JP2002313354A - Manufacturing method and device for separator for solid polymer fuel cell - Google Patents

Manufacturing method and device for separator for solid polymer fuel cell

Info

Publication number
JP2002313354A
JP2002313354A JP2001112937A JP2001112937A JP2002313354A JP 2002313354 A JP2002313354 A JP 2002313354A JP 2001112937 A JP2001112937 A JP 2001112937A JP 2001112937 A JP2001112937 A JP 2001112937A JP 2002313354 A JP2002313354 A JP 2002313354A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
polymer electrolyte
convex
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001112937A
Other languages
Japanese (ja)
Inventor
Yuichi Yoshida
裕一 吉田
Noriyuki Suzuki
規之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001112937A priority Critical patent/JP2002313354A/en
Publication of JP2002313354A publication Critical patent/JP2002313354A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a separator accepting a press working and applicable to a low- cost slid polymer fuel cell of high durability and also offer a manufacturing method and device for such separators. SOLUTION: The separator for the solid polymer fuel cell has a flat portion at the periphery and is furnished except periphery with projections 8 and recesses 7 to constitute gas passage, and in the manufacturing method of this separator, the material is processed as a preliminary shaping process so as to have a section shape with repeated projection and recesses continuously and further into a section shape with final repetitive projections and recesses, and also such conditions should met that the radius R of curvature < half angle start > p < half angle end > of the should part 23 having a curved surface 27 to constitute a vertical wall part 37 of the separator during preliminary shaping than the corresponding value during final shaping and that the center of the vertical wall part during the preliminary shaping is made identical to the corresponding central part when the final shaping process is made, and thereby the shoulder part is prevented from cracking or rupture in the press working process, and also it is possible to secure flat parts 20 easily on the outer surfaces of the projections and recesses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力を直接的駆動
源とする自動車、小規模の発電システムなどに用いられ
る固体高分子型燃料電池に用いられるセパレータの製造
方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a separator used in a polymer electrolyte fuel cell used for an automobile driven directly by electric power, a small-scale power generation system, and the like.

【0002】[0002]

【従来の技術】環境保全に対する意識の高まりから、化
石燃料を利用した現行の内燃機関から水素を利用した固
体高分子型燃料電池による電気駆動型の自動車や、分散
型コジェネシステムへの移行が世界的に検討されてい
る。これらの新技術が広く一般に利用できるようにする
ためには、低コスト化と高信頼化に関わる技術開発を燃
料供給システムも含めて推進する必要がある。近年、電
気自動車用燃料電池の開発が固体高分子材料の開発成功
を契機に急速に進展し始めている。
2. Description of the Related Art With the increasing awareness of environmental conservation, the transition from the current internal combustion engine using fossil fuels to electric drive type automobiles using solid polymer fuel cells using hydrogen and distributed cogeneration systems is on the rise. Is being considered. In order to make these new technologies widely available to the general public, it is necessary to promote technology development related to cost reduction and high reliability, including the fuel supply system. In recent years, the development of fuel cells for electric vehicles has begun to progress rapidly, triggered by the successful development of solid polymer materials.

【0003】固体高分子型燃料電池とは、従来のアルカ
リ型燃料電池、燐酸型燃料電池、溶融炭酸塩型燃料電
池、固体電解質型燃料電池などと異なり、水素イオン選
択透過型の有機物膜を電解質として用いることを特徴と
する燃料電池であり、燃料には純水素のほか、アルコー
ル類の改質によって得た水素ガスなどを用い、空気中の
酸素との反応を電気化学的に制御することによって電力
を取り出すシステムである。固体高分子膜は薄くても十
分に機能し、電解質が膜中に固定されていることから、
電池内の露点を制御すれば電解質として機能するため、
水溶液系電解質や溶融塩系電解質など流動性のある媒体
を使う必要がなく、電池自体をコンパクトに単純化して
設計できることも特徴である。固体高分子型燃料電池
は、水素の流路を持つセパレータ、燃料極、固体高分子
膜、空気(酸素)極、空気(酸素)の流路を持つセパレ
ータよりなるサンドイッチ構造を単セルとして、実際に
はこの単セルを積層したスタックが用いられる。したが
って、セパレータの両面は独立した流路を持ち、片面が
水素、もう一方の片面が空気および生成した水の流路と
なる。
A polymer electrolyte fuel cell differs from a conventional alkaline fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid electrolyte fuel cell and the like in that a hydrogen ion selective permeation type organic membrane is used as an electrolyte. A fuel cell characterized by the use of pure hydrogen as well as hydrogen gas obtained by reforming alcohols, and electrochemically controlling the reaction with oxygen in the air. It is a system that extracts power. The solid polymer membrane works well even if it is thin, and the electrolyte is fixed in the membrane.
If the dew point in the battery is controlled, it will function as an electrolyte,
There is no need to use a fluid medium such as an aqueous electrolyte or a molten salt electrolyte, and the battery itself can be designed to be compact and simple. The polymer electrolyte fuel cell is a single cell with a sandwich structure consisting of a separator having a hydrogen channel, a fuel electrode, a solid polymer membrane, an air (oxygen) electrode, and a separator having an air (oxygen) channel. A stack in which the single cells are stacked is used. Therefore, both sides of the separator have independent flow paths, one side is a hydrogen path, and the other side is a flow path of air and generated water.

【0004】冷却用水溶液の沸点以下の領域で稼働する
固体高分子型燃料電池の構成材料としては、温度がさほ
ど高くないこと、その環境下で耐食性・耐久性を十分に
発揮させることが可能であること、さらに、任意の流路
形状を形成するため炭素系の材料を切削加工などにより
加工して使用されてきているが、より低コスト化や小型
化、すなわちセパレータの薄肉化を目指してステンレス
鋼やチタンの適用に関する技術開発が進んでいる。
[0004] As a constituent material of a polymer electrolyte fuel cell that operates in a region below the boiling point of a cooling aqueous solution, the temperature is not so high, and it is possible to sufficiently exhibit corrosion resistance and durability under the environment. In addition, carbon-based materials have been used by machining, etc. to form an arbitrary flow path shape, but stainless steel has been used to reduce cost and size, that is, to make separators thinner. Technical development on the application of steel and titanium is progressing.

【0005】従来、燃料電池用ステンレス鋼としては、
特開平4−247852号公報、同4−358044号
公報、同7−188870号公報、同8−165546
号公報、同8−225892号公報、同8−31162
0号公報などに開示されているように、高い耐食性が要
求される溶融炭酸塩環境で稼働する燃料電池用ステンレ
ス鋼がある。また、特開平6−264193号公報、同
6−293941号公報、同9−67672号公報など
に開示されているように、数百度の高温で稼働する固体
電解質型燃料電池材料の発明がなされてきた。
Conventionally, as stainless steel for fuel cells,
JP-A-4-247852, JP-A-4-358048, JP-A-7-188870, JP-A-8-165546
JP-A-8-225892 and JP-A-8-31162
As disclosed in, for example, Japanese Patent Publication No. 0, there is a stainless steel for a fuel cell that operates in a molten carbonate environment where high corrosion resistance is required. Further, as disclosed in JP-A-6-264193, JP-A-6-293940, and JP-A-9-67672, a solid electrolyte fuel cell material operating at a high temperature of several hundred degrees has been invented. Was.

【0006】さらに、特開平10−228914号公報
には、単位電池の電極との接触抵抗の小さい燃料電池用
セパレータを得ることを目的に、ステンレス鋼(SUS
304)をプレス成形することにより、内周部に多数個
の凹凸からなる膨出成形部を形成し、膨出成形部の膨出
先端側端面に0.01〜0.02μmの厚さの金メッキ
層を形成したことを特徴とする燃料電池用セパレータが
開示され、その使用法として燃料電池を形成する際に燃
料電池用セパレータを積層された単位電池の間に介在さ
せ、単位電池の電極と膨出成形部の膨出先端側端面に形
成された金メッキ層とが当接するように配設し、燃料電
池用セパレータと電極との間に反応ガス通路を画成する
技術が開示されている。また、特開平5−29009号
公報では、安価に加工するため、プレス加工した波形状
の穴明きバイポーラ板が開示されている。また、特開2
000−202532号公報では、平板を金型に挟み込
み、圧延ロールで金型を圧縮する製造方法が開示されて
いる。
Further, Japanese Patent Application Laid-Open No. 10-228914 discloses a stainless steel (SUS) having the object of obtaining a fuel cell separator having low contact resistance with an electrode of a unit cell.
304) is press-formed to form a bulged portion formed of a large number of irregularities on the inner peripheral portion, and gold-plated to a thickness of 0.01 to 0.02 μm on the bulging tip side end surface of the bulged molded portion. Disclosed is a fuel cell separator characterized in that a layer is formed, and as a use thereof, when forming a fuel cell, a fuel cell separator is interposed between the stacked unit cells, and the electrodes of the unit cell are expanded. There is disclosed a technique in which a gold plating layer formed on an end surface of a protruding tip side of a protruding portion is provided so as to abut, and a reaction gas passage is defined between a fuel cell separator and an electrode. Further, Japanese Patent Application Laid-Open No. HEI 5-29909 discloses a press-processed corrugated bipolar plate which is press-worked for processing at low cost. In addition, JP
Japanese Patent Application Publication No. 000-202532 discloses a manufacturing method in which a flat plate is sandwiched between dies and the dies are compressed by a rolling roll.

【0007】しかし、これらの技術をもとに実際に固体
高分子型燃料電池を試作すると、以下の5点の技術的問
題があることがわかった。 a)長期耐久性が求められる固体高分子型燃料電池の環
境において、ステンレス製セパレータの合金成分として
は一般汎用鋼種であるSUS304では不十分となる場
合があり、その対策としてCr、Ni、Moなどの含有
量を上げる必要がある。 b)Cr、Ni、Moなどの合金組成を上げたステンレ
ス鋼の場合、湿式の金メッキ法だけでは金メッキ層とス
テンレス鋼基板の間に、ステンレス鋼の不働態酸化皮膜
がメッキ処理中に完全に還元されずに残留し、ステンレ
ス鋼と金メッキ層の間の層間抵抗が生じ、電力ロスの原
因となることがある。その対策として、皮膜を除去しな
がら貴金属を付着させる必要がある。 c)セパレータはプレス成形により内周部に多数個の凹
凸からなる膨出成形部を形成した形を想定しているが、
実際に四周に平坦部をもつ当該部材の加工を試みると、
凹凸からなる膨出成形部において延性割れを生じ、とく
に凹凸部の角部は曲げ歪みが大きくなるため破断が生じ
易い。さらに、長期信頼性向上のために合金組成を上げ
たステンレス鋼は、SUS304に比べ加工性が低下す
ることから、この形状にプレス成形することが困難であ
る。また、断面が波形状であると電解質膜との接触面積
が小さくなり燃料電池特性が低下する。 d)プレス成形により微細な凹凸を成形する方法は、セ
パレータが大型化すると、プレス荷重が増大して、大が
かりな設備を要する、という問題がある。 e)金型をロールで圧縮する製造方法は、金型の開閉、
材料ハンドリング等で、生産性が低いこと、また金型の
剛性のため、圧下荷重を精度良く加えることが困難にな
る、という問題がある。
However, when a polymer electrolyte fuel cell was actually manufactured on the basis of these techniques, it was found that there were the following five technical problems. a) In a polymer electrolyte fuel cell environment where long-term durability is required, SUS304, which is a general-purpose steel type, may not be sufficient as an alloy component of a stainless steel separator. Cr, Ni, Mo, etc. Need to be increased. b) In the case of stainless steel with an increased alloy composition such as Cr, Ni, and Mo, the passive oxide film of stainless steel is completely reduced during the plating process between the gold plating layer and the stainless steel substrate only by wet gold plating. However, it may remain without being generated, causing interlayer resistance between the stainless steel and the gold plating layer, which may cause power loss. As a countermeasure, it is necessary to attach a noble metal while removing the film. c) The separator is assumed to have a shape in which a bulge-formed portion composed of a number of irregularities is formed on the inner peripheral portion by press molding.
When actually trying to process the member with a flat part on the four circumferences,
Ductile cracks occur in the bulge formed by irregularities, and in particular, the corners of the irregularities have a large bending strain, and thus are easily broken. Further, since stainless steel having an increased alloy composition for improving long-term reliability has lower workability than SUS304, it is difficult to press-mold into this shape. In addition, if the cross section is corrugated, the contact area with the electrolyte membrane becomes small, and the fuel cell characteristics deteriorate. d) The method of forming fine irregularities by press molding has a problem that when the separator is increased in size, the press load increases and large-scale equipment is required. e) The manufacturing method of compressing the mold with a roll includes opening and closing the mold,
There is a problem that it is difficult to accurately apply a rolling load due to low productivity and rigidity of a mold in material handling or the like.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは既に、前
記a)やb)の問題点に対しては、その解決手段を特開
2000−256808号公報、特願平11−1701
42号などに提示している。従って、本発明では、前記
c)、d)およびe)の問題点に鑑み、低コスト・高耐
久型の固体高分子型燃料電池に適用できる、プレス加工
が可能なセパレータの製造方法、製造装置および固体高
分子型燃料電池を提供することを目的とする。
The present inventors have already solved the above problems a) and b) by solving the problems described in JP-A-2000-256808 and Japanese Patent Application No. 11-1701.
No. 42, etc. Therefore, in the present invention, in view of the above-mentioned problems c), d) and e), a method and an apparatus for manufacturing a press-workable separator applicable to a low-cost and high-durability type polymer electrolyte fuel cell can be applied. And a polymer electrolyte fuel cell.

【0009】[0009]

【課題を解決するための手段】上述の課題を解決するた
め、固体高分子型燃料電池の作用原理に基づき、プレス
成形時の材料挙動を詳細に検討した結果、本発明を完成
させたもので、その要旨とするところは以下の通りであ
る。 (1) 周辺に平坦部を有し、周辺を除く部分はガス流
路となる凸部及び凹部を有する固体高分子型燃料電池用
セパレータの製造方法において、予備成形として材料を
連続的な凸部と凹部の繰り返し断面形状に成形し、その
後最終的な凸部と凹部の繰り返し断面形状に成形するこ
とを特徴とする固体高分子型燃料電池用セパレータ製造
方法。 (2) 予備成形時に縦壁部を形成する曲面を有する肩
部の曲率半径が、最終成形時に縦壁部を形成する曲面を
有する肩部の曲率半径より大きく、且つ、予備成形時の
縦壁部分の中心部と最終成形時の縦壁部分の中心部が一
致するように予備成形及び最終成形を行うことを特徴と
する前記(1)記載の固体高分子型燃料電池用セパレー
タ製造方法。 (3) 前記(1)又は(2)記載の固体高分子型燃料
電池用セパレータ製造方法を実施するための装置であっ
て、前段に予備成形材料の凸部と凹部の繰り返し断面形
状と相似形の凹凸加工を表面に施した上下一対の平金型
プレス装置を有し、後段にセパレータの凸部及び凹部の
繰り返し断面形状と相似形の凹凸加工を表面に施した上
下一対の平金型プレス装置を有することを特徴とする固
体高分子型燃料電池用セパレータ製造装置。 (4) 前記(1)又は(2)に記載の固体高分子型燃
料電池用セパレータ製造方法を実施するための装置であ
って、前段に予備成形材料の凸部と凹部の繰り返し断面
形状と相似形の凹凸加工を表面に施した上下一対の圧下
ロールを有し、後段にセパレータの凸部及び凹部の繰り
返し断面形状と相似形の凹凸加工を表面に施した上下一
対の圧下ロールを有することを特徴とする固体高分子型
燃料電池用セパレータ製造装置。
In order to solve the above-mentioned problems, the present invention has been completed as a result of a detailed study of the material behavior during press molding based on the operating principle of a polymer electrolyte fuel cell. The summary is as follows. (1) In a method for producing a polymer electrolyte fuel cell separator having a flat portion in the periphery and a convex portion and a concave portion except for the peripheral portion serving as a gas flow path, the material is formed as a continuous convex portion as a preform. And a concave portion, and then a final repeated cross-sectional shape of a convex portion and a concave portion. (2) The radius of curvature of the shoulder having the curved surface forming the vertical wall at the time of the preforming is larger than the radius of curvature of the shoulder having the curved surface forming the vertical wall at the time of the final forming, and the vertical wall at the time of the preforming. The method for producing a separator for a polymer electrolyte fuel cell according to the above (1), wherein the preforming and the final molding are performed so that the center of the portion coincides with the center of the vertical wall portion at the time of the final molding. (3) An apparatus for carrying out the method for producing a separator for a polymer electrolyte fuel cell according to the above (1) or (2), wherein a repetitive cross-sectional shape of a convex portion and a concave portion of the preform material is similar to the preceding stage. A pair of upper and lower flat mold presses having a pair of upper and lower flat mold presses with upper and lower surfaces that have been subjected to unevenness processing on the surface, and a concave and convex process similar to the repeated cross-sectional shape of the convex and concave portions of the separator on the surface at the subsequent stage An apparatus for manufacturing a separator for a polymer electrolyte fuel cell, comprising: an apparatus. (4) An apparatus for carrying out the method for producing a separator for a polymer electrolyte fuel cell according to (1) or (2), wherein the repetitive cross-sectional shape of the convex and concave portions of the preform material is similar to the preceding stage. It has a pair of upper and lower pressing rolls that have a pair of upper and lower pressing rolls on the surface of which the surface has been subjected to unevenness processing, and a pair of upper and lower pressing rolls on the surface that have been subjected to unevenness processing similar to the repeated cross-sectional shape of the convex and concave portions of the separator in the subsequent stage. A polymer separator for polymer electrolyte fuel cells.

【0010】[0010]

【発明の実施の形態】以下に、本発明の詳細について説
明する。本発明の方法及び装置で製造されたセパレータ
1の平面図の例を図1に、また溝端部6におけるセパレ
ータ1、シール板10、および電極である炭素繊維集電
体11の具体的積層構造の一例を図2および図3に示
す。ここで、ガスの流入孔2,3から供給された水素を
含む燃料ガス又は酸素(空気)が、それぞれセパレータ
の凹部表面側7のみ又は凸部裏面側8のみを流れ、流出
孔4又は5から排出される。溝端部における表面側のガ
スの流れを図2中に矢印で示す。溝端部において、凸部
および凹部の傾斜角を、1本おきに緩急差をつけること
により、ガスが下流側へ短絡することを抑制し、溝端部
で折り返し、セパレータのガス流路全面にわたり、ほぼ
一筆書きの形状で均一にガスを流すことが可能である。
またガスの流速を上げられることから、酸素側で生成さ
れた水の排出も容易となる。シール板10は、セパレー
タ1の溝高さより僅かに厚く、シール板の中央部くり抜
き部の端面の角度を、前述した溝端部の最大傾斜角より
僅かに大きくすることにより、ガスの下流側への短絡は
さらに抑制される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. An example of a plan view of the separator 1 manufactured by the method and the apparatus of the present invention is shown in FIG. 1, and a specific laminated structure of the separator 1, the sealing plate 10, and the carbon fiber current collector 11 as an electrode at the groove end 6 is shown. One example is shown in FIGS. Here, the fuel gas containing hydrogen or oxygen (air) containing hydrogen supplied from the gas inflow holes 2 and 3 flows only through the concave surface front side 7 or only the convex rear surface 8 of the separator, respectively. Is discharged. The flow of gas on the surface side at the end of the groove is indicated by an arrow in FIG. At the end of the groove, the inclination angle of the projection and the depression is made to have a gradual difference every other line, so that the gas is prevented from being short-circuited to the downstream side. It is possible to flow gas uniformly in a one-stroke shape.
Further, since the flow rate of the gas can be increased, the water generated on the oxygen side can be easily discharged. The seal plate 10 is slightly thicker than the groove height of the separator 1 and the angle of the end face of the central hollow portion of the seal plate is made slightly larger than the above-mentioned maximum inclination angle of the groove end portion, so that the gas toward the downstream side of the gas flows toward the downstream side. Short circuits are further suppressed.

【0011】前述した図1の配列に比較して、溝の平行
部における流速は若干低下するが、圧損が少なくなると
いう効果が得られる。言うまでもなく、緩急差をつける
溝配列は、ここで示された2例に限定されるものではな
く、ガスの供給装置の能力、発電効率等から任意に選択
されるべきものである。このように溝端部に緩急差をつ
けることにより、多様な流路パターンを形成できる。セ
パレータの材質は、電子伝導性、耐食性、気密性の観点
から、グラファイト板、金属板等を使用できるが、薄く
できてプレス加工が可能なステンレス鋼製又はチタン製
であることが好ましい。
As compared with the arrangement shown in FIG. 1, the flow velocity in the parallel portion of the groove slightly decreases, but the effect of reducing the pressure loss is obtained. Needless to say, the groove arrangement providing the steep / deep difference is not limited to the two examples shown here, and should be arbitrarily selected from the capacity of the gas supply device, the power generation efficiency, and the like. Thus, by providing a gentle and sharp difference at the end of the groove, various flow path patterns can be formed. As the material of the separator, a graphite plate, a metal plate, or the like can be used from the viewpoints of electron conductivity, corrosion resistance, and airtightness. However, it is preferable that the separator be made of stainless steel or titanium that can be thin and can be pressed.

【0012】図4には、前記セパレータおよびシール板
を用いた、燃料電池スタックの構造の例を示す。セパレ
ータ1、シール板10、電極である炭素繊維集電体11
の積層構造で、両面に電極触媒が塗布された固体高分子
膜12をサンドイッチすることで、単セルが形成され
る。図中のAサイクルを繰り返し積層することで燃料電
池スタックが構成される。また、固体高分子型燃料電池
においては反応に伴う発熱があり、固体高分子膜を適切
な温度に保つためにスタックを冷却する必要があるが、
このセパレータの溝は冷却水の流路とすることも可能で
あり、スタックサイクルの適当な間隔で、冷却水流路を
含むBサイクルを挿入することで、スタックの冷却が可
能となる。シール板の材質は、適度な弾性を有し、冷却
水の沸点以下で分解・塑性変形が起きない材料であれば
よく、シリコン樹脂、ブタジエンゴム系樹脂、フッ素系
樹脂などが適用可能で、溝高さより僅かに厚いシール板
を締め付けることによりガスがシールされ、また適度な
弾性を有することで、セパレータ等の微小な変形にも追
従することが可能となる。図中、固体高分子膜を挟ん
で、水素側および酸素側の流路が対向する形式としてい
るが、これに限定されることなく、両者が交差する形式
でもかまわない。
FIG. 4 shows an example of the structure of a fuel cell stack using the separator and the seal plate. Separator 1, seal plate 10, carbon fiber current collector 11 serving as an electrode
By sandwiching the solid polymer film 12 coated with the electrode catalyst on both sides in the laminated structure of the above, a single cell is formed. The fuel cell stack is formed by repeatedly stacking the cycle A in the figure. Also, in a polymer electrolyte fuel cell, there is heat generated by the reaction, and it is necessary to cool the stack in order to keep the polymer electrolyte membrane at an appropriate temperature.
The groove of the separator can be used as a cooling water passage, and the stack can be cooled by inserting a B cycle including the cooling water passage at an appropriate interval of the stack cycle. The seal plate may be made of any material that has appropriate elasticity and does not cause decomposition and plastic deformation below the boiling point of the cooling water. Silicon resin, butadiene rubber resin, fluorine resin, etc. can be used. The gas is sealed by tightening the seal plate slightly thicker than the height, and the elastic plate has appropriate elasticity, so that it is possible to follow minute deformation of the separator and the like. In the figure, the hydrogen-side and oxygen-side flow paths are opposed to each other with a solid polymer film interposed therebetween. However, the present invention is not limited to this.

【0013】前記(1)、(2)記載の発明に係る製造
方法により板材料から成形されたセパレータの詳細断面
形状例を図5,6に示す。セパレータの溝周期21は、
ガス供給の均一性と集電効率の観点からより小さいこと
が望ましく、また接触抵抗低減の観点から、電極との接
触面積が大きいことが望ましいが、板厚に比較して溝周
期21が小さくなると、曲げ歪みが増加し、また、接触
面積を増やすために角の曲率半径を小さくしたり、平坦
部20の長さを大きくすることによっても歪みが増加
し、加工中に破断して成形が困難となる。一般には、溝
周期21は2〜3mmで、溝深さは最大1mm程度のも
のが燃料電池用セパレータの流路として使われるが、板
厚0.1〜0.3mm程度の金属板を成形すると、板厚
に比較して溝形状が微細で、角部の曲げ歪みが大きくな
り、成形中に角部で破断することが多かった。また、板
厚が小さいため圧縮応力により縦壁部37の座屈が生
じ、割れも発生した。そこで、種々の形状について金型
を試作し、プレス成形を行った結果、ガス流路の横断面
において、凸部及び凹部の外側の面に平坦部20を有す
る最終断面形状とする前に連続的な凹部7と凸部8の繰
り返し断面形状となるように予備成形すれば破断するこ
となく成形出来ることを見出した。
FIGS. 5 and 6 show an example of a detailed cross-sectional shape of a separator formed from a plate material by the manufacturing method according to the invention described in the above (1) and (2). The groove period 21 of the separator is
From the viewpoint of uniformity of gas supply and current collection efficiency, it is desirable to be smaller, and from the viewpoint of reduction of contact resistance, it is desirable that the contact area with the electrode is large. However, when the groove period 21 becomes smaller than the plate thickness, In addition, the bending strain increases, and the radius of curvature of the corner is reduced to increase the contact area, or the length of the flat portion 20 is increased. Becomes Generally, a groove cycle 21 of 2 to 3 mm and a groove depth of about 1 mm at the maximum is used as a flow path of a fuel cell separator. However, when a metal plate having a thickness of about 0.1 to 0.3 mm is formed, The groove shape was fine compared to the plate thickness, the bending distortion at the corners was large, and the corners were often broken during molding. Further, since the plate thickness is small, buckling of the vertical wall portion 37 was caused by compressive stress, and cracks were also generated. Therefore, as a result of prototypes of molds of various shapes and press molding, a continuous cross section was obtained before the final cross-sectional shape having a flat portion 20 on the outer surface of the convex portion and the concave portion in the cross section of the gas flow path. It has been found that the preform can be formed without breaking if it is preformed so as to have a repetitive cross-sectional shape of the concave portion 7 and the convex portion 8.

【0014】図7は、予備成形プレス後のステンレスあ
るいはチタン等の板材料の断面形状を示す。予備成形と
して板材料を連続的な凹部7と凸部8の繰り返し断面形
状に成形し、最終プレス成形での縦壁部37の割れ、破
断を防止するため、予備成形プレスで縦壁部37を成形
する部分27の肩部23の曲率半径Rpを図5に示す最
終形状となるセパレータの肩部23の曲率半径Rfより
大きくする。一回のプレス成形で行うと、縦壁部27の
肩部23は引張歪と曲げ歪が重畳して肉厚が小さくな
り、割れ,破断が生じ易くなるが、予備成形プレスで縦
壁部37を成形する部分27の肩部23の曲率半径Rp
を大きくすることにより、成形時の曲げ歪を低減するこ
とが出来る。また、予備成形プレス後の成形で、張り出
し成形されているので引っ張り歪が付加されずに曲げプ
レス加工が可能となるので縦壁部27の肩部23の割
れ,破断が発生しない。さらに予備成形プレスを行うこ
とにより、金型内の材料の流れを円滑にするため、最終
成形後に平坦部20を容易に確保できる。
FIG. 7 shows a cross-sectional shape of a plate material such as stainless steel or titanium after the preforming press. As a preforming, the plate material is formed into a continuous cross-sectional shape of a continuous concave portion 7 and a convex portion 8, and the vertical wall portion 37 is formed by a preforming press in order to prevent the vertical wall portion 37 from being cracked or broken in the final press forming. the radius of curvature R p of the shoulder portion 23 of the molded portion 27 larger than the radius of curvature R f of the separator of the shoulder 23 as the final shape shown in FIG. If the press forming is performed once, the shoulder portion 23 of the vertical wall portion 27 is superimposed on the tensile strain and the bending strain, and the wall thickness becomes small, and cracks and breaks are likely to occur. Radius R p of the shoulder 23 of the portion 27 where
The bending strain during molding can be reduced by increasing. In addition, since it is formed after the preforming press, it is stretched and formed, so that bending press work can be performed without adding tensile strain, so that the shoulder portion 23 of the vertical wall portion 27 does not crack or break. Further, by performing the preforming press, the flat portion 20 can be easily secured after the final molding in order to smooth the flow of the material in the mold.

【0015】平坦部20の幅は、接触抵抗低減の観点か
ら、電極との接触面積が大きいことが望ましく、好まし
くは流路を形成する電極部投影面積の20%以上とする
ことにより接触抵抗が小さくなり燃料電池の出力が向上
する。一方、化学反応を促進し所定の起電力を得、燃料
ガスが電極面全体に均一に供給されるためには、50%
以下とすることが好ましい。前記の平坦部20を割れ,
破断なく確保するには、最終形状であるセパレータの縦
壁部27の肩部23の曲率半径Rfを板厚の1〜3倍と
し、予備成形プレスでの縦壁部27の肩部23の曲率半
径Rpは曲率半径Rfの2〜4倍とし、予備成形材料の縦
壁部分の中心部39と最終成形されたセパレータの縦壁
部分の中心部39が一致することが望ましい。また、平
坦部20と肩部23の接続部分は屈曲部26を有するこ
とが好ましく、その屈曲部26を有することによりセパ
レータ平坦部20と電極(炭素繊維集合体)11の接触
面積を確保し、所定の接触抵抗に設定することが出来
る。
It is desirable that the width of the flat portion 20 has a large contact area with the electrode from the viewpoint of reducing the contact resistance. It becomes smaller and the output of the fuel cell improves. On the other hand, in order to promote the chemical reaction to obtain a predetermined electromotive force and to uniformly supply the fuel gas to the entire electrode surface, 50%
It is preferable to set the following. Crack the flat part 20,
In order to ensure no breakage, the radius of curvature Rf of the shoulder 23 of the vertical wall 27 of the separator, which is the final shape, is set to be 1 to 3 times the plate thickness, and the shoulder 23 of the vertical wall 27 in the preforming press is formed. the radius of curvature R p and 2-4 times the radius of curvature R f, the center portion 39 of the central portion 39 and the final molded vertical wall portion of the separator of the vertical wall portion of the preform material may be desirable to match. Further, the connecting portion between the flat portion 20 and the shoulder portion 23 preferably has a bent portion 26, and by having the bent portion 26, a contact area between the separator flat portion 20 and the electrode (carbon fiber aggregate) 11 is secured, It can be set to a predetermined contact resistance.

【0016】プレス成形においては、予備成形プレス工
程および最終プレス工程とも、プレス後の板材料の凸部
と凹部の繰り返し断面形状とほぼ相似形の凹凸加工を表
面に施した上下一対の平金型を用いて行い、上型24、
下型25のクリアランス38の長さは板厚の70〜14
0%が望ましい。図8に示すセパレ−タの断面の肩部2
3に対応する部分が鋭角をなす断面形状である平金型を
用いてプレス成形を行ってもよい。プレスの工程は、予
備成形プレス工程と最終工程の2工程に限られず、2工
程以上の成形を行ってもよい。また、SUS301材等
のオーステナイト系ステンレス鋼でみられる大きな加工
誘起変態が生じる材料を用いる場合は、予備成形プレス
工程と最終工程の間に熱処理工程を設け、材料を100
0℃程度で焼鈍してもよい。
In the press forming, in both the preforming press step and the final pressing step, a pair of upper and lower flat dies whose surfaces are subjected to uneven processing substantially similar to the repetitive cross-sectional shape of the convex and concave portions of the pressed sheet material. Using the upper mold 24,
The length of the clearance 38 of the lower mold 25 is 70 to 14 of the plate thickness.
0% is desirable. Shoulder part 2 of the cross section of the separator shown in FIG.
Press molding may be performed using a flat mold in which a portion corresponding to 3 has an acute angle cross section. The pressing step is not limited to the two steps of the preforming pressing step and the final step, and two or more steps may be performed. When a material such as SUS301, which causes a large work-induced transformation as seen in austenitic stainless steel, is used, a heat treatment step is provided between the preforming press step and the final step to reduce the material to 100%.
Annealing may be performed at about 0 ° C.

【0017】図9には、表面に凹凸の加工を施してある
一対の予備成形用圧下ロール30a、30bと最終成形
用圧下ロール31a、31bで、圧下して表面の凹凸部
35の模様を板材料に転写させながら回転することによ
り、セパレータを連続的に製造する製造装置の例を示
す。予備成形用圧下ロール30a、30bと最終成形用
圧下ロール31a、31bの間には、予備成形された板
材料の凹凸模様が最終成形用圧下ロール31a、31b
の凹凸模様に対応する位置に位置決めするために、縦ロ
ールの中央部に板厚程度の溝が切られたサイドガイド3
2a,32bが設けられている。
FIG. 9 shows a pair of preforming pressing rolls 30a, 30b, whose surfaces are roughened, and a final forming pressing roll 31a, 31b. The example of the manufacturing apparatus which manufactures a separator continuously by rotating while transferring to a material is shown. Between the preforming pressing rolls 30a, 30b and the final forming pressing rolls 31a, 31b, the concavo-convex pattern of the preformed plate material is formed by the final forming pressing rolls 31a, 31b.
Side guide 3 with a groove of about plate thickness cut at the center of the vertical roll to position it at the position corresponding to the uneven pattern of
2a and 32b are provided.

【0018】また、予備成形された板材料位置決め機構
には、予め板材料の両端に一定のピッチでスプロケット
穴33を打ち抜き加工しておき、スプロケットホイール
34a、34bで位置決めする方式を用いることができ
る。図10にはスプロケットホイールによる位置決め機
構の一例を示す。図中の矢印は、板材料の搬送方向を示
す。ステンレスあるいはチタン等の板材料を、表面に凹
凸の加工を施してある一対の予備成形用圧下ロール30
a、30bと最終成形用圧下ロール31a、31bで、
圧下して表面の凹凸模様3を薄板に転写させながら回転
することにより、セパレータを連続的に製造することが
できる。
The preformed plate material positioning mechanism can use a method in which sprocket holes 33 are punched out at both ends of the plate material at a fixed pitch in advance and the sprocket wheels 34a and 34b are used for positioning. . FIG. 10 shows an example of a positioning mechanism using a sprocket wheel. The arrows in the figure indicate the direction in which the plate material is transported. A pair of preforming pressing rolls 30 made of a plate material such as stainless steel or titanium, the surface of which has been subjected to unevenness processing.
a, 30b and the final shaping rolls 31a, 31b,
The separator can be manufactured continuously by rolling down and rotating while transferring the uneven pattern 3 on the surface to the thin plate.

【0019】図11は、最終成形用圧下ロール表面形状
の一例を示す模式図である。最終成形用圧下ロール31
a、31bの凹凸の形状は、圧下ロールの軸方向に沿っ
て凸部及び凹部が繰り返し構造となっており、圧下ロー
ルの円周方向に沿って凸部及び凹部が繰り返し構造とな
るもの(図12)、圧下ロールの軸方向に対して特定の
角度傾斜して凸部及び凹部が繰り返し構造となるもの
(図13)の他、凸部及び凹部が円形、楕円形、四角形
等の他の任意の多角形としたもの(図14)なども用い
ることができる。また、予備成形用圧下ロールの表面形
状は、最終成形用圧下ロール表面形状に比べ、溝の深さ
が小さくなるなど若干形状が異なるが、基本的な形状は
最終成形用圧下ロールと同様である。
FIG. 11 is a schematic diagram showing an example of the surface shape of the final forming press roll. Roll-down roll 31 for final forming
The shapes of the irregularities a and 31b are such that the convex portions and concave portions have a repeating structure along the axial direction of the pressing roll, and the convex portions and concave portions have a repeating structure along the circumferential direction of the pressing roll (FIG. 12) In addition to the one in which the convex portion and the concave portion have a repetitive structure in which the convex portion and the concave portion are inclined at a specific angle with respect to the axial direction of the pressing roll (FIG. 13), the convex portion and the concave portion are other arbitrary shapes such as a circle, an oval, and a square. (FIG. 14) can also be used. Also, the surface shape of the preforming pressing roll is slightly different from the surface shape of the final forming pressing roll, such as a smaller groove depth, but the basic shape is the same as the final forming pressing roll. .

【0020】[0020]

【実施例】直径200mm、長さ300mmの一対の最
終成形用圧下ロール表面に、図15に示すような凹凸パ
ターンを機械加工により形成した。断面形状は図11に
示すもので、予備成形用圧下ロールの凸部は、曲率半径
0.3mmの半円状であり、底部は幅1.0mmの平滑
面で、溝深さは0.5mmである。また、上型と下型の
クリアランス38は0.8mmとし、凹凸部は幅250
mm、長さ(弧長)150mmである。一方、最終成形
用圧下ロールの凸部は、曲率半径0.1mmの凸形状で
あり、底部は幅1.0mmの平滑面で、溝深さは0.5
mmである。また、上型と下型のクリアランス38は
0.8mmとし、凹凸部は幅250mm、長さ(弧長)
150mmである。
EXAMPLE A concave / convex pattern as shown in FIG. 15 was formed by machining on a pair of final forming rolls each having a diameter of 200 mm and a length of 300 mm. The cross-sectional shape is shown in FIG. 11. The convex portion of the preforming press roll is a semicircle having a radius of curvature of 0.3 mm, the bottom is a smooth surface having a width of 1.0 mm, and the groove depth is 0.5 mm. It is. The clearance 38 between the upper mold and the lower mold is 0.8 mm, and the unevenness has a width of 250 mm.
mm and the length (arc length) is 150 mm. On the other hand, the convex portion of the final forming press roll has a convex shape with a radius of curvature of 0.1 mm, the bottom portion is a smooth surface with a width of 1.0 mm, and the groove depth is 0.5.
mm. The clearance 38 between the upper mold and the lower mold is 0.8 mm, the unevenness is 250 mm in width, and the length (arc length).
150 mm.

【0021】図9に示すような装置を用い、板幅290
mm、板厚0.1mmのオーステナイト系ステンレス鋼
SUS316のコイルから連続的に板を供給し、予備成
形用上下圧下ロールの隙間(ロールギャップ)を0.1
mm、最終成形用上下圧下ロールの隙間(ロールギャッ
プ)を0.06mmとして加工を行った。圧下ロールの
材質はSKD11とした。また、サイドガイドの材質は
S45Cとし、直径80mm、長さ120mmの一対と
し、圧下ロールの手前250mmに設置した。上下圧下
ロールはサーボモータによる回転同期手段を設け、ロー
ル軸方向に相対変位を発生しないように、圧下ロールの
軸受けに精度等級の高い玉軸受けを設けた。
Using an apparatus as shown in FIG.
The plate is continuously supplied from a coil of austenitic stainless steel SUS316 having a thickness of 0.1 mm and a thickness of 0.1 mm, and the gap (roll gap) of the vertical pressing roll for preforming is set to 0.1.
mm, and the gap (roll gap) between the upper and lower lowering rolls for final shaping was set to 0.06 mm. The material of the rolling roll was SKD11. The material of the side guide was S45C, a pair having a diameter of 80 mm and a length of 120 mm, which was installed 250 mm before the pressing roll. The vertical rolls were provided with rotation synchronization means by a servomotor, and ball bearings of high precision grade were provided on the bearings of the rolls to prevent relative displacement in the roll axis direction.

【0022】間欠的に、凹凸形状が割れ,破断が生ずる
ことなく成形された板は、燃料ガスおよび冷却水等の導
入および排出のための穴あけ加工を行った後、所定の長
さ毎に切断し、単位セルのセパレータが製造できた。ま
た切断後も、反りやしわの発生は見られず、良好な形状
が得られた。 その後、適当な表面処理等を施した後、
燃料電池スタックを構成し性能試験を行ったところ、ガ
ス漏れや水漏れも発生せず、本発明の製造方法によるセ
パレータを用いて燃料電池として良好に機能することが
確認された。本発明の方法によるプレスは、幅250m
m×長さ150mmの同様の凹凸形状を、通常のプレス
で行った場合に比較すると、割れ、破断の発生率は格段
に低下し、通常の1段プレスでは、約5000ton
もの荷重が必要であったのに対して、本発明では約40
ton 程度であり、極めて安価な装置で製造が可能で
ある。
The plate formed intermittently without cracking or breakage of the uneven shape is subjected to drilling for introducing and discharging fuel gas and cooling water, and then cut at predetermined lengths. As a result, a unit cell separator was manufactured. Further, even after cutting, no warpage or wrinkles were observed, and a good shape was obtained. After applying appropriate surface treatment,
When a fuel cell stack was constructed and subjected to a performance test, it was confirmed that gas leakage and water leakage did not occur, and that the fuel cell using the separator according to the present invention functions well as a fuel cell. The press according to the method of the invention has a width of 250 m.
Compared to the case where the same uneven shape of mx 150 mm in length is performed by a normal press, the rate of occurrence of cracks and breaks is remarkably reduced.
In the present invention, about 40
ton, and can be manufactured with an extremely inexpensive device.

【0023】[0023]

【発明の効果】本発明は、固体高分子型燃料電池用セパ
レータとして高耐食ステンレス鋼やチタンのプレス成形
加工を可能にするものであり、低コスト固体高分子型燃
料電池を実現する技術として極めて有効なものである。
Industrial Applicability The present invention enables press forming of high corrosion resistant stainless steel or titanium as a separator for a polymer electrolyte fuel cell, and is extremely useful as a technology for realizing a low cost polymer electrolyte fuel cell. It is valid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明により製造したセパレータの平面図の例
である。
FIG. 1 is an example of a plan view of a separator manufactured according to the present invention.

【図2】本発明により製造したセパレータを用いた積層
構造の例を示す模式図である。
FIG. 2 is a schematic view showing an example of a laminated structure using a separator manufactured according to the present invention.

【図3】本発明により製造したセパレータの溝端部の平
面拡大図、および本発明のセパレータを用いた積層構造
の断面図である。
FIG. 3 is an enlarged plan view of a groove end of a separator manufactured according to the present invention, and a cross-sectional view of a laminated structure using the separator of the present invention.

【図4】本発明により製造したセパレータを用いて固体
高分子型燃料電池スタックを構築する一例を示した模式
図である。
FIG. 4 is a schematic view showing an example of constructing a polymer electrolyte fuel cell stack using the separator manufactured according to the present invention.

【図5】本発明により製造したセパレータの詳細断面形
状を示す模式図である。
FIG. 5 is a schematic diagram showing a detailed cross-sectional shape of a separator manufactured according to the present invention.

【図6】本発明により製造した別のセパレータの詳細断
面形状を示す模式図である。
FIG. 6 is a schematic diagram showing a detailed cross-sectional shape of another separator manufactured according to the present invention.

【図7】本発明による予備成形プレス後の板材料の断面
形状の例を示す模式図である。
FIG. 7 is a schematic diagram showing an example of a cross-sectional shape of a sheet material after a preforming press according to the present invention.

【図8】セパレータを成形するための本発明に係る平金
型の断面形状である。
FIG. 8 is a sectional view of a flat mold according to the present invention for forming a separator.

【図9】本発明の圧下ロールによるセパレータの製造装
置の例である。
FIG. 9 is an example of an apparatus for producing a separator by a rolling roll according to the present invention.

【図10】スプロケットホイールによる板材料の位置決
め機構の一例を示す模式図である。
FIG. 10 is a schematic view showing an example of a plate material positioning mechanism using a sprocket wheel.

【図11】本発明の最終成形用圧下ロール表面形状の一
例を示す模式図である。
FIG. 11 is a schematic view showing an example of the surface shape of a final forming press roll according to the present invention.

【図12】本発明の別の圧下ロール表面形状の例を示す
模式図である。
FIG. 12 is a schematic diagram illustrating another example of the surface shape of a pressing roll according to the present invention.

【図13】本発明の別の圧下ロール表面形状の例を示す
模式図である。
FIG. 13 is a schematic view showing another example of the surface shape of the pressing roll of the present invention.

【図14】本発明の別の圧下ロール表面形状の例を示す
模式図である。
FIG. 14 is a schematic diagram illustrating another example of the surface shape of a pressing roll according to the present invention.

【図15】本発明の別の最終成形用圧下ロール表面形状
の例を示す模式図である
FIG. 15 is a schematic view showing another example of the surface shape of the final press-down roll according to the present invention.

【符号の説明】[Explanation of symbols]

1:セパレータ 2:燃料ガス流入
孔 3:酸素(空気)流入孔 4:燃料ガス流出
孔 5:酸素(空気)流出孔 6:溝端部 7:凹部(燃料ガス流路) 8:凸部(酸素
(空気)流路) 9:セパレータ四周平坦部 10:シール板 11:電極(炭素繊維集電体) 12:固体高分子
膜 13:燃料ガス導入口 14:酸素(空
気)導入口 15:燃料ガス排出口 16:酸素(空
気)および生成水排出口 17:冷却水導入口 18:冷却水排出
口 19:ガスの流れ 20:平坦部 21:溝周期 22:溝深さ 23:肩部 24:上型 25:下型 26:屈曲部 27:縦壁部を成形する部分 30a、30b:ロール予備成形用圧下ロール 31a、31b:最終成形用圧下ロール 32a、32b:サイドガイド 33:スプロケット穴 34a、34b:スプロケットホイール 35:凹凸部 36:直線状の底部 37:縦壁部 38:クリアランス 39:縦壁部の中心
1: separator 2: fuel gas inflow hole 3: oxygen (air) inflow hole 4: fuel gas outflow hole 5: oxygen (air) outflow hole 6: groove end 7: concave portion (fuel gas flow path) 8: convex portion (oxygen (Air channel) 9: Four-round flat portion of separator 10: Seal plate 11: Electrode (carbon fiber current collector) 12: Solid polymer film 13: Fuel gas inlet 14: Oxygen (air) inlet 15: Fuel gas Outlet 16: Oxygen (air) and generated water outlet 17: Cooling water inlet 18: Cooling water outlet 19: Gas flow 20: Flat portion 21: Groove cycle 22: Groove depth 23: Shoulder portion 24: Top Mold 25: Lower mold 26: Bending part 27: Part for forming vertical wall part 30a, 30b: Roll preforming reduction roll 31a, 31b: Final molding reduction roll 32a, 32b: Side guide 33: Sprocket hole 34a, 34b : Sproke Wheel 35: uneven portion 36: linear bottom 37: vertical wall 38: clearance 39: center of vertical wall

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H026 AA06 BB02 CC03 EE02 HH00 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H026 AA06 BB02 CC03 EE02 HH00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】周辺に平坦部を有し、周辺を除く部分はガ
ス流路となる凸部及び凹部を有する固体高分子型燃料電
池用セパレータの製造方法において、予備成形として材
料を連続的な凸部と凹部の繰り返し断面形状に成形し、
その後最終的な凸部と凹部の繰り返し断面形状に成形す
ることを特徴とする固体高分子型燃料電池用セパレータ
製造方法。
In a method for manufacturing a polymer electrolyte fuel cell separator having a flat portion in the periphery and a convex portion and a concave portion in a portion excluding the periphery as a gas flow path, the material is continuously formed as a preform. Molded into a repeated cross-sectional shape of convex and concave parts,
Thereafter, a method for producing a separator for a polymer electrolyte fuel cell, comprising forming a final cross-sectional shape of a convex portion and a concave portion repeatedly.
【請求項2】予備成形時に縦壁部を形成する曲面を有す
る肩部の曲率半径が、最終成形時に縦壁部を形成する曲
面を有する肩部の曲率半径より大きく、且つ、予備成形
時の縦壁部分の中心部と最終成形時の縦壁部分の中心部
が一致するように予備成形及び最終成形を行うことを特
徴とする請求項1記載の固体高分子型燃料電池用セパレ
ータ製造方法。
2. A curvature radius of a shoulder having a curved surface forming a vertical wall portion at the time of preforming is larger than a radius of curvature of a shoulder portion having a curved surface forming a vertical wall portion at the time of final molding. 2. The method for producing a separator for a polymer electrolyte fuel cell according to claim 1, wherein the preforming and the final molding are performed so that the center of the vertical wall portion and the center of the vertical wall portion at the time of the final molding coincide.
【請求項3】請求項1又は2に記載の固体高分子型燃料
電池用セパレータ製造方法を実施するための装置であっ
て、前段に予備成形材料の凸部と凹部の繰り返し断面形
状と相似形の凹凸加工を表面に施した上下一対の平金型
プレス装置を有し、後段にセパレータの凸部及び凹部の
繰り返し断面形状と相似形の凹凸加工を表面に施した上
下一対の平金型プレス装置を有することを特徴とする固
体高分子型燃料電池用セパレータ製造装置。
3. An apparatus for carrying out the method for producing a separator for a polymer electrolyte fuel cell according to claim 1 or 2, wherein a repetitive cross-sectional shape of a convex portion and a concave portion of a pre-formed material is similar to a pre-formed material. A pair of upper and lower flat mold presses having a pair of upper and lower flat mold presses with upper and lower surfaces that have been subjected to unevenness processing on the surface, and a concave and convex process similar to the repeated cross-sectional shape of the convex and concave portions of the separator on the surface at the subsequent stage An apparatus for manufacturing a separator for a polymer electrolyte fuel cell, comprising: an apparatus.
【請求項4】請求項1又は2に記載の固体高分子型燃料
電池用セパレータ製造方法を実施するための装置であっ
て、前段に予備成形材料の凸部と凹部の繰り返し断面形
状と相似形の凹凸加工を表面に施した上下一対の圧下ロ
ールを有し、後段にセパレータの凸部及び凹部の繰り返
し断面形状と相似形の凹凸加工を表面に施した上下一対
の圧下ロールを有することを特徴とする固体高分子型燃
料電池用セパレータ製造装置。
4. An apparatus for carrying out the method for producing a separator for a polymer electrolyte fuel cell according to claim 1 or 2, wherein a repetitive cross-sectional shape of a convex portion and a concave portion of a preform material is similar to a pre-formed material. It has a pair of upper and lower pressing rolls that have a pair of upper and lower pressing rolls on the surface that have been subjected to uneven processing on the surface, and a pair of upper and lower pressing rolls on the surface that have been subjected to uneven processing similar to the repeated cross-sectional shape of the convex and concave portions of the separator at the subsequent stage. For manufacturing a separator for a polymer electrolyte fuel cell.
JP2001112937A 2001-04-11 2001-04-11 Manufacturing method and device for separator for solid polymer fuel cell Pending JP2002313354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112937A JP2002313354A (en) 2001-04-11 2001-04-11 Manufacturing method and device for separator for solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112937A JP2002313354A (en) 2001-04-11 2001-04-11 Manufacturing method and device for separator for solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2002313354A true JP2002313354A (en) 2002-10-25

Family

ID=18964249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112937A Pending JP2002313354A (en) 2001-04-11 2001-04-11 Manufacturing method and device for separator for solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2002313354A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055349A1 (en) * 2003-12-02 2005-06-16 Nissan Motor Co., Ltd. Manufacture of fuel cell
JP2005183182A (en) * 2003-12-19 2005-07-07 Nissan Motor Co Ltd Manufacturing method of electrolytic film and polymer electrolyte fuel cell
JP2005190946A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp Manufacturing method and device of fuel cell
JP2005224854A (en) * 2004-02-16 2005-08-25 Nippon Steel Corp Roll-forming method for sheet having rugged cross-sectional shape free from wrinkle or camber
JP2006289447A (en) * 2005-04-12 2006-10-26 Nippon Steel Corp Multiple-stage roll forming device
JP2007167886A (en) * 2005-12-21 2007-07-05 Topre Corp Method for forming metallic sheet
US7343769B2 (en) 2003-12-26 2008-03-18 Toyota Shatai Kabushiki Kaisha Corrugation forming method
JP2009172025A (en) * 2008-01-22 2009-08-06 Bizen Hatsujo Kk Cushion spring and manufacture method of wire spring in this cushion spring
JP2009187757A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
JP2009187758A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
WO2010010705A1 (en) * 2008-07-25 2010-01-28 株式会社Ihi Method and plant for manufacturing separator in solid polymer fuel cell
JP2010167441A (en) * 2009-01-22 2010-08-05 Topre Corp Method of manufacturing thin metal sheet on which recessed and projecting part is formed
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
WO2012125804A2 (en) * 2011-03-15 2012-09-20 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
JP2013152941A (en) * 2013-03-14 2013-08-08 Nissan Motor Co Ltd Method and apparatus of manufacturing metal separator for fuel cell
WO2013140135A2 (en) * 2012-03-19 2013-09-26 Intelligent Energy Limited Fuel cell fluid distribution
WO2014175391A1 (en) * 2013-04-24 2014-10-30 トヨタ紡織 株式会社 Metal plate molding method and molding device
JP2016046261A (en) * 2014-08-22 2016-04-04 ジーエム・グローバル・テクノロジー・オペレーションズ・エルエルシー Die clearance control for thin sheet stainless steel bpp forming
KR20170003668A (en) 2014-06-24 2017-01-09 신닛테츠스미킨 카부시키카이샤 Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
WO2017056759A1 (en) * 2015-09-28 2017-04-06 株式会社三井ハイテック Separator production method
US9630229B2 (en) 2013-04-24 2017-04-25 Toyota Boshoku Kabushiki Kaisha Device for molding and method for molding metal plate

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110229801A1 (en) * 2003-12-02 2011-09-22 Nissan Motor Co., Ltd. Manufacture of fuel cell
US7993798B2 (en) 2003-12-02 2011-08-09 Nissan Motor Co., Ltd Manufacture of fuel cell
WO2005055349A1 (en) * 2003-12-02 2005-06-16 Nissan Motor Co., Ltd. Manufacture of fuel cell
US8470498B2 (en) * 2003-12-02 2013-06-25 Nissan Motor Co., Ltd. Manufacture of fuel cell
US8771902B2 (en) * 2003-12-02 2014-07-08 Nissan Motor Co., Ltd. Manufacture of fuel cell
JP2005183182A (en) * 2003-12-19 2005-07-07 Nissan Motor Co Ltd Manufacturing method of electrolytic film and polymer electrolyte fuel cell
JP4529439B2 (en) * 2003-12-26 2010-08-25 トヨタ自動車株式会社 Fuel cell manufacturing method and manufacturing apparatus
JP2005190946A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp Manufacturing method and device of fuel cell
US7343769B2 (en) 2003-12-26 2008-03-18 Toyota Shatai Kabushiki Kaisha Corrugation forming method
US7910037B2 (en) 2003-12-26 2011-03-22 Toyota Jidosha Kabushiki Kaisha Fuel cell manufacturing method and system
JP2005224854A (en) * 2004-02-16 2005-08-25 Nippon Steel Corp Roll-forming method for sheet having rugged cross-sectional shape free from wrinkle or camber
JP4648639B2 (en) * 2004-02-16 2011-03-09 新日本製鐵株式会社 Roll forming method for uneven plate without wrinkle or warpage
JP4700393B2 (en) * 2005-04-12 2011-06-15 新日本製鐵株式会社 Multi-stage roll forming equipment
JP2006289447A (en) * 2005-04-12 2006-10-26 Nippon Steel Corp Multiple-stage roll forming device
US8304141B2 (en) 2005-06-22 2012-11-06 Sintokogio Ltd. Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
JP2007167886A (en) * 2005-12-21 2007-07-05 Topre Corp Method for forming metallic sheet
JP2009172025A (en) * 2008-01-22 2009-08-06 Bizen Hatsujo Kk Cushion spring and manufacture method of wire spring in this cushion spring
JP2009187758A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
JP2009187757A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
US8820132B2 (en) 2008-07-25 2014-09-02 Ihi Corporation Method and facility for producing separator for use in polymer electrolyte fuel cell
TWI384681B (en) * 2008-07-25 2013-02-01 Ihi Corp Method and facility for producing separator for polymer electrolyte fuel cell
WO2010010705A1 (en) * 2008-07-25 2010-01-28 株式会社Ihi Method and plant for manufacturing separator in solid polymer fuel cell
JP2010033737A (en) * 2008-07-25 2010-02-12 Ihi Corp Method and plant for manufacturing separator for polymer electrolyte fuel cell
JP2010167441A (en) * 2009-01-22 2010-08-05 Topre Corp Method of manufacturing thin metal sheet on which recessed and projecting part is formed
WO2012125804A3 (en) * 2011-03-15 2012-12-27 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
WO2012125804A2 (en) * 2011-03-15 2012-09-20 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
US10164264B2 (en) 2011-03-15 2018-12-25 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
WO2013140135A3 (en) * 2012-03-19 2013-12-05 Intelligent Energy Limited Fuel cell fluid distribution
WO2013140135A2 (en) * 2012-03-19 2013-09-26 Intelligent Energy Limited Fuel cell fluid distribution
JP2013152941A (en) * 2013-03-14 2013-08-08 Nissan Motor Co Ltd Method and apparatus of manufacturing metal separator for fuel cell
US9630229B2 (en) 2013-04-24 2017-04-25 Toyota Boshoku Kabushiki Kaisha Device for molding and method for molding metal plate
JP2014213345A (en) * 2013-04-24 2014-11-17 トヨタ紡織株式会社 Method and device for molding sheet metal
WO2014175391A1 (en) * 2013-04-24 2014-10-30 トヨタ紡織 株式会社 Metal plate molding method and molding device
US9962751B2 (en) 2013-04-24 2018-05-08 Toyota Boshoku Kabushiki Kaisha Metal plate forming method and forming device
KR20170003668A (en) 2014-06-24 2017-01-09 신닛테츠스미킨 카부시키카이샤 Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
JP2016046261A (en) * 2014-08-22 2016-04-04 ジーエム・グローバル・テクノロジー・オペレーションズ・エルエルシー Die clearance control for thin sheet stainless steel bpp forming
WO2017056759A1 (en) * 2015-09-28 2017-04-06 株式会社三井ハイテック Separator production method
US10876192B2 (en) 2015-09-28 2020-12-29 Mitsui High-Tec, Inc. Separator production method

Similar Documents

Publication Publication Date Title
JP2002313354A (en) Manufacturing method and device for separator for solid polymer fuel cell
JP2002190305A (en) Manufacturing apparatus for solid polymer fuel cell separator
CN101504984B (en) Metallic bipolar plate forming mold for fuel cell and forming method
US20020004158A1 (en) Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
JP2007048616A (en) Fuel cell separator, device and method for manufacturing separator
CN103887534A (en) Unique Pre-Form Design For Two-Step Forming Of Stainless Steel Fuel Cell Bipolar Plates
JP3448557B2 (en) Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
JP4700393B2 (en) Multi-stage roll forming equipment
CN110534765B (en) Forming method of high-precision metal bipolar plate required by fuel cell
JP2005123160A (en) Separator for fuel cell, fuel cell stack, method of manufacturing the separator, and fuel cell vehicle
JP3400976B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
JP5169480B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
JP2004119235A (en) Separator for solid polymer fuel cell, its manufacturing device and manufacturing method
JP4046550B2 (en) Solid polymer fuel cell metal separator with less warpage and method for producing the same
JP4231398B2 (en) Separator manufacturing method and manufacturing apparatus for polymer electrolyte fuel cell
JP5163028B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP3965102B2 (en) Method for manufacturing stainless separator for polymer electrolyte fuel cell and apparatus for manufacturing the same
JP4180929B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
JP2006120497A (en) Metal separator and method for forming flow passage thereof
JP4769570B2 (en) Metal sheet forming method
JP2003249238A (en) Manufacturing method of plate material with groove and plate material manufactured by the method
JP2019114515A (en) Manufacturing installation for separator for fuel cell and manufacturing method for separator for fuel cell
JP4280226B2 (en) Solid polymer fuel cell separator manufacturing method and reduction roll
JP2008041456A (en) Method of manufacturing separator for fuel cell, and separator for fuel cell
JP4231399B2 (en) Separator manufacturing apparatus and manufacturing method for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301