JP2002327266A - Iridium alloy target material for forming thin film - Google Patents

Iridium alloy target material for forming thin film

Info

Publication number
JP2002327266A
JP2002327266A JP2001131477A JP2001131477A JP2002327266A JP 2002327266 A JP2002327266 A JP 2002327266A JP 2001131477 A JP2001131477 A JP 2001131477A JP 2001131477 A JP2001131477 A JP 2001131477A JP 2002327266 A JP2002327266 A JP 2002327266A
Authority
JP
Japan
Prior art keywords
solid solution
thin film
target material
alloy target
iridium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001131477A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ishiguro
好裕 石黒
Takanobu Matsumura
尊信 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2001131477A priority Critical patent/JP2002327266A/en
Publication of JP2002327266A publication Critical patent/JP2002327266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iridium alloy target material for forming a thin film with sputtering or the like, which has such excellent heat resistance as not to be affected by heat treatment under 600 deg.C or higher, and such excellent oxidation resistance as not to react with oxygen under a high-temperature oxygen atmosphere. SOLUTION: This material includes pure Ir as a main component, either one of Rh, Pt, Ru, Pd, Nb, Ta, Hf, Ti, Zr, Y, La, Re, Cr, V, Mo, W, Re, or Os, within the content of the solid solution range for the main component, as the second element, or the above several elements so that the total content can be in the solid solution range. Alternatively, the material includes pure Ir, Rh as a second element within the content of the solid solution range, and either one of Pt, Ru, Pd, Nb, Ta, Hf, Ti, Zr, Y, La, Re, Cr, V, Mo, W, Re, or Os as a third element within the content of the solid solution range, while the total amount of the second and the third element is controlled so as to be within the solid solution range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば600℃以上
の高温時における金属酸化物との反応を抑制し、又、高
温酸化雰囲気下での酸素等の透過防止作用が要求される
例えば半導体集積回路等に内蔵される容量素子の下部電
極や上部電極用の薄膜をスパッタリング法により形成す
るために使用されるイリジウム合金ターゲット材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit which is required to suppress the reaction with a metal oxide at a high temperature of, for example, 600.degree. The present invention relates to an iridium alloy target material used for forming a thin film for a lower electrode or an upper electrode of a capacitor incorporated in a circuit or the like by a sputtering method.

【0002】[0002]

【従来の技術】従来、例えば半導体集積回路等に内蔵さ
れる容量素子の下部電極や上部電極用の薄膜をスパッタ
リング法により形成するために用いられているターゲッ
ト材は白金又はイリジウムが主流である。即ち、容量素
子の下部電極と上部電極には白金又はイリジウムからな
るターゲット材を用いて形成した薄膜が用いられてい
る。
2. Description of the Related Art Conventionally, platinum or iridium is mainly used as a target material for forming a thin film for a lower electrode or an upper electrode of a capacitor incorporated in a semiconductor integrated circuit or the like by a sputtering method. That is, a thin film formed using a target material made of platinum or iridium is used for the lower electrode and the upper electrode of the capacitor.

【0003】ところで、容量素子はその製造過程におい
て性能を向上させるために、絶縁基板上に下部電極、こ
の下部電極の上に高誘電率を有する強誘電体薄膜からな
る容量絶縁膜、そしてこの容量絶縁膜の上に上部電極を
順次に形成するその製造工程において配線層を形成した
後に熱処理等が必要不可欠となっている。つまり、容量
絶縁膜を構成する強誘電体材料の結晶化のためには600
℃以上、例えば600〜800℃程度の熱処理が必要不可欠で
ある。即ち、強誘電体材料はチタン酸ジルコン酸鉛(Pb
(Zr、Ti)O3)、チタン酸鉛(Pb Ti O3)、チタン酸ジ
ルコニウム酸バリウム酸((Ba、Pb)(Zr、Ti)O3)、
ニオブ酸バリウム鉛((Ba、Pb)Nb2 O6)、タンタル酸
ストロンチウムビスマス(Sr Bi2 Ta2 O9)、チタン酸
ジルコニウム酸バリウムストロンチウム((Ba、Sr)
(Zr、Ti)O3)、チタン酸ビスマス・ストロンチウム
(Bi4 Sr Ti3 O12)、チタン酸ストロンチウム(Sr TiO
3)、チタン酸バリウムストロンチウム((Ba、Sr)Ti
O3)、チタン酸ビスマス(Bi4 Ti3 O12)等の金属酸化
物からなり、強誘電体材料の結晶化を図る(一定の規則
正しい結晶方向に配向させる結晶化を図る(結晶を成長
させる))には600〜800℃の温度(結晶化温度)による
熱処理等が必要とされている。
In order to improve the performance of the capacitive element during the manufacturing process, a lower electrode is formed on an insulating substrate, a capacitive insulating film made of a ferroelectric thin film having a high dielectric constant is formed on the lower electrode, and a capacitor is formed on the lower electrode. In a manufacturing process for sequentially forming an upper electrode on an insulating film, heat treatment or the like after forming a wiring layer is indispensable. In other words, the crystallization of the ferroelectric material forming the capacitive insulating film is 600
A heat treatment at a temperature of at least 600C, for example, about 600 to 800C is indispensable. That is, the ferroelectric material is lead zirconate titanate (Pb
(Zr, Ti) O 3 ), lead titanate (Pb Ti O 3 ), barium acid zirconate titanate ((Ba, Pb) (Zr, Ti) O 3 ),
Barium lead niobate ((Ba, Pb) Nb 2 O 6 ), strontium bismuth tantalate (Sr Bi 2 Ta 2 O 9 ), barium strontium zirconate titanate ((Ba, Sr)
(Zr, Ti) O 3 ), bismuth strontium titanate (Bi 4 Sr Ti 3 O 12 ), strontium titanate (Sr TiO
3 ) Barium strontium titanate ((Ba, Sr) Ti
A metal oxide such as O 3 ) or bismuth titanate (Bi 4 Ti 3 O 12 ) is used to crystallize a ferroelectric material (to crystallize in a certain regular crystal direction (to grow a crystal) )) Requires heat treatment at a temperature of 600 to 800 ° C. (crystallization temperature).

【0004】因みに、高誘電体材料としてはチタン酸ジ
ルコニウム酸バリウムストロンチウム((Ba、Sr)(Z
r、Ti)O3)、チタン酸ストロンチウム(Sr TiO3)、チ
タン酸バリウムストロンチウム((Ba、Sr)Ti O3)等
の金属酸化物が知られている。
Incidentally, barium strontium zirconate titanate ((Ba, Sr) (Z
r, Ti) O 3), strontium titanate (Sr TiO 3), barium strontium titanate ((Ba, Sr) Ti O 3) metal oxides and the like are known.

【0005】[0005]

【発明が解決しようとする課題】しかし乍ら、従来の容
量素子を構成する下部電極と上部電極は、前述したよう
に白金又はイリジウムターゲット材を用いて形成された
白金又はイリジウム薄膜からなることから、前述の600
〜800℃熱処理を酸化雰囲気下で行なった場合に、容量
絶縁膜を構成する金属酸化物強誘電体材料の一部が、下
部、上部電極、特に下部電極中に拡散し、該下部電極の
白金又はイリジウムと反応して下部電極の接触抵抗を増
大させ、それが容量素子としての性能を低下させる問題
となる。又、前述の600〜800℃の高温酸化雰囲気下で金
属酸化物強誘電体材料の成膜を行なった場合には下部電
極の白金又はイリジウム薄膜の結晶方向が配向されてし
まう。そのことにより、酸素が白金又はイリジウム薄膜
中を透過し、下部電極と絶縁基板との間の密着層が酸化
され、下部電極の接触抵抗を増大させる結果を招くこと
となる。
However, since the lower electrode and the upper electrode constituting the conventional capacitive element are made of a platinum or iridium thin film formed using a platinum or iridium target material as described above. , The aforementioned 600
When the heat treatment is performed in an oxidizing atmosphere at ~ 800 ° C., a part of the metal oxide ferroelectric material constituting the capacitive insulating film is diffused into the lower electrode, the upper electrode, especially the lower electrode, and the platinum of the lower electrode is formed. Alternatively, it reacts with iridium to increase the contact resistance of the lower electrode, which causes a problem of deteriorating the performance as a capacitor. Further, when the metal oxide ferroelectric material is formed in a high-temperature oxidizing atmosphere at 600 to 800 ° C., the crystal direction of the platinum or iridium thin film of the lower electrode is oriented. As a result, oxygen permeates through the platinum or iridium thin film, and the adhesion layer between the lower electrode and the insulating substrate is oxidized, resulting in an increase in the contact resistance of the lower electrode.

【0006】そのために、従来では前述した構造の容量
素子の白金又はイリジウムからなる下部、上部両電極を
容量絶縁膜からの拡散による劣化を防ぐべく、下部電極
と容量絶縁膜との間、そして、容量絶縁膜と上部電極と
の間にルテニウム酸ストロンチウムや酸化イリジウム等
の導電性酸化物からなる拡散防止膜を夫々形成すること
で、熱処理時の拡散問題を解消することが試みられてい
た。しかし乍ら、この様な構造の容量素子を作るために
は製造工程において拡散防止膜を形成するための工程の
増加が必要、つまり余分な工程が必要になり、その分、
手間と時間が掛かる。又、ルテニウム酸ストロンチウム
や酸化イリジウム等の導電性酸化物、即ち余分な材料が
必要になる等から、コスト高になる新たな問題を引き起
こす要因となる。
Therefore, conventionally, both the lower and upper electrodes made of platinum or iridium of the capacitive element having the above-mentioned structure are prevented from being deteriorated by diffusion from the capacitive insulating film, between the lower electrode and the capacitive insulating film, and Attempts have been made to eliminate the diffusion problem during heat treatment by forming a diffusion barrier film made of a conductive oxide such as strontium ruthenate or iridium oxide between the capacitor insulating film and the upper electrode. However, in order to manufacture a capacitor having such a structure, it is necessary to increase the number of steps for forming a diffusion prevention film in the manufacturing process, that is, an extra step is required.
It takes time and effort. In addition, a conductive oxide such as strontium ruthenate or iridium oxide, that is, an extra material is required, which causes a new problem of high cost.

【0007】本発明はこの様な従来事情に鑑みてなされ
たもので、その目的とする処は、600℃以上の熱処理時
の熱影響を受けない耐熱強度に優れ、しかも、高温酸素
雰囲気下での酸素との反応がない耐酸化性に優れた特性
を有する薄膜、例えば容量素子の下部、上部両電極用の
薄膜等をスパッタリング法等により形成する薄膜形成用
イリジウム合金ターゲット材を提供することにある。
The present invention has been made in view of such circumstances as described above, and its object is to provide a heat-resistant material which is not affected by heat during a heat treatment at 600 ° C. or more, and has a high-temperature oxygen atmosphere. In order to provide a thin film forming iridium alloy target material for forming a thin film having excellent oxidation resistance without reaction with oxygen, for example, a thin film for both the lower and upper electrodes of a capacitor by a sputtering method or the like. is there.

【0008】[0008]

【課題を達成するための手段】課題を達成するための本
発明の薄膜形成用イリジウム合金ターゲット材は、主成
分となるイリジウムに、ロジウム、白金、ルテニウム、
パラジウム、ニオブ、タンタル、ハフニウム、チタン、
ジルコニウム、イットリウム、ランタン、レニウム、ク
ロム、バナジウム、モリブデン、タングステン、レニウ
ム、オスミウムこれらいずれか一種以上を固溶範囲内で
含有させてなることを要旨とする。そして、本発明では
前述いずれか一種からなる第二元素の含有量を0.1〜50w
t%の固溶範囲(単相領域)内に、又はこれら数種の第
二元素の含有総量を0.1〜50wt%の固溶範囲(単相領
域)内に抑えることが望ましく。特にいずれか一種から
なる第二元素の含有量を10wt%以下の固溶範囲(単相領
域)内に、又はこれら数種の第二元素の含有総量を10wt
%以下の固溶範囲(単相領域)内に抑えることが望まし
いものである。
The iridium alloy target material for forming a thin film according to the present invention for attaining the object comprises, in addition to iridium as a main component, rhodium, platinum, ruthenium,
Palladium, niobium, tantalum, hafnium, titanium,
The gist is that at least one of zirconium, yttrium, lanthanum, rhenium, chromium, vanadium, molybdenum, tungsten, rhenium, and osmium is contained within a solid solution range. And in the present invention, the content of the second element consisting of any one of the above is 0.1 to 50 w
It is desirable that the solid solution range of t% (single phase region) or the total content of these two types of second elements be kept within the solid solution range of 0.1 to 50 wt% (single phase region). In particular, the content of any one of the second elements should be within a solid solution range of 10 wt% or less (single phase region), or the total content of these two types of second elements should be 10 wt%.
% Is desirably suppressed within a solid solution range (single phase region) of not more than 0.1%.

【0009】又、本発明の薄膜形成用イリジウム合金タ
ーゲット材は、主成分となるイリジウムに、第二元素と
してロジウムを固溶範囲(単相領域)内で含有し、更に
第三元素として白金、ルテニウム、パラジウム、ニオ
ブ、タンタル、ハフニウム、チタン、ジルコニウム、イ
ットリウム、ランタン、レニウム、クロム、バナジウ
ム、モリブデン、タングステン、レニウム、オスミウム
これらいずれか一種を固溶範囲(単相領域)内で含有
し、この第三元素と前記第二元素との含有総量を固溶範
囲(単相領域)内に抑えてなることを要旨とする。そし
て、本発明では前述の第二元素を0.1〜30wt%の固溶範
囲(単相領域)内、第三元素を0.1〜20wt%の固溶範囲
(単相領域)内、そしてこの第二元素と第三元素との含
有総量を0.2〜50wt%の固溶範囲(単相領域)内に抑え
ることが望ましいものである。
The iridium alloy target material for forming a thin film according to the present invention contains iridium as a main component and rhodium as a second element in a solid solution range (single phase region), and further contains platinum as a third element. Ruthenium, palladium, niobium, tantalum, hafnium, titanium, zirconium, yttrium, lanthanum, rhenium, chromium, vanadium, molybdenum, tungsten, rhenium, and osmium are contained in the solid solution range (single phase region). The gist is that the total content of the third element and the second element is suppressed within a solid solution range (single phase region). In the present invention, the second element is in a solid solution range of 0.1 to 30 wt% (single phase region), the third element is in a solid solution range of 0.1 to 20 wt% (single phase region), and the second element is It is desirable to keep the total content of C and the third element within a solid solution range (single phase region) of 0.2 to 50 wt%.

【0010】[0010]

【発明の実施の形態】本発明の実施の具体例を説明す
る。請求項1に係る本発明の薄膜形成用イリジウム合金
ターゲット材は、主成分となるイリジウム(Ir)に、
ロジウム(Rh)、白金(Pt)、ルテニウム(R
u)、パラジウム(Pd)、ニオブ(Nb)、タンタル
(Ta)、ハフニウム(Hf)、チタン(Ti)、ジル
コニウム(Zr)、イットリウム(Y)、ランタン(L
a)、レニウム(Re)、クロム(Cr)、バナジウム
(V)、モリブデン(Mo)、タングステン(W)、レ
ニウム(Re)、オスミウム(Os)これらいずれか一
種からなる第二元素の含有量を0.1〜50wt%の固溶範囲
(単相領域)内に、又はこれら数種の第二元素の含有総
量を0.1〜50wt%の固溶範囲(単相領域)内に抑えるこ
とが本発明を成立させる上で重要である。特に、各種の
第二元素の内、Pt、Pd、Rh、Ru、Nb、Ta、
Hf、Ti、Zr、Y、La、Re、Cr、V、Mo、
W、Re、Osこれらいずれか一種からなる第二元素に
あってはその添加量を10wt%以下の固溶範囲(単相領
域)内に、又はこれら第二元素数種の含有総量を10wt%
以下の固溶範囲(単相領域)内に抑えることが望まし
い。
Embodiments of the present invention will be described. The iridium alloy target material for forming a thin film according to the first aspect of the present invention includes iridium (Ir) as a main component,
Rhodium (Rh), platinum (Pt), ruthenium (R
u), palladium (Pd), niobium (Nb), tantalum (Ta), hafnium (Hf), titanium (Ti), zirconium (Zr), yttrium (Y), lanthanum (L)
a), rhenium (Re), chromium (Cr), vanadium (V), molybdenum (Mo), tungsten (W), rhenium (Re), and osmium (Os). The present invention is established when the solid solution range of 0.1 to 50 wt% (single phase region) or the total content of these two types of second elements is suppressed within the solid solution range of 0.1 to 50 wt% (single phase region). It is important in making In particular, among various second elements, Pt, Pd, Rh, Ru, Nb, Ta,
Hf, Ti, Zr, Y, La, Re, Cr, V, Mo,
In the case of the second element composed of any one of W, Re, and Os, the addition amount of the second element is within a solid solution range of 10 wt% or less (single phase region), or the total content of several kinds of these second elements is 10 wt%.
It is desirable to keep it within the following solid solution range (single phase region).

【0011】次に、具体的な組成について幾つか挙げて
説明するならば、主成分となる純Irに対し、含有量が
10wt%以下の固溶範囲(単相領域)内で単独含有される
ように例えばNb、Hf、Y、Ta、Moの各第二元素
を所定量坪取し、アーク溶解法により溶製した。これに
よりIr−10Nb、Ir−10Hf、Ir−10Y、Ir−10Ta、Ir−10M
oこれらの二元系合金からなるイリジウム合金ターゲッ
ト材を得た。
Next, some specific compositions will be described. If the content is based on pure Ir as the main component,
A predetermined amount of each of the second elements, for example, Nb, Hf, Y, Ta, and Mo was weighed so as to be solely contained within a solid solution range (single phase region) of 10 wt% or less, and was melted by an arc melting method. Thereby, Ir-10Nb, Ir-10Hf, Ir-10Y, Ir-10Ta, Ir-10M
o An iridium alloy target material composed of these binary alloys was obtained.

【0012】次に、以上の組成内容により得られた本実
施例のイリジウム二元系合金ターゲット材を用いて薄膜
を形成、例えば容量素子の下部、上部両電極用の薄膜
(電極膜)を形成した場合の電気抵抗についての評価を
行なうために実施例1と比較例1を挙げて試験を行なっ
た。
Next, a thin film is formed by using the iridium binary alloy target material of the present embodiment obtained by the above composition, for example, a thin film (electrode film) for both the lower and upper electrodes of the capacitive element is formed. In order to evaluate the electric resistance in the case where the test was performed, a test was performed by citing Example 1 and Comparative Example 1.

【0013】実施例1 前述の組成からなるIr−10Nb、Ir−10Hf、Ir−10Y、Ir
−10Ta、Ir−10Moこれらの二元系合金からなるイリジウ
ム合金ターゲット材を用いて、例えば容量素子用の薄
膜、即ちTiからなる密着層を表面に堆積(成膜)して
なる絶縁性基板上に、下部、上部両電極用の100〜500nm
の薄膜を堆積するスパッタリングを行なことで、容量素
子用の下部、上部両電極となる薄膜(電極膜)を堆積し
た試験片を作製した。この時の成膜条件は、以下の通り
である。 a.ターゲット材のサイズ:直径50.8mm、厚さ5mm b.ターゲット材と基板までの距離:約200mm c.到達真空度:9.0×10-4−Pa以下 d.成膜時の全圧:0.1〜0.7Pa e.RF投入電圧:100〜200W
Example 1 Ir-10Nb, Ir-10Hf, Ir-10Y, Ir having the above-mentioned composition
-10Ta, Ir-10Mo Using an iridium alloy target material composed of these binary alloys, for example, a thin film for a capacitor, that is, an insulating substrate formed by depositing (depositing) an adhesion layer made of Ti on the surface. 100-500nm for both lower and upper electrodes
A test piece was prepared by depositing thin films (electrode films) to be both lower and upper electrodes for a capacitive element by performing sputtering for depositing a thin film of. The film forming conditions at this time are as follows. a. Target material size: diameter 50.8mm, thickness 5mm b. Distance between target material and substrate: about 200mm c. Ultimate vacuum: 9.0 × 10 -4 -Pa or less d. Total pressure during film formation: 0.1 to 0.7 Pa e. RF input voltage: 100-200W

【0014】比較例1 実施例1と同様にRFスパッタ装置を使用してTiから
なる密着層を堆積した絶縁性基板上にIr又はPtから
なる薄膜(電極膜)をスパッタリングにより夫々形成し
たIr又はPt試験片を夫々作製した。この時の成膜条
件は実施例1と同様である。
Comparative Example 1 In the same manner as in Example 1, an Ir or Pt thin film (electrode film) was formed by sputtering on an insulating substrate on which an adhesion layer made of Ti was deposited using an RF sputtering apparatus. Each Pt test piece was produced. The film forming conditions at this time are the same as in the first embodiment.

【0015】実施例1と比較例1で準備した容量素子用
の薄膜、即ち下部、上部両電極用の試験片を常温酸素雰
囲気中で四端針法で電極膜の電気抵抗を測定した。次
に、この試験片を高温酸素雰囲気中において400〜1000
℃にて熱処理を行ない。その熱処理を所定時間行なった
後に、同じく四端針法で電極膜の電気抵抗を測定して見
たところ、本実施例1で得られたイリジウム合金ターゲ
ット材を用いて形成したIr二元系合金からなる電極膜
を有する何れの試験片にも変化が見られなかったが、比
較例1のIr又はPaからなる電極膜を夫々有する両試
験片には酸素ガスの透過による密着層の酸化が見られ、
電極膜の接触抵抗が増大していることが分かった。
The electrical resistance of the thin film for the capacitor element prepared in Example 1 and Comparative Example 1, ie, the test pieces for both the lower and upper electrodes, was measured in a normal temperature oxygen atmosphere by a four-point needle method. Next, the test piece was placed in a high-temperature oxygen atmosphere at 400 to 1000
Heat treatment at ℃. After performing the heat treatment for a predetermined time, the electrical resistance of the electrode film was measured by the four-point needle method. The Ir binary alloy formed using the iridium alloy target material obtained in Example 1 was also measured. No change was observed in any of the test pieces having the electrode film composed of Ir, but in both test pieces having the electrode film composed of Ir or Pa in Comparative Example 1, oxidation of the adhesion layer due to permeation of oxygen gas was observed. And
It was found that the contact resistance of the electrode film was increased.

【0016】従って、本発明で得られた請求項1に係る
イリジウム合金ターゲット材によれば、前述したように
容量素子の下部、上部両電極用の薄膜を成形するために
用いた場合、容量絶縁膜の性能向上のために行なわれる
熱処理、つまり容量絶縁膜の金属酸化物強誘電体材料の
結晶方向を配向させる結晶化のための600〜800℃熱処理
時にその熱影響を受けないことから、結晶方向が配向さ
れずに結晶構造の非晶質状態が保たれる耐熱強度に優れ
た特性を有することが確認された。即ち、結晶構造が非
晶質に保たれることにより、高温酸素雰囲気における酸
素の透過、特に下部電極から絶縁性基板との間のチタン
からなる密着層への酸素の透過による該密着層の酸化を
防ぐ。それにより、密着層が酸化されることで引き起こ
す下部電極の接触抵抗の増大を防いで、容量素子の性能
低下を防ぐことができる薄膜形成用イリジウム合金ター
ゲット材となる。
Therefore, according to the iridium alloy target material according to the first aspect of the present invention, as described above, when used for forming a thin film for both the lower and upper electrodes of the capacitive element, the capacitive insulating material is used. Heat treatment performed to improve the performance of the film, that is, 600-800 ° C for crystallization to orient the crystal direction of the metal oxide ferroelectric material of the capacitive insulating film It was confirmed that the composition had an excellent heat resistance property in which the direction was not oriented and the amorphous state of the crystal structure was maintained. That is, since the crystal structure is maintained in an amorphous state, permeation of oxygen in a high-temperature oxygen atmosphere, particularly oxidation of the adhesion layer due to permeation of oxygen to the adhesion layer made of titanium between the lower electrode and the insulating substrate is performed. prevent. Thus, an increase in the contact resistance of the lower electrode caused by oxidation of the adhesion layer can be prevented, and the iridium alloy target material for forming a thin film can prevent performance degradation of the capacitor.

【0017】又、本発明で得られた請求項1に係るイリ
ジウム合金ターゲット材は、酸化に対する安定皮膜が表
面に生成されることから、容量素子の製造時において下
部、上部両電極に金属酸化物強誘電体材料との反応を防
止する耐酸化性を有することが確認された。
In the iridium alloy target material according to the first aspect of the present invention, a stable film against oxidation is formed on the surface. It has been confirmed that it has oxidation resistance for preventing a reaction with a ferroelectric material.

【0018】次に、請求項2に係る本発明の薄膜形成用
イリジウム合金ターゲット材について説明する。斯かる
薄膜形成用イリジウム合金ターゲット材は、主成分とな
る純Irに、第二元素としてRhを0.1〜30wt%の固溶
範囲(単相領域)内で含有し、更に第三元素として、P
t、Ru、Pd、Nb、Ta、Hf、Ti、Zr、Y、
La、Re、Cr、V、Mo、W、Re、Osこれらい
ずれか一種を0.1〜20wt%の固溶範囲(単相領域)で含
有し、この第二元素と前記第三元素との含有総量を0.2
〜50wt%の固溶範囲(単相領域)内に抑えることが本発
明を成立させる上で重要である。
Next, the iridium alloy target material for forming a thin film according to the second aspect of the present invention will be described. Such an iridium alloy target material for forming a thin film contains Rh as a second element in a solid solution range of 0.1 to 30 wt% (single phase region) in pure Ir as a main component, and further contains P as a third element.
t, Ru, Pd, Nb, Ta, Hf, Ti, Zr, Y,
La, Re, Cr, V, Mo, W, Re, Os Any one of these is contained in a solid solution range (single phase region) of 0.1 to 20 wt%, and the total content of the second element and the third element 0.2
It is important to suppress the solid solution within a solid solution range (single phase region) of 〜50 wt% for realizing the present invention.

【0019】次に、具体的な組成について幾つか挙げて
説明するならば、主成分となる純Irに、第二元素とし
て15wt%のRhを、第三元素として15wt%のPaを含有
し、この両元素の含有総量がIrに対し30wt%の固溶範
囲になるように坪取したIr−15Rh−15Pt、又、第二元素
として2wt%のRhを、第三元素として3wt%のRuを含
有し、この両元素の含有総量がIrに対し5wt%の固溶
範囲になるように坪取したIr−2Rh−3Ru、又、第二元
素として2wt%のRhを、第三元素として3wt%のReを
含有し、この両元素の含有総量がIrに対し5wt%の固
溶範囲になるように坪取したIr−2Rh−3Reこれらの三
元系合金からなるイリジウム合金ターゲット材を得た。
又、主成分となる純Irに、第二元素として10wt%のR
hを、第三元素として1wt%のMoを含有し、この両元
素の含有総量がIrに対し11wt%の固溶範囲になるよう
に坪取したIr−10Rh−1Mo、又、第二元素として2wt%
のRhを、第三元素として3wt%のVを含有し、この両
元素の含有総量がIrに対し5wt%の固溶範囲になるよ
うに坪取したIr−2Rh−3Vこれらの三元系合金からな
るイリジウム合金ターゲット材を得た。
Next, to explain some specific compositions, pure Ir as a main component contains 15 wt% of Rh as a second element and 15 wt% of Pa as a third element, Ir-15Rh-15Pt weighed so that the total content of these two elements is in a solid solution range of 30 wt% with respect to Ir, 2 wt% Rh as the second element, and 3 wt% Ru as the third element. Ir-2Rh-3Ru, which was ground so that the total content of both elements was 5 wt% with respect to Ir, 2 wt% Rh as the second element, and 3 wt% as the third element And an Ir-2Rh-3Re iridium alloy target material composed of these ternary alloys containing Re, and having a total solution content of both elements of 5 wt% with respect to Ir.
In addition, 10wt% of R as a second element is added to pure Ir as a main component.
h is Ir-10Rh-1Mo which contains 1 wt% of Mo as a third element and whose total content of these two elements is in a solid solution range of 11 wt% with respect to Ir. 2wt%
And Rh-2Rh-3V containing 3 wt% of V as a third element and having a solid solution range of 5 wt% with respect to Ir. An iridium alloy target material was obtained.

【0020】次に、以上の組成内容により得られた本実
施例のイリジウム二元系合金ターゲット材を用いて薄膜
を形成、例えば前述したように容量素子の下部、上部両
電極用の薄膜(電極膜)を形成した場合の電気抵抗につ
いての評価を行なうために実施例2を挙げて試験を行な
った。
Next, a thin film is formed by using the iridium binary alloy target material of the present embodiment obtained by the above composition contents, for example, as described above, a thin film (electrode) for both the lower and upper electrodes of the capacitive element. In order to evaluate the electric resistance when the film was formed, a test was performed by citing Example 2.

【0021】実施例2 前述の組成からなるIr−15Rh−15Pt、Ir−2Rh−3Ru、
Ir−2Rh−3Re、Ir−10Rh−1Mo、Ir−2Rh−3Vこれ
らの三元系合金からなるイリジウム合金ターゲット材を
用いて、例えば前述と同じく容量素子用の薄膜、即ちT
iからなる密着層を表面に堆積(成膜)してなる絶縁性
基板上に、下部、上部両電極用の100〜500nmの薄膜を堆
積するスパッタリングを行なことで、容量素子の下部、
上部両電極用の薄膜(電極膜)を堆積した試験片を作製
した。この時の成膜条件は、以下の通りである。 a.ターゲット材のサイズ:直径50.8mm、厚さ5mm b.ターゲット材と基板までの距離:約200mm c.到達真空度:9.0×10-4−Pa以下 d.成膜時の全圧:0.1〜0.7Pa e.RF投入電圧:100〜200W
Example 2 Ir-15Rh-15Pt, Ir-2Rh-3Ru,
Ir-2Rh-3Re, Ir-10Rh-1Mo, Ir-2Rh-3V Using an iridium alloy target material composed of these ternary alloys, for example, a thin film for a capacitive element,
By performing sputtering to deposit a thin film of 100 to 500 nm for both lower and upper electrodes on an insulating substrate formed by depositing (depositing) an adhesion layer made of i on the surface,
A test piece on which thin films (electrode films) for both upper electrodes were deposited was prepared. The film forming conditions at this time are as follows. a. Target material size: diameter 50.8mm, thickness 5mm b. Distance between target material and substrate: about 200mm c. Ultimate vacuum: 9.0 × 10 -4 -Pa or less d. Total pressure during film formation: 0.1 to 0.7 Pa e. RF input voltage: 100-200W

【0022】実施例2と前述の比較例1で準備した容量
素子用の薄膜、即ち下部、上部両電極用の試験片を常温
酸素雰囲気中で四端針法で電極膜の電気抵抗を測定し
た。次に、この試験片を高温酸素雰囲気中において400
〜1000℃にて熱処理を行ない。この熱処理を所定時間行
なった後に、同じく四端針法で電極膜の電気抵抗を測定
して見たところ、本実施例2で得られたイリジウム合金
ターゲット材を用いて形成したIr合金電極膜を有する
何れの試験片にも変化が見られなかったが、比較例1の
Ir又はPaからなる電極膜を夫々有する両試験片には
酸素ガスの透過による密着層の酸化が見られ、電極膜の
接触抵抗が増大していることが分かった。
The electrical resistance of the thin film for the capacitor prepared in Example 2 and Comparative Example 1 above, ie, the test pieces for both the lower and upper electrodes, was measured by a four-point needle method in an oxygen atmosphere at room temperature. . Next, the test piece was placed in a high-temperature oxygen atmosphere for 400 hours.
Heat treatment at ~ 1000 ° C. After performing this heat treatment for a predetermined time, the electric resistance of the electrode film was measured by the four-point needle method, and the Ir alloy electrode film formed using the iridium alloy target material obtained in Example 2 was obtained. No change was observed in any of the test pieces having the electrode film. However, both test pieces each having an electrode film made of Ir or Pa of Comparative Example 1 showed oxidation of the adhesion layer due to permeation of oxygen gas, and the It was found that the contact resistance increased.

【0023】従って、本発明で得られた請求項2に係る
イリジウム合金ターゲット材によれば、前述したように
容量素子の下部、上部両電極用の薄膜を成形するために
用いた場合、その製造時に容量絶縁膜の性能向上のため
に行なわれる熱処理、つまり容量絶縁膜の金属酸化物強
誘電体材料の結晶化のために600〜800℃での熱処理時に
その影響を受けないことから、結晶方向が配向されずに
非晶質状態が保たれる耐熱強度に優れた特性を有するこ
とが確認された。即ち、結晶構造が非晶質に保たれるこ
とにより、高温酸素雰囲気における酸素の透過、特に下
部電極から絶縁性基板との間のチタンからなる密着層へ
の酸素の透過による該密着層の酸化を防ぐ。それによ
り、密着層が酸化されることで引き起こす下部電極の接
触抵抗の増大を防いで、容量素子の性能低下を防ぐこと
ができる薄膜を形成等に用いるイリジウム合金ターゲッ
ト材となる。
Therefore, according to the iridium alloy target material according to claim 2 obtained by the present invention, when it is used for forming a thin film for both the lower electrode and the upper electrode of the capacitive element as described above, it is manufactured. Sometimes the heat treatment is performed to improve the performance of the capacitor insulating film, that is, the heat treatment at 600 to 800 ° C. for crystallization of the metal oxide ferroelectric material of the capacitor insulating film is not affected by the heat treatment. It was confirmed that the compound had excellent heat resistance strength in which the amorphous state was maintained without being oriented. That is, since the crystal structure is maintained in an amorphous state, permeation of oxygen in a high-temperature oxygen atmosphere, particularly oxidation of the adhesion layer due to permeation of oxygen to the adhesion layer made of titanium between the lower electrode and the insulating substrate is performed. prevent. Thus, an iridium alloy target material used for forming a thin film capable of preventing an increase in contact resistance of the lower electrode caused by oxidization of the adhesion layer and preventing a decrease in performance of the capacitive element can be obtained.

【0024】又、本発明で得られた請求項2に係るイリ
ジウム合金ターゲット材は、酸化に対する安定皮膜が表
面に生成されることから、容量素子の製造過程において
下部、上部両電極に金属酸化物強誘電体材料との反応を
防止する耐酸化性を有することが確認された。
In the iridium alloy target material according to the second aspect of the present invention, since a stable film against oxidation is formed on the surface, the metal oxide is formed on both the lower and upper electrodes during the manufacturing process of the capacitive element. It has been confirmed that it has oxidation resistance for preventing a reaction with a ferroelectric material.

【0025】[0025]

【発明の効果】本発明の薄膜形成用イリジウム合金ター
ゲット材は叙上の如く構成してなることから下記の作用
効果を奏する。本発明のイリジウム合金ターゲット材を
用いて、例えば半導体集積回路装置に内蔵される高誘電
率を有する誘電体又は強誘電体を容量絶縁膜とする容量
素子の該容量絶縁膜の下面と上面に夫々形成される下
部、上部両電極用の薄膜を形成することにより、容量素
子の製造時に容量絶縁膜の性能向上のために行なわれる
熱処理、つまり容量絶縁膜の金属酸化物強誘電体材料の
結晶化のための600〜800℃での熱処理時にその影響を受
けないことから、結晶方向が配向されずに結晶構造の非
晶質状態が保たれる耐熱強度に優れた特性の下部電極と
上部電極を有する容量素子を製造することができる。即
ち、下部、上部両電極用の薄膜の結晶構造が非晶質に保
たれることにより、高温酸素雰囲気における酸素の透
過、特に下部電極から絶縁性基板との間のチタンからな
る密着層への酸素の透過による該密着層の酸化を防ぐ。
従って、密着層が酸化されることにより発生する下部電
極の接触抵抗の増大を防いで、容量素子の性能低下を防
ぐことができる薄膜の形成等に用いるイリジウム合金タ
ーゲット材を提供することができる。
The iridium alloy target material for forming a thin film according to the present invention has the following functions and effects because it is constituted as described above. By using the iridium alloy target material of the present invention, for example, on the lower surface and the upper surface of the capacitive insulating film of a capacitive element having a dielectric or a ferroelectric having a high dielectric constant built in a semiconductor integrated circuit device and having a capacitive insulating film, respectively. By forming the thin films for both the lower and upper electrodes to be formed, heat treatment is performed to improve the performance of the capacitive insulating film during the production of the capacitive element, that is, crystallization of the metal oxide ferroelectric material of the capacitive insulating film The lower electrode and the upper electrode have excellent heat-resistant properties, so that the crystal orientation is not affected and the amorphous state of the crystal structure is maintained without being affected by the heat treatment at 600 to 800 ° C. Can be manufactured. That is, since the crystal structure of the thin film for both the lower and upper electrodes is kept amorphous, oxygen permeation in a high-temperature oxygen atmosphere, particularly to the adhesion layer made of titanium between the lower electrode and the insulating substrate, is performed. Oxidation of the adhesion layer due to permeation of oxygen is prevented.
Accordingly, it is possible to provide an iridium alloy target material used for forming a thin film or the like that can prevent an increase in the contact resistance of the lower electrode caused by oxidization of the adhesion layer and can prevent deterioration in performance of the capacitor.

【0026】又、本発明で得られたイリジウム合金ター
ゲット材は、酸化に対する安定皮膜が表面に生成される
ことから、例えば容量素子の製造時において下部、上部
両電極に金属酸化物強誘電体材料との反応を防止する耐
酸化性に優れた特性を有する下部、上部両電極用の薄膜
を形成することができる。従って、高性能で品質の安定
性が図られ、しかも長期に亘り性能維持を期待し得る信
頼性の高い容量素子の製造が可能となる。
In the iridium alloy target material obtained by the present invention, since a stable film against oxidation is formed on the surface, for example, during the production of a capacitive element, the metal oxide ferroelectric material is applied to both the lower and upper electrodes. And a thin film for both the lower and upper electrodes having excellent oxidation resistance to prevent the reaction with the electrode. Therefore, it is possible to manufacture a high-reliability capacitive element which has high performance and quality stability and is expected to maintain performance for a long period of time.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主成分となるイリジウムに、ロジウム、
白金、ルテニウム、パラジウム、ニオブ、タンタル、ハ
フニウム、チタン、ジルコニウム、イットリウム、ラン
タン、レニウム、クロム、バナジウム、モリブデン、タ
ングステン、レニウム、オスミウムこれらいずれか一種
以上を固溶範囲内で含有させてなる薄膜形成用イリジウ
ム合金ターゲット材。
1. An iridium serving as a main component, wherein rhodium,
Thin film formation containing at least one of platinum, ruthenium, palladium, niobium, tantalum, hafnium, titanium, zirconium, yttrium, lanthanum, rhenium, chromium, vanadium, molybdenum, tungsten, rhenium, and osmium in a solid solution range Iridium alloy target material.
【請求項2】 主成分となるイリジウムに、第二元素と
してロジウムを含有し、更に第三元素として白金、ルテ
ニウム、パラジウム、ニオブ、タンタル、ハフニウム、
チタン、ジルコニウム、イットリウム、ランタン、レニ
ウム、クロム、バナジウム、モリブデン、タングステ
ン、レニウム、オスミウムこれらいずれか一種を固溶範
囲内で含有し、この第三元素と前記第二元素との含有総
量が固溶範囲内であることを特徴とする薄膜形成用イリ
ジウム合金ターゲット材。
2. An iridium as a main component, which contains rhodium as a second element and further contains platinum, ruthenium, palladium, niobium, tantalum, hafnium as a third element.
Titanium, zirconium, yttrium, lanthanum, rhenium, chromium, vanadium, molybdenum, tungsten, rhenium, osmium are contained within a solid solution range within a solid solution range, and the total content of this third element and the second element is solid solution An iridium alloy target material for forming a thin film, which is within the range.
JP2001131477A 2001-04-27 2001-04-27 Iridium alloy target material for forming thin film Pending JP2002327266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001131477A JP2002327266A (en) 2001-04-27 2001-04-27 Iridium alloy target material for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001131477A JP2002327266A (en) 2001-04-27 2001-04-27 Iridium alloy target material for forming thin film

Publications (1)

Publication Number Publication Date
JP2002327266A true JP2002327266A (en) 2002-11-15

Family

ID=18979662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001131477A Pending JP2002327266A (en) 2001-04-27 2001-04-27 Iridium alloy target material for forming thin film

Country Status (1)

Country Link
JP (1) JP2002327266A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294286C (en) * 2005-04-20 2007-01-10 北京航空航天大学 Iridium hafnium niobium high temperature alloy materials and method for preparing same
JP2008120639A (en) * 2006-11-14 2008-05-29 Sumita Optical Glass Inc Optical glass element shaping mold
US7481971B2 (en) * 2002-07-13 2009-01-27 Johnson Matthey Public Limited Company Iridium alloy
CN110139939A (en) * 2016-12-22 2019-08-16 石福金属兴业株式会社 Heat resistance iridium alloy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793969A (en) * 1993-09-22 1995-04-07 Olympus Optical Co Ltd Ferroelectric capacitance element
JPH07267731A (en) * 1994-03-23 1995-10-17 Sharp Corp Production of ferroelectric film
JPH10259435A (en) * 1996-05-10 1998-09-29 Furuya Kinzoku:Kk Iridium base alloy
JPH10303397A (en) * 1997-04-17 1998-11-13 Samsung Electron Co Ltd Method for forming platinum metal layer and capacitor manufacturing method using the same
JPH11288513A (en) * 1998-03-31 1999-10-19 Sony Corp Disk substrate molding stamper and its manufacture
JPH11302837A (en) * 1998-04-23 1999-11-02 Japan Energy Corp High purity iridium material for thin film formation, and its manufacture
JP2000307071A (en) * 1999-04-23 2000-11-02 Sony Corp Semiconductor memory device and its manufacture
JP2000306863A (en) * 1991-01-25 2000-11-02 Toshiba Corp Sputtering target

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306863A (en) * 1991-01-25 2000-11-02 Toshiba Corp Sputtering target
JPH0793969A (en) * 1993-09-22 1995-04-07 Olympus Optical Co Ltd Ferroelectric capacitance element
JPH07267731A (en) * 1994-03-23 1995-10-17 Sharp Corp Production of ferroelectric film
JPH10259435A (en) * 1996-05-10 1998-09-29 Furuya Kinzoku:Kk Iridium base alloy
JPH10303397A (en) * 1997-04-17 1998-11-13 Samsung Electron Co Ltd Method for forming platinum metal layer and capacitor manufacturing method using the same
JPH11288513A (en) * 1998-03-31 1999-10-19 Sony Corp Disk substrate molding stamper and its manufacture
JPH11302837A (en) * 1998-04-23 1999-11-02 Japan Energy Corp High purity iridium material for thin film formation, and its manufacture
JP2000307071A (en) * 1999-04-23 2000-11-02 Sony Corp Semiconductor memory device and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481971B2 (en) * 2002-07-13 2009-01-27 Johnson Matthey Public Limited Company Iridium alloy
CN1294286C (en) * 2005-04-20 2007-01-10 北京航空航天大学 Iridium hafnium niobium high temperature alloy materials and method for preparing same
JP2008120639A (en) * 2006-11-14 2008-05-29 Sumita Optical Glass Inc Optical glass element shaping mold
CN110139939A (en) * 2016-12-22 2019-08-16 石福金属兴业株式会社 Heat resistance iridium alloy

Similar Documents

Publication Publication Date Title
US5053917A (en) Thin film capacitor and manufacturing method thereof
KR100386539B1 (en) Composite iridium barrier structure with oxidized refractory metal companion barrier and method for same
JPH0621391A (en) Ferroelectric capacitor and its formation method
US7581311B2 (en) Method for manufacturing a dielectric element
JPH11220095A (en) Manufacture of dielectric capacitor
US7382013B2 (en) Dielectric thin film, dielectric thin film device, and method of production thereof
US7545625B2 (en) Electrode for thin film capacitor devices
JPH09260603A (en) Thin film capacitor and semiconductor memory
JP2002327266A (en) Iridium alloy target material for forming thin film
JPH0687491B2 (en) Thin film capacitors
JP4604939B2 (en) Dielectric thin film, thin film dielectric element and manufacturing method thereof
JPH0712074B2 (en) Thin film capacitor and manufacturing method thereof
JPH10214947A (en) Thin film dielectric element
US6927166B2 (en) Method for manufacturing semiconductor devices and integrated circuit capacitors whereby degradation of surface morphology of a metal layer from thermal oxidation is suppressed
JPH0687492B2 (en) Thin film capacitor and manufacturing method thereof
JP2002329786A (en) Capacitive element and its manufacturing method
JP2000355760A (en) Sputtering target, barrier film and electronic parts
JPH0587164B2 (en)
JPH05326314A (en) Thin film capacitor
JP2001189422A (en) Method of manufacturing thin-film capacitor
JPH0624222B2 (en) Method of manufacturing thin film capacitor
US6723436B1 (en) Electrically conducting ternary amorphous fully oxidized materials and their application
JP2003318369A (en) Semiconductor device and method of manufacturing the same
JPH08288239A (en) Oxygen-diffusion barrier type electrode and manufacture thereof
JPH0652775B2 (en) Thin film capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108