JP2007134291A - Conductive paste, and conductive powder - Google Patents

Conductive paste, and conductive powder Download PDF

Info

Publication number
JP2007134291A
JP2007134291A JP2005328991A JP2005328991A JP2007134291A JP 2007134291 A JP2007134291 A JP 2007134291A JP 2005328991 A JP2005328991 A JP 2005328991A JP 2005328991 A JP2005328991 A JP 2005328991A JP 2007134291 A JP2007134291 A JP 2007134291A
Authority
JP
Japan
Prior art keywords
conductive
particles
noble metal
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005328991A
Other languages
Japanese (ja)
Other versions
JP4833640B2 (en
Inventor
Shinroku Kawakado
眞六 川角
Shinichiro Kawakado
眞一郎 川角
Masao Iwasaki
正雄 岩崎
Satoshi Honda
智 本田
Ryuichi Niyuuhahei
龍一 入波平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Chemicals Co Ltd
Original Assignee
Kojima Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Chemicals Co Ltd filed Critical Kojima Chemicals Co Ltd
Priority to JP2005328991A priority Critical patent/JP4833640B2/en
Publication of JP2007134291A publication Critical patent/JP2007134291A/en
Application granted granted Critical
Publication of JP4833640B2 publication Critical patent/JP4833640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive paste enabling manufacture of a conductive film having a small (low) resistivity value, and powder for the conductive paste. <P>SOLUTION: A conductive particle mixture obtained by mixing a conductive small particle having an average particle diameter of 0.1-0.6 μm and a conductive large particle having an average diameter of 0.5-1.0 μm (the average particle diameter of the small particle is smaller than the average particle diameter of the large particle) in the ratio within the range from 20:80 to 80:20 (especially, in the ratio within the range from 20:80 to 45:55 or within the range from 80:20 to 55:45) expressed by the mass ratio of the small particle to the large particle, and the conductive paste contains this conductive particle mixture. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導電ペースト及び導電ペーストの導電性材料として有利に用いられる導電性粉末に関する。本発明は特に、比抵抗値の小さい(すなわち、低い)導電性膜の製造を可能にする導電ペースト及び導電ペースト用粉末に関する。   TECHNICAL FIELD The present invention relates to a conductive paste and a conductive powder that is advantageously used as a conductive material of the conductive paste. In particular, the present invention relates to a conductive paste and a conductive paste powder that enable the production of a conductive film having a small specific resistance value (that is, a low specific resistance value).

パラジウム、パラジウム・銀合金、白金、あるいは銀などの導電性粉末を含む導電ペーストを基板上に塗布あるいは印刷し、焼成することにより、コンデンサの電極、センサの電極、あるいはIC回路の電極などの電子部品の電極を形成する技術は一般的に利用されている。   By applying or printing a conductive paste containing conductive powder such as palladium, palladium / silver alloy, platinum, or silver on a substrate and firing, electrons such as capacitor electrodes, sensor electrodes, or IC circuit electrodes A technique for forming an electrode of a component is generally used.

近年、上記のような各種の電極は、電子部品の小型化と高性能化の要求を受けて、ますます薄膜化する傾向があり、より微粒子化し、かつ粒子径の揃った導電性粉末が求められている。また、電子部品の高性能化に対する要求の高まりにつれ、小さい比抵抗値を示す薄膜電極への要求はますます高くなっている。   In recent years, various types of electrodes as described above tend to be made thinner and thinner in response to demands for miniaturization and higher performance of electronic components, and there is a need for conductive powders with finer particles and uniform particle sizes. It has been. Further, as the demand for higher performance of electronic parts increases, the demand for thin film electrodes exhibiting a small specific resistance value is increasing.

特許文献1には、互いに酸化還元電位の異なる二種の金属の塩を含む水溶液を用意する工程;該水溶液に還元剤を保護コロイドの存在下に接触させることにより、先ず酸化還元電位の低い金属の微細粒子を析出させ、次いでその金属の微粒子の周囲に酸化還元電位の高い金属を析出させて、酸化還元電位の低い金属の微細粒子の周囲が酸化還元電位の高い金属の層で被覆された二重層粒子を生成させる工程;そして、該二重層粒子を含むコロイド溶液に第三の金属の塩と還元剤とを接触させる工程を順次実施することによって、粒子径が揃った金属微粉末を製造する方法、および酸化還元電位の低い金属の微細粒子の周囲が酸化還元電位の高い金属の層で被覆された二重層粒子を含むコロイド溶液に第三の金属の塩と還元剤とを接触させる工程を順次実施することによって、粒子径が揃った金属微粉末を製造する方法の開示がある。特許文献1には、これらの方法によって、粒子径が揃ったパラジウム微粉末および白金微粉末などの貴金属微粉末も製造することができることが明らかにされている。   Patent Document 1 discloses a step of preparing an aqueous solution containing two kinds of metal salts having different oxidation-reduction potentials; by bringing a reducing agent into contact with the aqueous solution in the presence of a protective colloid, a metal having a low oxidation-reduction potential is first prepared. Then, a metal having a high redox potential was deposited around the fine metal particles, and the metal fine particles having a low redox potential were coated with a metal layer having a high redox potential. A step of producing double layer particles; and a step of bringing a colloidal solution containing the double layer particles into contact with a salt of a third metal and a reducing agent in order to produce a metal fine powder having a uniform particle size. And a method in which a third metal salt and a reducing agent are brought into contact with a colloidal solution containing double-layer particles in which fine metal particles having a low redox potential are coated with a metal layer having a high redox potential. By sequentially conducting the, there is a disclosure of a method for producing a fine metal powder having a uniform particle size. Patent Document 1 clarifies that these methods can also produce noble metal fine powders such as palladium fine powder and platinum fine powder having a uniform particle diameter.

特許文献2には、粒径が0.5〜5μmの範囲の球形状白金粉末30〜98質量%と粒径2μm以下のかさ密度が0.5〜1.5g/cm3の不定形状白金粉末2〜70質量%とからなる白金粉末と無機酸化物とが有機ビヒクルに均一分散状態にされている焼き付け用白金導電ペーストが記載されている。特許文献2によると、この白金導電ペーストは、導電ペーストとして好ましい粘度特性を有するため、この導電ペーストを用いて形成される電子部品の回路は、安定な導電特性を示すとされている。 Patent Document 2 discloses an amorphous platinum powder having a spherical particle size of 30 to 98% by mass with a particle size of 0.5 to 5 μm and a bulk density of 0.5 to 1.5 g / cm 3 with a particle size of 2 μm or less. A platinum conductive paste for baking is described in which a platinum powder of 2 to 70% by mass and an inorganic oxide are uniformly dispersed in an organic vehicle. According to Patent Document 2, since this platinum conductive paste has a viscosity characteristic preferable as a conductive paste, a circuit of an electronic component formed using this conductive paste shows stable conductive characteristics.

特許文献3には、平均粒径3μm未満、比表面積0.7m2/g以上の略球形状の金属粉末である球形粉末と、平均粒径3μm以上、比表面積0.7m2/g未満の扁平粉末とを、球形粉末:扁平粉末=100:0〜50:50の質量比で配合した導電成分を含有する導電ペーストが記載されている。特許文献3によると、この導電ペーストでは、球形粉末と扁平粉末とが互いにからみあうため、塗布、乾燥時における形状性が向上し、形成される電極の膜厚の均一化が図れるとされている。 Patent Document 3, an average particle size of less than 3 [mu] m, and spherical powder is a metal powder having a specific surface area of 0.7 m 2 / g or more substantially spherical, average particle diameter of 3 [mu] m or more, less than a specific surface area of 0.7 m 2 / g The conductive paste containing the conductive component which mix | blended flat powder with the mass ratio of spherical powder: flat powder = 100: 0-50: 50 is described. According to Patent Document 3, in this conductive paste, since the spherical powder and the flat powder are entangled with each other, the shape during coating and drying is improved, and the film thickness of the formed electrode can be made uniform.

特許文献4には、平均粒径が0.5μm以上、20μm以下の範囲にあり、異なる平均粒径をもつ複数の導電性粉を混合した導電性粉を液状エポキシ樹脂に分散したビアホール充填用導体ペースト組成物が記載されており、導電性粉の組合わせとして、平均粒径が0.5μm以上、2.0μm以下の範囲の導電性粉と平均粒径が2.0μmをこえ20μm以下の範囲の導電性粉との組合わせが示されている。特許文献4によると、このような導電性ペーストをビアホール充填用導電性ペーストとして使用すると、ビアホールへの充填時のへこみが生じにくいとされている。   Patent Document 4 discloses a via hole filling conductor in which a conductive powder obtained by mixing a plurality of conductive powders having an average particle diameter of 0.5 μm or more and 20 μm or less and having a different average particle diameter is dispersed in a liquid epoxy resin. A paste composition is described, and as a combination of conductive powders, an average particle diameter of 0.5 μm or more and 2.0 μm or less of conductive powder and an average particle diameter of more than 2.0 μm and a range of 20 μm or less A combination with a conductive powder is shown. According to Patent Document 4, when such a conductive paste is used as a conductive paste for filling a via hole, it is difficult to cause dents when filling the via hole.

WO 2005/053885 A1WO 2005/053885 A1 特開平5−334911号公報JP-A-5-334911 特開平8−96623号公報JP-A-8-96623 特開2003−92024号公報JP 2003-92024 A

本発明は、比抵抗値の小さい薄膜の貴金属電極層の製造に有用な導電ペーストと導電性粉末を提供することを目的とする。   An object of the present invention is to provide a conductive paste and a conductive powder useful for the production of a thin noble metal electrode layer having a small specific resistance value.

導電性粉末を用いて導電ペーストを得る場合に、導電ペーストの塗布特性や形成される電極層の均一性などの向上のために、粒径あるいは形状の異なる複数の導電性粉末を混合した導電性粉末が有用であることは、前記の特許文献2乃至4に記載されている。しかしながら、そのような粒径あるいは形状の異なる複数の導電性粉末を混合した導電性粉末が、混合前の単一の導電性粉末の比抵抗値に比べて如何なる比抵抗値を示すかについては、これまでに明らかにされていない。   When obtaining conductive paste using conductive powder, conductivity is improved by mixing multiple conductive powders with different particle sizes or shapes in order to improve the application characteristics of the conductive paste and the uniformity of the electrode layer to be formed. The usefulness of the powder is described in Patent Documents 2 to 4 described above. However, as to what specific resistance value the conductive powder obtained by mixing a plurality of conductive powders having different particle sizes or shapes exhibits a specific resistance value compared to the specific resistance value of the single conductive powder before mixing, It has not been revealed so far.

本発明の発明者は、平均粒子径が1μm以下の導電性粉末について、そのような極微小の導電性粉末を二種もしくはそれ以上混合して得られる導電性混合粉末が如何なる比抵抗値を示すかを研究した。そして、その研究の結果、平均粒子径が0.1〜0.6μmの範囲にある導電性小粒子と平均粒子径が0.5〜1.0μmの範囲にある導電性大粒子(但し、小粒子の平均粒子径は、大粒子の平均粒子径よりも小さい)とを、小粒子と大粒子との質量比で表して、20:80乃至80:20の範囲の比にて混合して得た導電性粒子混合物は、これに公知の結合剤と無機酸化物を混合して導電ペーストとして、電極層を形成すると、その電極層は、上記の小粒子あるいは大粒子のみを導電性粉末として用いて形成した電極層に比べて顕著に小さい比抵抗値を示すことを見出した。また更に、小粒子と大粒子とを質量比で表して20:80乃至45:55の範囲もしくは80:20乃至55:45の範囲の比にて混合して得た導電性粒子混合物は、これに公知の結合剤と無機酸化物を混合して導電ペーストとして、電極層を形成すると、その電極層は、特に小さい比抵抗値を示すことを見出し、本発明に到達した。   The inventor of the present invention shows any specific resistance value of a conductive mixed powder obtained by mixing two or more kinds of such extremely fine conductive powders with respect to a conductive powder having an average particle diameter of 1 μm or less. I studied it. As a result of the research, conductive small particles having an average particle diameter in the range of 0.1 to 0.6 μm and conductive large particles having an average particle diameter in the range of 0.5 to 1.0 μm (however, small The average particle size of the particles is smaller than the average particle size of the large particles) and is expressed as a mass ratio of the small particles to the large particles, and is mixed at a ratio in the range of 20:80 to 80:20. The conductive particle mixture is mixed with a known binder and an inorganic oxide to form a conductive paste to form an electrode layer. The electrode layer uses only the above-mentioned small particles or large particles as a conductive powder. It was found that the specific resistance value was remarkably smaller than that of the electrode layer formed in the above manner. Furthermore, the conductive particle mixture obtained by mixing the small particles and the large particles in a mass ratio of 20:80 to 45:55 or 80:20 to 55:45 It was found that when an electrode layer was formed as a conductive paste by mixing a known binder and an inorganic oxide, the electrode layer exhibited a particularly small specific resistance value, and the present invention was reached.

従って、本発明は、平均粒子径が0.1〜0.6μmの範囲にある導電性小粒子と平均粒子径が0.5〜1.0μmの範囲にある導電性大粒子(但し、導電性小粒子の平均粒子径は、導電性大粒子の平均粒子径よりも小さい)とを、導電性小粒子と導電性大粒子との質量比で表して、20:80乃至80:20の範囲の比にて混合した導電性粒子混合物を含有することを特徴とする導電ペーストにある。   Accordingly, the present invention provides a small conductive particle having an average particle diameter in the range of 0.1 to 0.6 μm and a large conductive particle having an average particle diameter in the range of 0.5 to 1.0 μm (however, the conductive The average particle size of the small particles is smaller than the average particle size of the conductive large particles) in terms of the mass ratio of the conductive small particles to the conductive large particles, and is in the range of 20:80 to 80:20. A conductive paste comprising a conductive particle mixture mixed in a ratio.

本発明はまた、平均粒子径が0.1〜0.6μmの範囲にある導電性小粒子と平均粒子径が0.5〜1.0μmの範囲にある導電性大粒子(但し、導電性小粒子の平均粒子径は、導電性大粒子の平均粒子径よりも小さい)とを、導電性小粒子と導電性大粒子との質量比で表して、20:80乃至80:20の範囲の比にて混合してなる導電性粉末にもある。   The present invention also includes conductive small particles having an average particle diameter in the range of 0.1 to 0.6 μm and conductive large particles having an average particle diameter in the range of 0.5 to 1.0 μm (provided that the conductive small particles The average particle diameter of the particles is smaller than the average particle diameter of the conductive large particles) and is expressed as a mass ratio of the conductive small particles to the conductive large particles, and the ratio is in the range of 20:80 to 80:20. There are also conductive powders mixed in.

本発明の導電性粉末を含む導電ペーストを用いることにより薄層で、かつ比抵抗値が小さい電極層を形成することができる。   By using the conductive paste containing the conductive powder of the present invention, an electrode layer having a thin layer and a small specific resistance value can be formed.

本発明で用いる導電性粉末の好ましい態様を次に列記する。
(1)導電性粒子混合物における導電性小粒子と導電性大粒子との質量比が、20:80乃至45:55の範囲もしくは80:20乃至55:45の範囲の比である。
(2)導電性粒子混合物における導電性小粒子と導電性大粒子との質量比が特に、80:20乃至55:45の範囲の比である。
(3)導電性小粒子および導電性大粒子のいずれもが貴金属粒子である。
(4)貴金属粒子が白金粒子もしくはパラジウム粒子である。
(5)いずれの貴金属粒子も、表面層が貴金属からなり、内側層が表面層の貴金属とは異なる成分もしくは組成の貴金属からなる。
(6)貴金属粒子の表面層が白金もしくはパラジウムからなる。
(7)導電性小粒子および導電性大粒子のいずれの粒子の粒子径の正規分布σgも2.0以下(さらに好ましくは、1.9以下)である。
(8)表面層が貴金属からなり、内側層が表面層の貴金属とは異なる組成の貴金属からなる貴金属粒子が、互いに酸化還元電位の異なる二種の貴金属の塩を含む水溶液を用意する工程;該水溶液に還元剤を保護コロイドの存在下に接触させることにより、先ず酸化還元電位の低い貴金属の微細粒子を析出させ、次いでその貴金属の微粒子の周囲に酸化還元電位の高い貴金属を析出させて、酸化還元電位の低い貴金属の微細粒子の周囲が酸化還元電位の高い貴金属の層で被覆された二重層粒子を生成させる工程;そして、該二重層粒子を含むコロイド溶液に第三の貴金属の塩と還元剤とを接触させる工程を順次実施することにより製造された貴金属粒子である。
Preferred embodiments of the conductive powder used in the present invention are listed below.
(1) The mass ratio of the conductive small particles to the conductive large particles in the conductive particle mixture is in the range of 20:80 to 45:55 or in the range of 80:20 to 55:45.
(2) The mass ratio of the conductive small particles to the conductive large particles in the conductive particle mixture is particularly a ratio in the range of 80:20 to 55:45.
(3) Both conductive small particles and conductive large particles are noble metal particles.
(4) The noble metal particles are platinum particles or palladium particles.
(5) In any precious metal particles, the surface layer is made of a precious metal, and the inner layer is made of a precious metal having a component or composition different from that of the precious metal of the surface layer.
(6) The surface layer of the noble metal particles is made of platinum or palladium.
(7) The normal distribution σ g of the particle diameter of any one of the conductive small particles and the conductive large particles is 2.0 or less (more preferably 1.9 or less).
(8) a step of preparing an aqueous solution in which the noble metal particles comprising a noble metal having a surface layer made of a noble metal and an inner layer having a composition different from that of the noble metal of the surface layer include two kinds of noble metal salts having different oxidation-reduction potentials; By bringing a reducing agent into contact with an aqueous solution in the presence of a protective colloid, first, fine particles of a noble metal having a low oxidation-reduction potential are precipitated, and then a noble metal having a high oxidation-reduction potential is deposited around the fine particles of the noble metal, thereby oxidizing. Generating a bilayer particle in which fine particles of a noble metal having a low reduction potential are covered with a layer of a noble metal having a high redox potential; and a colloidal solution containing the bilayer particle and a salt and a third noble metal are reduced. It is the noble metal particle manufactured by performing sequentially the process which makes an agent contact.

次に、まず本発明の導電性粉末について説明する。   Next, the conductive powder of the present invention will be described first.

本発明の導電性粉末は、相対的に小さい平均粒子径を有する導電性小粒子と相対的に大きい平均粒子径を有する導電性大粒子とを特定割合にて混合してなる混合物である。相対的に少ない量(全体量の半分未満、特に1/3未満)であれば、さらに、大粒子と小粒子との間の平均粒子径を持つ導電性粒子、大粒子よりも大きい平均粒子径を持つ導電性粒子、そして小粒子よりも小さい粒子径を持つ導電性粒子を混合してもよい。   The conductive powder of the present invention is a mixture obtained by mixing conductive small particles having a relatively small average particle diameter and conductive large particles having a relatively large average particle diameter at a specific ratio. If the amount is relatively small (less than half of the total amount, especially less than 1/3), the conductive particles having an average particle size between the large particles and the small particles, the average particle size larger than the large particles And conductive particles having a particle diameter smaller than that of small particles may be mixed.

導電性小粒子は、0.1〜0.6μmの範囲にある平均粒子径を持ち、導電性大粒子は0.5〜1.0μmの範囲にある平均粒子径を持つ。但し、小粒子の平均粒子径は、大粒子の平均粒子径よりも小さい。導電性小粒子の平均粒子径と導電性大粒子の平均粒子径とは、その差が、0.1〜0.5μmの範囲にあることが好ましい。小粒子と大粒子との混合割合は、前者:後者の質量比で表して、20:80乃至80:20の範囲(特に好ましくは、20:80乃至45:55の範囲もしくは80:20乃至55:45の範囲)の比とする。小粒子と大粒子との混合割合は、前者:後者の質量比で表して、80:20乃至55:45の範囲内にあることが特に好ましい。   The conductive small particles have an average particle diameter in the range of 0.1 to 0.6 μm, and the conductive large particles have an average particle diameter in the range of 0.5 to 1.0 μm. However, the average particle size of the small particles is smaller than the average particle size of the large particles. The difference between the average particle diameter of the conductive small particles and the average particle diameter of the conductive large particles is preferably in the range of 0.1 to 0.5 μm. The mixing ratio of the small particles and the large particles is expressed as a mass ratio of the former and the latter, and ranges from 20:80 to 80:20 (particularly preferably, ranges from 20:80 to 45:55 or 80:20 to 55). : Range of 45). The mixing ratio of the small particles and the large particles is particularly preferably in the range of 80:20 to 55:45, expressed by the former mass ratio.

導電性小粒子と導電性大粒子はいずれも、貴金属粒子であることが好ましく、貴金属粒子の材料としては、白金、パラジウム、銀、金、これらの貴金属の混合物(合金も含む)を挙げることができる。貴金属粒子のそれぞれは、単一の貴金属からなる粒子(いわゆる無垢の粒子)であってもよいが、前記特許文献1に記載されている製造方法により得られる、表面層が貴金属からなり、内側層が表面層の貴金属とは異なる成分もしくは組成の貴金属からなる、粒子径の揃った(特に、粒子径の正規分布σgが2.0以下、さらに好ましくは、1.9以下の)貴金属粒子であることが好ましい。 Both the small conductive particles and the large conductive particles are preferably noble metal particles. Examples of the noble metal particle materials include platinum, palladium, silver, gold, and mixtures of these noble metals (including alloys). it can. Each of the noble metal particles may be a single noble metal particle (so-called solid particle), but the surface layer obtained by the manufacturing method described in Patent Document 1 is made of a noble metal, and the inner layer. A noble metal particle having a uniform particle size (particularly, a normal distribution σ g of the particle size of 2.0 or less, more preferably 1.9 or less) made of a noble metal having a component or composition different from that of the noble metal of the surface layer. Preferably there is.

本発明の導電ペーストは、上記の本発明の導電性粉末を用い、公知のバインダ(例、有機ポリマー)や金属酸化物(例、アルミナ)などの副材料を混合して製造される。   The conductive paste of the present invention is produced by mixing the above-mentioned conductive powder of the present invention with a secondary material such as a known binder (eg, organic polymer) or metal oxide (eg, alumina).

[参考例1]表面層が白金の金属微粉末(平均粒子径:0.4μm)の製造
(1)パラジウム/銀二重層粒子分散液の製造
イ)パラジウム塩水溶液の調製
容量500mLのビーカーにジクロロジアンミンパラジウム(II)[cis-[PdCl2(NH3)2](II)]をパラジウム量換算で50gと水300mLとを入れ、マグネチックスターラーで攪拌した。次に、濃アンモニア水(NH4OH)100mLを加えた後、ビーカーをラッピングフィルムにより密閉し、攪拌を1時間続けた。内容物の大部分が溶解したので、溶液を濾過し、次いで水で希釈して、500mLのパラジウム塩水溶液を得た。
[Reference Example 1] Production of fine metal powder (average particle size: 0.4 μm) whose surface layer is platinum (1) Production of palladium / silver bilayer particle dispersion liquid i) Preparation of aqueous palladium salt solution Dichlorodiammine in a 500 mL beaker 50 g of palladium (II) [cis- [PdCl 2 (NH 3 ) 2 ] (II)] and 300 mL of water were added in terms of palladium amount, and the mixture was stirred with a magnetic stirrer. Next, 100 mL of concentrated aqueous ammonia (NH 4 OH) was added, the beaker was sealed with a wrapping film, and stirring was continued for 1 hour. Since most of the contents had dissolved, the solution was filtered and then diluted with water to give 500 mL of an aqueous palladium salt solution.

ロ)銀塩水溶液の調製
容量500mLの褐色びんに塩化銀(AgCl)6.67g(銀量換算で5g)とアンモニア水(濃アンモニア水100mLを水で希釈して400mLとしたもの)とを入れ、褐色びんを樹脂フィルムとアルミニウムフォイルとを用いて遮光的に密閉し、マグネチックスターラーで攪拌した。次いで、水を加えて500mLの銀塩水溶液を得た。
B) Preparation of aqueous silver salt solution A silver bottle (AgCl) of 6.67 g (5 g in terms of silver) and aqueous ammonia (100 mL of concentrated aqueous ammonia diluted to 400 mL) were placed in a 500 mL brown bottle. The brown bottle was sealed in a light-shielding manner using a resin film and an aluminum foil, and stirred with a magnetic stirrer. Next, water was added to obtain 500 mL of an aqueous silver salt solution.

ハ)保護コロイド液の調製
容量5Lのビーカーに水4Lを入れ、この水を激しく攪拌しながら、カルボキシメチルセルロース(CMC)40gを少しずつ加えて、CMC水溶液を得た。ついで、さらに攪拌を1時間続け、保護コロイド液を得た。
C) Preparation of protective colloid liquid 4 L of water was put into a 5 L beaker, and 40 g of carboxymethylcellulose (CMC) was added little by little while stirring this water vigorously to obtain a CMC aqueous solution. Subsequently, stirring was further continued for 1 hour to obtain a protective colloid solution.

ニ)パラジウム/銀二重層粒子分散液の製造
上記で得た保護コロイド液の全量を攪拌しながら、これにパラジウム塩水溶液を全量(パラジウム量として50g)加え、次に、銀塩水溶液2.5mL(銀量として25mg)を少しずつ加えた。攪拌しながら、攪拌液をゆっくりと加温し、30℃になった時点でこれに、ヒドラジンヒドラート水溶液(15mL/75mL)を加えた。次いで、水溶液混合物を30〜40℃に保温しながら、1時間攪拌した。この操作により、銀微細粒子の周囲にパラジウム層が析出積層したパラジウム/銀二重層粒子分散液が得られた。この分散液は、次いで、樹脂フィルムで密閉して保存した。
D) Production of palladium / silver bilayer particle dispersion liquid While stirring the whole amount of the protective colloid liquid obtained above, a total amount of palladium salt aqueous solution (50 g as palladium amount) was added thereto, and then 2.5 mL of silver salt aqueous solution ( Silver (25 mg) was added in small portions. While stirring, the stirring solution was slowly heated, and when the temperature reached 30 ° C., an aqueous hydrazine hydrate solution (15 mL / 75 mL) was added thereto. Subsequently, the aqueous solution mixture was stirred for 1 hour while being kept at 30 to 40 ° C. By this operation, a palladium / silver bilayer particle dispersion in which a palladium layer was deposited and laminated around silver fine particles was obtained. This dispersion was then stored sealed with a resin film.

(2)白金塩水溶液の調製
ジクロロテトラアンミン白金(II)に水を加えて、金属白金換算量200gを含む2.2Lの白金塩水溶液を得た。
(2) Preparation of platinum salt aqueous solution Water was added to dichlorotetraammineplatinum (II) to obtain a 2.2 L platinum salt aqueous solution containing 200 g of metal platinum equivalent.

(3)ヒドラジンヒドラート水溶液の調製
ヒドラジンヒドラート225mLに水を加えて500mLのヒドラジンヒドラート水溶液を得た。
(3) Preparation of hydrazine hydrate aqueous solution Water was added to 225 mL of hydrazine hydrate to obtain 500 mL of hydrazine hydrate aqueous solution.

(4)表面層が白金の金属微粉末の製造
1%CMC水溶液890mLに上記(1)で得たパラジウム/銀二重層粒子分散液340mLを加え、充分に攪拌し、30℃に温度調節した。
得られたコロイド液(反応母液)を攪拌しながら、この攪拌液に、上記(2)で得た白金塩水溶液と上記(3)で得たヒドラジンヒドラート水溶液を同時に加えた。添加終了後、液温を30〜40℃に調整しながら、さらに攪拌を1.5時間継続した。
CMCを洗浄除去し、生成した金属微粉末を濾過により集め、乾燥した。この金属微粉末の平均粒子径は0.4μmであり、粒子径が非常に揃っていた(粒子径の正規分布σg:1.9以下)。そして、この金属微粉末の各微粒子の表面層は、白金金属からなっていた。
(4) Production of fine metal powder with platinum surface layer 340 mL of the palladium / silver bilayer particle dispersion obtained in (1) above was added to 890 mL of a 1% CMC aqueous solution, and the temperature was adjusted to 30 ° C. with sufficient stirring.
While stirring the resulting colloidal solution (reaction mother liquor), the platinum salt aqueous solution obtained in (2) above and the hydrazine hydrate aqueous solution obtained in (3) above were simultaneously added to this stirring solution. After completion of the addition, stirring was further continued for 1.5 hours while adjusting the liquid temperature to 30 to 40 ° C.
CMC was removed by washing, and the resulting fine metal powder was collected by filtration and dried. This metal fine powder had an average particle size of 0.4 μm and a very uniform particle size (normal distribution of particle size σ g : 1.9 or less). The surface layer of each fine particle of the metal fine powder was made of platinum metal.

[参考例2]表面層が白金の金属微粉末(平均粒子径:0.6μm)の製造
(4)の工程において、パラジウム/銀二重層粒子分散液の添加量を90mLに替えた以外は、参考例1と同じ操作を行ない、金属微粉末を得た。得られた金属微粉末の平均粒子径は0.6μmで、粒子径が非常に揃っていた(粒子径の正規分布σg:1.9以下)。そして、この金属微粉末の各微粒子の表面層は、白金金属からなっていた。
[Reference Example 2] Production of fine metal powder having a surface layer of platinum (average particle size: 0.6 μm) In the step (4), except that the addition amount of the palladium / silver double layer particle dispersion was changed to 90 mL. The same operation as in Example 1 was performed to obtain a fine metal powder. The obtained metal fine powder had an average particle size of 0.6 μm and a very uniform particle size (normal distribution of particle size σ g : 1.9 or less). The surface layer of each fine particle of the metal fine powder was made of platinum metal.

[参考例3]表面層が白金の金属微粉末(平均粒子径:0.8μm)の製造
(4)の工程において、パラジウム/銀二重層粒子分散液の添加量を50mLに替えた以外は、参考例1と同じ操作を行ない、金属微粉末を得た。得られた金属微粉末の平均粒子径は0.8μmで、粒子径が非常に揃っていた(粒子径の正規分布σg:1.9以下)。そして、この金属微粉末の各微粒子の表面層は、白金金属からなっていた。
[Reference Example 3] Production of fine metal powder (average particle size: 0.8 μm) whose surface layer is platinum In the step (4), except that the addition amount of the palladium / silver double layer particle dispersion was changed to 50 mL. The same operation as in Example 1 was performed to obtain a fine metal powder. The obtained metal fine powder had an average particle size of 0.8 μm and a very uniform particle size (normal distribution of particle size σ g : 1.9 or less). The surface layer of each fine particle of the metal fine powder was made of platinum metal.

[実施例]導電ペーストの調製及び電極の製造と評価
参考例1乃至3のそれぞれで得られた表面層が白金の金属微粉末(白金被覆金属微粉末)を用いて下記の条件で導電ペーストを調製した。
[Example] Preparation of conductive paste and manufacture and evaluation of electrode The surface layer obtained in each of Reference Examples 1 to 3 was made of platinum metal fine powder (platinum-coated metal fine powder) and the conductive paste was subjected to the following conditions. Prepared.

1)導電ペーストの基本配合
白金被覆微粉末:無機成分(アルミナ微粉末):バインダ(エチルセルロース/テルピネオール:2/13)=20/1/4.5(重量比)
1) Basic composition of conductive paste Platinum-coated fine powder: inorganic component (alumina fine powder): binder (ethyl cellulose / terpineol: 2/13) = 20/1 / 4.5 (weight ratio)

2)調製した導電ペースト
ペースト試料1:参考例1で調製した白金被覆金属微粉末(平均粒子径0.4μm)を使用。
ペースト試料2:参考例2で調製した白金被覆金属微粉末(平均粒子径0.6μm)を使用。
ペースト試料3:参考例3で調製した白金被覆金属微粉末(平均粒子径0.8μm)を使用。
ペースト試料4:参考例1で調製した白金被覆金属微粉末(平均粒子径0.4μm)と参考例2で調製した白金被覆金属微粉末(平均粒子径0.6μm)とを質量比7:3で混合。
ペースト試料5:参考例1で調製した白金被覆金属微粉末(平均粒子径0.4μm)と参考例2で調製した白金被覆金属微粉末(平均粒子径0.6μm)とを質量比6:4で混合。
ペースト試料6:参考例1で調製した白金被覆金属微粉末(平均粒子径0.4μm)と参考例2で調製した白金被覆金属微粉末(平均粒子径0.6μm)とを質量比5:5で混合。
ペースト試料7:参考例1で調製した白金被覆金属微粉末(平均粒子径0.4μm)と参考例3で調製した白金被覆金属微粉末(平均粒子径0.8μm)とを質量比6:4で混合。
ペースト試料8:参考例1で調製した白金被覆金属微粉末(平均粒子径0.4μm)と参考例3で調製した白金被覆金属微粉末(平均粒子径0.8μm)とを質量比5:5で混合。
ペースト試料9:参考例1で調製した白金被覆金属微粉末(平均粒子径0.4μm)と参考例3で調製した白金被覆金属微粉末(平均粒子径0.8μm)とを質量比4:6で混合。
2) Prepared conductive paste Paste sample 1: The platinum-coated metal fine powder (average particle size 0.4 μm) prepared in Reference Example 1 was used.
Paste sample 2: The platinum-coated metal fine powder (average particle size 0.6 μm) prepared in Reference Example 2 was used.
Paste sample 3: The platinum-coated metal fine powder (average particle size 0.8 μm) prepared in Reference Example 3 was used.
Paste sample 4: The platinum-coated metal fine powder prepared in Reference Example 1 (average particle size 0.4 μm) and the platinum-coated metal fine powder prepared in Reference Example 2 (average particle size 0.6 μm) were in a mass ratio of 7: 3. Mixed with.
Paste sample 5: The platinum-coated metal fine powder (average particle size 0.4 μm) prepared in Reference Example 1 and the platinum-coated metal fine powder (average particle size 0.6 μm) prepared in Reference Example 2 were in a mass ratio of 6: 4. Mixed with.
Paste sample 6: The platinum-coated metal fine powder (average particle size 0.4 μm) prepared in Reference Example 1 and the platinum-coated metal fine powder (average particle size 0.6 μm) prepared in Reference Example 2 were in a mass ratio of 5: 5. Mixed with.
Paste sample 7: The platinum-coated metal fine powder (average particle size 0.4 μm) prepared in Reference Example 1 and the platinum-coated metal fine powder (average particle size 0.8 μm) prepared in Reference Example 3 were in a mass ratio of 6: 4. Mixed with.
Paste sample 8: The platinum-coated metal fine powder prepared in Reference Example 1 (average particle size 0.4 μm) and the platinum-coated metal fine powder prepared in Reference Example 3 (average particle size 0.8 μm) were in a mass ratio of 5: 5. Mixed with.
Paste sample 9: The platinum-coated metal fine powder (average particle size 0.4 μm) prepared in Reference Example 1 and the platinum-coated metal fine powder (average particle size 0.8 μm) prepared in Reference Example 3 were used in a mass ratio of 4: 6. Mixed with.

3)電極層の形成
導電ペーストをスクリーン印刷にてセラミック基板に印刷し、これを1550℃、2時間で焼成して厚さ約15μmの電極層を得た。
3) Formation of electrode layer The conductive paste was printed on a ceramic substrate by screen printing and fired at 1550 ° C. for 2 hours to obtain an electrode layer having a thickness of about 15 μm.

4)電極層の比抵抗値
第1表
────────────────────────────────────
導電ペースト 小粒子/大粒子(混合割合) 比抵抗値(μmΩ・cm)
────────────────────────────────────
ペースト試料1 小粒子(平均粒子径:0.4μm)のみ 24.58
ペースト試料2 大粒子(平均粒子径:0.6μm)のみ 33.59
ペースト試料3 大粒子(平均粒子径:0.8μm)のみ 31.66
────────────────────────────────────
ペースト試料4 (0.4μm)/(0.6μm)=7/3 21.63
ペースト試料5 (0.4μm)/(0.6μm)=6/4 21.52
ペースト試料6 (0.4μm)/(0.6μm)=5/5 22.10
────────────────────────────────────
ペースト試料7 (0.4μm)/(0.8μm)=6/4 22.53
ペースト試料8 (0.4μm)/(0.8μm)=5/5 22.92
ペースト試料9 (0.4μm)/(0.8μm)=4/6 22.81
────────────────────────────────────
4) Specific resistance of electrode layer
Table 1 ────────────────────────────────────
Conductive paste Small / large particles (mixing ratio) Specific resistance (μmΩ · cm)
────────────────────────────────────
Paste sample 1 Only small particles (average particle size: 0.4 μm) 24.58
Paste sample 2 Large particles (average particle size: 0.6 μm) only 33.59
Paste sample 3 Large particles (average particle size: 0.8 μm) only 31.66
────────────────────────────────────
Paste sample 4 (0.4 μm) / (0.6 μm) = 7/3 21.63
Paste sample 5 (0.4 μm) / (0.6 μm) = 6/4 21.52
Paste sample 6 (0.4 μm) / (0.6 μm) = 5/5 22.10
────────────────────────────────────
Paste sample 7 (0.4 μm) / (0.8 μm) = 6/4 22.53
Paste sample 8 (0.4 μm) / (0.8 μm) = 5/5 22.92
Paste sample 9 (0.4 μm) / (0.8 μm) = 4/6 22.81
────────────────────────────────────

上記の第1表の結果から本発明に従うペースト試料4乃至9を用いて製造した電極層の比抵抗値が、大粒子のみからなる導電性粒子を含むペースト試料あるいは小粒子のみからなる導電性粒子を含むペースト試料を用いて製造した電極層の比抵抗値に比べて顕著に小さくなっていることが分る。そして、さらに、小粒子あるいは大粒子の一方の比率が高いペースト試料4、5、7、9を用いて製造した電極層の比抵抗値がさらに小さくなっていることが分る。



From the results of Table 1, a paste sample containing conductive particles consisting of only large particles or conductive particles consisting of only small particles has a specific resistance value of electrode layers manufactured using paste samples 4 to 9 according to the present invention. It can be seen that the specific resistance value of the electrode layer manufactured using the paste sample containing is significantly smaller. And it turns out that the specific resistance value of the electrode layer manufactured using paste samples 4, 5, 7, and 9 with one ratio of small particles or large particles is still smaller.



Claims (16)

平均粒子径が0.1〜0.6μmの範囲にある導電性小粒子と平均粒子径が0.5〜1.0μmの範囲にある導電性大粒子(但し、導電性小粒子の平均粒子径は、導電性大粒子の平均粒子径よりも小さい)とを、導電性小粒子と導電性大粒子との質量比で表して、20:80乃至80:20の範囲の比にて混合してなる導電性粒子混合物を含有することを特徴とする導電ペースト。   Conductive small particles having an average particle size in the range of 0.1 to 0.6 μm and conductive large particles having an average particle size in the range of 0.5 to 1.0 μm (however, the average particle size of the conductive small particles Is smaller than the average particle size of the conductive large particles) and is expressed as a mass ratio of the conductive small particles to the conductive large particles, and is mixed at a ratio in the range of 20:80 to 80:20. A conductive paste comprising a conductive particle mixture. 導電性粒子混合物における導電性小粒子と導電性大粒子との質量比が、20:80乃至45:55の範囲もしくは80:20乃至55:45の範囲の比である請求項1に記載の導電ペースト。   The conductive ratio according to claim 1, wherein the mass ratio of the small conductive particles to the large conductive particles in the conductive particle mixture is in the range of 20:80 to 45:55 or in the range of 80:20 to 55:45. paste. 導電性小粒子および導電性大粒子のいずれもが貴金属粒子である請求項1もしくは2に記載の導電ペースト。   The conductive paste according to claim 1 or 2, wherein both the conductive small particles and the conductive large particles are noble metal particles. 貴金属粒子が白金粒子もしくはパラジウム粒子である請求項3に記載の導電ペースト。   The conductive paste according to claim 3, wherein the noble metal particles are platinum particles or palladium particles. いずれの貴金属粒子も、表面層が貴金属からなり、内側層が表面層の貴金属とは異なる成分もしくは組成の貴金属からなる請求項3に記載の導電ペースト。   4. The conductive paste according to claim 3, wherein each of the noble metal particles has a surface layer made of a noble metal and an inner layer made of a noble metal having a component or composition different from that of the noble metal of the surface layer. 貴金属粒子の表面層が白金もしくはパラジウムからなる請求項5に記載の導電ペースト。   The conductive paste according to claim 5, wherein the surface layer of the noble metal particles is made of platinum or palladium. 導電性小粒子及び導電性大粒子のいずれの粒子の粒子径の正規分布σgも2.0以下である請求項1乃至6のうちのいずれかの項に記載の導電ペースト。 The conductive paste according to any one of claims 1 to 6, wherein the normal distribution σ g of the particle diameter of any one of the conductive small particles and the conductive large particles is 2.0 or less. 表面層が貴金属からなり、内側層が表面層の貴金属とは異なる組成の貴金属からなる貴金属粒子が、互いに酸化還元電位の異なる二種の貴金属の塩を含む水溶液を用意する工程;該水溶液に還元剤を保護コロイドの存在下に接触させることにより、先ず酸化還元電位の低い貴金属の微細粒子を析出させ、次いでその貴金属の微粒子の周囲に酸化還元電位の高い貴金属を析出させて、酸化還元電位の低い貴金属の微細粒子の周囲が酸化還元電位の高い貴金属の層で被覆された二重層粒子を生成させる工程;そして、該二重層粒子を含むコロイド溶液に第三の貴金属の塩と還元剤とを接触させる工程を順次実施することにより製造された貴金属粒子である請求項5に記載の導電ペースト。   A step of preparing an aqueous solution in which noble metal particles comprising a noble metal having a surface layer made of a noble metal and an inner layer made of a noble metal having a composition different from that of the noble metal of the surface layer include two kinds of noble metal salts having different oxidation-reduction potentials; By contacting the agent in the presence of a protective colloid, first, noble metal fine particles having a low oxidation-reduction potential are precipitated, and then a noble metal having a high oxidation-reduction potential is deposited around the noble metal fine particles. Generating a bilayer particle in which fine particles of low noble metal are coated with a layer of a noble metal having a high oxidation-reduction potential; and a colloidal solution containing the bilayer particle includes a third noble metal salt and a reducing agent. The conductive paste according to claim 5, wherein the conductive paste is a noble metal particle produced by sequentially performing the contacting step. 平均粒子径が0.1〜0.6μmの範囲にある導電性小粒子と平均粒子径が0.5〜1.0μmの範囲にある導電性大粒子(但し、導電性小粒子の平均粒子径は、導電性大粒子の平均粒子径よりも小さい)とを、導電性小粒子と導電性大粒子との質量比で表して、20:80乃至80:20の比にて混合してなる導電性粉末。   Conductive small particles having an average particle size in the range of 0.1 to 0.6 μm and conductive large particles having an average particle size in the range of 0.5 to 1.0 μm (however, the average particle size of the conductive small particles Is smaller than the average particle diameter of the conductive large particles) in terms of the mass ratio of the conductive small particles to the conductive large particles, and is a mixture of 20:80 to 80:20. Powder. 導電性小粒子と導電性大粒子との質量比が、20:80乃至45:55の範囲もしくは80:20乃至55:45の範囲の比である請求項9に記載の導電性粉末。   The conductive powder according to claim 9, wherein the mass ratio of the small conductive particles to the large conductive particles is in the range of 20:80 to 45:55 or in the range of 80:20 to 55:45. 導電性小粒子および導電性大粒子のいずれもが貴金属粒子である請求項9もしくは10に記載の導電性粉末。   The conductive powder according to claim 9 or 10, wherein both the conductive small particles and the conductive large particles are noble metal particles. 貴金属粒子が白金粒子もしくはパラジウム粒子である請求項11に記載の導電性粉末。   The conductive powder according to claim 11, wherein the noble metal particles are platinum particles or palladium particles. いずれの貴金属粒子も、表面層が貴金属からなり、内側層が表面層の貴金属とは異なる成分もしくは組成の貴金属からなる請求項11に記載の導電性粉末。   The conductive powder according to claim 11, wherein any of the noble metal particles has a surface layer made of a noble metal and an inner layer made of a noble metal having a component or composition different from that of the noble metal of the surface layer. 貴金属粒子の表面層が白金もしくはパラジウムからなる請求項13に記載の導電性粉末。   The conductive powder according to claim 13, wherein the surface layer of the noble metal particles is made of platinum or palladium. 導電性小粒子および導電性大粒子のいずれの粒子の粒子径の正規分布σgも2.0以下である請求項9もしくは10に記載の導電性粉末。 The conductive powder according to claim 9 or 10, wherein the normal distribution σ g of the particle diameter of any one of the conductive small particles and the conductive large particles is 2.0 or less. 表面層が貴金属からなり、内側層が表面層の貴金属とは異なる組成の貴金属からなる貴金属粒子が、互いに酸化還元電位の異なる二種の貴金属の塩を含む水溶液を用意する工程;該水溶液に還元剤を保護コロイドの存在下に接触させることにより、先ず酸化還元電位の低い貴金属の微細粒子を析出させ、次いでその貴金属の微粒子の周囲に酸化還元電位の高い貴金属を析出させて、酸化還元電位の低い貴金属の微細粒子の周囲が酸化還元電位の高い貴金属の層で被覆された二重層粒子を生成させる工程;そして、該二重層粒子を含むコロイド溶液に第三の貴金属の塩と還元剤とを接触させる工程を順次実施することにより製造された貴金属粒子である請求項13に記載の導電性粉末。
A step of preparing an aqueous solution in which noble metal particles comprising a noble metal having a surface layer made of a noble metal and an inner layer made of a noble metal having a composition different from the noble metal of the surface layer include salts of two kinds of noble metals having different oxidation-reduction potentials; By contacting the agent in the presence of a protective colloid, first, noble metal fine particles having a low oxidation-reduction potential are precipitated, and then a noble metal having a high oxidation-reduction potential is deposited around the noble metal fine particles. Generating a bilayer particle in which a fine noble metal particle is coated with a layer of a noble metal having a high redox potential; and a colloidal solution containing the bilayer particle includes a third noble metal salt and a reducing agent. The conductive powder according to claim 13, wherein the conductive powder is a noble metal particle produced by sequentially performing the contacting step.
JP2005328991A 2005-11-14 2005-11-14 Conductive paste Expired - Fee Related JP4833640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328991A JP4833640B2 (en) 2005-11-14 2005-11-14 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328991A JP4833640B2 (en) 2005-11-14 2005-11-14 Conductive paste

Publications (2)

Publication Number Publication Date
JP2007134291A true JP2007134291A (en) 2007-05-31
JP4833640B2 JP4833640B2 (en) 2011-12-07

Family

ID=38155768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328991A Expired - Fee Related JP4833640B2 (en) 2005-11-14 2005-11-14 Conductive paste

Country Status (1)

Country Link
JP (1) JP4833640B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020940A (en) * 2008-07-08 2010-01-28 Toyo Seikan Kaisha Ltd Coating composition for forming electron reduction layer, and method of forming electron reduction layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270035A (en) * 2001-03-14 2002-09-20 Noritake Co Ltd Conductor paste, powder material for preparing it, and manufacturing method for ceramic electronic component
JP2004071493A (en) * 2002-08-09 2004-03-04 Nec Tokin Corp Conductive paste and electronic part
WO2005053885A1 (en) * 2003-12-01 2005-06-16 Kojima Chemicals Co., Ltd. Process for producing metal micropowder having particle diameter uniformalized

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270035A (en) * 2001-03-14 2002-09-20 Noritake Co Ltd Conductor paste, powder material for preparing it, and manufacturing method for ceramic electronic component
JP2004071493A (en) * 2002-08-09 2004-03-04 Nec Tokin Corp Conductive paste and electronic part
WO2005053885A1 (en) * 2003-12-01 2005-06-16 Kojima Chemicals Co., Ltd. Process for producing metal micropowder having particle diameter uniformalized

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020940A (en) * 2008-07-08 2010-01-28 Toyo Seikan Kaisha Ltd Coating composition for forming electron reduction layer, and method of forming electron reduction layer

Also Published As

Publication number Publication date
JP4833640B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4957172B2 (en) Nickel powder and method for producing the same
WO2013108916A1 (en) Silver-coated copper alloy powder and method for manufacturing same
KR20060134188A (en) Silver powder coated with silver compound and manufacturing method thereof
JP4861701B2 (en) Method for producing fine metal powder with uniform particle size
JP4666663B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP4100244B2 (en) Nickel powder and method for producing the same
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
JP2007115497A (en) Nickel-coated copper fine particle, manufacturing method of the same, conductive paste, and manufacturing method of conductive film
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP4163987B2 (en) Flaked copper powder, method for producing flaky copper powder and conductive paste
JP4833640B2 (en) Conductive paste
JP2003342621A (en) Method for manufacturing copper powder and copper powder obtained thereby
JP2008069457A (en) Drop-shaped copper powder, method for producing drop-shaped copper powder, and electrically conductive paste
JP2003141929A (en) Copper powder for copper paste
JP3656558B2 (en) Conductive paste and electronic component using the same
JP5942791B2 (en) Method for producing nickel powder
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JP6187822B2 (en) Method for producing nickel powder
JP4149410B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP2000001707A (en) Silver particle, its production and conductor paste consisting of silver particle
JP2016125117A (en) Composite copper particles
JPH0796681B2 (en) Method for producing palladium-coated silver powder
JPS6221045B2 (en)
JP2015161025A (en) Production method of nickel powder
JP2020100891A (en) Method of producing nickel powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees