JP3448557B2 - Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell - Google Patents

Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell

Info

Publication number
JP3448557B2
JP3448557B2 JP2000267342A JP2000267342A JP3448557B2 JP 3448557 B2 JP3448557 B2 JP 3448557B2 JP 2000267342 A JP2000267342 A JP 2000267342A JP 2000267342 A JP2000267342 A JP 2000267342A JP 3448557 B2 JP3448557 B2 JP 3448557B2
Authority
JP
Japan
Prior art keywords
fuel cell
separator
polymer electrolyte
electrolyte fuel
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000267342A
Other languages
Japanese (ja)
Other versions
JP2002075401A (en
Inventor
裕一 吉田
規之 鈴木
勉 波江野
寛 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18754283&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3448557(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000267342A priority Critical patent/JP3448557B2/en
Priority to CA002352443A priority patent/CA2352443C/en
Priority to DE10132841A priority patent/DE10132841B4/en
Priority to US09/900,657 priority patent/US6709781B2/en
Publication of JP2002075401A publication Critical patent/JP2002075401A/en
Application granted granted Critical
Publication of JP3448557B2 publication Critical patent/JP3448557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力を直接的駆動
源とする自動車、小規模の発電システムなどに用いられ
る固体高分子型燃料電池に用いられるセパレータとその
製造方法、及び固体高分子型燃料電池に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator used in a polymer electrolyte fuel cell used in an automobile using electric power as a direct drive source, a small-scale power generation system, etc., a method for producing the same, and a polymer electrolyte type. Involved in fuel cells.

【0002】[0002]

【従来の技術】環境保全に対する意識の高まりから、化
石燃料を利用した現行の内燃機関から水素を利用した固
体高分子型燃料電池による電気駆動型の自動車や、分散
型コジェネシステムへの移行が世界的に検討されてい
る。これらの新技術が広く一般に利用できるようにする
ためには低コスト化と高信頼化に関わる技術開発を燃料
供給システムも含めて推進する必要がある。近年電気自
動車用燃料電池の開発が固体高分子材料の開発成功を契
機に急速に進展し始めている。固体高分子型燃料電池と
は、従来のアルカリ型燃料電池、燐酸型燃料電池、溶融
炭酸塩型燃料電池、固体電解質型燃料電池などと異な
り、水素イオン選択透過型の有機物膜を電解質として用
いることを特徴とする燃料電池であり、燃料には純水素
のほか、アルコール類の改質によって得た水素ガスなど
を用い、空気中の酸素との反応を電気化学的に制御する
ことによって電力を取り出すシステムである。
2. Description of the Related Art With the increasing awareness of environmental protection, there is a worldwide shift from the current internal combustion engine that uses fossil fuels to electrically driven automobiles using solid polymer fuel cells that use hydrogen, and to distributed cogeneration systems. Are being considered. In order to make these new technologies widely available to the general public, it is necessary to promote technological development related to cost reduction and high reliability, including fuel supply systems. In recent years, the development of fuel cells for electric vehicles has begun to progress rapidly with the successful development of solid polymer materials. Unlike conventional alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells, etc., solid polymer fuel cells use a hydrogen ion selective permeation type organic substance membrane as an electrolyte. In addition to pure hydrogen as a fuel, hydrogen gas obtained by reforming alcohols is used as a fuel, and electricity is taken out by electrochemically controlling the reaction with oxygen in the air. System.

【0003】固体高分子膜は薄くても十分に機能し、電
解質が膜中に固定されていることから、電池内の露点を
制御してやれば電解質として機能するため、水溶液系電
解質や溶融塩系電解質など流動性のある媒体を使う必要
がなく、電池自体をコンパクトに単純化して設計できる
ことも特徴である。固体高分子型燃料電池は、水素の流
路を持つセパレータ、燃料極、固体高分子膜、空気(酸
素)極、空気(酸素)の流路を持つセパレータよりなる
サンドイッチ構造を単セルとして、実際にはこの単セル
を積層したスタックが用いられる。したがって、セパレ
ータの両面は独立した流路を持ち、片面が水素、もう一
方の片面が空気および生成した水の流路となる。冷却用
水溶液の沸点以下の領域で稼働する固体高分子型燃料電
池の構成材料としては、温度がさほど高くないこと、そ
の環境下で耐食性・耐久性を十分に発揮させることが可
能であること、さらに、任意の流路形状を形成するため
炭素系の材料を切削加工などにより加工して、使用され
てきているが、より低コスト化や小型化、すなわちセパ
レータの薄肉化を目指してステンレス鋼やチタンの適用
に関する技術開発が進んでいる。
The solid polymer membrane functions sufficiently even if it is thin, and since the electrolyte is fixed in the membrane, it functions as an electrolyte if the dew point in the battery is controlled. Therefore, an aqueous solution electrolyte or a molten salt electrolyte is used. It is also a feature that the battery itself can be compactly and simply designed without the need to use a fluid medium. A polymer electrolyte fuel cell is actually a sandwich structure consisting of a separator having a hydrogen flow path, a fuel electrode, a solid polymer membrane, an air (oxygen) electrode, and a separator having an air (oxygen) flow path as a single cell. For this, a stack in which these single cells are laminated is used. Therefore, both sides of the separator have independent flow channels, one side being hydrogen and the other side being air and generated water. As a constituent material of the polymer electrolyte fuel cell that operates in the region of the boiling point of the cooling aqueous solution or less, the temperature is not so high, it is possible to sufficiently exhibit corrosion resistance and durability in the environment, In addition, carbon-based materials have been used by machining such as cutting in order to form arbitrary flow path shapes, but stainless steel or stainless steel has been used to further reduce costs and reduce size, that is, reduce the thickness of separators. Technological development related to the application of titanium is progressing.

【0004】従来、燃料電池用ステンレス鋼としては、
特開平4−247852号公報、同4−358044号
公報、同7−188870号公報、同8−165546
号公報、同8−225892号公報、同8−31162
0号公報などに開示されているように、高い耐食性が要
求される溶融炭酸塩環境で稼働する燃料電池用ステンレ
ス鋼がある。また、特開平6−264193号公報、同
6−293941号公報、同9−67672号公報など
に開示されているように、数百度の高温で稼働する固体
電解質型燃料電池材料の発明がなされてきた。特開平1
0−228914号公報には、単位電池の電極との接触
抵抗の小さい燃料電池用セパレータを得ることを目的
に、ステンレス鋼(SUS304)をプレス成形するこ
とにより内周部に多数個の凹凸からなる膨出成形部を形
成し、膨出成形部の膨出先端側端面に0.01〜0.0
2μmの厚さの金メッキ層を形成したことを特徴とする
燃料電池用セパレータが開示され、その使用法として燃
料電池を形成する際に燃料電池用セパレータを積層され
た単位電池の間に介在させ、単位電池の電極と膨出成形
部の膨出先端側端面に形成された金メッキ層とが当接す
るように配設し、燃料電池用セパレータと電極との間に
反応ガス通路を画成する技術が開示されている。また、
特開平5−29009号公報では、安価に加工するた
め、プレス加工した波形状の穴明きバイポーラ板が開示
されている。
Conventionally, as stainless steel for fuel cells,
JP-A-4-247852, JP-A-4-358044, JP-A-7-188870 and JP-A-8-165546.
JP-A-8-225892 and JP-A-8-31162.
As disclosed in Japanese Patent Publication No. 0 and the like, there is a stainless steel for a fuel cell which operates in a molten carbonate environment which requires high corrosion resistance. Further, as disclosed in JP-A-6-264193, JP-A-6-293941, JP-A-9-67672, etc., an invention of a solid electrolyte fuel cell material that operates at a high temperature of several hundreds of degrees has been made. It was JP-A-1
In JP-A 0-228914, for the purpose of obtaining a fuel cell separator having a small contact resistance with an electrode of a unit cell, stainless steel (SUS304) is press-molded to form a large number of irregularities on the inner peripheral portion. The bulging molding portion is formed, and 0.01 to 0.0 is formed on the bulging tip side end surface of the bulging molding portion.
Disclosed is a fuel cell separator characterized in that a gold-plated layer having a thickness of 2 μm is formed. As a method of using the same, a fuel cell separator is interposed between stacked unit cells when forming a fuel cell, A technique of arranging the electrode of the unit cell and the gold plating layer formed on the end surface of the swelling molding portion on the swelling tip side to contact each other and defining a reaction gas passage between the fuel cell separator and the electrode has been proposed. It is disclosed. Also,
Japanese Patent Laid-Open No. 5-29009 discloses a corrugated perforated bipolar plate that is press-worked for inexpensive processing.

【0005】しかし、この技術をもとに実際に固体高分
子型燃料電池を試作すると以下4点の技術的問題がある
ことがわかった。 a)長期耐久性が求められる固体高分子型燃料電池の環
境において、ステンレス製セパレータの合金成分として
は一般汎用鋼種であるSUS304では不十分となる場
合があり、その対策としてCr、Ni、Moなどの含有
量を上げる必要がある。 b)Cr、Ni、Moなどの合金組成を上げたステンレ
ス鋼の場合、湿式の金メッキ法だけでは金メッキ層とス
テンレス鋼基板の間に、ステンレス鋼の不働態酸化皮膜
がメッキ処理中に完全に還元されずに残留し、ステンレ
ス鋼と金メッキ層の間の層間抵抗が生じ、電力ロスの原
因となることがある。その対策として、皮膜を除去しな
がら貴金属を付着させる必要がある。 c)セパレータはプレス成形により内周部に多数個の凹
凸からなる膨出成形部を形成した形を想定しているが、
実際に四周に平坦部をもつ当該部材の加工を試みると、
凹凸からなる膨出成形部において延性割れを生じ、さら
に、長期信頼性向上のために合金組成を上げたステンレ
ス鋼は、SUS304に比べ加工性が低下することか
ら、この形状にプレス成形することが困難である。ま
た、断面が波形状であると電解質膜との接触面積が小さ
くなり燃料電池特性が低下する。 d)セパレータは内周部に多数個の凹凸からなる膨出成
形部を形成した形を想定しており、セパレータと電極と
の間を、自由に反応ガスが流れる構造となっているが、
この場合、ガスの流入口から流出口まで、均一にガスを
流すことが困難であり、反応効率が低下すること、また
ガスの流速が低く、酸素側で生成した水を排出すること
が困難になる、という問題がある。発明者らは既に、前
記a)やb)の問題点に対しては、その解決手段を特願
平11−62813号、同11−170142号などに
提示している。
However, when a solid polymer electrolyte fuel cell was actually produced on the basis of this technique, it was found that there are the following four technical problems. a) In the environment of a polymer electrolyte fuel cell that requires long-term durability, SUS304, which is a general-purpose steel type, may be insufficient as an alloy component of a stainless steel separator, and as a countermeasure, Cr, Ni, Mo, etc. It is necessary to increase the content of. b) In the case of stainless steel with an increased alloy composition of Cr, Ni, Mo, etc., the passive oxide film of stainless steel is completely reduced during the plating process between the gold plating layer and the stainless steel substrate only by the wet gold plating method. Without being left, it may remain and cause interlayer resistance between the stainless steel and the gold plating layer, which may cause power loss. As a countermeasure, it is necessary to adhere the noble metal while removing the film. c) The separator is assumed to have a shape in which a large number of bulging parts are formed on the inner peripheral part by press molding.
If you actually try to process the member with a flat part on the four circumferences,
Since ductile cracking occurs in the bulging molded part having irregularities, and further, the stainless steel whose alloy composition is increased to improve long-term reliability has lower workability than SUS304, it is necessary to press-mold into this shape. Have difficulty. Further, if the cross section is wavy, the contact area with the electrolyte membrane becomes small and the fuel cell characteristics deteriorate. d) The separator is assumed to have a shape in which a large number of bulging parts are formed on the inner circumference, and the reaction gas flows freely between the separator and the electrode.
In this case, it is difficult to flow the gas uniformly from the gas inlet to the outlet, the reaction efficiency is lowered, and it is difficult to discharge the water generated on the oxygen side due to the low gas flow velocity. There is a problem that The inventors have already proposed means for solving the problems a) and b) in Japanese Patent Application Nos. 11-62813 and 11-170142.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記c)お
よびd)の問題に鑑み、低コスト・高耐久型の固体高分
子型燃料電池に適用できる、プレス加工が可能なセパレ
ータとその製造方法及び燃料電池を提供することを目的
とする。
In view of the problems c) and d) described above, the present invention is applicable to a low-cost and high-durability solid polymer electrolyte fuel cell, and a press-processable separator and its manufacture. A method and a fuel cell are provided.

【0007】[0007]

【課題を解決するための手段】上述の課題を解決するた
め、固体高分子型燃料電池の作用原理に基づき、プレス
成型時の材料挙動を詳細に検討した結果、本発明を完成
させたもので、その要旨とするところは以下の通りであ
る。 (1)凸部及び凹部の繰返し構造となるガス流路の横断
面において、前記凸部及び凹部の外側の面は平坦部を有
し、各肩部は一定の曲率半径をもった曲がり部を有し、
前記凸部及び凹部の内側の面において、上底部及び下底
部全体が一定の曲率で湾曲し、前記肩部、又は前記上底
部及び下底部の曲率半径R(mm)、材料の伸びEL
(%)、板厚をt(mm)とした場合、EL≧50・t
/Rを満足することを特徴とする固体高分子型燃料電池
用セパレータ。 (2)前記平坦部と肩部の接続部分は屈曲部を有するこ
とを特徴する前記(1)記載の固体高分子型燃料電池用
セパレータ。 ()材質がステンレス鋼製もしくはチタン製であるこ
とを特徴とする前記(1)又は(2)記載の固体高分子
型燃料電池用セパレータ。 ()前記(1)〜()の何れか1項に記載の固体高
分子型燃料電池用セパレータの外形と相似形の金型を用
いてプレス成形を行なうことを特徴とする固体高分子型
燃料電池用セパレータの製造方法。 (前記(1)〜(3)の何れか1項に記載の固体高
分子型燃料電池用セパレータの溝の断面形状とほぼ相似
形をなしており、前記セパレータの肩部に対応する部分
が鋭角をなす断面形状である金型を用いてプレス成形を
行なうことを特徴とする固体高分子型燃料電池用セパレ
ータの製造方法。金型の進行と共に張出し成形し溝部を形成し、さ
らに金型を押し込むことによりコイニング加工し,前記
凸部及び凹部の外側の面に所定の幅の平坦部を形成する
ことを特徴とする前記(4)又は(5)記載の固体高分
子型燃料電池用セパレータの製造方法。)前記(1)〜()の何れか1項に記載の固体高
分子型燃料電池用セパレータを用いることを特徴とする
固体高分子型燃料電池。
In order to solve the above problems, the present invention has been completed as a result of detailed examination of material behavior during press molding based on the working principle of a polymer electrolyte fuel cell. The main points are as follows. (1) In a cross section of a gas flow path having a repeating structure of a convex portion and a concave portion, an outer surface of the convex portion and the concave portion has a flat portion, and each shoulder portion has a curved portion having a constant radius of curvature. Yes, and
On the inner surface of the convex portion and the concave portion, the upper bottom portion and the lower bottom portion
The entire part is curved with a constant curvature, and the shoulder portion or the upper bottom is
Curvature radius R (mm) of the bottom and the bottom, material elongation EL
(%) And plate thickness t (mm), EL ≧ 50 · t
A separator for polymer electrolyte fuel cells, characterized in that / R is satisfied . (2) The solid polymer fuel cell separator according to (1), wherein the connecting portion between the flat portion and the shoulder portion has a bent portion. ( 3 ) The solid polymer fuel cell separator according to (1) or (2 ) above, wherein the material is stainless steel or titanium. ( 4 ) A solid polymer characterized by performing press molding using a mold having a shape similar to the outer shape of the solid polymer fuel cell separator according to any one of (1) to ( 3 ). For manufacturing a bipolar fuel cell separator. ( 5 ) The solid height according to any one of (1) to (3) above.
Almost similar to the cross-sectional shape of the groove of the molecular fuel cell separator
Shaped, corresponding to the shoulder of the separator
Press-molding using a die with a sharp cross section
Separation for polymer electrolyte fuel cells characterized by carrying out
Data manufacturing method. ( 6 ) As the mold progresses, it is overmolded to form a groove,
The coining process is performed by pushing the mold into the
Form a flat part with a predetermined width on the outer surface of the convex and concave parts
The high solid content according to (4) or (5) above
A method for manufacturing a separator for a child fuel cell. ( 7 ) A polymer electrolyte fuel cell, characterized by using the polymer electrolyte fuel cell separator according to any one of (1) to ( 3 ).

【0008】[0008]

【発明の実施の形態】以下に図面を用いて詳細を説明す
る。前記(1)〜()記載のセパレータ1の平面図の
例を図1に、また溝端部6におけるセパレータ1、シー
ル板10、および電極である炭素繊維集電体11の具体
的積層構造の一例を図2および図3に示す。ここで、ガ
スの流入孔2,3から供給された水素を含む燃料ガス又
は酸素(空気)が、それぞれセパレータの凹部表面側7
のみ又は凸部裏面側8のみを流れ、流出孔4又は5から
排出される。溝端部における表面側のガスの流れを図2
中に矢印で示す。溝端部において、凸部および凹部の傾
斜角を、1本おきに緩急差をつけることにより、ガスが
下流側へ短絡することを抑制し、溝端部で折り返し、セ
パレータのガス流路全面にわたり、ほぼ一筆書きの形状
で均一にガスを流すことが可能である。またガスの流速
を上げられることから、酸素側で生成された水の排出も
容易となる。シール板10は、セパレータ1の溝高さよ
り僅かに厚く、シール板の中央部くり抜き部の端面の角
度を、前述した溝端部の最大傾斜角より僅かに大きくす
ることにより、ガスの下流側への短絡はさらに抑制され
る。
DETAILED DESCRIPTION OF THE INVENTION The details will be described below with reference to the drawings. An example of a plan view of the separator 1 described in (1) to ( 3 ) above is shown in FIG. 1, and a specific laminated structure of the separator 1 at the groove end 6, the seal plate 10, and the carbon fiber current collector 11 as an electrode is shown. An example is shown in FIGS. 2 and 3. Here, the fuel gas containing hydrogen or oxygen (air) supplied from the gas inflow holes 2 and 3 is respectively supplied to the concave surface side 7 of the separator.
Only or only the back surface 8 of the convex portion, and is discharged from the outflow holes 4 or 5. Figure 2 shows the flow of gas on the surface side at the groove end.
Shown by an arrow inside. At the groove ends, the inclination angles of the protrusions and the recesses are made different every other line to prevent the gas from being short-circuited to the downstream side. It is possible to flow gas evenly in the shape of one stroke. Further, since the gas flow rate can be increased, it is easy to discharge the water generated on the oxygen side. The seal plate 10 is slightly thicker than the groove height of the separator 1, and the angle of the end face of the central hollow portion of the seal plate is slightly larger than the maximum inclination angle of the groove end described above, so that Short circuits are further suppressed.

【0009】図4および図5には、溝端部において、凸
部および凹部の傾斜角を4本おきに緩急差をつける溝配
列の例を示す。溝端部における表面側のガスの流れを図
5中に矢印で示す。この例では、2本の溝を並列にガス
が流れ、端部の折り返し部では、ガスが混合され、再び
2本に分岐して流れる流路構造を形成する。前述した図
1の配列に比較して、溝の平行部における流速は若干低
下するが、圧損が少なくなるという効果が得られる。言
うまでもなく、緩急差をつける溝配列は、ここで示され
た2例に限定されるものではなく、ガスの供給装置の能
力、発電効率等から任意に選択されるべきものである。
このように溝端部に緩急差をつけることにより、多様な
流路パターンを形成できる。セパレータの材質は、電子
伝導性、耐食性、気密性の観点から、グラファイト板、
金属板等を使用できるが、薄くできてプレス加工が可能
なステンレス鋼製又はチタン製であることが好ましい。
FIG. 4 and FIG. 5 show an example of a groove arrangement in which the inclination angles of the convex portion and the concave portion are gradually different every four at the groove end portion. The flow of gas on the surface side at the groove end is shown by an arrow in FIG. In this example, the gas flows in parallel through the two grooves, and the gas is mixed at the folded-back portion at the end, and a flow path structure is formed in which the gas is branched into two again and flows. Compared with the arrangement of FIG. 1 described above, the flow velocity in the parallel portion of the groove is slightly reduced, but the effect of reducing the pressure loss can be obtained. Needless to say, the groove arrangement for making the difference between the steepness and the steepness is not limited to the two examples shown here, and should be arbitrarily selected from the capability of the gas supply device, the power generation efficiency, and the like.
In this way, various flow path patterns can be formed by providing the groove ends with a gradual difference. The material of the separator is a graphite plate, from the viewpoint of electronic conductivity, corrosion resistance and airtightness.
Although a metal plate or the like can be used, it is preferably made of stainless steel or titanium which can be made thin and can be pressed.

【0010】図6には、前記(1)〜()記載のセパ
レータおよびシール板を用いた、前記(7)記載の燃料
電池スタックの構造の例を示す。セパレータ1、シール
板10、電極である炭素繊維集電体11の積層構造で、
両面に電極触媒が塗布された固体高分子膜12をサンド
イッチすることで、単セルが形成される。図中のAサイ
クルを繰り返し積層することで燃料電池スタックが構成
される。また、固体高分子型燃料電池においては反応に
伴う発熱があり、固体高分子膜を適切な温度に保つため
にスタックを冷却する必要があるが、このセパレータの
溝は冷却水の流路とすることも可能であり、スタックサ
イクルの適当な間隔で、冷却水流路を含むBサイクルを
挿入することで、スタックの冷却が可能となる。
FIG. 6 shows an example of the structure of the fuel cell stack described in (7) using the separator and the seal plate described in (1) to ( 3 ). In the laminated structure of the separator 1, the seal plate 10, and the carbon fiber current collector 11 which is an electrode,
A single cell is formed by sandwiching the solid polymer film 12 with the electrode catalyst applied on both sides. A fuel cell stack is constructed by repeatedly stacking A cycles in the figure. Further, in the polymer electrolyte fuel cell, heat is generated by the reaction, and it is necessary to cool the stack to keep the polymer electrolyte membrane at an appropriate temperature. It is also possible to cool the stack by inserting the B cycle including the cooling water flow path at appropriate intervals in the stack cycle.

【0011】シール板の材質は、適度な弾性を有し、冷
却水の沸点以下で分解・塑性変形が起きない材料であれ
ばよく、シリコン樹脂、ブタジエンゴム系樹脂、フッ素
系樹脂などが適用可能で、溝高さより僅かに厚いシール
板を締め付けることによりガスがシールされ、また適度
な弾性を有することで、セパレータ等の微小な変形にも
追従することが可能となる。図中、固体高分子膜を挟ん
で、水素側および酸素側の流路が対向する形式としてい
るが、これに限定されることなく、両者が交差する形式
でもかまわない。
The material of the seal plate may be any material as long as it has appropriate elasticity and does not decompose or plastically deform below the boiling point of the cooling water. Silicon resin, butadiene rubber resin, fluorine resin, etc. can be applied. Then, the gas is sealed by tightening the sealing plate that is slightly thicker than the groove height, and by having an appropriate elasticity, it is possible to follow a minute deformation of the separator or the like. In the figure, the hydrogen-side channel and the oxygen-side channel are opposed to each other with the solid polymer membrane sandwiched between them, but the invention is not limited to this, and the two may intersect.

【0012】図7には、前記(1)〜()記載の溝の
詳細断面形状を示す。セパレータの溝周期21は、ガス
供給の均一性と集電効率の観点からより小さいことが望
ましく、また接触抵抗低減の観点から、電極との接触面
積が大きいことが望ましいが、板厚に比較して溝周期2
1が小さくなると、曲げ歪みが増加し、また、接触面積
を増やすために角の曲率半径を小さくしたり、平坦部2
0の長さを大きくすることによっても歪みが増加し、加
工中に破断して成形が困難となる。一般には、溝周期2
1は2〜3mmで、溝深さは最大1mm程度のものが燃
料電池用セパレータの流路として使われるが、板厚0.
1〜0.3mm程度の金属板を成形すると、板厚に比較
して溝形状が微細で、角部の曲げ歪みが大きくなり、成
形中に角部で破断することが多かった。そこで、種々の
形状について金型を試作し、種々の材料を用いてプレス
を行った結果、ガス流路の横断面において、凸部及び凹
部の外側の面に平坦部20を有する断面形状でプレス成
形すれば破断することなく成形出来ることを見出した。
FIG. 7 shows a detailed cross-sectional shape of the groove described in (1) to ( 3 ) above. The groove period 21 of the separator is preferably smaller from the viewpoint of gas supply uniformity and current collection efficiency, and from the viewpoint of contact resistance reduction, it is desirable that the contact area with the electrode is large. Groove cycle 2
When 1 is smaller, bending strain is increased, and in order to increase the contact area, the radius of curvature of the corner is reduced or the flat portion 2
When the length of 0 is increased, the strain also increases, and it breaks during processing, making molding difficult. Generally, groove period 2
No. 1 is 2 to 3 mm, and a groove depth of about 1 mm at the maximum is used as the flow path of the fuel cell separator.
When a metal plate having a thickness of about 1 to 0.3 mm is formed, the groove shape is finer than the plate thickness, bending distortion at the corners becomes large, and the corners often break during forming. Therefore, as a result of trial manufacture of dies having various shapes and pressing using various materials, pressing with a cross-sectional shape having a flat portion 20 on the outer surface of the convex portion and the concave portion in the cross section of the gas flow path was performed. It has been found that molding can be performed without breaking.

【0013】平坦部20の幅は、接触抵抗低減の観点か
ら、電極との接触面積が大きいことが望ましく、好まし
くは流路を形成する電極部投影面積の20%以上とする
ことにより接触抵抗が小さくなり燃料電池の出力が向上
する。一方、化学反応を促進し所定の起電力を得、燃料
ガスが電極面全体に均一に供給されるためには、50%
以下とすることが好ましい。また、平坦部20と肩部2
4の接続部分は屈曲部26を有することが好ましく、そ
の屈曲部26を有することによりセパレータ平坦部20
と電極(炭素繊維集合体)11の接触面積を確保し、所
定の接触抵抗に設定することが出来る。図11に示すが
ごとく、肩部23が曲率を有する場合、肩部23の屈曲
部26における接線と平坦部20のなす角度αが、電極
との接触面積を確保するためには30度以上とすること
が好ましく、化学反応を促進し所定の起電力を得、燃料
ガスが電極面全体に均一に供給されるためには90度以
下とすることが好ましい。また、図8に示すごとく、肩
部23にR部がなく、鋭角をなす断面形状であってもよ
い。尚、肩部23の形状はプレス成形時の金型の形状お
よびストロークにより決まるものである。更に、好まし
くは、肩部、又は凸部及び凹部の内側の面において上底
部及び下底部全体が50・t/EL[mm]以上で湾曲
していれば破断歪を下回るため,プレス成形時に破断す
ることなく成形出来ることを見出した。曲率半径は破断
を防ぐためには50・t/EL[mm]以上とすること
が好ましく、化学反応を促進し所定の起電力を得、燃料
ガスが電極面全体に均一に供給されるためには、1[m
m]以下とすることが好ましい。
From the viewpoint of reducing the contact resistance, it is desirable that the flat portion 20 has a large contact area with the electrode. Preferably, the width of the flat portion 20 is 20% or more of the projected area of the electrode portion forming the flow path so that the contact resistance is increased. It becomes smaller and the output of the fuel cell is improved. On the other hand, in order to promote the chemical reaction, obtain a predetermined electromotive force, and evenly supply the fuel gas to the entire electrode surface, 50% is required.
The following is preferable. Also, the flat portion 20 and the shoulder portion 2
It is preferable that the connection portion 4 has a bent portion 26, and by having the bent portion 26, the separator flat portion 20
It is possible to secure a contact area between the electrode and the electrode (carbon fiber aggregate) 11 and set a predetermined contact resistance. As shown in FIG. 11, when the shoulder portion 23 has a curvature, the angle α between the tangent to the bent portion 26 of the shoulder portion 23 and the flat portion 20 is 30 degrees or more in order to secure the contact area with the electrode. In order to accelerate the chemical reaction, obtain a predetermined electromotive force, and to uniformly supply the fuel gas to the entire electrode surface, it is preferably 90 degrees or less. Further, as shown in FIG. 8, the shoulder portion 23 may have no R portion and may have an acute cross-sectional shape. The shape of the shoulder portion 23 is determined by the shape and stroke of the die during press molding. More preferably, if the entire upper bottom part and lower bottom part on the inner surface of the shoulder part or the convex part and the concave part are curved at 50 · t / EL [mm] or more, the breaking strain will be less than the breaking strain. It was found that it can be molded without performing. The radius of curvature is preferably 50 · t / EL [mm] or more in order to prevent breakage, and in order to promote a chemical reaction and obtain a predetermined electromotive force and to uniformly supply the fuel gas to the entire electrode surface. 1 [m
m] or less is preferable.

【0014】図9には、前記(1)〜()記載のセパ
レータを成形するための金型の断面形状の例を示したも
のである。金型は図7および図8に示す前記(1)〜
)記載のセパレータの溝の断面形状とほぼ相似形を
なしており、図9に示す上型24を徐々に押し込み、セ
パレータをプレス成形する。金型の進行と共に張出し成
形され溝部が形成され、さらに金型を押し込むことによ
りコイニング加工され、凸部及び凹部の外側の面に所定
の幅の平坦部20が形成される。金型形状は図9に示す
形状に限られず、セパレータの断面形状と完全に相似形
である金型を用いてもよい。
FIG. 9 shows an example of the cross-sectional shape of a mold for molding the separator described in (1) to ( 3 ) above. The mold has the above (1)-(8) shown in FIGS.
The cross-sectional shape of the groove of the separator described in ( 3 ) is substantially similar, and the upper mold 24 shown in FIG. 9 is gradually pushed in to press-mold the separator. A groove is formed by bulging as the mold progresses, and coining is performed by further pressing the mold to form a flat portion 20 having a predetermined width on the outer surface of the protrusion and the recess. The mold shape is not limited to the shape shown in FIG. 9, and a mold that is completely similar to the cross-sectional shape of the separator may be used.

【0015】[0015]

【実施例】上述の発明を元に固体高分子型燃料電池を試
作し、ガスシール性能や発電性能を確認した。図10
は、図6に示した構成により積み上げた燃料電池スタッ
クであり、図6における上下方向が図10の矢印により
示されている。各部材の四周に位置決めと全圧をかける
目的でボルト穴を配し、高張力ボルトと剛性のある終端
板を用いてスタックの締め付けを行ったが、この図中に
はその様子を省略してある。スタックサイクルは図6に
示すAサイクルを4回毎にBサイクルを1回の割合で繰
り返し、単セルを合計200段積み上げる構成とした。
燃料電池の大きさは縦250mm×横250mm×高さ
150mmとした。1枚のセパレータの流路部分の大き
さは100mm×200mmとし、セパレータには、板
厚0.2mm,伸びEL35%の20Cr?15Ni?3
Mo系オーステナイト系ステンレス鋼を用い、固体高分
子膜、電極触媒および炭素繊維集電体は、市販のそれぞ
れパーフルオロスルホン酸系イオン交換膜、カーボンブ
ラックに白金を担持したもの、多孔質カーボンペーパー
を用いて、固体高分子燃料電池を試作した。またセパレ
ータの溝形状は次のように、溝ピッチが一定のものを試
作し、溝形状と相似形を有する上下の金型を用いてプレ
ス成形により加工を行った。溝配列として、図1,図
2,図3に示す1本の溝を一筆書きの形状で流れるもの
とし、断面形状は図7に示すもので、肩部の曲率半径
0.3mm、凸部及び凹部の内側の上底部及び下底部の
曲率半径は0.3mm、平坦部の幅は0.5mm,溝周
期は1.55mm,溝深さは最大0.5mmとした。
EXAMPLE A polymer electrolyte fuel cell was prototyped based on the above-mentioned invention, and gas sealing performance and power generation performance were confirmed. Figure 10
Is a fuel cell stack that is stacked by the configuration shown in FIG. 6, and the up and down direction in FIG. 6 is indicated by the arrow in FIG. Bolt holes were placed on the four circumferences of each member for the purpose of positioning and applying full pressure, and the stack was tightened using high tension bolts and rigid end plates, but this state is omitted in this figure. is there. In the stack cycle, the A cycle shown in FIG. 6 is repeated every four times and the B cycle is repeated once to stack a total of 200 single cells.
The size of the fuel cell was 250 mm length × 250 mm width × 150 mm height. The size of the flow path part of one separator is 100 mm x 200 mm, and the separator has a plate thickness of 0.2 mm and an elongation of 35% of 20Cr-15Ni-3.
Using Mo-based austenitic stainless steel, solid polymer membrane, electrode catalyst and carbon fiber current collector are commercially available perfluorosulfonic acid-based ion exchange membrane, platinum supported on carbon black, and porous carbon paper. A polymer electrolyte fuel cell was prototyped using the above. Further, the groove shape of the separator was prototyped as follows, and was processed by press molding using upper and lower molds having similar shapes to the groove shape. As the groove arrangement, one groove shown in FIGS. 1, 2 and 3 flows in a single stroke, the sectional shape is as shown in FIG. 7, the radius of curvature of the shoulder portion is 0.3 mm, and the convex portion is The radius of curvature of the upper and lower bottom portions inside the recess was 0.3 mm, the width of the flat portion was 0.5 mm, the groove period was 1.55 mm, and the groove depth was 0.5 mm at the maximum.

【0016】図10の冷却水導入口17および冷却水排
出口18には、スタック側面から冷却水を供給・排出す
るための側面キャップを配し、スタックと接するキャッ
プ端部はシリコーン樹脂により水漏れしないようシール
した。13および15はそれぞれ燃料ガスの導入・排出
口であり、14および16は空気ガスの導入・排出口で
ある。セパレータのプレス加工においては、破断するこ
となく成形され、このように試作した固体高分子型燃料
電池を80℃で稼働させ、燃料ガスである水素および空
気を90℃で加湿して供給することで電力発生を行わせ
た。いずれの固体高分子型燃料電池においても、ガス漏
れや水漏れは発生せず、さらには開放電圧で約90V、
短絡電流で約100Aの電力発生を確認した。このよう
に、本発明のセパレータを用いて燃料電池として良好に
機能することが確認された。
The cooling water inlet 17 and the cooling water outlet 18 in FIG. 10 are provided with side caps for supplying / discharging cooling water from the side surface of the stack, and the cap ends contacting the stack are leaked by silicone resin. I sealed it to prevent it. Reference numerals 13 and 15 are fuel gas inlet / outlet ports, and 14 and 16 are air gas inlet / outlet ports. In the pressing of the separator, the polymer electrolyte fuel cell, which was molded without breaking and was prototyped in this way, was operated at 80 ° C, and hydrogen and air that were fuel gases were humidified and supplied at 90 ° C. Power was generated. No gas leakage or water leakage occurred in any of the polymer electrolyte fuel cells, and the open-circuit voltage was about 90 V,
It was confirmed that about 100 A of electric power was generated by the short circuit current. As described above, it was confirmed that the separator of the present invention was used to favorably function as a fuel cell.

【0017】[0017]

【発明の効果】本発明は、固体高分子型燃料電池用セパ
レータとして高耐食ステンレス鋼やチタンのプレス成形
加工を可能にするものであり、低コスト固体高分子型燃
料電池を実現する技術として極めて有効なものである。
INDUSTRIAL APPLICABILITY The present invention enables press forming of highly corrosion resistant stainless steel or titanium as a polymer electrolyte fuel cell separator, and is extremely useful as a technique for realizing a low cost polymer electrolyte fuel cell. It is valid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセパレータの平面図の例である。FIG. 1 is an example of a plan view of a separator of the present invention.

【図2】本発明のセパレータを用いた積層構造の例を示
す模式図である。
FIG. 2 is a schematic view showing an example of a laminated structure using the separator of the present invention.

【図3】本発明のセパレータの溝端部の平面拡大図、お
よび本発明のセパレータを用いた積層構造の断面図であ
る。
FIG. 3 is an enlarged plan view of a groove end portion of the separator of the present invention, and a cross-sectional view of a laminated structure using the separator of the present invention.

【図4】本発明の別のセパレータの平面図の例である。FIG. 4 is an example of a plan view of another separator of the present invention.

【図5】本発明の別のセパレータの溝端部の拡大図であ
る。
FIG. 5 is an enlarged view of a groove end portion of another separator of the present invention.

【図6】本発明のセパレータを用いて固体高分子型燃料
電池スタックを構築する一例を示した模式図である。
FIG. 6 is a schematic view showing an example of constructing a polymer electrolyte fuel cell stack using the separator of the present invention.

【図7】本発明のセパレータの詳細断面形状を示す模式
図である。
FIG. 7 is a schematic view showing a detailed cross-sectional shape of the separator of the present invention.

【図8】本発明の別のセパレータの詳細断面形状を示す
模式図である。
FIG. 8 is a schematic view showing a detailed sectional shape of another separator of the present invention.

【図9】セパレータを成形するための金型の断面形状の
例である。
FIG. 9 is an example of a cross-sectional shape of a mold for molding a separator.

【図10】本発明を適用して試作した固体高分子型燃料
電池の一例を示す外観模式図である。
FIG. 10 is a schematic external view showing an example of a polymer electrolyte fuel cell prototyped by applying the present invention.

【図11】本発明のセパレータの屈曲部を示す拡大図で
ある。
FIG. 11 is an enlarged view showing a bent portion of the separator of the present invention.

【符号の説明】[Explanation of symbols]

1:セパレータ 2:燃料ガス流入孔 3:酸素(空気)流入孔 4:燃料ガス流出孔 5:酸素(空気)流出孔 6:溝端部 7:凹部(燃料ガス流路) 8:凸部(酸素(空
気)流路) 9:セパレータ四周平坦部 10:シール板 11:電極(炭素繊維集電体) 12:固体高分子膜 13:燃料ガス導入口 14:酸素(空気)導
入口 15:燃料ガス排出口 16:酸素(空気)お
よび生成水排出口 17:冷却水導入口 18:冷却水排出口 19:ガスの流れ 20:平坦部 21:溝周期 22:溝深さ 23:肩部 24:上型 25:下型 26:屈曲部
1: Separator 2: Fuel gas inflow hole 3: Oxygen (air) inflow hole 4: Fuel gas outflow hole 5: Oxygen (air) outflow hole 6: Groove end 7: Recessed portion (fuel gas flow path) 8: Convex portion (oxygen) (Air flow path) 9: Flat part around the separator four sides 10: Seal plate 11: Electrode (carbon fiber current collector) 12: Solid polymer membrane 13: Fuel gas inlet port 14: Oxygen (air) inlet port 15: Fuel gas Outlet port 16: Oxygen (air) and generated water outlet port 17: Cooling water inlet port 18: Cooling water outlet port 19: Gas flow 20: Flat portion 21: Groove period 22: Groove depth 23: Shoulder portion 24: Top Mold 25: Lower mold 26: Bending part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 紀平 寛 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特開2000−138065(JP,A) 特開2000−317531(JP,A) 特開2000−334520(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Kihira 20-1 Shintomi, Futtsu City, Chiba Nippon Steel Co., Ltd. Technology Development Division (56) Reference JP 2000-138065 (JP, A) JP 2000-317531 (JP, A) JP 2000-334520 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 8 / 00-8 / 24

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 凸部及び凹部の繰返し構造となるガス流
路の横断面において、前記凸部及び凹部の外側の面は平
坦部を有し、各肩部は一定の曲率半径をもった曲がり部
を有し、前記凸部及び凹部の内側の面において、上底部
及び下底部全体が一定の曲率で湾曲し、前記肩部,又は
前記上底部及び下底部の曲率半径R(mm)、材料の伸
びEL(%)、板厚をt(mm)とした場合、EL≧5
0・t/Rを満足することを特徴とする固体高分子型燃
料電池用セパレータ。
1. In a cross section of a gas flow path having a repeating structure of a convex portion and a concave portion, the outer surface of the convex portion and the concave portion has a flat portion, and each shoulder portion is curved with a constant radius of curvature. part have a, in inner surface of the convex portion and the concave portion, the upper bottom
And the entire lower bottom portion is curved with a constant curvature, and the shoulder portion, or
The radius of curvature R (mm) of the upper bottom portion and the lower bottom portion, the elongation of the material
And EL (%) and the plate thickness is t (mm), EL ≧ 5
A polymer electrolyte fuel cell separator characterized by satisfying 0 · t / R.
【請求項2】前記平坦部と肩部の接続部分は屈曲部を有
することを特徴する請求項1記載の固体高分子型燃料電
池用セパレータ。
2. The separator for a polymer electrolyte fuel cell according to claim 1, wherein the connecting portion between the flat portion and the shoulder portion has a bent portion.
【請求項3】 材質がステンレス鋼製もしくはチタン製
であることを特徴とする請求項1又は2記載の固体高分
子型燃料電池用セパレータ。
3. A process according to claim 1 or 2 for a polymer electrolyte fuel cell separator, wherein the material is made of stainless steel or titanium.
【請求項4】 請求項1〜の何れか1項に記載の固体
高分子型燃料電池用セパレータの外形と相似形の金型を
用いてプレス成形を行なうことを特徴とする固体高分子
型燃料電池用セパレータの製造方法。
4. A solid polymer mold characterized in that press molding is carried out using a mold similar to the outer shape of the solid polymer fuel cell separator according to any one of claims 1 to 3. Method for manufacturing fuel cell separator.
【請求項5】請求項1〜3の何れか1項に記載の固体高
分子型燃料電池用セパレータの溝の断面形状とほぼ相似
形をなしており、前記セパレータの肩部に対応する部分
が鋭角をなす断面形状である金型を用いてプレス成形を
行なうことを特徴とする固体高分子型燃料電池用セパレ
ータの製造方法。
5. The solid height according to any one of claims 1 to 3.
Almost similar to the cross-sectional shape of the groove of the molecular fuel cell separator
Shaped, corresponding to the shoulder of the separator
Press-molding using a die with a sharp cross section
Separation for polymer electrolyte fuel cells characterized by carrying out
Data manufacturing method.
【請求項6】金型の進行と共に張出し成形し溝部を形成
し、さらに金型を押し込むことによりコイニング加工
し,前記凸部及び凹部の外側の面に所定の幅の平坦部を
形成することを特徴とする請求項4又は5記載の固体高
分子型燃料電池用セパレータの製造方法。
6. A groove portion is formed by bulging as the die advances.
And then coining by pushing in the mold
Then, a flat portion with a predetermined width is formed on the outer surface of the convex portion and the concave portion.
The solid height according to claim 4 or 5, wherein the solid height is formed.
A method for manufacturing a separator for a molecular fuel cell.
【請求項7】 請求項1〜の何れか1項に記載の固体
高分子型燃料電池用セパレータを用いることを特徴とす
る固体高分子型燃料電池。
7. A polymer electrolyte fuel cell, which uses the separator for polymer electrolyte fuel cell according to any one of claims 1 to 3 .
JP2000267342A 2000-07-07 2000-09-04 Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell Expired - Fee Related JP3448557B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000267342A JP3448557B2 (en) 2000-09-04 2000-09-04 Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
CA002352443A CA2352443C (en) 2000-07-07 2001-07-05 Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
DE10132841A DE10132841B4 (en) 2000-07-07 2001-07-06 Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells
US09/900,657 US6709781B2 (en) 2000-07-07 2001-07-06 Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267342A JP3448557B2 (en) 2000-09-04 2000-09-04 Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002075401A JP2002075401A (en) 2002-03-15
JP3448557B2 true JP3448557B2 (en) 2003-09-22

Family

ID=18754283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267342A Expired - Fee Related JP3448557B2 (en) 2000-07-07 2000-09-04 Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3448557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030044B1 (en) * 2004-08-30 2011-04-20 삼성에스디아이 주식회사 Fuel cell system, stack and separator used thereto

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184431A (en) * 2000-12-15 2002-06-28 Aisin Seiki Co Ltd Fuel cell separator and fuel cell
DE10328039B4 (en) * 2003-06-18 2012-08-02 Reinz-Dichtungs-Gmbh Electrochemical arrangement with elastic distribution structure
JP4065832B2 (en) 2003-12-03 2008-03-26 本田技研工業株式会社 Press forming apparatus and press forming method for metal separator for fuel cell
EP1906477A1 (en) 2005-06-22 2008-04-02 Nippon Steel Corporation Separator for solid polymer electrolyte fuel cell of stainless steel, titanium or titanium alloy, process for producing the same, and method for evaluating warping and twisting of separator
JP2007193971A (en) * 2006-01-17 2007-08-02 Toyota Motor Corp Fuel cell
JP5163028B2 (en) 2007-09-20 2013-03-13 日立電線株式会社 Metal separator for fuel cell and manufacturing method thereof
KR20170003668A (en) * 2014-06-24 2017-01-09 신닛테츠스미킨 카부시키카이샤 Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
JP6642534B2 (en) * 2017-08-04 2020-02-05 トヨタ自動車株式会社 Manufacturing method of fuel cell separator
US20190165383A1 (en) * 2017-11-29 2019-05-30 Flosfia Inc. Layered structure, electronic device including layered structure, system including electronic device, and method of manufacturing layered structure
JP7095549B2 (en) * 2018-10-18 2022-07-05 トヨタ自動車株式会社 Fuel cell separator and its manufacturing method, fuel cell separator manufacturing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030044B1 (en) * 2004-08-30 2011-04-20 삼성에스디아이 주식회사 Fuel cell system, stack and separator used thereto

Also Published As

Publication number Publication date
JP2002075401A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US6709781B2 (en) Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
US8371587B2 (en) Metal bead seal for fuel cell plate
US8465879B2 (en) Reinforced fuel cell metal plate perimeter
JP2002313354A (en) Manufacturing method and device for separator for solid polymer fuel cell
JP3448557B2 (en) Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
RU2011107433A (en) INTERCONNECTOR FOR FUEL ELEMENTS AND METHOD FOR PRODUCING INTERCONNECTOR FOR FUEL ELEMENTS
JP2002190305A (en) Manufacturing apparatus for solid polymer fuel cell separator
JP2002184422A (en) Separator for fuel cell
JP3400976B2 (en) Separator for polymer electrolyte fuel cell and fuel cell
JP2000260439A (en) Stainless steel separator for solid polymer fuel cell, spacer, polymer film, and solid polymer fuel cell
JP4928067B2 (en) Fuel cell and metal separator for fuel cell
CN1253957C (en) Fuel battery bipolar plate
US8211591B2 (en) Subgasket window edge design relief
CN100346501C (en) Sealing structure of fuel battery
JP5169480B2 (en) Separator manufacturing equipment for polymer electrolyte fuel cells
JP2007026899A (en) Fuel cell and manufacturing method of separator therefor
JP3646181B2 (en) Method for producing metal separator for fuel cell
JP4110626B2 (en) Manufacturing method of current collector for fuel cell
JP6068218B2 (en) Operation method of fuel cell
JP2004119235A (en) Separator for solid polymer fuel cell, its manufacturing device and manufacturing method
JP2002343373A (en) Polymer electrolyte fuel cell and manufacturing method of separator plate for the same
CN101573819A (en) Heat insulation cell for fuel cell and method of producing the same
JP4639744B2 (en) Fuel cell
JP4451963B2 (en) Load transfer wave plate for polymer electrolyte fuel cell cooling water flow path and polymer electrolyte fuel cell using the same
JP4451964B2 (en) Separator for polymer electrolyte fuel cell, gas channel spacer and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030603

R151 Written notification of patent or utility model registration

Ref document number: 3448557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees