JP2002324583A - Flat nonaqueous electrolyte secondary battery - Google Patents

Flat nonaqueous electrolyte secondary battery

Info

Publication number
JP2002324583A
JP2002324583A JP2001125779A JP2001125779A JP2002324583A JP 2002324583 A JP2002324583 A JP 2002324583A JP 2001125779 A JP2001125779 A JP 2001125779A JP 2001125779 A JP2001125779 A JP 2001125779A JP 2002324583 A JP2002324583 A JP 2002324583A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
secondary battery
electrolyte secondary
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001125779A
Other languages
Japanese (ja)
Other versions
JP4694030B2 (en
Inventor
Kazuo Udagawa
和男 宇田川
Masami Suzuki
正美 鈴木
Michiko Ono
路子 小野
Yuichi Kikuma
祐一 菊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2001125779A priority Critical patent/JP4694030B2/en
Publication of JP2002324583A publication Critical patent/JP2002324583A/en
Application granted granted Critical
Publication of JP4694030B2 publication Critical patent/JP4694030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery of high reliability whose internal resistance is reduced while the capacity is suppressed from degrading after high-temperature storage. SOLUTION: A flat nonaqueous electrolyte secondary battery comprises a negative electrode in which a negative electrode active material is a carbon material occluding/releasing lithium or oxide, a positive electrode, and a power- generating element comprising a separator. With a nonaqueous electrolyte contained, the negative electrode case and the positive electrode case are engaged together through an insulating gasket, with an opening-sealed structure which is caulked in a caulking process provided. An electric potential of the negative electrode in charged state is 0-1.0 V, with a standard single pole electric potential of lithium as reference. A carbonaceous conductive adhesive in which a median size is 12-30 μm and a graphite structure is internally developed whose surface interval of d002 surface is 0.342 nm or less is used to bond the negative electrode to the negative electrode case. Thus the internal resistance of the battery is reduced while capacity degradation after high-temperature storage is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は長期貯蔵時の電池内
部抵抗の上昇を防止する扁平形非水電解質二次電池に係
わり、特に、正極と、リチウムがドープされた炭素材も
しくは酸化物を含む負極を備えた扁平形非水電解質二次
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat non-aqueous electrolyte secondary battery for preventing an increase in battery internal resistance during long-term storage, and more particularly to a flat non-aqueous electrolyte secondary battery including a positive electrode and a lithium-doped carbon material or oxide. The present invention relates to a flat nonaqueous electrolyte secondary battery provided with a negative electrode.

【0002】[0002]

【従来の技術】近年、メモリーバックアップ電圧の低下
や充電式腕時計の出現などにより、作動電圧が約1.5
Vのコイン形の扁平形非水電解質二次電池が要望されて
おり、これを満たす電池として特開2000−2144
5号公報には、一般式Li4/3Ti15/34で表わせられ
るチタン酸リチウムを正極作用物質に用い、負極作用物
質にリチウムを含有した炭素質材料を用いた非水電解質
二次電池が開示されている。
2. Description of the Related Art In recent years, the operating voltage has been reduced to about 1.5 due to a drop in memory backup voltage and the appearance of rechargeable wristwatches.
There is a demand for a coin-shaped flat non-aqueous electrolyte secondary battery of V. A battery satisfying this is disclosed in JP-A-2000-2144.
No. 5 discloses a non-aqueous electrolyte secondary battery using lithium titanate represented by the general formula Li 4/3 Ti 15/3 O 4 as a positive electrode active material and a lithium-containing carbonaceous material as a negative electrode active material. A battery is disclosed.

【0003】このような非水電解質二次電池は、使用機
器の制約から小型化を図る必要があり、そのためには電
極面積を小さくする必要がある。しかし、電極面積の小
さな電池は内部抵抗が大きく、重負荷特性が低下すると
いう欠点がある。したがって、これらの電池の内部抵抗
を低減することは非常に重要な課題である。
[0003] Such a non-aqueous electrolyte secondary battery needs to be reduced in size due to restrictions on equipment used, and for that purpose, it is necessary to reduce the electrode area. However, a battery having a small electrode area has a disadvantage that the internal resistance is large and the heavy load characteristics are reduced. Therefore, reducing the internal resistance of these batteries is a very important issue.

【0004】この課題を解決する手段として、例えば特
開平3−101068号公報に記載されている如く金属
ケースと電極との集電に1μm以下に粉砕したコロイダ
ルグラファイトを主成分とする導電性ペーストを用いて
接着する方法を挙げることができる。この方法は、湿式
コンデンサに対してなされたものであるが、上記の二次
電池に適用することにより、正極電極と正極ケース及び
負極電極と負極ケースとの間の接触抵抗を低減できるも
のと推察される。
As means for solving this problem, for example, as described in JP-A-3-101068, a conductive paste mainly composed of colloidal graphite pulverized to 1 μm or less is used for current collection between a metal case and an electrode. Bonding method. Although this method was applied to a wet capacitor, it is presumed that the contact resistance between the positive electrode and the positive electrode case and between the negative electrode and the negative electrode case can be reduced by applying the above method to the secondary battery. Is done.

【0005】しかしながら、充電時の負極電位がリチウ
ムを基準とした標準単極電位において、0〜1.0Vの
間にある非水電解質二次電池に上記方法を適用する場
合、電極ケースと電極との接触抵抗の低減を図ることは
可能であるが、導電性接着剤の主成分にメジアン径の小
さい炭素質が存在することにより電解液の分解反応が促
進され、電池を高温に貯蔵した時に容量劣化を招くとい
う問題が発生した。
However, when the above method is applied to a non-aqueous electrolyte secondary battery in which the negative electrode potential at the time of charging is between 0 and 1.0 V at a standard monopolar potential based on lithium, the electrode case and the electrode Although it is possible to reduce the contact resistance of the conductive adhesive, the presence of carbonaceous material with a small median diameter as the main component of the conductive adhesive promotes the decomposition reaction of the electrolyte, and the capacity of the battery when stored at high temperatures A problem of causing deterioration has occurred.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは上記状況
に鑑みてなされたもので、その課題は炭素質を主成分と
する導電性接着剤を用いて、負極ケースと負極とを固着
した非水電解質二次電池において、電池内部抵抗を低減
し、かつ高温貯蔵後の容量劣化を抑制し、信頼性の高い
非水電解質二次電池を提供することにある。
DISCLOSURE OF THE INVENTION The present inventors have made in view of the above-mentioned circumstances, and an object thereof is to fix a negative electrode case and a negative electrode using a conductive adhesive mainly containing carbonaceous material. It is an object of the present invention to provide a highly reliable non-aqueous electrolyte secondary battery in which the internal resistance of the battery is reduced and the capacity deterioration after high-temperature storage is suppressed.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決するため鋭意研究を重ねた結果、d002面の面間
隔が0.342nm以下の黒鉛構造が発達したメジアン
径が12μm以上30μm以下である炭素質を主成分と
する導電性接着剤により負極を負極ケースに固着して電
解液の分解反応を抑制し、高温貯蔵を実施しても放電容
量を減少させることなく、負極と負極ケースとの接触抵
抗を低減し得ることを見出して本発明を完成するに至っ
た。
Means for Solving the Problems The present inventors, as a result of intensive studies for solving the above problems, a median diameter of more than 12μm to spacing of d 002 plane was developed following graphite structure 0.342nm The negative electrode is fixed to the negative electrode case by a conductive adhesive mainly containing carbonaceous material of 30 μm or less to suppress the decomposition reaction of the electrolytic solution, and the discharge capacity is not reduced even when high-temperature storage is performed. The inventors have found that the contact resistance with the negative electrode case can be reduced, and have completed the present invention.

【0008】一般的に、電池内部抵抗を低減させるには
電池ケースと電極間の接触抵抗の低減を図ることが有効
である。このためには電池ケースと電極との間に、金属
ネットやカーボンブラック等の導電性を有する材料を介
在させる手法が採られている。本発明者等が検討を重ね
た結果、特に導電性接着剤を用い、電池ケースと電極を
接着することが好ましいことが分かった。
Generally, in order to reduce the internal resistance of a battery, it is effective to reduce the contact resistance between the battery case and the electrode. For this purpose, a technique of interposing a conductive material such as a metal net or carbon black between the battery case and the electrode has been adopted. As a result of repeated studies by the present inventors, it has been found that it is particularly preferable to bond the battery case and the electrode using a conductive adhesive.

【0009】その理由は、電池ケースと電極が常に密着
した状態に保たれるため、電池ケースと電極を押さえ付
ける圧力の変動による影響を受けることがなく、導電性
塗料を電池ケースに塗布しただけの場合や、導電性を有
する金属ネットを電池ケースに溶接して用いた場合に比
べ、電池内部抵抗のばらつきが減少することが分かっ
た。また、電極を電池ケース中央に固定し、かつその後
電池ケースと電極がずれるのを防止できるため、正負極
の対向面積の減少を招くことなく、電池内部抵抗をさら
に低く抑えることが可能であることに加えて、金属ネッ
トを介して電池ケースと電極の集電をとる場合に比べる
と、電池内の容積ロスによる放電容量の減少を防ぐこと
も可能となることが分かった。
The reason is that since the battery case and the electrode are always kept in close contact with each other, the battery case and the electrode are not affected by fluctuations in pressure, and only the conductive paint is applied to the battery case. It was found that the variation in the battery internal resistance was reduced as compared with the case of (1) or when a conductive metal net was welded to the battery case. In addition, since the electrode is fixed to the center of the battery case, and thereafter the electrode is prevented from being displaced from the battery case, the internal resistance of the battery can be further reduced without reducing the facing area of the positive and negative electrodes. In addition, it has been found that it is possible to prevent a decrease in the discharge capacity due to a volume loss in the battery as compared with the case where the battery case and the electrodes are collected through a metal net.

【0010】ここで、導電性接着剤とは、分散媒に有機
物あるいは無機物であるバインダー成分と、導電性を有
する金属粉末、あるいは炭素粉末、カーボンブラック等
を混合して用いるものであり、一部はコンデンサの電極
固定用やリチウム一次電池の正極固定用の接着剤として
市販されている。
Here, the conductive adhesive is used by mixing an organic or inorganic binder component and a conductive metal powder, carbon powder, carbon black or the like in a dispersion medium. Is commercially available as an adhesive for fixing electrodes of capacitors and a positive electrode of lithium primary batteries.

【0011】また、扁平形非水電解質二次電池の負極作
用物質には、リチウムを吸蔵・放出可能な炭素質材料
や、リチウム含有珪素酸化物、リチウム含有錫酸化物等
が、サイクル特性に優れ、作動電圧が低く、高容量であ
るという点で好ましく、一般に用いられている。特に、
放電末期においても電池作動電圧の低下が少ないという
点で、天然黒鉛、人造黒鉛、膨脹黒鉛、メソフェーズピ
ッチ焼成体、メソフェーズピッチ繊維焼成体等のd002
面の面間隔が0.338nm以下の黒鉛構造が発達した
炭素質材料が好んで用いられる。
As the negative electrode active material of the flat non-aqueous electrolyte secondary battery, a carbonaceous material capable of occluding and releasing lithium, a lithium-containing silicon oxide, a lithium-containing tin oxide and the like have excellent cycle characteristics. It is preferable in terms of low operating voltage and high capacity, and is generally used. In particular,
In the point that the operating voltage of the battery is small even at the end of discharge, d 002 of natural graphite, artificial graphite, expanded graphite, mesophase pitch fired body, mesophase pitch fiber fired body, etc.
A carbonaceous material having a developed graphite structure with a plane spacing of 0.338 nm or less is preferably used.

【0012】さらに、電解液には、プロピレンカーボネ
ート、エチレンカーボネート、ブチレンカーボネート、
ジエチルカーボネート、ジメチルカーボネート、メチル
エチルカーボネート、ジメトキシエタン、γ−ブチルラ
クトンなどの非水溶媒に、過塩素酸リチウム(LiCl
4)、六フッ化リン酸リチウム(LiPF6 、LiB
4 、トリフルオロメタンスルホン酸リチウム(LiC
3SO3)、LiN(CF3SO22、LiN(C25
SO22などの支持塩を溶解した非水電解質が用いられ
る。
Further, the electrolyte includes propylene carbonate, ethylene carbonate, butylene carbonate,
In a non-aqueous solvent such as diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, and γ-butyl lactone, lithium perchlorate (LiCl
O 4 ), lithium hexafluorophosphate (LiPF 6 , LiB
F 4 , lithium trifluoromethanesulfonate (LiC
F 3 SO 3), LiN ( CF 3 SO 2) 2, LiN (C 2 F 5
A non-aqueous electrolyte in which a supporting salt such as SO 2 ) 2 is dissolved is used.

【0013】しかしながら、リチウムを含有させた天然
黒鉛、人造黒鉛、膨脹黒鉛、メソフェーズピッチ焼成
体、メソフェーズピッチ繊維焼成体、リチウム含有珪素
酸化物、リチウム含有錫酸化物等の負極を用いた電池に
おいては、通常の充電完了状態において、負極電位がリ
チウムを基準とした標準単極電位の0〜1.0Vの間に
保たれているので、上述のような従来のリチウム一次電
池正極固定用の導電性接着剤を用いた集電方法を、負極
ケースと負極の集電に適用した場合、導電性接着剤に含
まれる炭素質にもリチウムが挿入され、0〜1.0Vの
電位となる。これにより、導電性接着剤に含まれる炭素
質表面でリチウムが電解液と反応し、絶縁性皮膜を形成
することにより、保存後に電池内部抵抗の増加が起こ
り、さらにリチウムが消費されるため放電容量の低下を
招くという欠点がある。
However, in a battery using a negative electrode such as lithium-containing natural graphite, artificial graphite, expanded graphite, mesophase pitch fired body, mesophase pitch fiber fired body, lithium-containing silicon oxide, and lithium-containing tin oxide. Since the negative electrode potential is maintained at a standard monopolar potential of 0 to 1.0 V based on lithium in a normal charging completed state, the above-described conductivity for fixing the positive electrode of the conventional lithium primary battery as described above is used. When the current collection method using an adhesive is applied to the current collection of the negative electrode case and the negative electrode, lithium is also inserted into the carbonaceous material contained in the conductive adhesive, and the potential becomes 0 to 1.0 V. As a result, lithium reacts with the electrolytic solution on the carbonaceous surface contained in the conductive adhesive to form an insulating film, thereby increasing the internal resistance of the battery after storage and further consuming lithium, resulting in a discharge capacity. Has the drawback of causing a decrease in

【0014】その改善策として、d002面の面間隔が
0.342nm以下であり、メジアン径が12μm以上
30μm以下の炭素質を用いた導電性接着剤を用いるの
が良い。
[0014] As a remedy, spacing of d 002 plane is less 0.342Nm, median diameter is preferably used a conductive adhesive using the carbonaceous 12μm or 30μm or less.

【0015】d002面の面間隔が0.342nm以下で
ある理由は、炭素質の結晶化度が高く、炭素質表面の活
性を低く抑えることができるため、電解液の分解反応に
よるリチウムの消費、及び炭素質表面の皮膜による電池
内部抵抗の増加を抑えることができるからである。
The reason spacing of d 002 plane is less than 0.342nm, the high crystallinity of the carbonaceous, since it is possible to suppress the activity of the carbonaceous surface, consumption of lithium due to the decomposition reaction of the electrolytic solution This is because the increase in the internal resistance of the battery due to the coating on the carbonaceous surface can be suppressed.

【0016】メジアン径が12μm以上である理由は、
炭素質を主成分とする導電性接着剤により負極と負極ケ
ースの集電を行う構造とすることで、負極と負極ケース
との間の接触抵抗を低減し、電解液の分解に起因する高
温貯蔵における電池内部抵抗の増加を防止できるからで
ある。
The reason why the median diameter is 12 μm or more is as follows.
By using a conductive adhesive mainly composed of carbon to collect current between the negative electrode and the negative electrode case, the contact resistance between the negative electrode and the negative electrode case is reduced, and high-temperature storage caused by decomposition of the electrolytic solution is achieved. This is because it is possible to prevent an increase in the internal resistance of the battery.

【0017】メジアン径の上限値に関しては、導電性接
着剤中の炭素質粒径が大きくなり過ぎると、炭素質粒子
間の密着性が不十分となり、電池ケースと電極との接触
抵抗を低減することが難しく、また、接着剤の密着性が
低下し、電池ケースと電極が剥れる等の問題が起こる。
このような理由から、メジアン径が30μm以下の炭素
質を主成分とする導電性接着剤を用いることが好まし
い。
Regarding the upper limit of the median diameter, if the carbonaceous particle size in the conductive adhesive becomes too large, the adhesion between the carbonaceous particles becomes insufficient, and the contact resistance between the battery case and the electrode is reduced. And the adhesion of the adhesive is reduced, and the battery case and the electrode are separated from each other.
For this reason, it is preferable to use a conductive adhesive mainly containing carbonaceous material having a median diameter of 30 μm or less.

【0018】d002面の面間隔が0.342nm以下
で、メジアン径が12μm以上30μm以下の炭素質を
作製するには、例えば、原料となる石油ピッチ、石炭な
どを700℃〜1400℃で熱処理し、これを更に20
00℃〜3100℃の高温処理によって、結晶構造を十
分に発達させ、黒鉛化させた後、これをボールミル、遊
星ミル、石臼式粉砕機、気流粉砕機、竪型撹拌ミル、衝
撃式粉砕機などを用い粉砕処理を施し、更に、分級処理
により粒度調整を行うことで、メジアン径を上記範囲と
すれば良い。なお、上記の人造黒鉛の他に粒度調整され
た天然黒鉛やこれ以外の人造黒鉛を用いることもでき
る。次に、この黒鉛化されたメジアン径の制御された炭
素質を分散媒に分散させ、バインダーを加えて導電性接
着剤とする。分散媒としては、水もしくはアルコールが
好ましく、バインダーとしてはセルロース系樹脂もしく
はアクリル系樹脂が好ましい。
[0018] In spacing of d 002 plane is 0.342nm or less, the median diameter to produce a carbonaceous 12μm or 30μm or less, for example, petroleum pitch as a raw material, coal, and more at 700 ° C. to 1400 ° C. heat treatment And add another 20
After the crystal structure is sufficiently developed and graphitized by high-temperature treatment at 00 ° C to 3100 ° C, it is then ball milled, planetary mill, millstone mill, air stream mill, vertical stirring mill, impact mill, etc. The median diameter may be adjusted to the above range by subjecting to a pulverization process and further adjusting the particle size by a classification process. In addition to the above-described artificial graphite, natural graphite whose particle size has been adjusted and artificial graphite other than this can also be used. Next, the graphitized carbonaceous material having a controlled median diameter is dispersed in a dispersion medium, and a binder is added to obtain a conductive adhesive. As the dispersion medium, water or alcohol is preferable, and as the binder, a cellulose resin or an acrylic resin is preferable.

【0019】また、この接着剤を用いた電池を作製する
場合は、導電性接着剤の塗布厚を、20μm以上50μ
m以下に保つことが適切である。導電性接着剤の塗布厚
が薄いと電池ケースと電極間の接触抵抗を低減させる効
果が小さくなり、目的が達せられない。逆に、厚いと、
電池ケースと電極間の接触抵抗を低減させることは可能
であるが、電池内に組み込める電極活物質量が少なくな
り、電池容量の低下につながる。これらを考慮して、導
電性接着剤の塗布厚さは20μm以上50μm以下が適
切である。
When a battery using this adhesive is manufactured, the thickness of the conductive adhesive applied should be 20 μm to 50 μm.
It is appropriate to keep it below m. If the thickness of the conductive adhesive applied is small, the effect of reducing the contact resistance between the battery case and the electrode is reduced, and the object cannot be achieved. Conversely, if it is thick,
Although it is possible to reduce the contact resistance between the battery case and the electrodes, the amount of electrode active material that can be incorporated into the battery is reduced, leading to a reduction in battery capacity. In consideration of these, it is appropriate that the thickness of the conductive adhesive applied is 20 μm or more and 50 μm or less.

【0020】なお、本発明電池は電極を含めた電池の構
造に主点をおいたものであり、正極作用物質については
特に限定されるものでなく、MnO2、V25、Nb2
5、LiTi24、Li4/3Ti5/34、LiFe24
コバルト酸リチウム、ニッケル酸リチウム、マンガン酸
リチウムなどの金属酸化物、あるいはフッ化黒鉛、Fe
2などの無機化合物、あるいはポリアニリンやポリア
セン構造体などの有機化合物などあらゆる物が適用可能
である。ただし、低電圧メモリのバックアップや充電式
腕時計での使用においては、作動電位が約1.5Vであ
り、サイクル特性に優れ、長期間に亘り使用でき、高容
量で電解液や水分との反応性が低く化学的に安定である
という点でLi4/3Ti5/34がさらに好ましい。
It should be noted that the battery of the present invention mainly focuses on the structure of the battery including the electrodes, and there is no particular limitation on the positive electrode active substance. MnO 2 , V 2 O 5 , Nb 2 O
5 , LiTi 2 O 4 , Li 4/3 Ti 5/3 O 4 , LiFe 2 O 4 ,
Metal oxides such as lithium cobaltate, lithium nickelate, lithium manganate, or graphite fluoride, Fe
Any substance such as an inorganic compound such as S 2 or an organic compound such as a polyaniline or polyacene structure can be applied. However, when used in low-voltage memory backup and rechargeable wristwatches, the operating potential is about 1.5 V, which has excellent cycle characteristics, can be used for a long time, has high capacity, and has high reactivity with electrolytes and moisture. Li 4/3 Ti 5/3 O 4 is more preferable in that it is low in chemical stability.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施例及び比較例
について詳細に説明する。 (実施例1)図1は本発明の実施例1の扁平形非水電解
質二次電池の断面図である。図に示すように、本実施例
1の扁平形非水電解質二次電池の電池ケース9は、正極
側導電性接着剤層7を設けたステンレス製の正極ケース
6と、負極側導電性接着剤層8を設けた負極ケース4と
を絶縁ガスケット3を介して嵌合しており、この電池ケ
ース9内には正極板1と負極板2との間にセパレータ5
を介して形成された発電要素が収納されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention and comparative examples will be described in detail. (Embodiment 1) FIG. 1 is a sectional view of a flat nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention. As shown in the figure, the battery case 9 of the flat nonaqueous electrolyte secondary battery of Example 1 includes a stainless steel positive electrode case 6 provided with a positive electrode side conductive adhesive layer 7, and a negative electrode side conductive adhesive. A negative electrode case 4 provided with a layer 8 is fitted via an insulating gasket 3, and inside the battery case 9, a separator 5 is provided between the positive electrode plate 1 and the negative electrode plate 2.
The power generation element formed via the power supply is housed.

【0022】次に、本実施例1の扁平形非水電解質二次
電池の製造方法を説明する。
Next, a method of manufacturing the flat nonaqueous electrolyte secondary battery of the first embodiment will be described.

【0023】[負極の作製]メソフェーズピッチを原料
とするピッチ炭素繊維を細かく粉砕し、アルゴン雰囲気
下において、2800℃の温度で熱処理をすることによ
り、d002面の面間隔が0.338nmのメソフェーズ
ピッチ炭素繊維粉末を得た。このメソフェーズピッチ炭
素繊維粉末95質量部にスチレン・ブタジエンゴム(S
BR)とカルボキシメチルセルロース(CMC)をそれ
ぞれ2.5質量部加え混合し、乾燥後に所定量を厚さ
0.5mm、直径3.9mmのタブレット状に加圧成形
し、負極板2とした。次に、天然黒鉛をボールミルによ
り粉砕処理し、更に分級処理による粒度調整を行い、メ
ジアン径が12μmであり、d002面の面間隔が0.3
35nmの天然黒鉛粉末を得た。これを分散媒である水
に分散させ、バインダであるカルボキシメチルセルロー
スを加えて導電性接着剤とした。この導電性接着剤によ
りガスケット3が予め着設された負極ケース4中央部に
負極板2を接着し、その後、80℃の温度下で12時間
減圧乾燥をした。なお、負極側導電性接着剤層8の膜厚
は30μmとした。
The finely pulverized pitch carbon fibers the Preparation of Negative Electrode] mesophase pitch as a raw material, under an argon atmosphere, by heat treatment at a temperature of 2800 ° C., spacing of d 002 plane is 0.338nm mesophase A pitch carbon fiber powder was obtained. 95 parts by mass of this mesophase pitch carbon fiber powder was mixed with styrene-butadiene rubber (S
BR) and carboxymethylcellulose (CMC) were added and mixed in 2.5 parts by mass, respectively, and after drying, a predetermined amount was pressure-formed into a tablet having a thickness of 0.5 mm and a diameter of 3.9 mm to obtain a negative electrode plate 2. Next, the natural graphite was pulverized by a ball mill, and the particle size was adjusted by a classification process. The median diameter was 12 μm, and the d002 spacing was 0.3.
A 35 nm natural graphite powder was obtained. This was dispersed in water as a dispersion medium, and carboxymethyl cellulose as a binder was added to obtain a conductive adhesive. The negative electrode plate 2 was bonded to the center of the negative electrode case 4 on which the gasket 3 was previously attached with the conductive adhesive, and then dried under reduced pressure at a temperature of 80 ° C. for 12 hours. The thickness of the negative electrode-side conductive adhesive layer 8 was 30 μm.

【0024】[正極の作製]酸化チタンと水酸化リチウ
ムをモル比で5:4の割合で混合し、空気中800で1
2時間焼成することにより超格子構造を有するスピネル
型Li4/3Ti5/3 4を合成した。
[Preparation of positive electrode] Titanium oxide and lithium hydroxide
Are mixed at a molar ratio of 5: 4, and 1
Spinel with super lattice structure by firing for 2 hours
Type Li4/3Ti5/3O FourWas synthesized.

【0025】次に、このLi4/3Ti5/3494質量部
にカーボンブラックと黒鉛粉末を各3質量部、ポリテト
ラフルオロエチレンを5質量部加え、混合後、所定量を
厚さ0.5mm、直径3.9mmのタブレット状に加圧
成形し、正極板1とした。次に、天然黒鉛をボールミル
により粉砕処理し、更に分級処理による粒度調整を行
い、メジアン径が12μmである炭素質とした。これを
分散媒である水に分散させ、バインダであるカルボキシ
メチルセルロースを加えて導電性接着剤とした。この導
電性接着剤を用いて正極ケース6中央部に正極板1を接
着した。なお、正極側導電性接着剤層7の膜厚は30μ
mとした。その後、80℃の温度下で12時間減圧乾燥
をした。
Next, 3 parts by weight of carbon black and graphite powder and 5 parts by weight of polytetrafluoroethylene were added to 94 parts by weight of the Li 4/3 Ti 5/3 O 4 , and after mixing, a predetermined amount was added to a thickness. It was pressed into a tablet having a diameter of 0.5 mm and a diameter of 3.9 mm to obtain a positive electrode plate 1. Next, the natural graphite was pulverized by a ball mill, and the particle size was adjusted by a classification process to obtain carbonaceous material having a median diameter of 12 μm. This was dispersed in water as a dispersion medium, and carboxymethyl cellulose as a binder was added to obtain a conductive adhesive. The positive electrode plate 1 was bonded to the center of the positive electrode case 6 using this conductive adhesive. The thickness of the positive electrode side conductive adhesive layer 7 is 30 μm.
m. Thereafter, drying under reduced pressure was performed at a temperature of 80 ° C. for 12 hours.

【0026】さらに、負極ケース4中央部に接着された
負極板2に、電気化学的にリチウムをドープし、その上
面に、ポリプロピレン不織布からなるセパレータ5を挿
入し、このセパレータ5にエチレンカーボネートとγ−
ブチルラクトンを1:1の割合で混合した溶媒にLiB
4を1mol/lの濃度で溶解した電解液を含浸さ
せ、その後、正極板1が接着された正極ケース6を嵌合
後、正極ケース6の開口部に加締め加工を施し、直径φ
6.8mm、高さh1.4mmの実施例1の非水電解質
二次電池を製作した。
Further, lithium is electrochemically doped into the negative electrode plate 2 adhered to the center of the negative electrode case 4, and a separator 5 made of a polypropylene nonwoven fabric is inserted on the upper surface thereof. −
LiB is added to a solvent in which butyl lactone is mixed at a ratio of 1: 1.
The electrolyte solution in which F 4 is dissolved at a concentration of 1 mol / l is impregnated. Then, after fitting the positive electrode case 6 to which the positive electrode plate 1 is adhered, the opening of the positive electrode case 6 is crimped to have a diameter φ.
The non-aqueous electrolyte secondary battery of Example 1 having a height of 6.8 mm and a height h of 1.4 mm was manufactured.

【0027】(実施例2)メジアン径が20μmであ
り、d002面の面間隔が0.335nmの天然黒鉛を主
成分とする導電性接着剤により負極板2を負極ケース4
に接着した以外は、実施例1と同様に実施例2の非水電
解質二次電池を作製した。
[0027] (Example 2) and the median diameter of 20 [mu] m, the negative electrode plate 2 and the negative electrode case 4 with a conductive adhesive spacing of d 002 plane as a main component of natural graphite of 0.335nm
A non-aqueous electrolyte secondary battery of Example 2 was produced in the same manner as in Example 1, except that the battery was adhered.

【0028】(実施例3)メジアン径が30μmであ
り、d002面の面間隔が0.335nmの天然黒鉛を主
成分とする導電性接着剤により負極板2を負極ケース4
に接着し、負極側導電性接着剤層8の膜厚は40μmで
ある以外は、実施例1と同様に実施例3の非水電解質二
次電池を作製した。
[0028] (Example 3) and the median diameter of 30 [mu] m, the negative electrode plate 2 and the negative electrode case 4 with a conductive adhesive spacing of d 002 plane as a main component of natural graphite of 0.335nm
Then, a non-aqueous electrolyte secondary battery of Example 3 was produced in the same manner as in Example 1 except that the thickness of the negative electrode side conductive adhesive layer 8 was 40 μm.

【0029】(実施例4)コークスをアルゴン雰囲気下
で2800℃で熱処理し、ボールミルによる粉砕処理を
行い、更に分級処理により粒度調整を行なうことで、メ
ジアン径が20μmであり、d002面の面間隔が0.3
36nmの人造黒鉛粉末を得た。この人造黒鉛粉末を主
成分とした導電性接着剤により負極板2を負極ケース4
に接着した以外は、実施例1と同様に実施例4の非水電
解質二次電池を作製した。
Example 4 Coke was heat-treated at 2800 ° C. in an argon atmosphere, pulverized by a ball mill, and then subjected to classification to adjust the particle size, whereby the median diameter was 20 μm and the surface of d 002 surface 0.3 intervals
An artificial graphite powder of 36 nm was obtained. The negative electrode plate 2 is formed of a negative electrode case 4 using a conductive adhesive mainly composed of the artificial graphite powder.
A non-aqueous electrolyte secondary battery of Example 4 was produced in the same manner as in Example 1, except that the battery was adhered.

【0030】(実施例5)熱処理温度を2000℃と
し、d002面の面間隔が0.342nmである人造黒鉛
粉末を導電性接着剤の主成分に用いた以外は、実施例4
と同様に実施例5の非水電解質二次電池を作製した。
[0030] Except that (Example 5) The heat treatment temperature of 2000 ° C., using an artificial graphite powder spacing of d 002 plane is 0.342nm to the main component of the conductive adhesive, Example 4
In the same manner as in the above, a non-aqueous electrolyte secondary battery of Example 5 was produced.

【0031】(比較例1)メジアン径が1μmであり、
002面の面間隔が0.335nmの天然黒鉛粉末を主
成分とする導電性接着剤により負極板2を負極ケース4
に接着した以外は、実施例1と同様に比較例1の非水電
解質二次電池を作製した。
(Comparative Example 1) The median diameter was 1 μm,
d The negative electrode plate 2 is connected to the negative electrode case 4 with a conductive adhesive mainly composed of natural graphite powder having a spacing of 0.335 nm between the 002 surfaces.
A non-aqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1, except that the battery was adhered to the battery.

【0032】(比較例2)メジアン径が4μmであり、
002面の面間隔が0.335nmの天然黒鉛粉末を主
成分とする導電性接着剤により負極板2を負極ケース4
に接着した以外は、実施例1と同様に比較例2の非水電
解質二次電池を作製した。
(Comparative Example 2) The median diameter was 4 μm,
d The negative electrode plate 2 is connected to the negative electrode case 4 with a conductive adhesive mainly composed of natural graphite powder having a spacing of 0.335 nm between the 002 surfaces.
A non-aqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the battery was adhered.

【0033】(比較例3)メジアン径が7.5μmであ
り、d002面の面間隔が0.335nmの天然黒鉛粉末
を主成分とする導電性接着剤により負極板2を負極ケー
ス4に接着した以外は、実施例1と同様に比較例3の非
水電解質二次電池を作製した。
[0033] (Comparative Example 3) median diameter of 7.5 [mu] m, adhesion to the negative electrode plate 2 to the negative electrode case 4 with a conductive adhesive spacing of d 002 plane as a main component of natural graphite powder of 0.335nm A non-aqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 1 except for performing the above.

【0034】(比較例4)メジアン径が50μmであ
り、d002面の面間隔が0.335nmの天然黒鉛粉末
を主成分とする導電性接着剤により負極板2を負極ケー
ス4に接着し、負極側導電性接着剤層8の膜厚は50μ
mである以外は、実施例1と同様に比較例4の非水電解
質二次電池を作製した。
[0034] (Comparative Example 4) median diameter of 50 [mu] m, and bonding the negative electrode plate 2 to the negative electrode case 4 with a conductive adhesive spacing of d 002 plane as a main component of natural graphite powder 0.335 nm, The thickness of the negative electrode side conductive adhesive layer 8 is 50 μm.
A non-aqueous electrolyte secondary battery of Comparative Example 4 was produced in the same manner as in Example 1 except that m was m.

【0035】(比較例5)熱処理温度を1200℃であ
り、d002面の面間隔が0.347nmであるコークス
焼成体を導電性接着剤の主成分に用いた以外は、実施例
4と同様に比較例5の非水電解質二次電池を作製した。
[0035] (Comparative Example 5) and the heat treatment temperature 1200 ° C., except that spacing of d 002 plane is used for the main component of the conductive adhesive coke fired body is 0.347nm, similarly to Example 4 A non-aqueous electrolyte secondary battery of Comparative Example 5 was produced.

【0036】(比較例6)一次粒子径が0.04μmで
あり、d002面の面間隔が0.348nmのアセチレン
ブラックを主成分とする導電性接着剤により負極板2を
負極ケース4に接着した以外は、実施例1と同様に比較
例6の非水電解質二次電池を作製した。
[0036] (Comparative Example 6) a primary particle size of 0.04 .mu.m, bonding the negative electrode plate 2 to the negative electrode case 4 with a conductive adhesive spacing of d 002 plane is a main component of acetylene black 0.348nm A non-aqueous electrolyte secondary battery of Comparative Example 6 was produced in the same manner as in Example 1 except for performing the above.

【0037】(比較例7)一次粒子径が0.04μmで
あり、d002面の面間隔が0.360nmのケッチェン
ブラックを主成分とする導電性接着剤により負極板2を
負極ケース4に接着した以外は、実施例1と同様に比較
例7の非水電解質二次電池を作製した。
[0037] (Comparative Example 7) a primary particle size of 0.04 .mu.m, the conductive adhesive spacing of d 002 plane as a main component Ketjen Black 0.360nm a negative electrode plate 2 to the negative electrode case 4 A non-aqueous electrolyte secondary battery of Comparative Example 7 was produced in the same manner as in Example 1 except that it was adhered.

【0038】以上の通り作製した本実施例及び比較例の
電池を50μAの定電流で1.0Vまで放電した初期放
電容量を表1に示す。また、これらの電池を60℃で4
0日間保存した場合の保存前後の電池内部抵抗(1kH
z)と、初期容量に対する保存後の放電容量維持率を同
じく表1に示す。
Table 1 shows the initial discharge capacities of the batteries of this example and the comparative example produced as described above, which were discharged to 1.0 V at a constant current of 50 μA. In addition, these batteries were stored at 60 ° C for 4 hours.
When stored for 0 days, the battery internal resistance before and after storage (1 kHz
Table 1 also shows z) and the discharge capacity retention ratio after storage with respect to the initial capacity.

【0039】[0039]

【表1】 [Table 1]

【0040】この表1から明らかなように、粒径が12
μm以下の炭素質を主成分とする導電性接着剤を用いて
負極ケース4と負極板2の集電を行った比較例1〜3の
電池では、内部抵抗が低く、初期放電容量も大きいが、
接着剤中の炭素質表面でリチウムと電解液の反応が進行
することで、反応生成物が炭素質表面に堆積し、また、
リチウムが消費されることにより、保存後の内部抵抗の
増加、及び放電容量の劣化を招いている。また、粒径が
50μm以上の炭素質を導電性接着剤の主成分として用
いた比較例4の電池では、負極側導電性接着剤層8の膜
厚を接着剤の主成分として用いた炭素質の粒子径と同等
に抑えるため、導電性接着剤中の炭素質が粗になり、負
極ケース4と負極板2との集電が十分に行われず電池内
部抵抗の増加を引き起こした。この電池内部抵抗の増大
により比較例4の電池では、初期放電容量が著しく減少
している。比較例5〜7の電池の場合、負極側導電性接
着剤層8中の炭素質の結晶化度が低く、炭素質表面に不
純物が残っているため、電解液の分解反応により、リチ
ウムが消費され、初期放電容量が著しく減少している。
また、この反応は保存後に更に顕著になっており、保存
後の内部抵抗の増大、放電容量の低下が著しい。一方、
実施例1〜5の電池の場合、負極側導電性接着剤層8中
の炭素質粒径の範囲が適切であり、また、炭素質の結晶
化度が高く、表面活性が低く抑えられているため、保存
前後を問わず、電池の内部抵抗は低く抑えられ、また、
放電容量も大きい。
As is clear from Table 1, the particle size is 12
In the batteries of Comparative Examples 1 to 3 in which the negative electrode case 4 and the negative electrode plate 2 were subjected to current collection using a conductive adhesive mainly containing carbonaceous material of μm or less, the internal resistance was low and the initial discharge capacity was large. ,
As the reaction between lithium and the electrolyte proceeds on the carbonaceous surface in the adhesive, a reaction product is deposited on the carbonaceous surface, and
The consumption of lithium causes an increase in internal resistance after storage and a deterioration in discharge capacity. In the battery of Comparative Example 4 using carbonaceous material having a particle size of 50 μm or more as the main component of the conductive adhesive, the carbonaceous material using the thickness of the negative electrode side conductive adhesive layer 8 as the main component of the adhesive was used. In this case, the carbonaceous material in the conductive adhesive became coarse, and the current collection between the negative electrode case 4 and the negative electrode plate 2 was not sufficiently performed, causing an increase in the internal resistance of the battery. The initial discharge capacity of the battery of Comparative Example 4 is significantly reduced due to the increase in the battery internal resistance. In the case of the batteries of Comparative Examples 5 to 7, since the degree of crystallinity of carbonaceous material in the negative electrode side conductive adhesive layer 8 was low and impurities remained on the carbonaceous surface, lithium was consumed by the decomposition reaction of the electrolytic solution. As a result, the initial discharge capacity is significantly reduced.
Further, this reaction is more remarkable after storage, and the internal resistance and storage capacity are significantly reduced after storage. on the other hand,
In the case of the batteries of Examples 1 to 5, the range of the carbonaceous particle size in the negative electrode-side conductive adhesive layer 8 is appropriate, the crystallinity of the carbonaceous material is high, and the surface activity is low. Therefore, the internal resistance of the battery is kept low before and after storage,
The discharge capacity is also large.

【0041】なお、本発明の実施例は、非水電解質に非
水溶媒に支持塩を溶解した扁平形非水溶媒二次電池を用
いて説明したが、非水電解質に高分子に少なくともEC
とGBLとLiBF4を固溶または含浸させたポリマー
電解質を用いたポリマー二次電池についても当然適用可
能である。また、電池形状についてはコイン形非水電解
質二次電池を基に説明したが、電池形状は正円形である
必要はなく小判形などの特殊形状を有する扁平形非水電
解質二次電池においても適用可能である。
Although the embodiments of the present invention have been described using a flat non-aqueous solvent secondary battery in which a supporting salt is dissolved in a non-aqueous solvent in a non-aqueous electrolyte, the polymer is added to the non-aqueous electrolyte with at least EC.
Of course, the present invention can also be applied to a polymer secondary battery using a polymer electrolyte in which GBL and LiBF 4 are dissolved or impregnated. In addition, although the battery shape has been described based on the coin-shaped non-aqueous electrolyte secondary battery, the battery shape does not need to be a perfect circle, and is also applicable to a flat non-aqueous electrolyte secondary battery having a special shape such as an oval shape. It is possible.

【0042】[0042]

【発明の効果】以上説明したとおり、本発明によると、
負極ケースと負極板をd002面の面間隔が0.342n
m以下の黒鉛構造が発達した、メジアン径が12μm以
上30μm以下である炭素質を主成分とする導電性接着
剤を用い接着することにより、電池の内部抵抗を低減
し、かつ高温貯蔵後の容量劣化を抑制できるので、保存
前後の放電容量の大きな非水電解質二次電池が得られ、
その工業的価値は非常に大きい。
As described above, according to the present invention,
A negative electrode case and the negative electrode plate are spacing of d 002 plane 0.342n
The internal resistance of the battery is reduced by bonding using a conductive adhesive mainly composed of carbonaceous material whose median diameter is 12 μm or more and 30 μm or less, in which the graphite structure of m or less is developed, and the capacity after high-temperature storage. Since deterioration can be suppressed, a non-aqueous electrolyte secondary battery with a large discharge capacity before and after storage can be obtained,
Its industrial value is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の電池の断面図。FIG. 1 is a sectional view of a battery according to a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…正極板、2…負極板、3…絶縁ガスケット、4…負
極ケース、5…セパレータ、6…正極ケース、7…正極
側導電性接着剤層、8…負極側導電性接着剤層、9…電
池ケース。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode plate, 2 ... Negative electrode plate, 3 ... Insulating gasket, 4 ... Negative electrode case, 5 ... Separator, 6 ... Positive electrode case, 7 ... Positive electrode side conductive adhesive layer, 8 ... Negative electrode side conductive adhesive layer, 9 ... Battery case.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 路子 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 (72)発明者 菊間 祐一 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H022 AA09 BB02 BB12 CC02 CC12 CC16 EE05 EE10 5H029 AJ06 AK03 AL02 AL06 AM03 AM05 AM07 BJ03 CJ03 CJ05 DJ02 DJ03 DJ05 EJ04 HJ04 HJ05 5H050 AA10 AA12 BA17 CA02 CA05 CA07 CA08 CA09 CA11 CA20 CB02 CB07 CB08 DA03 DA10 DA20 HA05 HA13 HA18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Michiko Ono 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Corporation (72) Yuichi Kikuma 3-4-1 Minamishinagawa, Shinagawa-ku, Tokyo F-term (reference) in Toshiba Battery Co., Ltd. DA03 DA10 DA20 HA05 HA13 HA18

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質がリチウムを吸蔵放出する炭
素材もしくは酸化物である負極と、正極と、セパレータ
を含む発電要素と、非水電解質を内包し、さらに負極ケ
ースと正極ケースが絶縁ガスケットを介して嵌合され、
かつ前記正極ケースまたは前記負極ケースが加締め加工
により加締められた封口構造を有する扁平形非水電解質
二次電池において、充電状態の負極の電位がリチウムの
標準単極電位を基準として、0〜1.0Vの間にあり、
かつその内部にd002面の面間隔が0.342nm以下
の黒鉛構造が発達したメジアン径が12μm以上30μ
m以下である炭素質を主成分とする導電性接着剤によ
り、前記負極を前記負極ケースに接着したことを特徴と
する扁平形非水電解質二次電池。
1. A negative electrode in which a negative electrode active material is a carbon material or oxide capable of inserting and extracting lithium, a positive electrode, a power generating element including a separator, and a non-aqueous electrolyte. Are mated through
In the flat nonaqueous electrolyte secondary battery having a sealed structure in which the positive electrode case or the negative electrode case is crimped by crimping, the potential of the negative electrode in a charged state is 0 to 0 with respect to a standard monopolar potential of lithium. Between 1.0V
And a median diameter of 12μm or more spacing of d 002 plane therein is the following graphite structure 0.342nm developed 30μ
m. The flat non-aqueous electrolyte secondary battery, wherein the negative electrode is adhered to the negative electrode case with a conductive adhesive mainly containing carbonaceous material of m or less.
JP2001125779A 2001-04-24 2001-04-24 Flat non-aqueous electrolyte secondary battery Expired - Fee Related JP4694030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001125779A JP4694030B2 (en) 2001-04-24 2001-04-24 Flat non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001125779A JP4694030B2 (en) 2001-04-24 2001-04-24 Flat non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002324583A true JP2002324583A (en) 2002-11-08
JP4694030B2 JP4694030B2 (en) 2011-06-01

Family

ID=18974937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001125779A Expired - Fee Related JP4694030B2 (en) 2001-04-24 2001-04-24 Flat non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4694030B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303381A (en) * 2005-04-25 2006-11-02 Sii Micro Parts Ltd Electric double layer capacitor and battery and method for manufacturing the same
JP2010097751A (en) * 2008-10-15 2010-04-30 Hitachi Maxell Ltd Nonaqueous secondary battery
WO2011062232A1 (en) * 2009-11-18 2011-05-26 三井化学株式会社 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by application of the aqueous paste, and battery comprising the electrode plate
JP2018067508A (en) * 2016-10-21 2018-04-26 三洋化成工業株式会社 Method for manufacturing lithium ion battery
CN108110201A (en) * 2017-12-27 2018-06-01 惠州亿纬锂能股份有限公司 A kind of pole piece fixed mechanism and button cell
WO2019054114A1 (en) * 2017-09-14 2019-03-21 日産自動車株式会社 Stacked battery, and battery module
JP2020017391A (en) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137971A (en) * 1982-02-10 1983-08-16 Fuji Elelctrochem Co Ltd Flat type battery
JPS62200715A (en) * 1986-02-28 1987-09-04 旭硝子株式会社 Electric double-layer capacitor
JPH07161589A (en) * 1993-12-06 1995-06-23 Nisshinbo Ind Inc Electric double-layer capacitor
JPH10144298A (en) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd Lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137971A (en) * 1982-02-10 1983-08-16 Fuji Elelctrochem Co Ltd Flat type battery
JPS62200715A (en) * 1986-02-28 1987-09-04 旭硝子株式会社 Electric double-layer capacitor
JPH07161589A (en) * 1993-12-06 1995-06-23 Nisshinbo Ind Inc Electric double-layer capacitor
JPH10144298A (en) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303381A (en) * 2005-04-25 2006-11-02 Sii Micro Parts Ltd Electric double layer capacitor and battery and method for manufacturing the same
JP2010097751A (en) * 2008-10-15 2010-04-30 Hitachi Maxell Ltd Nonaqueous secondary battery
WO2011062232A1 (en) * 2009-11-18 2011-05-26 三井化学株式会社 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by application of the aqueous paste, and battery comprising the electrode plate
JP5480911B2 (en) * 2009-11-18 2014-04-23 三井化学株式会社 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell formed by applying the aqueous paste, and battery including the electrode plate
JP2018067508A (en) * 2016-10-21 2018-04-26 三洋化成工業株式会社 Method for manufacturing lithium ion battery
WO2019054114A1 (en) * 2017-09-14 2019-03-21 日産自動車株式会社 Stacked battery, and battery module
CN108110201A (en) * 2017-12-27 2018-06-01 惠州亿纬锂能股份有限公司 A kind of pole piece fixed mechanism and button cell
JP2020017391A (en) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery
JP7142288B2 (en) 2018-07-25 2022-09-27 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte primary battery

Also Published As

Publication number Publication date
JP4694030B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5271975B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
US20190139710A1 (en) Electrochemical energy storage device
JP4177574B2 (en) Lithium secondary battery
JP2017520892A (en) Positive electrode for lithium battery
JP2002270175A (en) Secondary power source
JP3200572B2 (en) Lithium secondary battery
JP3216661B2 (en) Non-aqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JP3769647B2 (en) Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JPH1154383A (en) Electric double layer capacitor
JP2002324583A (en) Flat nonaqueous electrolyte secondary battery
JP2012234778A (en) Positive electrode active material, positive electrode, and nonaqueous secondary battery
JP5463208B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP2009187924A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
US20220131147A1 (en) Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP2000156224A (en) Nonaqueous electrolyte battery
JP2000306609A (en) Secondary power supply
JP4099970B2 (en) Secondary power supply
JP4166295B2 (en) Non-aqueous electrolyte battery
JP4085244B2 (en) Non-aqueous secondary battery
JP4120771B2 (en) Non-aqueous secondary battery
JP2000040510A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees