JP2002302701A - Composite fine particle, electroconductive paste and electroconductive film - Google Patents

Composite fine particle, electroconductive paste and electroconductive film

Info

Publication number
JP2002302701A
JP2002302701A JP2002016442A JP2002016442A JP2002302701A JP 2002302701 A JP2002302701 A JP 2002302701A JP 2002016442 A JP2002016442 A JP 2002016442A JP 2002016442 A JP2002016442 A JP 2002016442A JP 2002302701 A JP2002302701 A JP 2002302701A
Authority
JP
Japan
Prior art keywords
fine particles
composite fine
particles
solution
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002016442A
Other languages
Japanese (ja)
Other versions
JP4061462B2 (en
Inventor
Yasushi Takai
康 高井
Iwao Kubota
巌 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002016442A priority Critical patent/JP4061462B2/en
Publication of JP2002302701A publication Critical patent/JP2002302701A/en
Application granted granted Critical
Publication of JP4061462B2 publication Critical patent/JP4061462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To surpress the shrinkage of composite fine particles on sintering and the oxidation thereof on degreasing. SOLUTION: The composite fine particles are obtained by coating (A) at least a part of the surface of a core material expressed by the following general formula (1) of Ni1-a-b Za Z'b (wherein, Z is one or more kinds of elements selected from Ag, Au, Co, Cu and Pd; Z' is one or more kinds of elements selected from Li, K, Na, B and P; and 0<=a<=0.4 (weight ratio), 0<=b<=0.1 (weight ratio), and a+b>0 are satisfied) is coated with (B) oxide of one or more kinds of elements selected from Ag, Ba, Co, Cu, Ni, Sn, Ti, Zr, rare earth elements (wherein, Y is included), and Pd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケルを主成分
とする芯材とAg等の酸化物とからなる複合微粒子並び
にこれを用いた導電性ペースト及び導電性膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to composite fine particles comprising a core material mainly composed of nickel and an oxide such as Ag, and a conductive paste and a conductive film using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
携帯機器やデジタル家電の小型化に伴い、積層セラミク
ッスコンデンサーの小型化・高容量化が検討されてい
る。積層セラミクッスコンデンサーの小型化・高容量化
には誘電体層と内部電極層の薄膜化による多層化が最も
有効である。内部電極層の薄膜化には、内部電極層の材
料である導電性ペーストに含まれる金属粒子の微粒子化
が必要である。現在、最も薄い内部電極層は約1ミクロ
ン程度であり、それに使用される導電性ペーストに含ま
れる金属粒子はニッケル、銀、パラジウム等の金属単体
から構成され、平均粒径1ミクロン程度である。今後、
内部電極層は0.3ミクロン程度まで薄膜化する可能性
が高まってきている。そのためには、導電性ペーストに
含まれる金属粒子は平均粒径0.2ミクロン以下である
必要があると考えられる。
2. Description of the Related Art In recent years,
With the miniaturization of portable devices and digital home appliances, miniaturization and higher capacity of multilayer ceramic capacitors are being studied. For miniaturization and high capacity of a multilayer ceramic capacitor, it is most effective to make the dielectric layers and internal electrode layers thinner. In order to reduce the thickness of the internal electrode layer, it is necessary to reduce the size of metal particles contained in the conductive paste that is the material of the internal electrode layer. At present, the thinnest internal electrode layer is about 1 micron, and the metal particles contained in the conductive paste used for it are composed of a single metal such as nickel, silver, and palladium, and have an average particle size of about 1 micron. from now on,
The possibility of reducing the thickness of the internal electrode layer to about 0.3 μm is increasing. For that purpose, it is considered that the metal particles contained in the conductive paste need to have an average particle size of 0.2 μm or less.

【0003】しかし、金属粒子を微粒子化するためには
特に3つの問題が生じる。1つ目は金属粒子の熱収縮特
性が大きくなり、積層セラミックスコンデンサーの焼結
時に、誘電体層と内部電極層との熱収縮特性のズレによ
ってクラック等の欠陥が問題となりつつある。2つ目
は、微粒子化に伴い、比表面積が大きくなり、セラミッ
クスの脱脂時におこる金属酸化も問題となりつつある。
3つ目は、ニッケルは強磁性体であるため、ニッケル粒
子を細かくすると、単磁区粒子となり、強保磁力とな
る。そのため、磁力により粒子が凝集し易くなる。これ
ら3つの問題の対策として数多くの提案がある。
[0003] However, in order to make metal particles fine, three problems arise in particular. First, the heat shrinkage characteristics of the metal particles are increased, and defects such as cracks are becoming a problem due to a shift in the heat shrinkage characteristics between the dielectric layer and the internal electrode layer during sintering of the multilayer ceramic capacitor. Second, the specific surface area increases as the particles become finer, and metal oxidation that occurs during degreasing of ceramics is also becoming a problem.
Third, since nickel is a ferromagnetic material, if the nickel particles are made finer, they become single magnetic domain particles and have a strong coercive force. Therefore, the particles are easily aggregated by the magnetic force. There are a number of proposals for solving these three problems.

【0004】金属微粒子の製法としては、大きく分けて
3つある。 1.ヒドラジン等の還元剤を用いて金属の水溶液や金属
不溶化合物から還元により金属粒子を得る方法である。
溶液反応のため、湿式法と呼ばれることが多い。 2.金属の水溶液や金属不溶化合物を水素ガスで高温加
熱して直接還元する方法である。水素ガスを使用するこ
とから、気相法と呼ばれることが多い。 3.カルボニル化合物のように高温で熱分解することに
より金属粒子を得る方法である。
[0004] There are roughly three methods for producing metal fine particles. 1. In this method, metal particles are obtained by reducing an aqueous metal solution or a metal-insoluble compound using a reducing agent such as hydrazine.
Because of the solution reaction, it is often called the wet method. 2. This is a method in which an aqueous metal solution or a metal-insoluble compound is directly reduced by heating at a high temperature with hydrogen gas. Since hydrogen gas is used, it is often called a gas phase method. 3. This is a method of obtaining metal particles by thermal decomposition at a high temperature like a carbonyl compound.

【0005】この場合、湿式法は、粒度分布のシャープ
な金属粒子ができるが、熱処理を受けておらず、収縮率
が大きいので、その対策として、金属粒子中にマグネシ
ウム及び/又はカルシウムを添加すること(特開平11
−172306号公報)、表面の一部を酸化物で被覆す
ること(特許第2992270号、特開2000−28
2102号公報)が提案されている。同じように、気相
法で製造した金属粒子も、湿式法に比べ、高温で処理し
て製造するため、収縮の開始温度は遅いが、収縮率に大
きな違いがなく、同じような対策が提案されている(特
開2000−63901号公報)。また、上記いずれの
方法も、収縮は改善されても、金属の粒径が1.0μm
程度と大きく、十分とは言えなかった。特にニッケル等
の金属単体を使用したものは磁性が高く、磁場を発生す
る問題が生じていた。
[0005] In this case, in the wet method, metal particles having a sharp particle size distribution are formed, but they are not subjected to heat treatment and have a large shrinkage. As a countermeasure, magnesium and / or calcium are added to the metal particles. That (Japanese Unexamined Patent Application Publication
JP-A-172306), coating a part of the surface with an oxide (Japanese Patent No. 299270, JP-A-2000-28)
No. 2102) has been proposed. Similarly, metal particles produced by the gas phase method are also processed at a higher temperature than the wet method, so the shrinkage start temperature is slow, but there is no significant difference in the shrinkage rate, and similar measures are proposed. (JP-A-2000-63901). In any of the above methods, even if the shrinkage is improved, the particle size of the metal is 1.0 μm.
It was large and not enough. In particular, those using a simple metal such as nickel have high magnetism, and have a problem of generating a magnetic field.

【0006】本発明は上記事情に鑑みなされたもので、
上記焼結時の収縮の問題、金属酸化の問題を解決し得る
複合微粒子並びにこれを用いた導電性ペースト及び導電
性膜を提供することを目的とする。
The present invention has been made in view of the above circumstances,
An object of the present invention is to provide composite fine particles capable of solving the problem of shrinkage during sintering and the problem of metal oxidation, and a conductive paste and a conductive film using the same.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を行った結
果、下記一般式(1) Ni1-a-baZ’b (1) (式中、ZはAg,Au,Co,Cu,Pdから選ばれ
る1種又は2種以上の元素、Z’はLi,K,Na,
B,Pから選ばれる1種又は2種以上の元素であり、0
≦a≦0.4(重量割合)、0≦b≦0.1(重量割
合)、a+b>0である。)で表される芯材表面の少な
くとも一部を、Ag,Ba,Co,Cu,Ni,Sn,
Ti,Zr,希土類元素(但し、Yを含む),Pdから
選ばれる1種又は2種以上の元素の酸化物で被覆した複
合微粒子が電極材料として有効で、この複合微粒子を用
いることにより、これを積層セラミックスコンデンサー
の内部電極材料とした場合、積層セラミックスコンデン
サー焼結時の収縮が改善され、また各種電子セラミック
ス脱脂時におこる金属酸化を改善し得ることを知見し、
本発明をなすに至ったものである。
[Embodiment means and invention to solve the Problems The present inventor has conducted extensive investigations to achieve the above objects, the following general formula (1) Ni 1-ab Z a Z 'b (1 (Wherein, Z is one or more elements selected from Ag, Au, Co, Cu, Pd, and Z ′ is Li, K, Na,
One or more elements selected from B and P;
≦ a ≦ 0.4 (weight ratio), 0 ≦ b ≦ 0.1 (weight ratio), and a + b> 0. ), At least a part of the core material surface is made of Ag, Ba, Co, Cu, Ni, Sn,
Composite fine particles coated with an oxide of one or more elements selected from Ti, Zr, rare earth elements (including Y), and Pd are effective as an electrode material. Was used as the internal electrode material of the multilayer ceramic capacitor, the shrinkage during sintering of the multilayer ceramic capacitor was improved, and it was found that metal oxidation that occurs during degreasing of various electronic ceramics could be improved.
The present invention has been accomplished.

【0008】従って、本発明は、上記複合微粒子、並び
にこの複合微粒子と有機ビヒクルとを含有する導電性ペ
ースト及びこの導電性ペーストを焼結することによって
得られ、面積抵抗が100mΩ以下である導電性膜を提
供する。
Accordingly, the present invention provides a conductive paste containing the composite fine particles, the composite fine particles and an organic vehicle, and a conductive paste having a sheet resistance of 100 mΩ or less, obtained by sintering the conductive paste. Provide a membrane.

【0009】以下、本発明につき更に詳しく説明する。
本発明の複合微粒子は、(A)下記一般式(1) Ni1-a-baZ’b (1) (式中、ZはAg,Au,Co,Cu,Pdから選ばれ
る1種又は2種以上の元素、Z’はLi,K,Na,
B,Pから選ばれる1種又は2種以上の元素であり、0
≦a≦0.4(重量割合)、0≦b≦0.1(重量割
合)、a+b>0である。)で表される芯材表面の少な
くとも一部を、(B)Ag,Ba,Co,Cu,Ni,
Sn,Ti,Zr,希土類元素(但し、Yを含む),P
dから選ばれる1種又は2種以上、好ましくはAg,B
a,Co,Cu,Ni,Sn,Pdから選ばれる1種又
は2種以上の元素の酸化物で被覆してなることを特徴と
する。
Hereinafter, the present invention will be described in more detail.
Composite fine particles of the present invention, (A) the following general formula (1) Ni 1-ab Z a Z 'b (1) ( wherein, Z 1 or is selected Ag, Au, Co, Cu, Pd, or 2 More than one kind of element, Z ′ is Li, K, Na,
One or more elements selected from B and P;
≦ a ≦ 0.4 (weight ratio), 0 ≦ b ≦ 0.1 (weight ratio), and a + b> 0. ) At least part of the surface of the core material represented by (B), Ag, Ba, Co, Cu, Ni,
Sn, Ti, Zr, rare earth elements (including Y), P
d or one or more selected from d, preferably Ag, B
a, coated with an oxide of one or more elements selected from Co, Cu, Ni, Sn, and Pd.

【0010】本発明の芯材となる金属粒子(A)は、ニ
ッケルを主体とするもので、これは湿式法で製造するこ
とが好ましい。この場合、溶液中で還元反応によって金
属微粒子を得るには、核をいかに数多く発生させるかと
いうことによって決まる。反応は瞬時である必要があ
る。そのため、Niよりも、先に還元されて核となる元
素があると、より微粒子を得ることができ、本発明にお
いては、かかる元素ZとしてAg,Au,Co,Cu,
Pdのうち1種又は2種以上を用いる。これらの中で
も、特にAg,Cuは電気伝導性がよく、好ましい。ま
た、Cuは安価であるためにより好適である。
The metal particles (A) serving as the core material of the present invention are mainly composed of nickel and are preferably produced by a wet method. In this case, obtaining metal fine particles by a reduction reaction in a solution is determined by how many nuclei are generated. The reaction needs to be instantaneous. Therefore, if there is an element which is reduced and becomes a nucleus before Ni, fine particles can be obtained, and in the present invention, Ag, Au, Co, Cu,
One or more of Pd are used. Among these, Ag and Cu are particularly preferred because of their good electrical conductivity. Further, Cu is more suitable because it is inexpensive.

【0011】上記元素Zの含有量は、収縮を抑える上か
ら、0重量%以上、好ましくは0重量%を超え、40重
量%以下[式(1)において、0≦a≦0.4(重量割
合)]であり、40重量%を超えると、Cu又はPdの
場合は融点が下がり使用できない。Ag,Au,Coの
場合、価格が高くなり経済的ではない。その下限量とし
ては1重量%以上であることが好ましい。なお、平均粒
径が0.2μm以下の粒子を製造する場合には、Zは3
〜10重量%であることが好ましい。
From the viewpoint of suppressing shrinkage, the content of the element Z is 0% by weight or more, preferably more than 0% by weight and 40% by weight or less [in the formula (1), 0 ≦ a ≦ 0.4 (weight If the content exceeds 40% by weight, the melting point of Cu or Pd is lowered, so that it cannot be used. In the case of Ag, Au, and Co, the price increases and it is not economical. The lower limit is preferably 1% by weight or more. When particles having an average particle diameter of 0.2 μm or less are produced, Z is 3
It is preferably from 10 to 10% by weight.

【0012】更に収縮改善のために、本発明では他の元
素Z’としてLi,K,Na,B,Pから選ばれる1種
又は2種以上を金属微粒子中に添加することが有効であ
る。特に、B,PはNi3BやNi3Pという化合物をつ
くり、この化合物はNiよりも硬く、Niの収縮を抑え
る。また、Li,K,NaはNiに固溶し、更に収縮を
抑える。
In order to further improve the shrinkage, it is effective in the present invention to add one or more selected from Li, K, Na, B and P as the other element Z 'to the metal fine particles. In particular, B and P form compounds such as Ni 3 B and Ni 3 P, which are harder than Ni and suppress the shrinkage of Ni. In addition, Li, K, and Na dissolve in Ni to further suppress shrinkage.

【0013】上記元素Z’の含有量は、0重量%以上、
好ましくは0重量%を超え、10重量%以下[式(1)
において、0≦b≦0.1(重量割合)]である。Z’
が10重量%を超えると、B,Pの場合、共晶点があ
り、融点が下がり使用できなくなる。Li,K,Naの
場合、Z’が10重量%を超えると、誘電体層に拡散す
る量が問題となる。誘電体層のLi,K,Na濃度が5
00ppmを超えると誘電特性に影響がでると言われて
いるので、本発明では特に0.001〜1重量%添加す
ることが好ましい。なお、上記式(1)において、aと
bとは同時に0とはならない(a+b>0)。
The content of the above element Z 'is 0% by weight or more,
Preferably more than 0% by weight and 10% by weight or less [Formula (1)
In this case, 0 ≦ b ≦ 0.1 (weight ratio). Z '
Exceeds 10% by weight, in the case of B and P, there is a eutectic point, and the melting point is lowered so that it cannot be used. In the case of Li, K, and Na, when Z ′ exceeds 10% by weight, the amount of diffusion into the dielectric layer becomes a problem. When the Li, K, and Na concentrations of the dielectric layer are 5
It is said that when the content exceeds 00 ppm, the dielectric properties are affected. Therefore, in the present invention, it is particularly preferable to add 0.001 to 1% by weight. In the above equation (1), a and b do not become 0 at the same time (a + b> 0).

【0014】また、Z,Z’で合金化することにより強
保磁力による凝集を抑える働きもある。このことは保磁
力を振動試料型磁力計(VSM)等で測定することによ
りわかる。
The alloying of Z and Z 'also has the function of suppressing aggregation due to strong coercive force. This can be understood by measuring the coercive force with a vibrating sample magnetometer (VSM) or the like.

【0015】なお、上記芯材(A)のX線回折法による
結晶子の大きさは多結晶を構成している結晶の大きさで
あり、200〜700Åのときに収縮開始温度が遅く好
ましい。
The crystallite size of the core material (A) determined by the X-ray diffraction method is the size of the crystals constituting the polycrystal.

【0016】本発明の複合微粒子は、芯材となる上記合
金微粒子(A)の少なくとも一部表面をAg,Ba,C
o,Cu,Ni,Sn,Ti,Zr,希土類元素(但
し、Yを含む),Pdのうち1種又は2種以上からなる
酸化物(B)で被覆したものである。この場合、その被
覆量は、複合微粒子全体に対して10重量%以下、更に
は1〜10重量%、特に0.5〜5重量%であることが
好ましい。
In the composite fine particles of the present invention, at least a part of the surface of the above-mentioned alloy fine particles (A) as a core material is made of Ag, Ba, C
It is coated with an oxide (B) composed of one or more of o, Cu, Ni, Sn, Ti, Zr, a rare earth element (including Y), and Pd. In this case, the coating amount is preferably 10% by weight or less, more preferably 1 to 10% by weight, particularly preferably 0.5 to 5% by weight, based on the entire composite fine particles.

【0017】本発明においては、合金粒子(A)表面を
酸化物(B)の前駆体である水酸化物・炭酸塩・塩基性
炭酸塩で覆い、不活性雰囲気又は真空中で熱処理するこ
とにより酸化物(B)で被覆することが有効で、熱処理
により合金粒子の結晶粒子が成長し、収縮を抑える。更
に、各種電子セラミックスにおける大気中で脱脂時の酸
化を表面の酸化物が抑えると考えられる。被覆酸化物に
求められる特性としては、誘電体層に拡散しても誘電特
性に影響の少ない元素で、電気伝導性を損なわないもの
である必要があり、Ag,Ba,Co,Cu,Ni,S
n,Ti,Zr,希土類元素(但し、Yを含む),Pd
の酸化物の中から選ばれる。該前駆体化合物は各種電子
セラミックスを還元雰囲気で1200〜1350℃で焼
結する際に、約800℃以上で金属に還元されることに
より、電気伝導性を損なわない元素である。
In the present invention, the surface of the alloy particles (A) is covered with a hydroxide, carbonate, or basic carbonate, which is a precursor of the oxide (B), and heat-treated in an inert atmosphere or vacuum. It is effective to coat with an oxide (B), and crystal grains of alloy particles grow by heat treatment and shrinkage is suppressed. Further, it is considered that oxides on the surface suppress oxidation of various electronic ceramics during degreasing in the atmosphere. The properties required for the coating oxide must be an element that does not affect the dielectric properties even if it diffuses into the dielectric layer and does not impair the electrical conductivity. For example, Ag, Ba, Co, Cu, Ni, S
n, Ti, Zr, rare earth element (including Y), Pd
Selected from oxides of The precursor compound is an element that does not impair electrical conductivity by being reduced to a metal at about 800 ° C. or higher when various electronic ceramics are sintered at 1200 to 1350 ° C. in a reducing atmosphere.

【0018】本発明の複合微粒子の製造方法としては、
特に下記方法が好適に採用される。即ち、本発明の芯材
となる合金(A)は、Ni水溶性化合物(例えば、硫酸
塩・硝酸塩・塩化物)と添加したい元素(Li,K,N
a,B,P)の化合物を所定重量計り取る。上記計り取
った化合物を純水に投入し、溶解する。pHを13以上
に調整するためにアルカリ溶液を投入する。ここでアル
カリは、水酸化カリウム又は水酸化ナトリウムが好まし
い。OH/Niのモル比は、3〜15がよい。次に、核
又は触媒となるAg,Au,Co,Cu,Pdの金属水
溶液(例えば、硫酸溶液・硝酸溶液・塩化溶液)を素早
く投入し、液温50〜200℃にし、還元剤を素早く投
入する。還元剤はヒドラジン又はホウ素水素ナトリウム
が好ましい。還元剤/金属のモル比は、3〜10がよ
い。反応時間は10〜30分が好ましい。次いで、被覆
酸化物の原料となるAg,Ba,Co,Cu,Ni,S
n,Ti,Zr,希土類元素(但し、Yを含む),Pd
から選ばれる水溶性化合物(例えば、硫酸塩・硝酸塩・
塩化物)を添加する。アルカリ・尿素等の沈殿剤を加
え、できた金属粒子と酸化物の前駆体である水酸化物・
炭酸塩・塩基性炭酸塩と共沈させる。可能なら、共沈さ
せる前に、できた金属粒子をボールミル等で分散してお
くとよい。金属粒子と酸化物の前駆体化合物の共沈品を
濾過・純水洗浄する。更に炭素数12〜26の飽和脂肪
酸を表面に5〜50nmコーティングした後、真空又は
不活性雰囲気で200〜1000℃、好ましくは400
〜1000℃で2〜6時間熱処理することにより、被覆
酸化物のある金属微粒子ができる。熱処理により一部凝
集している場合には、粉砕機等で凝集を解す。
The method for producing the composite fine particles of the present invention includes:
In particular, the following method is suitably employed. That is, the alloy (A) as the core material of the present invention is composed of a Ni water-soluble compound (for example, sulfate, nitrate, chloride) and an element (Li, K, N) to be added.
A compound of (a, B, P) is weighed in a predetermined amount. The measured compound is put into pure water and dissolved. An alkaline solution is added to adjust the pH to 13 or more. Here, the alkali is preferably potassium hydroxide or sodium hydroxide. The molar ratio of OH / Ni is preferably 3 to 15. Next, an aqueous metal solution of Ag, Au, Co, Cu, or Pd (for example, a sulfuric acid solution, a nitric acid solution, or a chloride solution) serving as a nucleus or a catalyst is quickly charged, the liquid temperature is adjusted to 50 to 200 ° C., and the reducing agent is quickly charged. I do. The reducing agent is preferably hydrazine or sodium borohydride. The molar ratio of the reducing agent / metal is preferably 3 to 10. The reaction time is preferably from 10 to 30 minutes. Next, Ag, Ba, Co, Cu, Ni, S,
n, Ti, Zr, rare earth element (including Y), Pd
Water-soluble compounds selected from (eg, sulfates, nitrates,
Chloride) is added. Precipitants such as alkali and urea are added, and the resulting metal particles and hydroxides, which are precursors of oxides,
Coprecipitate with carbonate and basic carbonate. If possible, before coprecipitation, the resulting metal particles may be dispersed by a ball mill or the like. The coprecipitated product of the metal compound and the oxide precursor compound is filtered and washed with pure water. Further, the surface is coated with a saturated fatty acid having 12 to 26 carbon atoms in a thickness of 5 to 50 nm, and then 200 to 1000 ° C. in a vacuum or inert atmosphere, preferably 400 to 400 ° C.
By performing the heat treatment at a temperature of about 1000 ° C. for 2 to 6 hours, metal fine particles having a coating oxide can be obtained. When a part of the particles is aggregated by the heat treatment, the aggregation is broken by a crusher or the like.

【0019】電極材料として使用するためには、複合微
粒子の電気抵抗が低いことが必要である。電気抵抗は、
一定体積に粒子を充填し、4端子法で測定して、体積抵
抗として100mΩcm以下がよい。100mΩcmを
超えると、還元雰囲気で焼結しても、電極として必要な
面積抵抗を達成できない。複合微粒子の電気抵抗を低く
するには、被覆酸化膜の厚さが10nm以下であること
が好ましい。
For use as an electrode material, it is necessary that the composite fine particles have a low electric resistance. The electrical resistance is
It is preferable that the volume resistance is 100 mΩcm or less as measured by a four-terminal method by filling particles in a fixed volume. If it exceeds 100 mΩcm, the sheet resistance required for an electrode cannot be achieved even when sintered in a reducing atmosphere. In order to reduce the electrical resistance of the composite fine particles, the thickness of the coating oxide film is preferably 10 nm or less.

【0020】また、本発明の複合微粒子の平均粒径は、
0.05〜0.7μmであることが好ましい。
The average particle diameter of the composite fine particles of the present invention is as follows:
It is preferably from 0.05 to 0.7 μm.

【0021】即ち、積層セラミックスコンデンサーの高
容量化には、内部電極層の薄膜化による多層化が最も有
効である。内部電極層の薄膜化には、内部電極層の材料
である導電性ペーストに含まれる金属粒子の微粒子化が
必要である。また、単位体積当りに複合微粒子がより多
く充填されることも大切である。これは、微粒子の平均
粒径が細かく、かつ、粒度分布や形状も重要である。粒
度分布はより最密充填になるような粒度分布が好まし
い。粒径の測定には、レーザ回折法や直接走査型電子顕
微鏡による観察などがある。ここでは、フィッシャー・
サブ−シーブ・サイザー径を採用した。また、形状は球
状が好ましい。このことは、嵩密度やタップ密度や圧縮
密度でも表現できる。
That is, to increase the capacity of the multilayer ceramic capacitor, it is most effective to make the internal electrode layer thinner to form a multilayer. In order to reduce the thickness of the internal electrode layer, it is necessary to reduce the size of metal particles contained in the conductive paste that is the material of the internal electrode layer. It is also important that more composite fine particles are filled per unit volume. This is because the average particle size of the fine particles is fine, and the particle size distribution and shape are also important. Preferably, the particle size distribution is such that the closest packing is achieved. The measurement of the particle size includes observation by a laser diffraction method and a direct scanning electron microscope. Here, Fisher
A sub-sheave sizer diameter was employed. The shape is preferably spherical. This can be expressed by bulk density, tap density, and compression density.

【0022】結晶子は単結晶の平均粒径である。本複合
微粒子は多結晶体であるが、単結晶の平均粒径が大きい
ほど、収縮開始温度は遅くなる。熱処理条件によって、
結晶子を大きくする。熱処理のないものは100〜20
0Åである。これに対し、特に400℃以上で処理する
と200〜300Åになる。1000℃以上で処理する
と600〜700Åになる。
Crystallite is the average grain size of a single crystal. Although the present composite fine particles are polycrystalline, the larger the average particle size of the single crystal, the lower the shrinkage start temperature. Depending on the heat treatment conditions,
Increase crystallites. 100 to 20 without heat treatment
0 °. On the other hand, when the treatment is performed at 400 ° C. or more, the temperature becomes 200 to 300 °. If it is processed at 1000 ° C. or more, the temperature becomes 600 to 700 °.

【0023】本発明の複合微粒子は、電極材料として好
適に用いられるが、この場合、有機ビヒクルと導電性ペ
ーストを調製し、これを用いることが好ましい。導電性
ペーストは、複合微粒子が50〜85重量%で、残分が
有機ビヒクルからなる導電性ペーストがよい。
The composite fine particles of the present invention are suitably used as an electrode material. In this case, it is preferable to prepare an organic vehicle and a conductive paste and use them. The conductive paste is preferably a conductive paste containing 50 to 85% by weight of composite fine particles and a balance of an organic vehicle.

【0024】有機ビヒクルは、有機又は無機バインダー
と分散剤・可塑剤と希釈剤とを含み、具体的には、バイ
ンダーとして、エチルセルロース、ヒドロキシプロピル
セルロース等のセルロース系樹脂、ポリビニールブチラ
ール、アクリル系樹脂等を5〜20重量%、分散剤・可
塑剤としてジブチルフタレート等を5重量%以下、特に
1〜3重量%、残分が希釈剤で、テルピネオール等の不
飽和アルコール、2−メトキシエタノール等のエーテル
にしたものがよい。粘度は5〜25PaS程度がよい。
The organic vehicle contains an organic or inorganic binder, a dispersant, a plasticizer, and a diluent, and specifically, as a binder, a cellulose resin such as ethyl cellulose or hydroxypropyl cellulose, polyvinyl butyral, or an acrylic resin. 5 to 20% by weight, dibutyl phthalate or the like as a dispersant / plasticizer, 5% by weight or less, particularly 1 to 3% by weight, the remainder being a diluent, an unsaturated alcohol such as terpineol, 2-methoxyethanol or the like. Etherified one is better. The viscosity is preferably about 5 to 25 PaS.

【0025】上記導電性ペーストは、常法に従ってスク
リーン印刷等で所用の基材、例えばアルミナ等の酸化物
系セラミックス等に印刷し、これを大気中で300〜5
00℃で脱脂後還元雰囲気で1150〜1350℃で2
〜6時間焼結して導電性膜(電極)を形成する。なお、
その厚さは、例えば、スクリーンの開き目とペーストの
粘度で調節する。できた電極をセラミックス焼結条件で
焼結後に、面積抵抗が100mΩ以下である導電性膜を
得ることができる。
The conductive paste is printed on a required base material, for example, an oxide ceramic such as alumina, by screen printing or the like according to a conventional method, and is printed in the air at 300 to 5 times.
After degreasing at 00 ° C, 2 at 1150-1350 ° C in a reducing atmosphere.
Sintering is performed for 6 hours to form a conductive film (electrode). In addition,
The thickness is adjusted by, for example, the opening of the screen and the viscosity of the paste. After sintering the resulting electrode under ceramic sintering conditions, a conductive film having a sheet resistance of 100 mΩ or less can be obtained.

【0026】[0026]

【発明の効果】本発明の複合微粒子を用いることによ
り、焼結時の収縮、脱脂時の金属酸化を改善することが
できる。
By using the composite fine particles of the present invention, shrinkage during sintering and metal oxidation during degreasing can be improved.

【0027】[0027]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。
EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0028】[実施例1]硫酸ニッケル6水和物を43
1g取り、純水に溶かし、硫酸ニッケル溶液1.7Lと
した。室温で撹拌しながら、水酸化ナトリウム溶液48
wt%0.8Lに燐酸3ナトリウム12水和物50gを
添加した。その後、硫酸ニッケル溶液を約1時間で投入
した。温度95℃にし、ヒドラジン水溶液60wt%1
Lを約30秒で添加した。20分反応させた後、40℃
以下にして硫酸ニッケル6水和物11gを添加した。過
剰のアルカリを塩酸で中和し、pH9にした。濾過し、
エタノールにステアリン酸を溶解したもので洗浄し、粒
子表面にステアリン酸をコーティングした。次に、不活
性雰囲気(Ar)中600℃、4時間で熱処理を行っ
た。
Example 1 Nickel sulfate hexahydrate was added to 43
1 g was taken and dissolved in pure water to make a nickel sulfate solution 1.7 L. While stirring at room temperature, the sodium hydroxide solution 48
50 g of trisodium phosphate dodecahydrate was added to 0.8 L of wt%. Thereafter, a nickel sulfate solution was introduced in about one hour. Temperature to 95 ° C, hydrazine aqueous solution 60wt% 1
L was added in about 30 seconds. After reacting for 20 minutes, 40 ° C
In the following manner, 11 g of nickel sulfate hexahydrate was added. Excess alkali was neutralized to pH 9 with hydrochloric acid. Filtered,
The particles were washed with a solution of stearic acid dissolved in ethanol, and the surfaces of the particles were coated with stearic acid. Next, heat treatment was performed at 600 ° C. for 4 hours in an inert atmosphere (Ar).

【0029】得られた複合粒子の組成をICPで分析し
た。結果を表1に示す。粒度分布はフィッシャー・サブ
−シーブ・サイザー法で測定した。結晶子サイズはX線
回折を取り、Scherrer法から算出した。粒子の
外観は走査型電子顕微鏡写真で観察した。体積抵抗は一
定体積に粒子を充填し、4端子法で測定した。結果を表
2に示す。
The composition of the obtained composite particles was analyzed by ICP. Table 1 shows the results. The particle size distribution was measured by the Fisher Sub-Sieve Sizer method. The crystallite size was obtained by X-ray diffraction and calculated by the Scherrer method. The appearance of the particles was observed with a scanning electron micrograph. The volume resistance was measured by a four-terminal method by filling particles into a fixed volume. Table 2 shows the results.

【0030】また、上記複合粒子にMC(メチルセルロ
ース)2wt%水溶液を用いて粒子重量に対して0.5
wt%添加・混合後、真空乾燥した。乾燥粒子を30φ
の金型で、300kg/cm2でプレス成形し、成形体
を数個準備し、得られた成形体で焼結時の収縮率を測定
した。大気中で400℃、1時間で脱脂後、N2+H
2(H23wt%)をフローしながら、1300℃、2時
間焼結した。600℃、800℃、1000℃、130
0℃での成形体を取り出し、各温度での収縮率を測定し
た。測定結果を表3に示す。
Further, a 0.5 wt% aqueous solution of MC (methyl cellulose) was used for the composite particles.
After adding and mixing wt%, the mixture was vacuum dried. Dry particles 30φ
Was press-molded at 300 kg / cm 2 with a mold, and several compacts were prepared. The obtained compacts were measured for shrinkage during sintering. After degreasing for 1 hour at 400 ° C in air, N 2 + H
Sintering was performed at 1300 ° C. for 2 hours while flowing 2 (H 2 3 wt%). 600 ° C, 800 ° C, 1000 ° C, 130
The molded body at 0 ° C. was taken out, and the shrinkage at each temperature was measured. Table 3 shows the measurement results.

【0031】次に、テルピネオール95wt%に対して
HPC(ヒドロキシプロピルセルロース)5wt%にな
るように混合した。この有機溶媒40wt%に対して複
合粒子60wt%になるように混合した。できたペース
トの粘度をB型粘度計で測定したところ、13000c
ps(13PaS)であった。スクリーン印刷機で25
0メッシュを用いてアルミナの上に印刷した。膜を大気
中で400℃、1時間脱脂し、次にN2+H2(H23w
t%)をフローしながら、1300℃、2時間焼結し
た。得られた膜の厚さと面積抵抗を測定した。測定結果
を表4に示す。
Next, 95% by weight of terpineol was mixed with 5% by weight of HPC (hydroxypropylcellulose). The mixture was mixed so that the composite particles became 60 wt% with respect to the organic solvent 40 wt%. When the viscosity of the resulting paste was measured with a B-type viscometer, 13000 c
ps (13 PaS). 25 with screen printing machine
Printed on alumina using 0 mesh. The film was degreased in air at 400 ° C. for 1 hour, and then N 2 + H 2 (H 2 3w
(t%), and sintered at 1300 ° C. for 2 hours. The thickness and sheet resistance of the obtained film were measured. Table 4 shows the measurement results.

【0032】[実施例2]実施例1と同じように製造し
た。硫酸ニッケル6水和物を397g取り、純水に溶か
し、硫酸ニッケル溶液1.5Lとした。室温で撹拌しな
がら、水酸化ナトリウム溶液48wt%1.3Lに燐酸
3ナトリウム12水和物50gを添加した。その後、硫
酸ニッケル溶液を約1時間で投入した。更に、硝酸銀溶
液0.5mol/L、0.15Lを添加し、温度55℃
にし、ヒドラジン水溶液60wt%1Lを約30秒で添
加した。20分反応させた後、40℃以下にして塩化パ
ラジウム5gを添加した。濾過し、エタノールにラウリ
ン酸を溶解したもので洗浄し、粒子表面ラウリンに酸を
コーティングした。次に、不活性雰囲気(Ar)・40
0℃、4時間で熱処理を行った。得られた複合粒子の組
成・粒度分布・結晶子サイズ・粒子の外観・体積抵抗を
実施例1と同じ方法で測定した。また、上記複合粒子を
用いて実施例1と同じ方法で成形体を数個準備し、焼結
時の収縮率を測定した。測定結果を表3に示す。実施例
1と同じ配合・同じ方法でペーストをつくり、スクリー
ン印刷機で250メッシュを用いてアルミナの上に印刷
し、面積抵抗を測定した。
Example 2 The same procedure as in Example 1 was carried out. 397 g of nickel sulfate hexahydrate was taken and dissolved in pure water to make 1.5 L of a nickel sulfate solution. While stirring at room temperature, 50 g of trisodium phosphate dodecahydrate was added to 1.3 L of 48 wt% sodium hydroxide solution. Thereafter, a nickel sulfate solution was introduced in about one hour. Further, 0.5 mol / L and 0.15 L of a silver nitrate solution were added, and the temperature was 55 ° C.
Then, 1 L of a hydrazine aqueous solution (60 wt%) was added in about 30 seconds. After reacting for 20 minutes, the temperature was lowered to 40 ° C. or lower, and 5 g of palladium chloride was added. The solution was filtered, washed with a solution of lauric acid in ethanol, and laurin on the particle surface was coated with an acid. Next, inert atmosphere (Ar) 40
Heat treatment was performed at 0 ° C. for 4 hours. The composition, particle size distribution, crystallite size, particle appearance, and volume resistance of the obtained composite particles were measured in the same manner as in Example 1. In addition, several compacts were prepared using the composite particles in the same manner as in Example 1, and the shrinkage during sintering was measured. Table 3 shows the measurement results. A paste was prepared by the same composition and the same method as in Example 1 and printed on alumina using a 250 mesh screen printer, and the sheet resistance was measured.

【0033】[実施例3]実施例1と同じように製造し
た。硫酸ニッケル6水和物を402g取り、純水に溶か
し、硫酸ニッケル溶液1.5Lとした。室温で撹拌しな
がら、水酸化ナトリウム溶液48wt%0.3Lに燐酸
3ナトリウム12水和物50gを添加した。その後、硫
酸ニッケル溶液を約1時間で投入した。更に、硫酸銅溶
液0.5mol/L、0.25Lを添加し、温度50℃
にし、ヒドラジン水溶液60wt%0.4Lを約60秒
で添加した。20分反応させた後、40℃以下にして塩
化ニッケル4水和物11gを添加した。濾過し、エタノ
ールにステアリン酸を溶解したもので洗浄し、粒子表面
にステアリン酸をコーティングした。次に、不活性雰囲
気(Ar)・600℃、4時間で熱処理を行った。得ら
れた複合粒子の組成・粒度分布・結晶子サイズ・粒子の
外観・体積抵抗を実施例1と同じ方法で測定した。ま
た、上記複合粒子を用いて実施例1と同じ方法で成形体
を数個準備し、焼結時の収縮率を測定した。測定結果を
表3に示す。実施例1と同じ配合・同じ方法でペースト
をつくり、スクリーン印刷機で250メッシュを用いて
アルミナの上に印刷し、面積抵抗を測定した。
Example 3 The same procedure as in Example 1 was carried out. 402 g of nickel sulfate hexahydrate was taken and dissolved in pure water to make 1.5 L of a nickel sulfate solution. While stirring at room temperature, 50 g of trisodium phosphate dodecahydrate was added to 0.3 L of 48 wt% of sodium hydroxide solution. Thereafter, a nickel sulfate solution was introduced in about one hour. Further, 0.5 mol / L and 0.25 L of a copper sulfate solution were added, and the temperature was 50 ° C.
Then, 0.4 L of a 60 wt% hydrazine aqueous solution was added in about 60 seconds. After reacting for 20 minutes, the temperature was lowered to 40 ° C. or lower, and 11 g of nickel chloride tetrahydrate was added. The solution was filtered, washed with a solution of stearic acid dissolved in ethanol, and the particle surface was coated with stearic acid. Next, heat treatment was performed in an inert atmosphere (Ar) at 600 ° C. for 4 hours. The composition, particle size distribution, crystallite size, particle appearance, and volume resistance of the obtained composite particles were measured in the same manner as in Example 1. In addition, several compacts were prepared using the composite particles in the same manner as in Example 1, and the shrinkage during sintering was measured. Table 3 shows the measurement results. A paste was prepared by the same composition and the same method as in Example 1 and printed on alumina using a 250 mesh screen printer, and the sheet resistance was measured.

【0034】[実施例4]実施例3と同じように製造し
た。硫酸ニッケル6水和物を302g取り、純水に溶か
し、硫酸ニッケル溶液1.5Lとした。室温で撹拌しな
がら、水酸化ナトリウム溶液48wt%0.3Lに燐酸
3ナトリウム12水和物50gを添加した。その後、硫
酸ニッケル溶液を約1時間で投入した。更に、硫酸銅溶
液0.5mol/Lを0.94L添加し、温度50℃に
し、ヒドラジン水溶液60wt%0.3Lを約5分で添
加した。20分反応させた後、40℃以下にして塩化ニ
ッケル4水和物11gを添加した。濾過し、エタノール
にステアリン酸を溶解したもので洗浄し、粒子表面にス
テアリン酸をコーティングした。次に、不活性雰囲気
(Ar)・500℃、4時間で熱処理を行った。得られ
た複合粒子の組成・粒度分布・結晶子サイズ・粒子の外
観・体積抵抗を実施例1と同じ方法で測定した。また、
上記複合粒子を用いて実施例1と同じ方法で成形体を数
個準備し、焼結時の収縮率を測定した。測定結果を表3
に示す。実施例1と同じ配合・同じ方法でペーストをつ
くり、スクリーン印刷機で250メッシュを用いてアル
ミナの上に印刷し、面積抵抗を測定した。
Example 4 The same procedure as in Example 3 was carried out. 302 g of nickel sulfate hexahydrate was taken and dissolved in pure water to make 1.5 L of a nickel sulfate solution. While stirring at room temperature, 50 g of trisodium phosphate dodecahydrate was added to 0.3 L of 48 wt% of sodium hydroxide solution. Thereafter, a nickel sulfate solution was introduced in about one hour. Further, 0.94 L of a 0.5 mol / L copper sulfate solution was added, the temperature was raised to 50 ° C., and 0.3 L of a 60 wt% hydrazine aqueous solution was added in about 5 minutes. After reacting for 20 minutes, the temperature was lowered to 40 ° C. or lower, and 11 g of nickel chloride tetrahydrate was added. The solution was filtered, washed with a solution of stearic acid dissolved in ethanol, and the particle surface was coated with stearic acid. Next, heat treatment was performed in an inert atmosphere (Ar) at 500 ° C. for 4 hours. The composition, particle size distribution, crystallite size, particle appearance, and volume resistance of the obtained composite particles were measured in the same manner as in Example 1. Also,
Using the composite particles, several compacts were prepared in the same manner as in Example 1, and the shrinkage during sintering was measured. Table 3 shows the measurement results.
Shown in A paste was prepared by the same composition and the same method as in Example 1 and printed on alumina using a 250 mesh screen printer, and the sheet resistance was measured.

【0035】[実施例5]実施例1と同じように製造し
た。硫酸ニッケル6水和物を376g取り、純水に溶か
し、硫酸ニッケル溶液1.8Lとした。水酸化ナトリウ
ム溶液48wt%の代わりに水酸化カリウム溶液40w
t%を使用した。オートクレイブに水酸化カリウム溶液
40wt%1Lを入れた。室温で撹拌しながら、硫酸ニ
ッケル溶液を約1時間で投入した。更に、硫酸コバルト
溶液0.5mol/L、0.5Lを添加した。室温に
て、ヒドラジン水溶液60wt%1Lと水素化ホウ素化
ナトリウム10wt%0.1Lを合わせて約30秒で添
加した。温度180℃、20分反応させた後、40℃以
下にして硫酸銅7水和物11gを添加した。濾過し、エ
タノールにステアリン酸を溶解したもので洗浄し、粒子
表面にステアリン酸をコーティングした。次に、不活性
雰囲気(Ar)・600℃、4時間で熱処理を行った。
得られた複合粒子の組成・粒度分布・結晶子サイズ・粒
子の外観・体積抵抗を実施例1と同じ方法で測定した。
また、上記複合粒子を用いて実施例1と同じ方法で成形
体を数個準備し、焼結時の収縮率を測定した。測定結果
を表3に示す。実施例1と同じ配合・同じ方法でペース
トをつくり、スクリーン印刷機で250メッシュを用い
てアルミナの上に印刷し、面積抵抗を測定した。
Example 5 The same procedure as in Example 1 was carried out. 376 g of nickel sulfate hexahydrate was taken and dissolved in pure water to make 1.8 L of a nickel sulfate solution. Potassium hydroxide solution 40w instead of sodium hydroxide solution 48wt%
t% was used. The autoclave was charged with 1 L of a 40 wt% potassium hydroxide solution. While stirring at room temperature, the nickel sulfate solution was introduced in about 1 hour. Further, 0.5 mol / L and 0.5 L of a cobalt sulfate solution were added. At room temperature, 1 L of an aqueous hydrazine solution of 60 wt% and 0.1 L of 10 wt% of sodium borohydride were added in about 30 seconds. After reacting at a temperature of 180 ° C. for 20 minutes, the temperature was lowered to 40 ° C. or less, and 11 g of copper sulfate heptahydrate was added. The solution was filtered, washed with a solution of stearic acid dissolved in ethanol, and the particle surface was coated with stearic acid. Next, heat treatment was performed in an inert atmosphere (Ar) at 600 ° C. for 4 hours.
The composition, particle size distribution, crystallite size, particle appearance, and volume resistance of the obtained composite particles were measured in the same manner as in Example 1.
In addition, several compacts were prepared using the composite particles in the same manner as in Example 1, and the shrinkage during sintering was measured. Table 3 shows the measurement results. A paste was prepared by the same composition and the same method as in Example 1 and printed on alumina using a 250 mesh screen printer, and the sheet resistance was measured.

【0036】[実施例6]実施例5と同じように製造し
た。硫酸ニッケル6水和物を400g取り、純水に溶か
し、硫酸ニッケル溶液1.8Lとした。水酸化カリウム
溶液40wt%1Lに室温で撹拌しながら、硫酸ニッケ
ル溶液を約1時間で投入した。更に、塩化パラジウム溶
液0.5mol/L、0.2Lを添加した。室温にて、
ヒドラジン水溶液60wt%1Lと水素化ホウ素化ナト
リウム10wt%0.1Lを合わせて約10分で添加し
た。温度50℃、20分反応させた後、40℃以下にし
て塩化スズ2水和物5gを添加した。濾過し、エタノー
ルにステアリン酸を溶解したもので洗浄し、粒子表面に
ステアリン酸をコーティングした。次に、不活性雰囲気
(Ar)・600℃、4時間で熱処理を行った。得られ
た複合粒子の組成・粒度分布・結晶子サイズ・粒子の外
観・体積抵抗を実施例1と同じ方法で測定した。また、
上記複合粒子を用いて実施例1と同じ方法で成形体を数
個準備し、焼結時の収縮率を測定した。測定結果を表3
に示す。実施例1と同じ配合・同じ方法でペーストをつ
くり、スクリーン印刷機で250メッシュを用いてアル
ミナの上に印刷し、面積抵抗を測定した。
Example 6 The same procedure as in Example 5 was carried out. 400 g of nickel sulfate hexahydrate was taken and dissolved in pure water to make 1.8 L of a nickel sulfate solution. While stirring at room temperature in 1 L of a 40 wt% potassium hydroxide solution, a nickel sulfate solution was introduced in about 1 hour. Further, 0.5 mol / L and 0.2 L of a palladium chloride solution were added. At room temperature,
1 L of a hydrazine aqueous solution of 60 wt% and 0.1 L of 10 wt% of sodium borohydride were added in about 10 minutes. After reacting at a temperature of 50 ° C. for 20 minutes, the temperature was lowered to 40 ° C. or less, and 5 g of tin chloride dihydrate was added. The mixture was filtered, washed with a solution of stearic acid dissolved in ethanol, and the particle surface was coated with stearic acid. Next, heat treatment was performed at 600 ° C. for 4 hours in an inert atmosphere (Ar). The composition, particle size distribution, crystallite size, particle appearance, and volume resistance of the obtained composite particles were measured in the same manner as in Example 1. Also,
Using the composite particles, several compacts were prepared in the same manner as in Example 1, and the shrinkage during sintering was measured. Table 3 shows the measurement results.
Shown in A paste was prepared by the same composition and the same method as in Example 1 and printed on alumina using a screen printing machine using 250 mesh, and the sheet resistance was measured.

【0037】[比較例1]実施例1と同じように製造し
た。硫酸ニッケル6水和物を450g取り、純水に溶か
し、硫酸ニッケル溶液1.75Lとした。室温で撹拌し
ながら、水酸化ナトリウム溶液28wt%1.3Lに硫
酸ニッケル溶液を約1時間で投入した。更に、温度70
℃にし、ヒドラジン水溶液60wt%1Lを約30秒で
添加した。60分反応させた後、濾過し、不活性雰囲気
(Ar)・100℃、4時間で乾燥処理を行った。得ら
れた粒子の組成・粒度分布・結晶子サイズ・粒子の外観
・体積抵抗を実施例1と同じ方法で測定した。また、上
記粒子を用いて実施例1と同じ方法で成形体を数個準備
し、焼結時の収縮率を測定した。測定結果を表3に示
す。実施例1と同じ配合・同じ方法でペーストをつく
り、スクリーン印刷機で250メッシュを用いてアルミ
ナの上に印刷し、面積抵抗を測定した。結果を表4に示
す。
[Comparative Example 1] A device was manufactured in the same manner as in Example 1. 450 g of nickel sulfate hexahydrate was taken and dissolved in pure water to make 1.75 L of a nickel sulfate solution. While stirring at room temperature, a nickel sulfate solution was added to 1.3 L of 28 wt% sodium hydroxide solution in about 1 hour. Furthermore, the temperature 70
° C, and 1 L of a 60 wt% hydrazine aqueous solution was added in about 30 seconds. After reacting for 60 minutes, the mixture was filtered and dried in an inert atmosphere (Ar) at 100 ° C. for 4 hours. The composition, particle size distribution, crystallite size, appearance and volume resistance of the obtained particles were measured in the same manner as in Example 1. In addition, several compacts were prepared using the above particles in the same manner as in Example 1, and the shrinkage during sintering was measured. Table 3 shows the measurement results. A paste was prepared by the same composition and the same method as in Example 1 and printed on alumina using a 250 mesh screen printer, and the sheet resistance was measured. Table 4 shows the results.

【0038】[比較例2]実施例1と同じように製造し
た。硫酸ニッケル6水和物を450g取り、純水に溶か
し、硫酸ニッケル溶液1.75Lとした。室温で撹拌し
ながら、水酸化ナトリウム溶液28wt%1.3Lに硫
酸ニッケル溶液を約1時間で投入した。更に、温度70
℃にし、ヒドラジン水溶液60wt%1Lを約30秒で
添加した。60分反応させた後、40℃以下にして塩化
イットリウム10gを添加した。濾過し、不活性雰囲気
(Ar)・100℃、4時間で乾燥処理を行った。得ら
れた粒子の組成・粒度分布・結晶子サイズ・粒子の外観
・体積抵抗を実施例1と同じ方法で測定した。また、上
記粒子を用いて実施例1と同じ方法で成形体を数個準備
し、焼結時の収縮率を測定した。測定結果を表3に示
す。実施例1と同じ配合・同じ方法でペーストをつく
り、スクリーン印刷機で250メッシュを用いてアルミ
ナの上に印刷し、面積抵抗を測定した。結果を表4に示
す。
[Comparative Example 2] A device was manufactured in the same manner as in Example 1. 450 g of nickel sulfate hexahydrate was taken and dissolved in pure water to make 1.75 L of a nickel sulfate solution. While stirring at room temperature, a nickel sulfate solution was added to 1.3 L of 28 wt% sodium hydroxide solution in about 1 hour. Furthermore, the temperature 70
° C, and 1 L of a 60 wt% hydrazine aqueous solution was added in about 30 seconds. After reacting for 60 minutes, the temperature was lowered to 40 ° C. or lower, and 10 g of yttrium chloride was added. The solution was filtered and dried at 100 ° C. for 4 hours in an inert atmosphere (Ar). The composition, particle size distribution, crystallite size, appearance and volume resistance of the obtained particles were measured in the same manner as in Example 1. In addition, several compacts were prepared using the above particles in the same manner as in Example 1, and the shrinkage during sintering was measured. Table 3 shows the measurement results. A paste was prepared by the same composition and the same method as in Example 1 and printed on alumina using a 250 mesh screen printer, and the sheet resistance was measured. Table 4 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】実施例と比較例を比較すると、実施例1〜
6は、還元され易い酸化物被覆されているため、収縮が
少なく、できた膜の電気抵抗も低い。一方、比較例1は
膜の電気抵抗は低いが、収縮は大きい。これは酸化膜が
なく、結晶子が小さいためと考えられる。比較例2で
は、酸化イットリウムが被覆されているため、収縮は小
さいが、膜の電気抵抗が高い。
When the examples and the comparative examples are compared, Examples 1 to
6 is coated with an oxide that is easy to be reduced, so that shrinkage is small and the electrical resistance of the formed film is low. On the other hand, in Comparative Example 1, the film has a low electric resistance but a large shrinkage. This is considered to be because there is no oxide film and the crystallite is small. In Comparative Example 2, since the film was coated with yttrium oxide, shrinkage was small, but the electrical resistance of the film was high.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 BA04 BB04 BB06 BC28 BD04 5G301 DA02 DA03 DA05 DA06 DA10 DA11 DD01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K018 BA04 BB04 BB06 BC28 BD04 5G301 DA02 DA03 DA05 DA06 DA10 DA11 DD01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 (A)下記一般式(1) Ni1-a-baZ’b (1) (式中、ZはAg,Au,Co,Cu,Pdから選ばれ
る1種又は2種以上の元素、Z’はLi,K,Na,
B,Pから選ばれる1種又は2種以上の元素であり、0
≦a≦0.4(重量割合)、0≦b≦0.1(重量割
合)、a+b>0である。)で表される芯材表面の少な
くとも一部を、(B)Ag,Ba,Co,Cu,Ni,
Sn,Ti,Zr,希土類元素(但し、Yを含む),P
dから選ばれる1種又は2種以上の元素の酸化物で被覆
してなることを特徴とする複合微粒子。
1. A (A) represented by the following general formula (1) Ni 1-ab Z a Z 'b (1) ( wherein, Z is Ag, Au, Co, Cu, 1 or 2 or more selected from Pd , Z ′ is Li, K, Na,
One or more elements selected from B and P;
≦ a ≦ 0.4 (weight ratio), 0 ≦ b ≦ 0.1 (weight ratio), and a + b> 0. ) At least part of the surface of the core material represented by (B), Ag, Ba, Co, Cu, Ni,
Sn, Ti, Zr, rare earth elements (including Y), P
d. composite fine particles, which are coated with an oxide of one or more elements selected from d.
【請求項2】 上記(B)成分の酸化物が、Ag,B
a,Co,Cu,Ni,Sn,Pdから選ばれる金属の
酸化物である請求項1記載の複合微粒子。
2. The method according to claim 1, wherein the oxide of the component (B) is Ag, B
2. The composite fine particles according to claim 1, which is an oxide of a metal selected from a, Co, Cu, Ni, Sn, and Pd.
【請求項3】 上記(B)成分の酸化物の総重量比率が
粒子全体に対して10重量%以下である請求項1又は2
記載の複合微粒子。
3. The composition according to claim 1, wherein the total weight ratio of the component (B) oxide is 10% by weight or less based on the whole particles.
The composite fine particles according to the above.
【請求項4】 上記(A)成分の芯材のX線回折法によ
る結晶子が200〜700Åである請求項1、2又は3
記載の複合微粒子。
4. The crystallite of the core material of the component (A) as determined by X-ray diffraction at 200 to 700 °.
The composite fine particles according to the above.
【請求項5】 体積抵抗率が100mΩcm以下である
請求項1乃至4のいずれか1項記載の複合微粒子。
5. The composite fine particles according to claim 1, which has a volume resistivity of 100 mΩcm or less.
【請求項6】 平均粒径が0.05〜0.7μmである
請求項1乃至5のいずれか1項記載の複合微粒子。
6. The composite fine particles according to claim 1, having an average particle size of 0.05 to 0.7 μm.
【請求項7】 請求項1乃至6のいずれか1項記載の複
合微粒子と有機ビヒクルとを含有することを特徴とする
導電性ペースト。
7. A conductive paste comprising the composite fine particles according to claim 1 and an organic vehicle.
【請求項8】 請求項7記載の導電性ペーストを焼結す
ることによって得られ、面積抵抗が100mΩ以下であ
ることを特徴する導電性膜。
8. A conductive film obtained by sintering the conductive paste according to claim 7, wherein the conductive film has a sheet resistance of 100 mΩ or less.
JP2002016442A 2001-01-31 2002-01-25 Composite fine particles, conductive paste and conductive film Expired - Fee Related JP4061462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002016442A JP4061462B2 (en) 2001-01-31 2002-01-25 Composite fine particles, conductive paste and conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001023749 2001-01-31
JP2001-23749 2001-01-31
JP2002016442A JP4061462B2 (en) 2001-01-31 2002-01-25 Composite fine particles, conductive paste and conductive film

Publications (2)

Publication Number Publication Date
JP2002302701A true JP2002302701A (en) 2002-10-18
JP4061462B2 JP4061462B2 (en) 2008-03-19

Family

ID=26608640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002016442A Expired - Fee Related JP4061462B2 (en) 2001-01-31 2002-01-25 Composite fine particles, conductive paste and conductive film

Country Status (1)

Country Link
JP (1) JP4061462B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314755A (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd Flake copper powder, production method therefor and conductive paste
US7018569B2 (en) 2003-03-10 2006-03-28 Shin-Etsu Chemical Co., Ltd. Complex oxide fine particles, particulate mixture, and conductive paste
JP2009197317A (en) * 2007-10-18 2009-09-03 Hitachi Metals Ltd REDUCTION PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND PRODUCTION METHOD THEREOF
JP2009541588A (en) * 2006-06-19 2009-11-26 キャボット コーポレイション Metal-containing nanoparticles, their synthesis and use
JP2010138494A (en) * 2010-02-10 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for producing flake copper powder
JP2020031202A (en) * 2018-08-23 2020-02-27 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component and manufacturing method of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018569B2 (en) 2003-03-10 2006-03-28 Shin-Etsu Chemical Co., Ltd. Complex oxide fine particles, particulate mixture, and conductive paste
JP2005314755A (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd Flake copper powder, production method therefor and conductive paste
JP2009541588A (en) * 2006-06-19 2009-11-26 キャボット コーポレイション Metal-containing nanoparticles, their synthesis and use
JP2009197317A (en) * 2007-10-18 2009-09-03 Hitachi Metals Ltd REDUCTION PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND PRODUCTION METHOD THEREOF
JP2013177690A (en) * 2007-10-18 2013-09-09 Hitachi Metals Ltd REDUCTION-PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND METHOD FOR PRODUCING THE SAME
KR101433799B1 (en) 2007-10-18 2014-08-25 히타치 긴조쿠 가부시키가이샤 REDUCED AND PRECIPITATED FINE NiP PARTICLES AND MANUFACTURING METHOD FOR THE SAME
KR101538012B1 (en) * 2007-10-18 2015-07-22 히타치 긴조쿠 가부시키가이샤 Anisotropic conductive film used for connecting wiring and manufacturing method for the same
JP2010138494A (en) * 2010-02-10 2010-06-24 Mitsui Mining & Smelting Co Ltd Method for producing flake copper powder
JP2020031202A (en) * 2018-08-23 2020-02-27 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component and manufacturing method of the same
JP7283674B2 (en) 2018-08-23 2023-05-30 サムソン エレクトロ-メカニックス カンパニーリミテッド. Laminated ceramic electronic component and manufacturing method thereof

Also Published As

Publication number Publication date
JP4061462B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US6686045B2 (en) Composite fine particles, conductive paste, and conductive film
KR101407197B1 (en) Nickel powder and its production method
JP6154507B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6274444B2 (en) Method for producing copper powder
JP5519938B2 (en) Method for producing copper powder for conductive paste
JP2005314755A (en) Flake copper powder, production method therefor and conductive paste
JP5574154B2 (en) Nickel powder and method for producing the same
JP2006336060A (en) Nickel particle powder and production method therefor
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP5522885B2 (en) Nickel powder, method for producing the same, and conductive paste
US20100208410A1 (en) Nickel powder or alloy powder having nickel as main component, method for manufacturing the powder, conductive paste and laminated ceramic capacitor
JP4100244B2 (en) Nickel powder and method for producing the same
JP4061462B2 (en) Composite fine particles, conductive paste and conductive film
JP2010059467A (en) Nickel powder and method for producing the same
JP5088458B2 (en) Nickel powder for multilayer ceramic capacitor external electrode and method for producing the same
JP2010225574A (en) Silver paste
JP4288468B2 (en) Mixed fine particles and conductive paste
JP5942791B2 (en) Method for producing nickel powder
CN111918735B (en) Metal powder
JP4199825B2 (en) Nickel fine powder
JP2015161025A (en) Production method of nickel powder
JP2002317213A (en) Production method for nickel fine powder
JP2007134291A (en) Conductive paste, and conductive powder
JP2015163726A (en) Method of producing nickel powder
JP2007042688A (en) Nickel powder for internal electrode of multilayered ceramic capacitor, and multilayered ceramic capacitor formed thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees