JP2008041456A - Method of manufacturing separator for fuel cell, and separator for fuel cell - Google Patents

Method of manufacturing separator for fuel cell, and separator for fuel cell Download PDF

Info

Publication number
JP2008041456A
JP2008041456A JP2006214896A JP2006214896A JP2008041456A JP 2008041456 A JP2008041456 A JP 2008041456A JP 2006214896 A JP2006214896 A JP 2006214896A JP 2006214896 A JP2006214896 A JP 2006214896A JP 2008041456 A JP2008041456 A JP 2008041456A
Authority
JP
Japan
Prior art keywords
separator
flow path
fuel cell
longitudinal direction
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006214896A
Other languages
Japanese (ja)
Inventor
Nobufumi Oe
伸史 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006214896A priority Critical patent/JP2008041456A/en
Publication of JP2008041456A publication Critical patent/JP2008041456A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator having a high sealing property by suppressing deformation of the separator. <P>SOLUTION: After a passage comprising an uneven shape is formed in a region contributing to power generation by pressing a metal plate, a part with the passage formed therein is extended along the longitudinal direction of the passage. Extending members 28 and 29 are used in order to extend it, and both ends 15A and 15B of the passage are sandwiched between a set of extending members 28 and 29 from the plate thickness direction, and thereafter pulled in the longitudinal direction of the passage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池用セパレータの製造方法及び燃料電池用セパレータに関し、詳細には、金属板をプレス加工して流路を形成した時に発生したセパレータの変形(反りやうねり)を矯正するための技術に関する。   TECHNICAL FIELD The present invention relates to a method for manufacturing a fuel cell separator and a fuel cell separator, and more specifically, for correcting deformation (warping and undulation) of a separator that occurs when a metal plate is pressed to form a flow path. Regarding technology.

例えば、高分子電解質膜の両面に水素と酸素を供給して起電力を発生させる燃料電池では、単位体積当たりの起電力をより一層高めるために、金属製の薄板をプレス加工して凹凸形状の流路を形成する、いわゆる薄板金属セパレータの開発がなされている(例えば、特許文献1、2など参照)。   For example, in a fuel cell in which hydrogen and oxygen are supplied to both sides of a polymer electrolyte membrane to generate electromotive force, a metal thin plate is pressed to form an uneven shape in order to further increase the electromotive force per unit volume. A so-called thin metal separator that forms a flow path has been developed (see, for example, Patent Documents 1 and 2).

通常、金属セパレータは、プレスマシン及び金型を用いたプレス成形にて形成され、予備成形、仕上げ成形及びトリミング工程を経て製造される。そして、このようにして得られた金属セパレータは、2枚重ね合わせることで、燃料ガス、酸化剤ガス及び冷却水(冷媒)をそれぞれ流通させる燃料ガス流路、酸化剤ガス流路及び冷媒流路を形成してなるセパレータとされる。
特開2005−78981号公報 特開2005−32578号公報
Usually, a metal separator is formed by press molding using a press machine and a mold, and is manufactured through preliminary molding, finish molding, and trimming processes. Then, two metal separators obtained in this way are stacked so that the fuel gas, the oxidant gas, and the coolant (refrigerant) flow through the fuel gas channel, the oxidant gas channel, and the refrigerant channel, respectively. It is set as the separator formed.
Japanese Patent Application Laid-Open No. 2005-78981 JP 2005-32578 A

しかしながら、プレス工程の予備成形及び仕上げ工程は何れも材料を引き延ばして成形する張り出し成形であるため、引き延ばされた材料が戻ろうとし、プレス成形後の変形(反りやうねり)が発生する。   However, since both the preforming and finishing processes of the press process are stretch forming in which the material is stretched and formed, the stretched material tends to return, and deformation (warping and waviness) after press forming occurs.

特に、燃料電池に使用されるセパレータでは、凹凸形状をなす規則性を持った流路とされていることから、流路と交差する方向に大きく曲がり易い。このように変形したセパレータ同士を重ね合て接合一体化した場合、接合部分に隙間が生じて流路からガスや冷媒が漏れる可能性がある。   In particular, in a separator used in a fuel cell, since it has a regular flow path having an uneven shape, it is likely to bend greatly in a direction intersecting the flow path. When the separators thus deformed are overlapped and joined together, a gap may be formed at the joined portion, and gas or refrigerant may leak from the flow path.

そこで、本発明は、セパレータの変形を抑制し、シール性の高いセパレータを提供し得る燃料電池用セパレータの製造方法及び燃料電池用セパレータを提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the separator for fuel cells which can suppress a deformation | transformation of a separator, and can provide a separator with high sealing performance, and the separator for fuel cells.

本発明に係る燃料電池用セパレータの製造方法は、金属板をプレス加工して発電に寄与する領域に凹凸形状からなる流路を形成し、前記流路が形成された部位をその流路長手方向に沿って引き伸ばすことを特徴とする。ここでは、燃料ガス、酸化剤ガス及び冷媒が流れる部分を流路と定義する。   The method for manufacturing a separator for a fuel cell according to the present invention includes forming a flow path having a concavo-convex shape in a region that contributes to power generation by pressing a metal plate, and the portion where the flow path is formed is a longitudinal direction of the flow path. It is characterized by stretching along. Here, a portion through which fuel gas, oxidant gas and refrigerant flow is defined as a flow path.

本発明の燃料電池用セパレータの製造方法によれば、プレス加工によって流路を形成した後に、前記流路が形成された部位をその流路長手方向に沿って引き伸ばすことで、プレス加工時に材料に残る縮もうとする力(残留応力)が、この引っ張り力によって相殺され、残留応力を減少させることができる。したがって、本発明方法によれば、反りやうねりの発生が抑制された燃料電池用セパレータを得ることができる。   According to the method for manufacturing a separator for a fuel cell of the present invention, after forming the flow path by press working, the portion where the flow path is formed is stretched along the longitudinal direction of the flow path, so that The remaining shrinking force (residual stress) is offset by this pulling force, and the residual stress can be reduced. Therefore, according to the method of the present invention, it is possible to obtain a fuel cell separator in which the occurrence of warpage and undulation is suppressed.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

「燃料電池スタックの全体構成」
先ず、本発明の燃料電池用セパレータが使用される燃料電池スタックの全体構成について簡単に説明する。図1は燃料電池スタックの全体構成を示す斜視図、図2は燃料電池単セルの拡大断面図、図3は燃料電池単セルの要部拡大断面図である。
"Overall structure of fuel cell stack"
First, the overall configuration of a fuel cell stack in which the fuel cell separator of the present invention is used will be briefly described. FIG. 1 is a perspective view showing the overall configuration of a fuel cell stack, FIG. 2 is an enlarged cross-sectional view of a single fuel cell, and FIG. 3 is an enlarged cross-sectional view of a main part of the single fuel cell.

燃料電池スタック1は、図1に示すように、燃料ガス(水素ガス)と酸化剤ガス(酸素)の反応により起電力を生じる単位電池としての燃料電池単セル2を所定数だけ積層した積層体3とされ、その積層体3の両端に集電板4、絶縁板5およびエンドプレート6を配置し、該積層体3をタイロッド7で締め付け、そのタイロッド7の端部にナット100を螺合させることで構成されている。   As shown in FIG. 1, a fuel cell stack 1 is a laminate in which a predetermined number of fuel cell single cells 2 as unit cells that generate an electromotive force by reaction of fuel gas (hydrogen gas) and oxidant gas (oxygen) are stacked. 3, the current collector plate 4, the insulating plate 5 and the end plate 6 are arranged at both ends of the laminated body 3, the laminated body 3 is fastened with a tie rod 7, and a nut 100 is screwed onto the end of the tie rod 7. It is composed of that.

この燃料電池スタック1では、燃料ガス、酸化剤ガスおよび冷媒(冷却水)をそれぞれ各燃料電池単セル2のセパレータ(図示は省略する)に形成された各流路に流通させるための燃料ガス導入口8、燃料ガス排出口9、酸化剤ガス導入口10、酸化剤ガス排出口11、冷媒導入口12および冷媒排出口13を、一方のエンドプレート6に形成している。   In this fuel cell stack 1, fuel gas introduction for allowing fuel gas, oxidant gas and refrigerant (cooling water) to flow through each flow path formed in a separator (not shown) of each fuel cell single cell 2. A port 8, a fuel gas outlet 9, an oxidant gas inlet 10, an oxidant gas outlet 11, a refrigerant inlet 12 and a refrigerant outlet 13 are formed in one end plate 6.

かかる構成の燃料電池スタック1においては、燃料ガスは、燃料ガス導入口8より導入されてセパレータに形成された燃料ガス流路を流れ、燃料ガス排出口9より排出される。酸化剤ガスは、酸化剤ガス導入口10より導入されてセパレータに形成された酸化剤ガス流路を流れ、酸化剤ガス排出口11より排出される。冷媒は、冷媒導入口12より導入されてセパレータに形成された冷媒流路を流れ、冷媒排出口13より排出される。   In the fuel cell stack 1 having such a configuration, the fuel gas is introduced from the fuel gas inlet 8, flows through the fuel gas passage formed in the separator, and is discharged from the fuel gas outlet 9. The oxidant gas is introduced from the oxidant gas introduction port 10, flows through the oxidant gas flow path formed in the separator, and is discharged from the oxidant gas discharge port 11. The refrigerant is introduced from the refrigerant introduction port 12, flows through the refrigerant flow path formed in the separator, and is discharged from the refrigerant discharge port 13.

燃料電池単セル2は、図2に示すように、膜電極接合体(MEA:membrane electrode assembly)14と、この膜電極接合体14の両面にそれぞれ配置される燃料電池用セパレータ(以下、単にセパレータという)15とから構成される。   As shown in FIG. 2, the fuel cell single cell 2 includes a membrane electrode assembly (MEA) 14 and fuel cell separators (hereinafter simply referred to as separators) disposed on both surfaces of the membrane electrode assembly 14, respectively. 15).

膜電極接合体14は、例えば水素イオンを通す高分子電解質膜である固体高分子電解質膜と、アノード触媒とガス拡散層からなるアノード電極と、カソード触媒とガス拡散層からなるカソード電極(何れも図示は省略する)とからなる。かかる膜電極接合体14は、アノード電極とカソード電極によって、固体高分子電解質膜をその両側から挟み込んだ積層構造とされている。   The membrane electrode assembly 14 includes, for example, a solid polymer electrolyte membrane that is a polymer electrolyte membrane that passes hydrogen ions, an anode electrode that includes an anode catalyst and a gas diffusion layer, and a cathode electrode that includes a cathode catalyst and a gas diffusion layer (both are (Illustration is omitted). The membrane electrode assembly 14 has a laminated structure in which a solid polymer electrolyte membrane is sandwiched from both sides by an anode electrode and a cathode electrode.

セパレータ15は、例えば厚みの薄いステンレスなどの金属板からなり、発電に寄与するアクティブ領域(膜電極接合体14と接する中央部分の領域)に、プレス加工によって凹条部16と凸条部17を交互に形成した凹凸形状(いわゆるコルゲート形状)を形成している。   The separator 15 is made of, for example, a thin metal plate such as stainless steel, and the concave stripe portion 16 and the convex stripe portion 17 are formed by pressing in an active area contributing to power generation (a central area in contact with the membrane electrode assembly 14). Alternating concavo-convex shapes (so-called corrugated shapes) are formed.

膜電極接合体14のアノード側に接して配置された凹条部16は、膜電極接合体14との間に燃料ガス(水素H)を流通させる燃料ガス流路18を形成する。一方、膜電極接合体14のカソード側に接して配置された凹条部16は、膜電極接合体14との間に酸化剤ガス(酸素O)を流通させる酸化剤ガス流路19を形成する。そして、セパレータ15、15同士が接合された凸条部17、17で囲まれた空間部は、冷却水(LLC)を流通させる冷媒流路20を形成する。   The recess 16 disposed in contact with the anode side of the membrane electrode assembly 14 forms a fuel gas flow path 18 through which fuel gas (hydrogen H) flows. On the other hand, the concave strip 16 disposed in contact with the cathode side of the membrane electrode assembly 14 forms an oxidant gas flow path 19 through which an oxidant gas (oxygen O) flows. . And the space part enclosed by the protruding strip parts 17 and 17 with which separators 15 and 15 were joined forms the refrigerant flow path 20 which distribute | circulates cooling water (LLC).

また、セパレータ15には、前記した燃料ガス導入口8、燃料ガス排出口9、酸化剤ガス導入口10、酸化剤ガス排出口11、冷却水導入口12および冷却水排出口13と連通するそれぞれのマニホールド(図示は省略する)が形成されている。   The separator 15 communicates with the fuel gas inlet 8, fuel gas outlet 9, oxidant gas inlet 10, oxidant gas outlet 11, cooling water inlet 12, and cooling water outlet 13. The manifold (not shown) is formed.

このように構成された膜電極接合体14とセパレータ15とからなる燃料電池単セル2は、一対のセパレータ15、15で膜電極接合体14を挟み込むようにして積層され、当該膜電極接合体14の平坦面とされた外周縁部に設けられた第1シール部材23を介して上下のセパレータ15、15同士を結合一体化してある。そして、この燃料電池単セル2は、外周縁部に第2シール部材24を介在させることにより複数層積層されて燃料電池スタック1を構成する。   The fuel cell single cell 2 composed of the membrane electrode assembly 14 and the separator 15 configured as described above is stacked so that the membrane electrode assembly 14 is sandwiched between the pair of separators 15 and 15, and the membrane electrode assembly 14. The upper and lower separators 15 and 15 are coupled and integrated with each other through a first seal member 23 provided on the outer peripheral edge portion of the flat surface. The fuel cell single cell 2 is laminated in a plurality of layers by interposing the second seal member 24 at the outer peripheral edge portion to constitute the fuel cell stack 1.

「セパレータの製造方法」
図4はセパレータ製造工程のうち予備成形工程を示し、(A)はその工程におけるセパレータの平面図、(B)はその流路部分の要部拡大断面図、図5はセパレータ製造工程のうち仕上げ工程を示し、(A)はその工程におけるセパレータの平面図、(B)はその流路部分の要部拡大断面図、図6はセパレータ製造工程のうちトリミング工程を示し、その工程におけるセパレータの平面図、図7はワークに引っ張り応力が残存していることを示す図、図8はセパレータ製造工程のうち引き伸ばし工程を示し、(A)は引き伸ばし部材を金属板の板厚方向から挟み込む前の状態を示す斜視図、(B)は引き伸ばし部材で金属板を挟持して引き伸ばす状態を示す正面図、図9は引張り応力と歪量との関係を示す図である。
"Manufacturing method of separator"
4A and 4B show a preforming process in the separator manufacturing process, FIG. 4A is a plan view of the separator in the process, FIG. 4B is an enlarged cross-sectional view of a main part of the flow path portion, and FIG. (A) is a plan view of a separator in the process, (B) is an enlarged cross-sectional view of a main part of the flow path portion, and FIG. 6 shows a trimming process in the separator manufacturing process. FIG. 7 is a diagram showing that tensile stress remains in the workpiece, FIG. 8 shows a stretching process in the separator manufacturing process, and FIG. 8A shows a state before the stretching member is sandwiched from the thickness direction of the metal plate. FIG. 9B is a front view showing a state in which the metal plate is held and stretched by the stretching member, and FIG. 9 is a diagram showing the relationship between the tensile stress and the strain amount.

本実施形態のセパレータ15を製造するには、先ず、図4に示すように、金属板をプレス加工してアクティブ領域に凹凸形状からなる流路を形成する予備成形工程行う。予備成形工程では、予備成形金型を使用してステンレスからなる金属板26に、前記凹条部16と凸条部17からなる凹凸形状をなす流路をなだらかに形成する。   In order to manufacture the separator 15 of the present embodiment, first, as shown in FIG. 4, a preforming process is performed in which a metal plate is pressed to form a flow path having an uneven shape in the active region. In the pre-forming step, a flow path having a concavo-convex shape composed of the concave strip portion 16 and the convex strip portion 17 is gently formed in the metal plate 26 made of stainless steel using a pre-molding mold.

予備成形工程では、通常の成形高さ(図4(B)の点線で示す)よりもその成形高さH1を十分高くして成形することが望ましい。例えば、このときの成形高さH1は、予備成形時と仕上げ成形時それぞれの周長における比率である周長比(予備成形周長/仕上げ成形周長)が100%近辺で歪みが極小となることから、そのときの予備成形高さH1(0.8mm)以上で予備成形を行う。   In the preliminary molding step, it is desirable to mold the molding height H1 sufficiently higher than the normal molding height (indicated by the dotted line in FIG. 4B). For example, the molding height H1 at this time has a minimum distortion when the circumferential length ratio (preliminary molding circumferential length / finishing circumferential length), which is a ratio of the circumferential lengths at the time of preliminary molding and finish molding, is around 100%. For this reason, the preforming is performed at the preforming height H1 (0.8 mm) or more.

次に、図5に示すように、仕上げ成形金型を使用して前記予備成形工程で形成した流路を所定形状に成形する仕上げ工程を行う。仕上げ工程では、前記予備成形工程で成形高さH1を十分高くして成形してあるため、引っ張り成形ではなく材料を潰しながらの圧縮成形となる。そのため、ワーク内部に残る縮もうとする力(残留応力)が圧縮加工によってある程度相殺され、加工部分(凹条部16と凸条部17からなる凹凸形状をなす流路部位)が未加工部分を引っ張ろうとすることで生じる歪みの影響がある程度和らぐ。   Next, as shown in FIG. 5, a finishing process is performed in which the flow path formed in the preliminary molding process is molded into a predetermined shape using a finish molding die. In the finishing process, since the molding height H1 is sufficiently high in the preliminary molding process, the molding process is not tensile molding but compression molding while crushing the material. For this reason, the force (residual stress) that tends to shrink inside the workpiece is offset to some extent by the compression processing, and the processed portion (the flow path portion having the concave and convex shape formed by the concave ridge portion 16 and the convex ridge portion 17) is the unprocessed portion. The effect of distortion caused by pulling is moderated to some extent.

次に、図6に示すように、仕上げ工程で得られた金属板26の不要部分を切り落とすトリミング工程を行う。トリミング工程では、金属板26の不要部分(図6の斜線部分)を切り落とすと共に、各流路に燃料ガス、酸化剤ガスまたは冷媒を供給するためのマニホルド孔27を形成する。   Next, as shown in FIG. 6, a trimming process for cutting off unnecessary portions of the metal plate 26 obtained in the finishing process is performed. In the trimming step, unnecessary portions (shaded portions in FIG. 6) of the metal plate 26 are cut off, and manifold holes 27 for supplying fuel gas, oxidant gas or refrigerant are formed in each flow path.

トリミング工程後では、その前の工程で図7に示すようにセパレータ15の内部に引っ張りの残留応力(同図中矢印で示す)が残っている。これは、仕上げ工程において、仕上げ成形金型を開くと引き伸ばされた材料(特に、成形部分である流路部位)は戻ろうとし(縮もうとし)、未加工部分(流路外側のフランジ部)は形状を維持しようとする結果、流路部位が縮もうとする力によりフランジ部が引き寄せられ歪みとなる。   After the trimming process, a tensile residual stress (indicated by an arrow in the figure) remains in the separator 15 in the previous process as shown in FIG. This means that in the finishing process, when the finish mold is opened, the stretched material (especially the flow channel part that is the molded part) tries to return (shrinks), and the unprocessed part (flange part outside the flow channel) As a result of maintaining the shape, the flange portion is attracted and distorted due to the force of the flow path portion trying to shrink.

次に、図8に示すように、トリミング工程後に、流路が形成された部位をその流路長手方向に沿って引き伸ばす引き伸ばし工程を行う。引き伸ばし工程では、前記流路の形状(凹条部16と凸条部17からなる凹凸形状)に応じた凹凸部を一面に有した引き伸ばし部材28、29を一組として使用し、セパレータ15の流路の流れ方向両端部15A、15Bを、これら引き伸ばし部材28、29でその板厚方向から挟み込んだ後、セパレータ15を挟持した状態を保持しながら流路流れ方向に該セパレータ15を引っ張る。   Next, as shown in FIG. 8, after the trimming process, a stretching process is performed in which the portion where the channel is formed is stretched along the longitudinal direction of the channel. In the stretching process, the stretching members 28 and 29 each having a concavo-convex portion corresponding to the shape of the flow path (the concavo-convex shape including the concave ridge portion 16 and the ridge portion 17) are used as a set, and the flow of the separator 15 The both ends 15A and 15B in the flow direction of the path are sandwiched from the plate thickness direction by the stretching members 28 and 29, and then the separator 15 is pulled in the flow direction of the flow path while the separator 15 is held.

一方の引き伸ばし部材28には、セパレータ15の一面15aに上方へ突出形成された凹条部16の断面形状(凹条部16の短辺方向における断面形状)とほぼ一致する円弧断面とされた凹部30が、前記凹条部16の数と同数形成されている。他方の引き伸ばし部材29には、セパレータ15の他面15bに下方へ突出形成された凸条部17の断面形状(凸条部17の短辺方向における断面形状)とほぼ一致する円弧断面とされた凹部31が、前記凸条部17の数と同数形成されている。これら凹部30、31がそれぞれの凹条部16、凸条部17に合致されて上下の引き伸ばし部材28、29で前記セパレータ15を挟持したときに、前記凹条部16と凸条部17を潰さないような寸法関係とされている。   The one extending member 28 includes a recess having an arc cross section that substantially matches the cross-sectional shape of the concave portion 16 projecting upward on one surface 15a of the separator 15 (the cross-sectional shape in the short side direction of the concave portion 16). 30 is formed in the same number as the number of the concave stripe portions 16. The other stretching member 29 has an arc cross section substantially matching the cross-sectional shape of the ridge 17 projecting downward on the other surface 15b of the separator 15 (the cross-sectional shape in the short side direction of the ridge 17). The number of the concave portions 31 is the same as the number of the ridge portions 17. When the concave portions 30 and 31 are matched with the concave portions 16 and the convex portions 17 and the separator 15 is sandwiched between the upper and lower stretching members 28 and 29, the concave portions 16 and the convex portions 17 are crushed. There is no dimensional relationship.

このように形成された引き伸ばし部材28、29を一組として、セパレータ15の流路の流れ方向両端部15A、15Bをその板厚方向から挟んで挟持した後、これら引き伸ばし部材28、29を、流路の長手方向に前記セパレータ15を引っ張って引き伸ばす。仕上げ工程では内部に縮まろうとする力が残存しているため、これに対して逆方向にセパレータ15を引っ張れば、前記内部応力を相殺させることができ、歪みを無くせる。   The stretching members 28 and 29 formed in this way are paired and sandwiched by sandwiching the flow direction both ends 15A and 15B of the flow path of the separator 15 from the plate thickness direction, and then the stretching members 28 and 29 are flown. The separator 15 is pulled and stretched in the longitudinal direction of the path. In the finishing process, the force for shrinking remains in the interior, and if the separator 15 is pulled in the opposite direction, the internal stress can be offset and distortion can be eliminated.

例えば、セパレータ15の内部に縮まろうとする力が0.2%歪量相当残存しているとした場合、縮まろうとする力に対して0.3%〜0.4%程度の変位量を、前記縮まろうとする力に対して逆方向に与える。0.4%の変位量を与えた後、引っ張り力を解除すると、0.2%程度弾性回復し、0.2%の塑性変形を行ったことになる。引っ張り力を与える前には、0.2%歪み相当の縮まろうとする力が残存し未加工部分(フランジ部)を引っ張っていたが、引っ張りによる塑性変形により未加工部分と同じ長さになるため縮もうとする力は残存しない。よって、歪みが無くなる。図9の特性図からも判るように、縮もうとする力の源は弾性回復であるから、その弾性回復域を超えた塑性域(0.2%を超える0.3%以上が好ましい)にてセパレータを引っ張るようにすれば、前記したように歪みを無くすことができる。   For example, if the force to shrink in the separator 15 remains equivalent to 0.2% strain, the amount of displacement is about 0.3% to 0.4% with respect to the force to shrink. Apply in the opposite direction to the force to shrink. When the tensile force is released after giving the displacement amount of 0.4%, the elastic recovery is about 0.2%, and the plastic deformation is 0.2%. Before applying the pulling force, the force to shrink equivalent to 0.2% strain remained and pulled the unprocessed part (flange part), but because the plastic deformation caused by pulling resulted in the same length as the unprocessed part The force to shrink does not remain. Therefore, distortion is eliminated. As can be seen from the characteristic diagram of FIG. 9, the source of the force to be contracted is elastic recovery, so that the plastic region exceeds the elastic recovery region (preferably more than 0.3% exceeding 0.2%). If the separator is pulled, the distortion can be eliminated as described above.

以上のように、本実施形態によれば、トリミング工程後に、流路が形成された部位をその流路長手方向に沿って引き伸ばすことで、プレス加工時に材料に残る縮もうとする力(残留応力)が、この引っ張り力によって相殺され、残留する応力を減少させることができる。したがって、本発明方法によれば、反りやうねりの発生が抑制された燃料電池用セパレータを得ることができる。   As described above, according to the present embodiment, after the trimming step, the portion where the flow path is formed is stretched along the longitudinal direction of the flow path to thereby reduce the force (residual stress) remaining in the material during press working. ) Is offset by this pulling force, and the residual stress can be reduced. Therefore, according to the method of the present invention, it is possible to obtain a fuel cell separator in which the occurrence of warpage and undulation is suppressed.

また、本実施形態によれば、流路の形状に応じた凹凸部を一面に有した引き伸ばし部材を一組として、流路の長手方向両端部を、これら引き伸ばし部材でセパレータの板厚方向から挟み込んだ後、セパレータを挟持した状態を保持しながら流路長手方向に当該セパレータを引っ張る簡単な作業で、仕上げ工程で残存した反り及びうねりの原因とする内部応力を無くすことができる。   In addition, according to the present embodiment, a pair of stretching members each having a concavo-convex portion corresponding to the shape of the flow channel is used as a set, and both ends in the longitudinal direction of the flow channel are sandwiched by these stretching members from the plate thickness direction of the separator. After that, the internal stress that causes warping and waviness remaining in the finishing process can be eliminated by a simple operation of pulling the separator in the longitudinal direction of the flow path while holding the separator sandwiched.

また、本実施の形態によれば、引き伸ばし工程において、流路が形成された部位を引き伸ばした後、弾性変形により収縮させることによって、前記流路の長手方向に対する圧縮残留応力を減少させたので、セパレータ全体の歪みを無くすことができる。   Further, according to the present embodiment, in the stretching step, after the portion where the flow path is formed is stretched, the compressive residual stress in the longitudinal direction of the flow path is reduced by contracting by elastic deformation. Distortion of the entire separator can be eliminated.

以上、本発明を適用した具体的な実施の形態について説明したが、本発明は上述の実施の形態に制限されることなく種々の変更が可能である。   Although specific embodiments to which the present invention is applied have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made.

上記した実施の形態では、トリミング工程後に引き伸ばし工程を行ったが、仕上げ工程後に引き伸ばし工程を行っても良い。   In the above-described embodiment, the stretching process is performed after the trimming process, but the stretching process may be performed after the finishing process.

また、上述の実施の形態では、予備成形工程において通常の成形高さよりもその成形高さH1を十分高くして成形することが望ましいとしたが、通常の成形高さで予備成形を行い、その後仕上げ成形して、本発明の特徴である引き伸ばし工程を行えば、セパレータの歪み無くすことができる。   Further, in the above-described embodiment, it is desirable that the molding height H1 be sufficiently higher than the normal molding height in the preforming step, but the preforming is performed at the normal molding height, and thereafter When the finish forming is performed and the stretching process, which is a feature of the present invention, is performed, distortion of the separator can be eliminated.

燃料電池スタックの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of a fuel cell stack. 燃料電池単セルの拡大断面図である。It is an expanded sectional view of a fuel cell single cell. 燃料電池単セルの要部拡大断面図である。It is a principal part expanded sectional view of a fuel cell single cell. セパレータ製造工程のうち予備成形工程を示し、(A)はその工程におけるセパレータの平面図、(B)はその流路部分の要部拡大断面図である。A preforming process is shown among separator manufacturing processes, (A) is a top view of the separator in the process, (B) is a principal part expanded sectional view of the flow-path part. セパレータ製造工程のうち仕上げ工程を示し、(A)はその工程におけるセパレータの平面図、(B)はその流路部分の要部拡大断面図である。A finishing process is shown among separator manufacturing processes, (A) is a top view of the separator in the process, and (B) is an important section expanded sectional view of the channel part. セパレータ製造工程のうちトリミング工程を示し、その工程におけるセパレータの平面図である。It is a top view of the separator in the process which shows a trimming process among separator manufacturing processes. ワークに引っ張り応力が残存していることを示す図である。It is a figure which shows that the tensile stress remains in a workpiece | work. セパレータ製造工程のうち引き伸ばし工程を示し、(A)は引き伸ばし部材を金属板の板厚方向から挟み込む前の状態を示す斜視図、(B)は引き伸ばし部材で金属板を挟持して引き伸ばす状態を示す正面図である。FIG. 4A shows a stretching process in the separator manufacturing process, FIG. 4A is a perspective view showing a state before the stretching member is sandwiched from the thickness direction of the metal plate, and FIG. 3B shows a state in which the metal plate is sandwiched and stretched by the stretching member. It is a front view. 引張り応力と歪量との関係を示す図である。It is a figure which shows the relationship between a tensile stress and a distortion amount.

符号の説明Explanation of symbols

1…燃料電池スタック
2…燃料電池単セル
14…膜電極接合体
15…セパレータ
15a…セパレータの一面
15b…セパレータの他面
16…凹条部(凹凸形状)
17…凸条部(凹凸形状)
18…燃料ガス流路(流路)
19…酸化剤ガス流路(流路)
20…冷媒流路(流路)
26…金属板
28、29…引き伸ばし部材
30、31…凹部(凹凸部)
DESCRIPTION OF SYMBOLS 1 ... Fuel cell stack 2 ... Fuel cell single cell 14 ... Membrane electrode assembly 15 ... Separator 15a ... One side of separator 15b ... Other side of separator 16 ... Concave part (concavo-convex shape)
17 ... ridge (uneven shape)
18 ... Fuel gas flow path (flow path)
19 ... Oxidant gas channel (channel)
20: Refrigerant flow path (flow path)
26 ... Metal plate 28, 29 ... Stretching member 30, 31 ... Concave portion (uneven portion)

Claims (4)

金属板をプレス加工して発電に寄与する領域に凹凸形状からなる流路を形成し、
前記流路が形成された部位をその流路長手方向に沿って引き伸ばす
ことを特徴とする燃料電池用セパレータの製造方法。
Forming a flow path consisting of irregularities in the area that contributes to power generation by pressing a metal plate,
A method for producing a separator for a fuel cell, wherein the portion where the flow path is formed is stretched along the longitudinal direction of the flow path.
請求項1に記載の燃料電池用セパレータの製造方法であって、
前記引き伸ばし工程は、前記流路の形状に応じた凹凸部を一面に有した引き伸ばし部材を一組として、前記流路の長手方向両端部を、これら引き伸ばし部材で前記金属板の板厚方向から挟み込んだ後、該金属板を挟持した状態を保持しながら流路長手方向に当該金属板を引っ張る
ことを特徴とする燃料電池用セパレータの製造方法。
It is a manufacturing method of the separator for fuel cells according to claim 1,
The stretching step includes a pair of stretching members each having an uneven portion corresponding to the shape of the flow channel, and sandwiches both ends in the longitudinal direction of the flow channel from the plate thickness direction of the metal plate with the stretching members. Thereafter, the metal plate is pulled in the longitudinal direction of the flow path while maintaining the state where the metal plate is sandwiched. A method for producing a fuel cell separator.
請求項1または請求項2に記載の燃料電池用セパレータの製造方法であって、
前記引き伸ばし工程において、前記流路が形成された部位を引き伸ばした後、弾性変形により収縮させることによって、前記流路の長手方向に対する圧縮残留応力を減少させた
ことを特徴とする燃料電池用セパレータの製造方法。
A method for producing a fuel cell separator according to claim 1 or 2,
In the stretching step, the compressive residual stress in the longitudinal direction of the flow path is reduced by stretching the portion where the flow path is formed and then contracting it by elastic deformation. Production method.
金属板の少なくとも発電に寄与する領域に凹凸からなる流路がプレス加工により形成され、前記流路の流路長手方向に沿って引き伸ばした後、弾性変形による収縮により、流路の長手方向に対する圧縮残留応力を減少させた
ことを特徴とする燃料電池用セパレータ。
A flow path composed of irregularities is formed by pressing in at least a region contributing to power generation of the metal plate, and is stretched along the flow path longitudinal direction of the flow path, and then compressed in the longitudinal direction of the flow path by contraction due to elastic deformation. A fuel cell separator characterized by having reduced residual stress.
JP2006214896A 2006-08-07 2006-08-07 Method of manufacturing separator for fuel cell, and separator for fuel cell Pending JP2008041456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214896A JP2008041456A (en) 2006-08-07 2006-08-07 Method of manufacturing separator for fuel cell, and separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006214896A JP2008041456A (en) 2006-08-07 2006-08-07 Method of manufacturing separator for fuel cell, and separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2008041456A true JP2008041456A (en) 2008-02-21

Family

ID=39176234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214896A Pending JP2008041456A (en) 2006-08-07 2006-08-07 Method of manufacturing separator for fuel cell, and separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2008041456A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125804A2 (en) * 2011-03-15 2012-09-20 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
JP2014228462A (en) * 2013-05-24 2014-12-08 トヨタ紡織株式会社 Height measuring method, height measuring auxiliary device and height measuring device for plate
JP2015118810A (en) * 2013-12-18 2015-06-25 日産自動車株式会社 Conveyance device of metal separator for fuel cell, conveyance method of metal separator for fuel cell, and metal separator for fuel cell
JP5967789B1 (en) * 2015-11-20 2016-08-10 株式会社志水製作所 Fuel cell separator and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125804A2 (en) * 2011-03-15 2012-09-20 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
WO2012125804A3 (en) * 2011-03-15 2012-12-27 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
US10164264B2 (en) 2011-03-15 2018-12-25 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
JP2014228462A (en) * 2013-05-24 2014-12-08 トヨタ紡織株式会社 Height measuring method, height measuring auxiliary device and height measuring device for plate
JP2015118810A (en) * 2013-12-18 2015-06-25 日産自動車株式会社 Conveyance device of metal separator for fuel cell, conveyance method of metal separator for fuel cell, and metal separator for fuel cell
JP5967789B1 (en) * 2015-11-20 2016-08-10 株式会社志水製作所 Fuel cell separator and manufacturing method thereof
WO2017085868A1 (en) * 2015-11-20 2017-05-26 株式会社志水製作所 Fuel cell separator and production method therefor
US9768453B2 (en) 2015-11-20 2017-09-19 Shimizu-seisakusyo co., ltd. Fuel cell separator and method for producing the same

Similar Documents

Publication Publication Date Title
JP5381647B2 (en) Fuel cell separator and method for producing the same
EP2357698B1 (en) Solid polymer fuel cell-purpose electrolyte membrane, production method therefor and membrane-electrode assembly
JP2006228533A (en) Molding method of separator for fuel cell and separator shape correcting device
JP5157047B2 (en) Method for producing electrolyte membrane for use in solid polymer electrolyte fuel cell
US6818165B2 (en) Method of fabricating fluid flow field plates
WO2009144940A1 (en) Mea member and polymer electrolyte fuel cell
JP6414638B2 (en) Fuel cell electrode structure, metal separator, fuel cell using the fuel cell electrode structure and metal separator, and mold for producing the fuel cell electrode structure
JP2008041456A (en) Method of manufacturing separator for fuel cell, and separator for fuel cell
JP2008282728A (en) Fuel cell, its separator, and its processing method
JP2006294404A (en) Fuel cell separator
JP2001351651A (en) Joined body of electrolyte and electrode and fuel cell
JP6783695B2 (en) Manufacturing method of fuel cell single cell
WO2010047143A1 (en) Gas channel forming member for power generation cell, method for manufacturing same, and molding device
JP5200321B2 (en) Fuel cell separator manufacturing method and fuel cell separator manufacturing apparatus
JP2007294136A (en) Separator for fuel cell and its manufacturing method
JP6927025B2 (en) Fuel cell separator manufacturing equipment and fuel cell separator manufacturing method
CN116159907A (en) Polar plate stamping method and stamping device
JP2006120497A (en) Metal separator and method for forming flow passage thereof
JP2007026899A (en) Fuel cell and manufacturing method of separator therefor
JP2013008701A (en) Method of manufacturing separator for fuel cell
JP2006127948A (en) Fuel cell stack
JP3641622B2 (en) Fuel cell and processing method thereof
JP4534780B2 (en) Fuel cell separator and method for producing fuel cell separator
JP7017944B2 (en) Manufacturing method of metal molded body
JP4291020B2 (en) Fuel cell separator and method of manufacturing the same