,
A coating liquid for producing a laminated porous film , characterized in that the coating liquid comprises polyamideimide, an amide solvent, and triethylene glycol dimethyl ether and / or tetraethylene glycol dimethyl ether as an ether solvent .
前記エーテル系溶媒の配合量が全溶媒量に対して60〜80質量%である、請求項1に記載の積層多孔質フィルム製造用塗液The coating liquid for laminated porous film production according to claim 1, wherein the blending amount of the ether solvent is 60 to 80% by mass with respect to the total amount of the solvent. 請求項1または2記載の積層多孔質フィルム製造用塗液を用いた、積層多孔質フィルムの製造方法。 A method for producing a laminated porous film using the coating liquid for producing a laminated porous film according to claim 1 . 請求項に記載の積層多孔質フィルムの製造方法で得られた積層多孔質フィルムのリチウム二次電池用セパレータへの使用。 Use in a lithium secondary battery separator of the laminated porous fill beam obtained by the method for producing a laminated porous film according to claim 3.
JP2016512729A 2014-04-07 2015-04-06 Laminated porous film and method for producing the same Active JP6218931B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014078679 2014-04-07
JP2014078679 2014-04-07
PCT/JP2015/060772 WO2015156261A1 (en) 2014-04-07 2015-04-06 Laminated porous film and production method therefor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2017077497A Division JP2017162822A (en) 2014-04-07 2017-04-10 Laminated porous film and method for producing the same
JP2017077503A Division JP2017119442A (en) 2014-04-07 2017-04-10 Laminated porous film and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2015156261A1 JPWO2015156261A1 (en) 2017-04-13
JP6218931B2 true JP6218931B2 (en) 2017-10-25

Family

ID=54287837

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016512729A Active JP6218931B2 (en) 2014-04-07 2015-04-06 Laminated porous film and method for producing the same
JP2017077497A Pending JP2017162822A (en) 2014-04-07 2017-04-10 Laminated porous film and method for producing the same
JP2017077503A Pending JP2017119442A (en) 2014-04-07 2017-04-10 Laminated porous film and method for producing the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2017077497A Pending JP2017162822A (en) 2014-04-07 2017-04-10 Laminated porous film and method for producing the same
JP2017077503A Pending JP2017119442A (en) 2014-04-07 2017-04-10 Laminated porous film and method for producing the same

Country Status (4)

Country Link
JP (3) JP6218931B2 (en)
KR (2) KR20160143665A (en)
CN (1) CN106133947A (en)
WO (1) WO2015156261A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133947A (en) * 2014-04-07 2016-11-16 尤尼吉可株式会社 Laminated porous film and manufacture method thereof
WO2017073766A1 (en) * 2015-10-30 2017-05-04 ユニチカ株式会社 Polyimide solution for electricity storage element electrodes, method for producing electricity storage element electrode, and electricity storage element electrode
EP3166173B1 (en) * 2015-11-05 2019-01-09 Lithium Energy and Power GmbH & Co. KG Battery system for a vehicle
JP6983394B2 (en) * 2016-06-23 2021-12-17 ユニチカ株式会社 Polyimide solution for forming porous polyimide film, manufacturing method of porous polyimide film and porous polyimide film
JP6835348B2 (en) * 2016-09-06 2021-02-24 ユニチカ株式会社 Polyamide-imide solution for power storage element separator and power storage element separator
JP7040743B2 (en) * 2017-02-22 2022-03-23 ユニチカ株式会社 Polyamide-imide coating liquid for forming a porous polyamide-imide film
JP7397570B2 (en) 2018-02-01 2023-12-13 東京応化工業株式会社 Porous polyimide film raw material, its manufacturing method, and composition
CN110277535B (en) 2018-03-15 2023-11-03 株式会社理光 Porous insulator, electrode, and nonaqueous electricity storage element
JP7233071B2 (en) * 2018-04-24 2023-03-06 ユニチカ株式会社 Polyamideimide composition and use thereof
TW202044646A (en) * 2019-04-04 2020-12-01 美商希爾格得有限公司 Polyamide-imide coated separators for high energy rechargeable lithium batteries
JP2022124401A (en) * 2021-02-15 2022-08-25 太陽ホールディングス株式会社 Polymer composition for porous film formation, method for producing porous film, porous film, flexible metal-clad laminate, and electronic board

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127989A (en) 1990-09-17 1992-04-28 Fuji Electric Co Ltd Method and device for positioning work in laser beam machining
JP4502412B2 (en) * 1996-12-10 2010-07-14 ダイセル化学工業株式会社 Porous membrane and method for producing the same
JPH1135683A (en) * 1997-07-15 1999-02-09 Unitika Ltd Wholly aromatic polyimide precursor powder and its production
JP2002355938A (en) 2001-05-30 2002-12-10 Tonen Chem Corp Composite film, its manufacturing method, and separator for battery using the same or filter
JP2002075440A (en) 2001-07-13 2002-03-15 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary cell using the same
JP4588286B2 (en) 2001-09-28 2010-11-24 帝人株式会社 Manufacturing method of composite porous membrane
JP2005209570A (en) 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
CN1922249B (en) * 2004-02-23 2010-08-18 东洋纺织株式会社 Porous film, process for producing the same, and lithium-ion secondary cell made with the same
JP4649848B2 (en) 2004-02-26 2011-03-16 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
JP4591010B2 (en) * 2004-03-03 2010-12-01 東洋紡績株式会社 Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP2005285385A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Separator and nonaqueous electrolyte battery using the separator
JP4812266B2 (en) * 2004-07-01 2011-11-09 株式会社巴川製紙所 Separator for electronic parts and method for manufacturing the same
JP2006027024A (en) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP2006032246A (en) 2004-07-21 2006-02-02 Sanyo Electric Co Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2006059733A (en) * 2004-08-23 2006-03-02 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP2006286957A (en) * 2005-03-31 2006-10-19 Sumitomo Bakelite Co Ltd Method of manufacturing adhesive for semiconductor
JP2006289657A (en) * 2005-04-06 2006-10-26 Asahi Kasei Chemicals Corp Multilayered porous film
US20090274954A1 (en) * 2005-05-20 2009-11-05 Sumitomo Chemical Company, Limited Porous film and laminated porous film
JP2006348280A (en) * 2005-05-20 2006-12-28 Sumitomo Chemical Co Ltd Porous film and laminated porous film
JP2006344506A (en) * 2005-06-09 2006-12-21 Tomoegawa Paper Co Ltd Separator for electronic components
JP2007048738A (en) * 2005-07-14 2007-02-22 Tomoegawa Paper Co Ltd Separator for electronic part and its manufacturing method
CN100533816C (en) * 2006-01-09 2009-08-26 比亚迪股份有限公司 Battery diaphragm and its preparation method and lithium ion secondary battery containing the diaphragm
JP4947989B2 (en) * 2006-02-09 2012-06-06 ユニチカ株式会社 Polyimide precursor solution, polyimide porous film, and production method thereof
CN101209609B (en) * 2006-12-30 2011-06-15 比亚迪股份有限公司 Polyolefin composite thin film and preparation and application thereof
JP4506792B2 (en) * 2007-07-06 2010-07-21 ソニー株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery using the same
JP5059643B2 (en) * 2008-02-04 2012-10-24 ソニー株式会社 Non-aqueous electrolyte battery
JP5368030B2 (en) 2008-08-25 2013-12-18 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP5567262B2 (en) * 2008-09-08 2014-08-06 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP2011207149A (en) * 2010-03-30 2011-10-20 Ube Industries Ltd Method for manufacturing composite porous film
JP6084403B2 (en) * 2011-09-01 2017-02-22 ユニチカ株式会社 Method for producing porous polyimide coating
JP2013196839A (en) * 2012-03-16 2013-09-30 Tdk Corp Nonaqueous secondary battery separator
JP5938982B2 (en) * 2012-03-27 2016-06-22 Tdk株式会社 Non-aqueous secondary battery separator
JP5928705B2 (en) * 2012-04-09 2016-06-01 住友電気工業株式会社 Method for producing polyimide precursor solution, polyimide precursor solution using the same, and porous polyimide
CN104823307B (en) * 2013-01-07 2018-05-04 尤尼吉可株式会社 Electrode of lithium secondary cell and its manufacture method
JP2014056834A (en) * 2013-11-06 2014-03-27 Tdk Corp Separator, and electrochemical device using the same
CN106133947A (en) * 2014-04-07 2016-11-16 尤尼吉可株式会社 Laminated porous film and manufacture method thereof

Also Published As

Publication number Publication date
KR20160143665A (en) 2016-12-14
KR20180110210A (en) 2018-10-08
CN106133947A (en) 2016-11-16
WO2015156261A1 (en) 2015-10-15
JP2017162822A (en) 2017-09-14
JP2017119442A (en) 2017-07-06
JPWO2015156261A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6218931B2 (en) Laminated porous film and method for producing the same
JP6403576B2 (en) Method for producing electrode for lithium secondary battery
JP6404028B2 (en) Method for producing porous polyimide film, method for producing separator, and varnish
JP2002355938A (en) Composite film, its manufacturing method, and separator for battery using the same or filter
JP6656192B2 (en) Polyamide imide solution, porous polyamide imide film, and method for producing the same
TW201629123A (en) Porous polyimide film and production method thereof
JP7053145B2 (en) Varnish for manufacturing porous polyimide film and method for manufacturing porous polyimide film using it
CN109792019B (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
KR102375203B1 (en) Microporous Polyimide Film and Process for Producing the Same
JPWO2016039299A1 (en) Method for producing porous polyimide membrane
JP2017162840A (en) High temperature melt integrity separator
JP6383243B2 (en) Porous membrane, method for producing the same, porous separator for secondary battery, and secondary battery
KR20140018125A (en) Separator containing coating layer and battery using the separator
WO2016002785A1 (en) Aromatic polymer manufacturing method, layered film, and separator
JP2013206560A (en) Nonaqueous secondary battery separator
JP2019133922A (en) Secondary cell and porous separator for secondary cell
KR102348189B1 (en) Polymer composition, laminated film, and separator
JP5938982B2 (en) Non-aqueous secondary battery separator
JP2016079310A (en) Varnish for producing porous film, method for producing porous film using the same and hole forming agent for producing porous film
JP2019033073A (en) Manufacturing method of separator for power storage element
JP2017174540A (en) Solution for polymer electrolyte and polymer electrolyte

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170105

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170926

R150 Certificate of patent or registration of utility model

Ref document number: 6218931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150