JP2002151071A - Positive electrode active material for nonaqueous system secondary battery and its manufacturing method, and nonaqueous system secondary battery using the same - Google Patents

Positive electrode active material for nonaqueous system secondary battery and its manufacturing method, and nonaqueous system secondary battery using the same

Info

Publication number
JP2002151071A
JP2002151071A JP2000339879A JP2000339879A JP2002151071A JP 2002151071 A JP2002151071 A JP 2002151071A JP 2000339879 A JP2000339879 A JP 2000339879A JP 2000339879 A JP2000339879 A JP 2000339879A JP 2002151071 A JP2002151071 A JP 2002151071A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000339879A
Other languages
Japanese (ja)
Other versions
JP4406744B2 (en
Inventor
Yoshikazu Omoto
義和 尾本
Hideyo Osanai
英世 小山内
Masayuki Nishina
正行 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2000339879A priority Critical patent/JP4406744B2/en
Publication of JP2002151071A publication Critical patent/JP2002151071A/en
Application granted granted Critical
Publication of JP4406744B2 publication Critical patent/JP4406744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material with improved heat stability at the time of an internal short circuit a highly performance nonaqueous secondary battery. SOLUTION: As the positive electrode active material, the active material, which has a composition shown by LiaNi1-x-y-zCoxMyNbzOb (M is one or more kinds of elements chosen from among the group of Mn, Fe, and Al, 1<=a<=1.1, 0.1<=x<=0.3, 0<=y<=0.1, 0.01<=z<=0.05, and 2<=b<=2.2) is used. Further, the active material, which shows an electric discharge capacity of α [mAh/g] in the range of the positive electrode potential of 2 to 1.5 V at the time of the initial discharging, and which, when the half-value width of the face (003) of layered crystal structure under the X-ray diffraction is set β[deg], satisfies simultaneously the conditions for α and βof 60<=α<=150 and 0.14<=β<=0.20, respectively is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池用
の正極活物質とその製造方法および該正極活物質を用い
た非水系二次電池に関する。
The present invention relates to a positive electrode active material for a non-aqueous secondary battery, a method for producing the same, and a non-aqueous secondary battery using the positive electrode active material.

【0002】[0002]

【従来の技術】近年、エレクトロニクス機器の小型高性
能化とコードレス化が進み、これら携帯機器用の駆動電
源として二次電池に関心が集まっている。特にリチウム
イオン二次電池に代表される非水系二次電池は、高電圧
・高エネルギー密度を有する高性能な電池として急速に
その市場を拡大している。またこのような携帯機器用途
だけでなく、世界的な地球環境の保全意識の高まりとと
もに、電気自動車用・ロードレベリング用として、大型
リチウムイオン電池の開発も加速されている。このよう
なリチウム二次電池はエネルギー密度が高く、非水溶液
を電解液として用いているため安全性には特に配慮が必
要であり、リチウム二次電池安全性評価基準ガイドライ
ン(SBA G1101)、UL規格(UL1642、
UL2054)等に安全性試験項目と基準が示されてい
る。
2. Description of the Related Art In recent years, miniaturization and high performance of cordless electronic devices have been promoted, and attention has been paid to secondary batteries as drive power supplies for these portable devices. In particular, the market of non-aqueous secondary batteries represented by lithium ion secondary batteries is rapidly expanding as high-performance batteries having high voltage and high energy density. In addition to the increasing use of portable devices as well as global environmental awareness, the development of large lithium-ion batteries for electric vehicles and road leveling is also accelerating. Since such a lithium secondary battery has a high energy density and uses a non-aqueous solution as an electrolytic solution, special consideration must be given to safety, and the lithium secondary battery safety evaluation guideline (SBA G1101), UL standard (UL1642,
UL 2054) and the like show safety test items and standards.

【0003】電池の安全性を確保するためには、正極、
負極、セパレータ、電解液を含めた電池全体での取り組
みが必要とされ、電池設計上からの種々の対策がこれま
で提案されている。
In order to ensure the safety of a battery, a positive electrode,
Efforts are required for the entire battery including the negative electrode, the separator, and the electrolyte, and various measures from the viewpoint of battery design have been proposed.

【0004】例えば、特開平10−116619には、
内部短絡時のジュール熱の発生を抑制するため、負極活
物質として体積抵抗率が5×10-3Ω・cm以下である
黒鉛を使用することが開示されている。また、特開平1
0−199574には、導電性基体表面に、導電性基体
よりも高い抵抗値を有する抵抗体層を形成することによ
り、内部短絡時の大電流放電を抑制することが開示され
ている。さらに、特開平10−116633において
は、正極に電気的に接続した金属部分と、負極に電気的
に接続した金属部分を、セパレータを介して対向させ、
前記金属部分のいずれか一方に導電性粉末を塗布するこ
とにより、電池の変形による内部短絡時に、金属部分間
に短絡電流を導通させて発熱を抑制することが開示され
ている。
[0004] For example, Japanese Patent Application Laid-Open No.
It is disclosed that graphite having a volume resistivity of 5 × 10 −3 Ω · cm or less is used as a negative electrode active material in order to suppress generation of Joule heat during an internal short circuit. Also, Japanese Patent Application Laid-Open
0-199574 discloses that a large current discharge at the time of an internal short circuit is suppressed by forming a resistor layer having a higher resistance value than the conductive substrate on the surface of the conductive substrate. Further, in JP-A-10-116633, a metal part electrically connected to a positive electrode and a metal part electrically connected to a negative electrode are opposed to each other with a separator interposed therebetween.
It is disclosed that by applying a conductive powder to one of the metal parts, a short-circuit current is conducted between the metal parts to suppress heat generation when an internal short circuit occurs due to deformation of the battery.

【0005】このような安全性試験項目の中でも特に重
要なものは内部短絡試験(釘差し試験・圧壊試験)であ
るが、内部短絡の際にはPTC素子の作動やセパレータ
溶融によるシャットダウンといった保護回路が機能せ
ず、電池単体での安全性の確保、特に正極活物質の熱安
定性の向上が重要である。内部短絡の場合には短絡電流
による急激な局所加熱が生じ、結晶格子からリチウムが
デインターカレートされて熱的に不安定な状態にある正
極活物質が直接分解して活性酸素を放出し、周囲の有機
電解液を燃焼させることが安全性を損なう原因とされて
いる。
Of these safety test items, particularly important one is an internal short-circuit test (a nail insertion test and a crush test). In the case of an internal short-circuit, a protection circuit such as operation of a PTC element or shutdown due to melting of a separator. Does not work, and it is important to ensure the safety of the battery alone, especially to improve the thermal stability of the positive electrode active material. In the case of an internal short circuit, rapid local heating occurs due to the short circuit current, lithium is deintercalated from the crystal lattice, and the positive electrode active material in a thermally unstable state is directly decomposed to release active oxygen, Burning the surrounding organic electrolyte is considered to be a cause of impairing safety.

【0006】非水系二次電池に用いられる正極活物質と
しては、リチウムイオンを可逆的に挿入脱着することの
できる化合物、例えばLiCoO2やLiNiO2などリ
チウムと遷移金属を主体とする複合酸化物(以下リチウ
ム複合酸化物と記す)が代表的である。
As a positive electrode active material used in a non-aqueous secondary battery, a compound capable of reversibly inserting and desorbing lithium ions, for example, a composite oxide mainly composed of lithium and a transition metal such as LiCoO 2 or LiNiO 2 ( Hereinafter, this is referred to as a lithium composite oxide).

【0007】このようなリチウム複合酸化物のうち、す
でに実用化されているリチウム二次電池用正極活物質と
してはLiCoO2があるが、LiCoO2はエネルギー
密度の点から性能向上の余地がなく、また、資源的に希
少で高価なコバルトを用いていることから高価な材料で
ある。そのため代替材料として、小型電池用途には高エ
ネルギー密度を得ることが可能なLiNiO2が、また
大型電池用途には低容量ではあるが安価で資源的に豊富
なマンガンを用いたLiMn24等が精力的に開発され
ている。
Among such lithium composite oxides, there is LiCoO 2 as a positive electrode active material for a lithium secondary battery which has already been put into practical use. However, LiCoO 2 has no room for improvement in performance in terms of energy density. Further, it is an expensive material because rare and expensive cobalt is used as a resource. Therefore, as an alternative material, LiNiO 2 , which can obtain a high energy density for small battery applications, and LiMn 2 O 4 using low-capacity, low-cost, resource-rich manganese for large battery applications, etc. Is being vigorously developed.

【0008】このような正極活物質の熱安定性を改良す
る従来技術として、結晶格子の遷移金属サイトを酸素と
の結合力の高い異種元素で置換する試みが提案されてい
る。例えば、J. Electron. Soc.、Vo1. 142、 No. 12、
December 1995、 p. 4033〜では、LiNiO2の結晶
格子内のNiの25%をAlで置換することにより、熱
安定性が改善されることが報告されている。また、平成
8年第37回電池討論会で、NTT入出力システム研究
所の荒井らは、結晶格子内のNiの10%をMn・V・
Tiで置換することにより熱安定性が改善されることを
報告している。しかしながらこのような異種元素置換に
よる熱安定性の改良は、活物質としての電気化学的特性
の犠牲を伴う方法であった。
As a conventional technique for improving the thermal stability of such a positive electrode active material, an attempt has been made to replace a transition metal site in a crystal lattice with a different element having a high bonding force with oxygen. For example, J. Electron. Soc., Vo1. 142, No. 12,
December 1995, p. 4033-, reports that the thermal stability is improved by substituting 25% of Ni in the crystal lattice of LiNiO 2 with Al. Also, at the 37th Battery Symposium in 1996, Arai et al. Of NTT I / O System Laboratories reported that 10% of Ni in the crystal lattice was Mn · V ·
It is reported that the thermal stability is improved by substitution with Ti. However, such improvement of thermal stability by the substitution of different elements has been a method accompanied by the sacrifice of electrochemical properties as an active material.

【0009】また、正極活物質の粉体特性を規定するこ
とにより安全性の改良を図る試みも数多く提案されてい
る。例えば、特開平10−255843では、正極活物
質として一次粒子の平均粒子径が1〜5ミクロンの複合
金属活物質を用いることにより、反応表面積が減少して
熱安定性が向上し、内部短絡時の電池の安全性が改良さ
れることが開示されている。しかしながら、このような
手段によっても安全性の改良は不十分であり、セパレー
タの突刺強度範囲を規定するという電池設計上の対策が
同時に必要であるとも述べられている。
[0009] Further, many attempts have been made to improve the safety by defining the powder characteristics of the positive electrode active material. For example, in Japanese Patent Application Laid-Open No. H10-255584, by using a composite metal active material having primary particles having an average particle diameter of 1 to 5 microns as a positive electrode active material, the reaction surface area is reduced, the thermal stability is improved, and an internal short circuit occurs. It is disclosed that the safety of the battery is improved. However, it is also stated that the safety is not sufficiently improved by such means, and that measures for battery design such as defining the puncture strength range of the separator are also required at the same time.

【0010】[0010]

【発明が解決しようとする課題】非水系二次電池の高性
能化や大型電池の開発の進展に伴い、正極活物質の熱安
定性、特に内部短絡時の安全性の改良が望まれている。
したがって本発明の目的は、高容量でかつ内部短絡時に
おける熱安定性が改良された正極活物質、およびそれを
用いた高性能な非水系二次電池を提供することにある。
As the performance of non-aqueous secondary batteries increases and the development of large batteries progresses, it is desired to improve the thermal stability of the positive electrode active material, especially the safety in the event of an internal short circuit. .
Therefore, an object of the present invention is to provide a positive electrode active material having high capacity and improved thermal stability at the time of internal short-circuit, and a high-performance non-aqueous secondary battery using the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは上記課題、
すなわち内部短絡時における電池の安全性を向上させる
ために、従来提案されてきた層状結晶格子のNiサイト
を異種元素で置換する方法や、粒度分布・比表面積とい
う粉体物性の規定による改良以外に、安全性を向上させ
る手段を検討した。充電状態の電池に内部短絡が生じた
場合、短絡部に大電流が集中して流れるため、400゜C
以上の局所加熱が生じることが知られている。このよう
な温度域は層状結晶構造を有する正極活物質、すなわち
LiCoO2やLiNiO2、が充電状態で加熱された場合に酸素を
放出して熱分解を開始する温度よりかなり高温度であ
る。また電池の内部短絡により破裂・発火が生じる場合
は、内部短絡直後の数秒間の挙動で決まるとも言われて
いる。従って、充電状態の正極活物質に要求される熱安
定性は平衡論的な熱分解温度だけでなく速度論的な改
良、すなわち急加熱された場合の熱分解速度の抑制(以
下、急加熱安定性と表記)も重要と考えられる。本発明
者らは、LiNiO2系正極活物質の急加熱安定性の改
良を鋭意検討した結果、ニオブ化合物を含有するLiN
iO2系正極活物質のX線回折における層状結晶構造の
(003)面の半値幅が特定の範囲を示し、該活物質が
同時に特定の電気化学特性を示す場合において、急加熱
安定性が著しく改良されることを発見し、本発明に到達
した。LiNiO系の複合酸化物にニオブを含有させ
る公知の技術として、例えば特開平6−283174、
特開平11−40153、特開平10−321228等
がある。特開平6−283174においては、LiNi
1-x(ただしMはCu,Mn,Nb,Mo,W
からなる群から選ばれる1種以上の元素)で示される複
合酸化物を活物質として含むリチウム二次電池用正極で
あり、ニオブイオンでニッケルイオンの一部を置換する
ことにより、充放電経過後の容量維持率を向上できるこ
とが開示されている。また、特開平11−40153で
は、ANi(Aはアルカリ金属か
ら選ばれた少なくとも1種、PはMg,B,P,Inか
ら選ばれた少なくとも1種、MはMn,Co,Alから
選ばれた少なくとも1種、NはSi,Al,Ca,C
u,Sn,Mo,Nb,Y,Biから選ばれた少なくと
も1種)で示される複合酸化物を正極活物質とする電池
が開示されている。ニオブの効果として、酸素放出能が
低く、酸化物として安定に存在するので高温での安全性
は改善できるが、過充電時の熱暴走反応は抑制できない
と述べられている。特開平10−321228では、組
成式:LiNi1-yyZ(Mはニッケル以外の遷移
金属、14(IVB)族、15(VB)族、16(VIB)族、1
7(VIIB)族から選ばれる1種以上の元素)である複合
酸化物であって、その層構造中の遷移金属主体層におけ
るリチウム占有率が0.5%以上であるリチウム二次電
池用正極活物質が開示されており、層構造中の遷移金属
主体層(すなわちニッケルサイト)におけるリチウム占
有率を0.5%以上とすることで高温環境下や内部短絡
時の安全性が改良できるとされている。これら公知の技
術は、層状結晶構造中のニッケルサイトをニオブを含む
異種元素で置換することを試みているが、熱安定性を改
良するためには、ニッケルサイトを多量の異種元素で置
換する必要があり、正極活物質としての電気化学的特性
を著しく損なう結果となる。本発明者らは、X線回折に
よる層状結晶構造を有する化合物の(003)面半値幅
が特定範囲内であり、リチウムとニオブと酸素からなる
少なくとも一種類以上の化合物を含有する組成物が、初
回放電時に正極電位(vs.Li/Li+)が2Vから
1.5Vの範囲において放電容量が特定の範囲内にある
場合に、優れた急加熱安定性を示すことを発見し本発明
に到達した。
Means for Solving the Problems The present inventors have solved the above problems,
In other words, in order to improve the safety of the battery at the time of internal short circuit, other than the conventionally proposed method of replacing the Ni site of the layered crystal lattice with a different element, and the improvement by specifying the powder physical properties such as particle size distribution and specific surface area, We considered means to improve safety. When an internal short circuit occurs in a charged battery, a large current flows intensively at the short-circuited portion, and the
It is known that the above local heating occurs. Such a temperature range is a positive electrode active material having a layered crystal structure, that is,
When LiCoO 2 or LiNiO 2 is heated in a charged state, the temperature is considerably higher than the temperature at which oxygen is released and thermal decomposition starts. It is also said that when a battery ruptures or ignites due to an internal short circuit, the behavior is determined for a few seconds immediately after the internal short circuit. Therefore, the thermal stability required for the charged positive electrode active material is not only the equilibrium thermal decomposition temperature but also the kinetic improvement, that is, the suppression of the thermal decomposition rate in the case of rapid heating (hereinafter referred to as rapid heating stability). Notation) is also considered important. The present inventors have intensively studied the improvement of the rapid heating stability of the LiNiO 2 -based positive electrode active material, and as a result, found that LiN
When the half width of the (003) plane of the layered crystal structure in the X-ray diffraction of the iO 2 -based positive electrode active material shows a specific range and the active material simultaneously shows specific electrochemical characteristics, the rapid heating stability is remarkable. The inventors have found that it is improved and arrived at the present invention. Known techniques for incorporating niobium into a LiNiO 2 -based composite oxide include, for example, JP-A-6-283174,
There are JP-A-11-40153 and JP-A-10-322228. JP-A-6-283174 discloses that LiNi
1-x M x O 2 (where M is Cu, Mn, Nb, Mo, W
A positive electrode for a lithium secondary battery containing, as an active material, a composite oxide represented by the following formula (1) selected from the group consisting of: It is disclosed that the capacity maintenance ratio of the battery can be improved. Further, in JP-A-11-40153, A w P v Ni x M y N z O 2 ( at least one A is selected from alkali metals, at least one P is selected Mg, B, P, from In , M is at least one selected from Mn, Co, Al, and N is Si, Al, Ca, C
U, Sn, Mo, Nb, Y, and Bi) are disclosed. As the effect of niobium, it is stated that although the oxygen releasing ability is low and the oxide is stably present as an oxide, safety at high temperatures can be improved, but the thermal runaway reaction during overcharge cannot be suppressed. In JP-A-10-321228, the composition formula: Li x Ni 1-y M y O Z (M is a transition metal other than nickel, 14 (IVB), Group 15 (VB), Group 16 (VIB) group, 1
Positive electrode for a lithium secondary battery, the composite oxide being one or more elements selected from Group 7 (VIIB)), wherein the lithium occupancy of the transition metal main layer in the layer structure is 0.5% or more. An active material is disclosed, and it is said that by setting the lithium occupancy in the transition metal main layer (that is, nickel sites) in the layer structure to 0.5% or more, safety under a high-temperature environment or an internal short circuit can be improved. ing. These known techniques attempt to replace nickel sites in the layered crystal structure with different elements including niobium.However, in order to improve thermal stability, it is necessary to replace nickel sites with a large amount of different elements. The result is that the electrochemical properties of the positive electrode active material are significantly impaired. The present inventors have found that a (003) plane half-width of a compound having a layered crystal structure by X-ray diffraction is within a specific range, and a composition containing at least one or more compounds composed of lithium, niobium, and oxygen is: The inventors have found that when the positive electrode potential (vs. Li / Li +) is in the range of 2 V to 1.5 V at the time of the first discharge and the discharge capacity is within a specific range, excellent rapid heating stability is exhibited, and the present invention has been reached. .

【0012】すなわち本発明は、第1に、一般式:Li
aNi1-x-y-zCoxyNbzb(但し、MはMn、Fe
およびAlよりなる群から選ばれる一種以上の元素、1
≦a≦1.1、0.1≦x≦0.3、0≦y≦0.1、
0.01≦z≦0.05、2≦b≦2.2)で示されるリ
チウムとニッケルとコバルトと元素Mとニオブと酸素か
らなる少なくとも一種類以上の化合物で構成される組成
物からなり、初回放電時に正極電位(vs.Li/Li
+)が2Vから1.5Vの範囲内でα[mAh/g]の
放電容量を示し、そのX線回折における層状結晶構造の
(003)面の半値幅をβ[deg]としたとき、αおよ
びβがそれぞれ60≦α≦150および0.14≦β≦
0.20の条件を同時に満たすことを特徴とする非水系
二次電池用正極活物質;第2に、前記αおよびβがそれ
ぞれ80≦α≦150および0.15≦β≦0.20で
ある、前記第1に記載の非水系二次電池用正極活物質;
第3に、一般式:LiaNi1-x-yCoxyb(但し、
MはMn、FeおよびAlよりなる群から選ばれる一種
以上の元素、1≦a≦1.1、0.1≦x≦0.3、0≦
y≦0.1、2≦b≦2.2)で示されるリチウムとニッ
ケルとコバルトと元素Mと酸素からなる少なくとも一種
類以上の化合物と、リチウムとニオブと酸素からなる少
なくとも一種類以上の化合物とで構成される組成物から
なり、初回放電時に正極電位(vs.Li/Li+)が
2Vから1.5Vの範囲内でα[mAh/g]の放電容
量を示し、そのX線回折における層状結晶構造の(00
3)面の半値幅をβ[deg]としたとき、αおよびβが
それぞれ80≦α≦150および0.15≦β≦0.2
0の条件を同時に満たすことを特徴とする非水系二次電
池用正極活物質;第4に、一般式:LiaNi1-x-y-z
xyNbzb(但し、MはMn、FeおよびAlより
なる群から選ばれる一種以上の元素、1≦a≦1.1、
0.1≦x≦0.3、0≦y≦0.1、0.01≦z≦
0.05、2≦b≦2.2)で示されるリチウムとニッ
ケルとコバルトと元素Mとニオブと酸素からなる少なく
とも二種類以上の化合物で構成される組成を有する粒子
からなり、該粒子が略球形状であってその表面近傍また
は内部に上記組成よりもニオブ濃度の高い少なくとも一
種類以上の化合物を含有する略球殻層を有することを特
徴とする非水系二次電池用正極活物質;第5に、前記略
球殻層に含有される化合物がリチウムとニオブと酸素か
らなる少なくとも一種類以上の化合物である、前記第4
記載の非水系二次電池用正極活物質;第6に、前記の第
1〜5のいずれかに記載の正極活物質を正極活物質とし
て用いたことを特徴とする非水系二次電池;第7に、N
b化合物を含有するNi、Co、M(但し、MはMn、
FeおよびAlよりなる群から選ばれる一種以上の元
素)の共沈水酸化物とLiの化合物との混合物を酸化性
雰囲気で焼成することを特徴とする、前記の第1〜5の
いずれかに記載の非水系二次電池用正極活物質の製造方
法;第8に、Ni、Co、M(但し、MはMn、Feお
よびAlよりなる群から選ばれる一種以上の元素)およ
びNbの共沈水酸化物とLiの化合物との混合物を酸化
性雰囲気で焼成することを特徴とする、前記の第1〜5
のいずれかに記載の非水系二次電池用正極活物質の製造
方法;第9に、前記焼成を680℃〜780℃で行う前
記の第7または8のいずれかに記載の非水系二次電池用
正極活物質の製造方法、を提供する。
That is, the present invention firstly provides a compound represented by the general formula: Li
a Ni 1-xyz Co x M y Nb z O b ( where, M is Mn, Fe
One or more elements selected from the group consisting of
≦ a ≦ 1.1, 0.1 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.1,
0.01 ≦ z ≦ 0.05, 2 ≦ b ≦ 2.2) a composition composed of at least one compound of lithium, nickel, cobalt, element M, niobium and oxygen, Positive electrode potential (vs. Li / Li
+) Indicates a discharge capacity of α [mAh / g] in the range of 2 V to 1.5 V. When the half-value width of the (003) plane of the layered crystal structure in the X-ray diffraction is β [deg], α And β are respectively 60 ≦ α ≦ 150 and 0.14 ≦ β ≦
The positive electrode active material for a non-aqueous secondary battery characterized by simultaneously satisfying the condition 0.20; second, the α and β are 80 ≦ α ≦ 150 and 0.15 ≦ β ≦ 0.20, respectively. The positive electrode active material for a non-aqueous secondary battery according to the first aspect;
Third, the general formula: Li a Ni 1-xy Co x M y O b ( where,
M is one or more elements selected from the group consisting of Mn, Fe and Al, 1 ≦ a ≦ 1.1, 0.1 ≦ x ≦ 0.3, 0 ≦
y ≦ 0.1, 2 ≦ b ≦ 2.2) at least one compound composed of lithium, nickel, cobalt, element M, and oxygen, and at least one compound composed of lithium, niobium, and oxygen And a discharge capacity of α [mAh / g] when the positive electrode potential (vs. Li / Li +) is in the range of 2 V to 1.5 V at the time of the first discharge. (00
3) When the half width of the plane is β [deg], α and β are 80 ≦ α ≦ 150 and 0.15 ≦ β ≦ 0.2, respectively.
A positive electrode active material for a non-aqueous secondary battery characterized by simultaneously satisfying the condition 0; fourth, a general formula: Li a Ni 1-xyz C
o x M y Nb z O b ( where, M is Mn, one or more elements selected from the group consisting of Fe and Al, 1 ≦ a ≦ 1.1,
0.1 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.1, 0.01 ≦ z ≦
0.05, 2 ≦ b ≦ 2.2) and particles having a composition composed of at least two or more compounds composed of lithium, nickel, cobalt, element M, niobium, and oxygen. A cathode active material for a non-aqueous secondary battery, characterized by having a substantially spherical shell layer containing at least one or more compounds having a niobium concentration higher than the above composition in a spherical shape near or on the surface thereof; 5. The method according to the fourth, wherein the compound contained in the substantially spherical shell layer is at least one or more compounds composed of lithium, niobium and oxygen.
Sixth, a non-aqueous secondary battery characterized by using the positive electrode active material according to any one of the first to fifth aspects as a positive electrode active material; 7, N
Ni, Co, M containing compound b (where M is Mn,
6. A mixture of a coprecipitated hydroxide of at least one element selected from the group consisting of Fe and Al) and a compound of Li and calcined in an oxidizing atmosphere. Eighth, coprecipitation hydroxylation of Ni, Co, M (where M is one or more elements selected from the group consisting of Mn, Fe and Al) and Nb Wherein the mixture of the compound and the Li compound is fired in an oxidizing atmosphere.
Ninth embodiment, the method for producing a positive electrode active material for a non-aqueous secondary battery according to any one of the ninth to ninth aspects, wherein the calcination is performed at 680 ° C to 780 ° C. And a method for producing a positive electrode active material for use.

【0013】[0013]

【発明の実施の形態】本発明の非水系二次電池用正極活
物質は、Li、Ni、Co、M(但し、MはMn、Fe
およびAlよりなる群から選ばれる1種以上の元素)、
Nb、酸素を主成分とし、これらの元素からなる少なく
とも一種類以上の化合物で構成される組成物において、
そのX線回折における層状結晶構造の(003)面の半
値幅と電気化学的特性とが同時にある条件を満たしてい
ることが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode active material for a non-aqueous secondary battery of the present invention is Li, Ni, Co, M (where M is Mn, Fe
And one or more elements selected from the group consisting of Al),
In a composition comprising Nb and oxygen as main components and at least one compound composed of these elements,
It is necessary that the half-width of the (003) plane of the layered crystal structure and the electrochemical characteristics in the X-ray diffraction simultaneously satisfy certain conditions.

【0014】正極活物質の一般式:LiaNi1-x-y-z
xyNbzbにおいて、Coは層状構造のニッケルサ
イトを置換し、充放電の繰り返しによる放電容量の低下
を防止するため必須であり、0.1≦x≦0.3の範囲
とする。0.1>xでは放電容量維持の効果が不足し、
またx>0.3では置換率が高すぎて放電容量自体が低
下する。Nbの含有量は0.01≦z≦0.05の範囲
とする。z<0.01では急加熱安定性の改善効果が不
足し、z>0.05では急加熱安定性の改良効果が飽和
する。また層状結晶構造中のニッケルサイトを置換して
平衡論的な熱安定性を改良するために、元素M(但し、
MはMn,FeおよびAlよりなる群から選ばれる一種
以上の元素)を、y≦0.1の範囲で添加しても良い。
Liの含有量は1≦a≦1.1の範囲とする。a<1で
は放電容量が不足し、a>1.1では本発明とは異種の
Li化合物が生成されやはり放電容量が低下する。酸素
の含有量は2≦b≦2.2の範囲とする。b<2では放
電容量が不足し、b>2.2では本発明とは異種の酸化
物が生成されやはり放電容量が低下する。X線回折によ
る層状結晶構造の(003)面の半値幅:β[deg]
は、0.14≦β≦0.20の範囲内である必要があ
り、好ましくは0.15≦β≦0.20である。半値幅
がこの範囲内である原因については未確認であるが、β
<0.14では層状結晶構造の結晶粒子サイズが大きす
ぎるため、急加熱時における結晶の熱分解速度を抑制で
きず、またβ>0.20では逆に結晶粒子サイズが小さ
すぎて熱分解開始温度が低下するためと推定される。
尚、(003)面の半値幅はX線回折粉末法でのKα2
線除去後のピークサーチデータより算出する値である。
金属リチウムを負極として用いた場合に、正極活物質は
2Vから1.5Vの範囲での放電容量:α[mAh/g]
は、60≦α≦150を示す必要があり、好ましくは8
0≦α≦150の範囲である。α<60の場合は急加熱
安定性の改良効果が不足する。またα>150を示す正
極活物質は作成出来なかった。層状結晶構造のLi−N
i−O組成物が、正極電位(vs.Li/Li+)が
2.0Vから1.5Vの範囲において放電容量を示すこ
とは、“Structure andelectrochemistry of Li1±yNiO
2 and a new Li2NiO2 phase with the Ni(OH)2structur
e"、Solid State Ionics 44(1990)87-97,J.R.Dahn によ
って報告されており、yLi+LiNiO→Li1+y
iO の反応により層状結晶構造中の三価のNiイオ
ンが、二価に還元されることで放電容量を示すと考えら
れる。従ってニッケルサイトを異種元素で置換した場合
は、このような層状結晶構造中のニッケルイオンの還元
反応が抑制され、正極電位(vs.Li/Li+)が
2.0から1.5Vの範囲での放電容量は低下する。以
上の要件を具備する本発明の正極活物質が、優れた放電
容量と急加熱安定性をしめすのは、組成物中に層状結晶
構造の化合物以外に、LiとNbと酸素の化合物(以下
にLi-Nb-O化合物と略記する)が存在し、且つおそらく
は層状結晶構造の化合物の結晶粒界に、均一にLi-Nb-O
化合物が形成されたことよる効果と考えられ、充電状態
の正極活物質が300゜C以上に急加熱されて、層状結晶
構造が熱分解されても、熱的に安定なLi-Nb-O化合物が
防火壁として作用して、熱分解速度を低下させるものと
推定される。Li-Nb-O化合物は“高密度リチウム二次電
池”、(株)テクノシステム、P.167−P.171
に示されるように正極電位(vs.Li/Li+)が
2.0Vから1.5Vの範囲で可逆的な充放電能を有す
るので、Li-Nb-O化合物が粒界層に存在しても、層状結
晶構造自体の電気化学反応を阻害しない。参考として、
LiNbOの充放電曲線を図2に示す。以上のことか
ら、高容量、高熱安定性の正極材料の結晶構造と電気化
学的特性との間に前記の関係が成立したと思われる。
General formula of positive electrode active material: Li a Ni 1-xyz C
In o x M y Nb z O b , Co replaces a nickel site of the layered structure, is essential for preventing the decrease in discharge capacity due to repeated charge and discharge, and a range of 0.1 ≦ x ≦ 0.3 I do. When 0.1> x, the effect of maintaining the discharge capacity is insufficient,
When x> 0.3, the replacement rate is too high, and the discharge capacity itself decreases. The Nb content is in the range of 0.01 ≦ z ≦ 0.05. When z <0.01, the effect of improving the rapid heating stability is insufficient, and when z> 0.05, the effect of improving the rapid heating stability is saturated. In order to improve the equilibrium thermal stability by replacing nickel sites in the layered crystal structure, the element M (however,
M may be one or more elements selected from the group consisting of Mn, Fe and Al) in the range of y ≦ 0.1.
The content of Li is in the range of 1 ≦ a ≦ 1.1. When a <1, the discharge capacity is insufficient, and when a> 1.1, a Li compound different from that of the present invention is generated, and the discharge capacity also decreases. The oxygen content is in the range of 2 ≦ b ≦ 2.2. When b <2, the discharge capacity is insufficient, and when b> 2.2, an oxide different from that of the present invention is generated, and the discharge capacity also decreases. X-ray diffraction half width of (003) plane of layered crystal structure: β [deg]
Must be in the range of 0.14 ≦ β ≦ 0.20, and preferably 0.15 ≦ β ≦ 0.20. The cause of the half width within this range has not been confirmed, but β
If <0.14, the crystal grain size of the layered crystal structure is too large, so that the rate of thermal decomposition of the crystal during rapid heating cannot be suppressed, and if β> 0.20, conversely, the crystal grain size is too small to start thermal decomposition. It is estimated that the temperature decreases.
Incidentally, the half width of the (003) plane is Kα2 by the X-ray diffraction powder method.
This is a value calculated from the peak search data after line removal.
When metallic lithium is used as the negative electrode, the positive electrode active material has a discharge capacity in the range of 2 V to 1.5 V: α [mAh / g]
Must show 60 ≦ α ≦ 150, preferably 8
The range is 0 ≦ α ≦ 150. When α <60, the effect of improving the rapid heating stability is insufficient. Also, a positive electrode active material showing α> 150 could not be prepared. Li-N with layered crystal structure
The fact that the i-O composition exhibits a discharge capacity when the positive electrode potential (vs. Li / Li + ) is in the range of 2.0 V to 1.5 V is described in “Structure and Electrochemistry of Li 1 ± y NiO
2 and a new Li 2 NiO 2 phase with the Ni (OH) 2 structur
e ", Solid State Ionics 44 (1990) 87-97, reported by JR Dahn, yLi + LiNiO 2 → Li 1 + y N
trivalent Ni ion of the layered crystal structure by reaction iO 2 is considered to indicate the discharge capacity by being reduced to divalent. Therefore, when the nickel site is replaced with a different element, the reduction reaction of nickel ions in such a layered crystal structure is suppressed, and the positive electrode potential (vs. Li / Li +) is in the range of 2.0 to 1.5 V. The discharge capacity decreases. The cathode active material of the present invention having the above-mentioned requirements exhibits excellent discharge capacity and rapid heating stability, in addition to a compound having a layered crystal structure in a composition, a compound of Li, Nb and oxygen (hereinafter referred to as a compound). Li-Nb-O compound (abbreviated as Li-Nb-O compound) is present, and it is likely that Li-Nb-O
This is considered to be an effect due to the formation of the compound. Even if the positive electrode active material in the charged state is rapidly heated to 300 ° C. or more and the layered crystal structure is thermally decomposed, the thermally stable Li-Nb-O compound is obtained. It is presumed that acts as a fire wall and reduces the rate of thermal decomposition. Li-Nb-O compounds are described in "High Density Lithium Secondary Batteries", Techno Systems Co., Ltd., p. 167-P. 171
Has a reversible charge / discharge capability when the positive electrode potential (vs. Li / Li +) is in the range of 2.0 V to 1.5 V, even if the Li-Nb-O compound exists in the grain boundary layer as shown in FIG. It does not hinder the electrochemical reaction of the layered crystal structure itself. As reference,
FIG. 2 shows a charge / discharge curve of LiNbO 3 . From the above, it is considered that the above relationship was established between the crystal structure and the electrochemical characteristics of the high capacity and high thermal stability positive electrode material.

【0015】以上のことから、本発明の非水系二次電池
用正極活物質は、公知の活物質の製造方法では得られな
い。以下に、本発明の非水系二次電池用正極活物質の製
造方法を説明する。本発明の非水系二次電池用正極活物
質の製造方法は以下の通りである。Nb化合物を含有す
るNi、Co、M(但し、MはMn、FeおよびAlよ
りなる群から選ばれる一種以上の元素)の共沈水酸化物
とLiの化合物との混合物、あるいはNi、Co、M
(但し、MはMn、FeおよびAlよりなる群から選ば
れる一種以上の元素)およびNbの共沈水酸化物とLi
の化合物との混合物を酸化性雰囲気で好ましくは680
℃〜780℃で5〜20時間焼成する。また、好ましく
は、Nb化合物を含有するNi、Co、M(但し、Mは
Mn、FeおよびAlよりなる群から選ばれる一種以上
の元素)の共沈水酸化物とLiの化合物との混合物、あ
るいはNi、Co、M(但し、はMn、FeおよびAl
よりなる群から選ばれる一種以上の元素)およびNbの
共沈水酸化物とLiの化合物との混合物を酸化性雰囲気
で好ましくは500〜800℃で5〜20時間仮焼し、
次に仮焼した焼成物を解粒分散、造粒し、仮焼温度より
30℃以上高くかつ900℃以下の温度で1〜6時間本
焼成する。ここで、焼成を2回行う方法が好ましいの
は、仮焼後に分散、造粒を行うことによって結晶をより
均一化することができ、さらに造粒によって充填性を向
上し細孔を制御できるからであり、その結果活物質とし
ての電気化学的特性、粉体特性、安全性等を容易により
高いレベルに改良できるからである。さらに、Nb化合
物をNi、Co、M(但し、MはMn、FeおよびAl
よりなる群から選ばれる一種以上の元素)の共沈水酸化
物に含有させるのは、その後の焼成工程時にNbが反応
・拡散するため、より均一に反応・分布させるためには
このタイミングがもっとも適しており、その結果、Nb
添加による急加熱時の安定性向上を最大限にすることが
できるためである。この比較はあとの実施例とともに示
している。また、NbはNi、Co、M(但し、MはM
n、FeおよびAlよりなる群から選ばれる一種以上の
元素)との共沈水酸化物として調製し、添加しても効果
が高い。次に焼成雰囲気を酸化性雰囲気にしているのは
母材のLiNiO2を主体とした層状化合物を安定して生成さ
せるためと、Nbを焼成時に効率よく反応・拡散させるた
めである。得られた正極活物質の電気化学特性と熱安定
性は以下の方法で評価した。
As described above, the positive electrode active material for a non-aqueous secondary battery of the present invention cannot be obtained by a known method for producing an active material. Hereinafter, a method for producing the positive electrode active material for a non-aqueous secondary battery of the present invention will be described. The method for producing the positive electrode active material for a non-aqueous secondary battery of the present invention is as follows. A mixture of a co-precipitated hydroxide of Ni, Co, and M containing an Nb compound (where M is one or more elements selected from the group consisting of Mn, Fe, and Al) and a compound of Li, or Ni, Co, M
(Where M is at least one element selected from the group consisting of Mn, Fe and Al) and Nb coprecipitated hydroxide and Li
In an oxidizing atmosphere, preferably 680
Bake at ℃ 780 ℃ for 5-20 hours. Preferably, a mixture of a coprecipitated hydroxide of Ni, Co, and M containing an Nb compound (where M is one or more elements selected from the group consisting of Mn, Fe, and Al) and a compound of Li, or Ni, Co, M (however, Mn, Fe and Al
A mixture of one or more elements selected from the group consisting of) and a compound of Li and a coprecipitated hydroxide of Nb and Li in a oxidizing atmosphere, preferably at 500 to 800 ° C for 5 to 20 hours,
Next, the calcined calcined product is pulverized, dispersed and granulated, and is calcined at a temperature higher than the calcining temperature by 30 ° C. or more and 900 ° C. or less for 1 to 6 hours. Here, the method of performing the firing twice is preferable because the crystal can be made more uniform by performing dispersion and granulation after calcination, and further, the filling property can be improved and the pores can be controlled by the granulation. As a result, the electrochemical properties, powder properties, safety, and the like as the active material can be easily improved to higher levels. Further, the Nb compound is Ni, Co, M (where M is Mn, Fe and Al
Is contained in the coprecipitated hydroxide of one or more elements selected from the group consisting of Nb, because Nb reacts and diffuses during the subsequent calcination step, and this timing is most suitable for more uniform reaction and distribution. As a result, Nb
This is because the improvement in stability during rapid heating by addition can be maximized. This comparison is shown together with the following examples. Nb is Ni, Co, M (where M is M
It is highly effective when prepared as a coprecipitated hydroxide with at least one element selected from the group consisting of n, Fe and Al) and added. Next, the sintering atmosphere is set to an oxidizing atmosphere in order to stably generate a layered compound mainly composed of LiNiO 2 as a base material and to efficiently react and diffuse Nb during sintering. The electrochemical characteristics and thermal stability of the obtained positive electrode active material were evaluated by the following methods.

【0016】[正極活物質の電気化学特性の評価法]正
極板の作製には、正極活物質、アセチレンブラックおよ
びPTFE(ポリテトラフルオロエチレン)を使用し、
これらを87:8:5の重量比で乳鉢混合した後、ロー
ル圧延機で混練し、シート状に成形した。負極には金属
Liを、セパレータにはポリプロピレンフィルムを、電
解液には炭酸エチレンと炭酸ジエチレンを体積比で1:
1に混合した溶媒に電解質としてLiPF6を1mol
/Lの濃度に溶解したものをそれぞれ用いて、図3に示
すような試験電池を作製した。この試験電池では、正極
5と負極4はセパレータ6を介在してステンレスケース
1に収納され、封口板3とガスケット2が施されてい
る。充放電試験では、電流密度が0.53mA/cm2
で4.2Vまで定電流充電した後、電流密度が0.13
mA/cm2になるまで定電圧充電を行った。その後、
0.53mA/cm2で1.5Vまで定電流放電を行
い、活物質の重量当たりの放電容量を求めた。上記の条
件で測定した4.2Vから2.7Vまでの放電容量を放
電容量(A)とし、2Vから1.5Vまでの間の放電容
量を放電容量(B)とした。
[Evaluation Method of Electrochemical Characteristics of Positive Electrode Active Material] In preparing a positive electrode plate, a positive electrode active material, acetylene black and PTFE (polytetrafluoroethylene) were used.
These were mixed in a mortar at a weight ratio of 87: 8: 5, kneaded with a roll mill, and formed into a sheet. Metal Li is used for the negative electrode, a polypropylene film is used for the separator, and ethylene carbonate and diethylene carbonate are used as the electrolyte in a volume ratio of 1: 1:
1 mol of LiPF 6 as an electrolyte in the solvent mixed in 1
A test battery as shown in FIG. 3 was prepared using each of the solutions dissolved at a concentration of / L. In this test battery, the positive electrode 5 and the negative electrode 4 are housed in a stainless steel case 1 with a separator 6 interposed, and a sealing plate 3 and a gasket 2 are provided. In the charge / discharge test, the current density was 0.53 mA / cm 2
After charging the battery with a constant current to 4.2 V at a current density of 0.13
Constant voltage charging was performed until the current reached mA / cm 2 . afterwards,
A constant current discharge was performed at 0.53 mA / cm 2 to 1.5 V, and a discharge capacity per weight of the active material was determined. The discharge capacity from 4.2 V to 2.7 V measured under the above conditions was defined as discharge capacity (A), and the discharge capacity between 2 V and 1.5 V was defined as discharge capacity (B).

【0017】[正極活物質の熱安定性の評価法]Ar雰
囲気下で4.2V充電後の試験電池から正極板を取りだ
し、電解液を含有した状態で約5mgのサンプルを各温
度(250〜375℃の範囲を25℃間隔で設定)で一
定に保ったホットプレート上に各温度につき3個載せ、
3サンプルとも発火しない最も高い温度を急加熱時の最
大安定温度とし、これを以て熱安定性の尺度とした。
[Evaluation Method of Thermal Stability of Positive Electrode Active Material] A positive electrode plate was taken out from a test battery after being charged at 4.2 V in an Ar atmosphere, and about 5 mg of a sample containing an electrolytic solution was subjected to each temperature (250 to 250 ° C.). Place three at each temperature on a hot plate kept constant at 375 ° C range (set at 25 ° C intervals)
The highest temperature at which all three samples did not ignite was defined as the maximum stable temperature during rapid heating, and was used as a measure of thermal stability.

【0018】以下に比較例と対比しながら本発明の実施
例を詳細に説明する。
Hereinafter, examples of the present invention will be described in detail in comparison with comparative examples.

【比較例1】硝酸コバルト溶液を、液温を80℃に制御
した反応容器内に連続的に投入し、48重量%濃度の水
酸化ナトリウム溶液で中和して、pHを10.0±0.
2に制御することにより水酸化物の沈殿を得た。この水
酸化物を、Li/Co=1.03となるように水酸化リ
チウムと混合し、1t/cmで加圧して成形体を得
た。この成形体を酸素気流中において850℃で10時
間焼成し、臼式解碎機で解粒して層状結晶化合物の粉末
を得た。この粉末を活物質として用い、電気化学特性と
熱安定性を求めた。
COMPARATIVE EXAMPLE 1 A cobalt nitrate solution was continuously charged into a reaction vessel having a liquid temperature controlled at 80 ° C., neutralized with a 48% by weight sodium hydroxide solution, and adjusted to a pH of 10.0 ± 0. .
By controlling to 2, a hydroxide precipitate was obtained. This hydroxide was mixed with lithium hydroxide so that Li / Co = 1.03, and pressed at 1 t / cm 2 to obtain a molded body. This compact was fired at 850 ° C. for 10 hours in an oxygen stream, and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0019】[0019]

【比較例2】ニッケル、コバルトの各硝酸塩をそれぞれ
Ni:Co=80:20のモル比で混合した溶液を、液
温を80℃に調節した反応容器内に連続的に投入し、4
8重量%濃度の水酸化ナトリウム溶液で中和して、pH
を10.0±0.2に制御することにより共沈水酸化物
の沈殿を得た。この共沈水酸化物を、Li/(Ni+C
o)=1.03となるように水酸化リチウムと混合し、
1t/cmで加圧して成形体を得た。この成形体を酸
素気流中において700℃で10時間焼成し、臼式解碎
機で解粒して層状結晶化合物の粉末を得た。この粉末を
活物質として用い、電気化学特性と熱安定性を求めた。
Comparative Example 2 A solution obtained by mixing nickel and cobalt nitrates at a molar ratio of Ni: Co = 80: 20 was continuously charged into a reaction vessel whose liquid temperature was adjusted to 80 ° C.
Neutralized with 8% by weight sodium hydroxide solution, pH
Was controlled to 10.0 ± 0.2 to obtain a precipitate of coprecipitated hydroxide. This coprecipitated hydroxide is converted to Li / (Ni + C
o) mixed with lithium hydroxide so as to be 1.03,
Pressing was performed at 1 t / cm 2 to obtain a molded body. This compact was fired in an oxygen stream at 700 ° C. for 10 hours, and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0020】[0020]

【比較例3】ニッケル、コバルト、アルミニウムの各硝
酸塩をそれぞれNi:Co:Al=71:20:9のモ
ル比で混合した溶液を、液温を80℃に制御した反応容
器内に連続的に投入し、48重量%濃度の水酸化ナトリ
ウム溶液で中和して、pHを10.0±0.2に制御す
ることにより共沈水酸化物の沈殿を得た。この水酸化物
を、Li/(Ni+Co)=1.03となるように水酸
化リチウムと混合し、1t/cm2で加圧して成形体を
得た。この成形体を酸素気流中において700℃で10
時間焼成し、臼式解碎機で解粒して層状結晶化合物の粉
末を得た。この粉末を活物質として用い、電気化学特性
と熱安定性を求めた。
Comparative Example 3 A solution in which nickel, cobalt, and aluminum nitrates were mixed at a molar ratio of Ni: Co: Al = 71: 20: 9 was continuously placed in a reaction vessel in which the liquid temperature was controlled at 80 ° C. The mixture was charged and neutralized with a 48% by weight sodium hydroxide solution, and the pH was controlled at 10.0 ± 0.2 to obtain a coprecipitated hydroxide precipitate. This hydroxide was mixed with lithium hydroxide so that Li / (Ni + Co) = 1.03, and pressed at 1 t / cm 2 to obtain a molded body. This molded body is placed in an oxygen stream at 700 ° C. for 10 minutes.
The mixture was fired for a period of time and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0021】[0021]

【比較例4】ニッケル、コバルト、アルミニウムの各硝
酸塩をそれぞれNi:Co:Al=68:20:12の
モル比で混合した溶液を、液温を80℃に制御した反応
容器内に連続的に投入し、48重量%濃度の水酸化ナト
リウム溶液で中和して、pHを10.0±0.2に制御
することにより共沈水酸化物の沈殿を得た。この水酸化
物を、Li/(Ni+Co)=1.03となるように水
酸化リチウムと混合し、1t/cm2で加圧して成形体
を得た。この成形体を酸素気流中において700℃で1
0時間焼成し、臼式解碎機で解粒して層状結晶化合物の
粉末を得た。この粉末を活物質として用い、電気化学特
性と熱安定性を求めた。
Comparative Example 4 A solution in which nickel, cobalt, and aluminum nitrates were mixed at a molar ratio of Ni: Co: Al = 68: 20: 12, respectively, was continuously placed in a reaction vessel whose liquid temperature was controlled at 80 ° C. The mixture was charged and neutralized with a 48% by weight sodium hydroxide solution, and the pH was controlled at 10.0 ± 0.2 to obtain a coprecipitated hydroxide precipitate. This hydroxide was mixed with lithium hydroxide so that Li / (Ni + Co) = 1.03, and pressed at 1 t / cm 2 to obtain a molded body. This molded body is heated at 700 ° C. for 1 hour in an oxygen stream.
The mixture was fired for 0 hour, and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0022】[0022]

【比較例5】ニッケル、コバルトの各硝酸塩とNb25
をそれぞれNi:Co:Nb=85:13:2のモル比
で混合した溶液を、液温を80℃に制御した反応容器内
に連続的に投入し、48重量%濃度の水酸化ナトリウム
溶液で中和して、pHを10.0±0.2に制御するこ
とにより共沈水酸化物の沈殿を得た。この水酸化物を、
Li/(Ni+Co)=1.03となるように水酸化リ
チウムと混合し、1t/cm2で加圧して成形体を得
た。この成形体を酸素気流中において650℃で10時
間焼成し、臼式解碎機で解粒して層状結晶化合物の粉末
を得た。この粉末を活物質として用い、電気化学特性と
熱安定性を求めた。
Comparative Example 5 Nickel and cobalt nitrates and Nb 2 O 5
Were mixed at a molar ratio of Ni: Co: Nb = 85: 13: 2, respectively, into a reaction vessel in which the liquid temperature was controlled at 80 ° C., and a 48% by weight sodium hydroxide solution was used. Neutralization and control of the pH to 10.0 ± 0.2 resulted in precipitation of the coprecipitated hydroxide. This hydroxide is
Li / (Ni + Co) = 1.03 was mixed with lithium hydroxide and pressed at 1 t / cm 2 to obtain a molded body. This compact was fired at 650 ° C. for 10 hours in an oxygen stream, and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0023】[0023]

【実施例1】比較例5で得た成形体と同じ成形体を酸素
気流中において700℃で10時間焼成し、臼式解碎機
で解粒して層状結晶化合物の粉末を得た。この粉末を活
物質として用い、電気化学特性と熱安定性を求めた。
Example 1 The same compact as the compact obtained in Comparative Example 5 was fired in an oxygen stream at 700 ° C. for 10 hours, and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0024】[0024]

【実施例2】比較例5で得た成形体と同じ成形体を酸素
気流中において750℃で10時間焼成し、臼式解碎機
で解粒して層状結晶化合物の粉末を得た。この粉末を活
物質として用い、電気化学特性と熱安定性を求めた。
Example 2 The same compact as the compact obtained in Comparative Example 5 was fired in an oxygen stream at 750 ° C. for 10 hours, and crushed with a mortar-type pulverizer to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0025】[0025]

【比較例6】比較例5で得た成形体と同じ成形体を酸素
気流中において800℃で10時間焼成し、臼式解碎機
で解粒して層状結晶化合物の粉末を得た。この粉末を活
物質として用い、電気化学特性と熱安定性を求めた。
Comparative Example 6 The same compact as the compact obtained in Comparative Example 5 was fired in an oxygen stream at 800 ° C. for 10 hours, and crushed with a mortar-type pulverizer to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0026】[0026]

【比較例7】ニッケル、コバルトの各硝酸塩をそれぞれ
Ni:Co=87:13のモル比で混合した溶液を、液
温を80℃に制御した反応容器内に連続的に投入し、4
8重量%濃度の水酸化ナトリウム溶液で中和して、pH
を10.0±0.2に制御することにより共沈水酸化物
の沈殿を得た。この水酸化物に、Li/(Ni+Co)
=1.03となるように水酸化リチウムを、またNb/
(Ni+Co)=0.02となるようにNb25をそれ
ぞれ混合し、1t/cm2で加圧して成形体を得た。こ
の成形体を酸素気流中において700℃で10時間焼成
し、臼式解碎機で解粒して層状結晶化合物の粉末を得
た。この粉末を活物質として用い、電気化学特性と熱安
定性を求めた。
Comparative Example 7 A solution obtained by mixing nickel and cobalt nitrates at a molar ratio of Ni: Co = 87: 13 was continuously charged into a reaction vessel whose liquid temperature was controlled at 80 ° C.
Neutralized with 8% by weight sodium hydroxide solution, pH
Was controlled to 10.0 ± 0.2 to obtain a precipitate of coprecipitated hydroxide. Li / (Ni + Co)
= 1.03 and Nb /
Nb 2 O 5 was mixed so that (Ni + Co) = 0.02, and pressed at 1 t / cm 2 to obtain a molded body. This compact was fired in an oxygen stream at 700 ° C. for 10 hours, and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0027】[0027]

【比較例8】ニッケル、コバルトの各硝酸塩をそれぞれ
Ni:Co=87:13のモル比で混合した溶液を、液
温を80℃に制御した反応容器内に連続的に投入し、4
8重量%濃度の水酸化ナトリウム溶液で中和して、pH
を10.0±0.2に制御することにより共沈水酸化物
の沈殿を得た。この水酸化物に、Li/(Ni+Co)
=1.03、またNb/(Ni+Co)=0.02とな
るようにLiNbOとLi塩を混合し、1t/cm2
で加圧して成形体を得た。この成形体を酸素気流中にお
いて750℃で10時間焼成し、臼式解碎機で解粒して
層状結晶化合物の粉末を得た。この粉末を活物質として
用い、電気化学特性と熱安定性を求めた。
Comparative Example 8 A solution in which nickel and cobalt nitrates were mixed at a molar ratio of Ni: Co = 87: 13, respectively, was continuously charged into a reaction vessel whose liquid temperature was controlled at 80 ° C.
Neutralized with 8% by weight sodium hydroxide solution, pH
Was controlled to 10.0 ± 0.2 to obtain a precipitate of coprecipitated hydroxide. Li / (Ni + Co)
= 1.03 and Nb / (Ni + Co) = 0.02, LiNbO 3 and Li salt were mixed, and 1 t / cm 2
To obtain a molded body. This compact was fired at 750 ° C. for 10 hours in an oxygen stream, and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. Using this powder as an active material, electrochemical properties and thermal stability were determined.

【0028】[0028]

【比較例9】ニッケル、コバルトの各硝酸塩をそれぞれ
Ni:Co=87:13のモル比で混合した溶液を、液
温を80℃に制御した反応容器内に連続的に投入し、4
8重量%濃度の水酸化ナトリウム溶液で中和して、pH
を10.0±0.2に制御することにより共沈水酸化物
の沈殿を得た。この水酸化物を、Li/(Ni+Co)
=1.03となるようにLi塩と混合し、1t/cm2
で加圧して成形体を得た。この成形体を酸素気流中にお
いて700℃で10時間焼成し、臼式解碎機で解粒して
層状結晶化合物の粉末を得た。この焼成物とNb/(N
i+Co)=0.02の量に相当するNbを、固
形分濃度が50重量%となるように、1重量%濃度の硝
酸リチウム溶液中に懸濁し、湿式ビーズミルで湿式粉砕
して分散スラリーを得た。このスラリーを噴霧乾燥して
球状に造粒した。これを酸素気流中800℃で2時間焼
成後、球状二次粒子を得た。これを活物質として用い、
電気化学特性と熱安定性を求めた。
Comparative Example 9 A solution obtained by mixing nickel and cobalt nitrates at a molar ratio of Ni: Co = 87: 13 was continuously charged into a reaction vessel whose liquid temperature was controlled at 80 ° C.
Neutralized with 8% by weight sodium hydroxide solution, pH
Was controlled to 10.0 ± 0.2 to obtain a precipitate of coprecipitated hydroxide. This hydroxide is converted to Li / (Ni + Co)
= 1.03 and 1 t / cm 2
To obtain a molded body. This compact was fired in an oxygen stream at 700 ° C. for 10 hours, and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. This calcined product and Nb / (N
Nb 2 O 5 corresponding to the amount of (i + Co) = 0.02 was suspended in a 1% by weight lithium nitrate solution so as to have a solid concentration of 50% by weight, and dispersed by wet grinding with a wet bead mill. A slurry was obtained. This slurry was spray-dried and granulated into a sphere. This was fired in an oxygen stream at 800 ° C. for 2 hours to obtain spherical secondary particles. Using this as an active material,
Electrochemical properties and thermal stability were determined.

【0029】[0029]

【比較例10】ニッケル、コバルトの各硝酸塩とNb
をNi:Co:Nb=86.5:13:0.5のモ
ル比で混合した溶液を、液温を80℃に制御した反応容
器内に連続的に投入し、48重量%濃度の水酸化ナトリ
ウム溶液で中和して、pHを10.0±0.2に制御す
ることにより共沈水酸化物の沈殿を得た。この水酸化物
を、Li/(Ni+Co)=1.03となるように水酸
化リチウムと混合し、1t/cm2で加圧して成形体を
得た。この成形体を酸素気流中において700℃で10
時間焼成し、臼式解碎機で解粒して層状結晶化合物の粉
末を得た。この粉末を固形分濃度が50重量%となるよ
うに、水に懸濁し、湿式ビーズミルで湿式粉砕して分散
スラリーを得た。このスラリーを噴霧乾燥して球状に造
粒した。これを酸素気流中800℃で2時間焼成後、球
状二次粒子を得た。これを活物質として用い、電気化学
特性と熱安定性を求めた。
Comparative Example 10 Nickel and Cobalt Nitrate and Nb 2
A solution in which O 5 was mixed at a molar ratio of Ni: Co: Nb = 86.5: 13: 0.5 was continuously charged into a reaction vessel whose liquid temperature was controlled at 80 ° C., and a solution having a concentration of 48% by weight was added. Neutralization was performed with a sodium hydroxide solution, and the pH was controlled at 10.0 ± 0.2 to obtain a coprecipitated hydroxide precipitate. This hydroxide was mixed with lithium hydroxide so that Li / (Ni + Co) = 1.03, and pressed at 1 t / cm 2 to obtain a molded body. This molded body is placed in an oxygen stream at 700 ° C. for 10 minutes.
The mixture was fired for a period of time and crushed with a mortar-type crusher to obtain a powder of a layered crystal compound. This powder was suspended in water so that the solid content concentration became 50% by weight, and wet-pulverized with a wet bead mill to obtain a dispersion slurry. This slurry was spray-dried and granulated into a sphere. This was fired in an oxygen stream at 800 ° C. for 2 hours to obtain spherical secondary particles. Using this as an active material, electrochemical properties and thermal stability were determined.

【0030】[0030]

【実施例3】ニッケル、コバルトの各硝酸塩とNb
をモル比でNi:Co:Nb=86:13:1とした
以外は比較例10と同じ方法で球状二次粒子を得た。こ
れを活物質として用い、電気化学特性と熱安定性を求め
た。
Embodiment 3 Nickel and cobalt nitrates and Nb 2 O
Ni 5 molar ratio: Co: Nb = 86: 13 : was obtained spherical secondary particles in the same manner as in Comparative Example 10 except that the 1. Using this as an active material, electrochemical properties and thermal stability were determined.

【0031】[0031]

【実施例4】ニッケル、コバルトの各硝酸塩とNb
をモル比でNi:Co:Nb=84:13:3とした
以外は比較例10と同じ方法で球状二次粒子を得た。こ
れを活物質として用い、電気化学特性と熱安定性を求め
た。
Embodiment 4 Nickel and cobalt nitrates and Nb 2 O
Ni 5 molar ratio: Co: Nb = 84: 13 : except for using 3 to obtain spherical secondary particles in the same manner as in Comparative Example 10. Using this as an active material, electrochemical properties and thermal stability were determined.

【0032】[0032]

【実施例5】ニッケル、コバルトの各硝酸塩とNb
をモル比でNi:Co:Nb=83:13:4とした
以外は比較例10と同じ方法で球状二次粒子を得た。こ
れを活物質として用い、電気化学特性と熱安定性を求め
た。
Embodiment 5 Nickel and cobalt nitrates and Nb 2 O
Ni 5 molar ratio: Co: Nb = 83: 13 : except for using 4 to obtain spherical secondary particles in the same manner as in Comparative Example 10. Using this as an active material, electrochemical properties and thermal stability were determined.

【0033】[0033]

【実施例6】ニッケル、コバルトの硝酸塩とNb
をモル比でNi:Co:Nb=82:13:5とした以
外は比較例10と同じ方法で球状二次粒子を得た。これ
を活物質として用い、電気化学特性と熱安定性を求め
た。
Embodiment 6 Nickel and cobalt nitrates and Nb 2 O 5
Was obtained in the same manner as in Comparative Example 10 except that the molar ratio of Ni: Co: Nb was 82: 13: 5. Using this as an active material, electrochemical properties and thermal stability were determined.

【0034】実施例および比較例の結果を表1および図
4に示す。
The results of Examples and Comparative Examples are shown in Table 1 and FIG.

【表1】 [Table 1]

【0035】実施例5と比較例9の非水系二次電池用正
極活物質について初期サイクルの放電曲線および2サイ
クル目の充電曲線を図1に示す。図1においては実施例
5をプロットしたものを実線で示し、比較例9をプロッ
トしたものを破線で示す。また、図2からも分かるとお
り、Li−Nb複合酸化物は、2.7Vから4.2Vま
での間に充放電容量を持っている。図1において実施例
5が比較例9に比べて初期サイクルの放電末期(3.5
Vから2.7V付近)の放電曲線の傾きが緩くなってい
る。また、2サイクル目の充電においても、3.5V付
近の充電カーブの変曲点にも比較例9と比べてヒステリ
シスが認められており、実施例5の非水系二次電池用正
極活物質は緩やかに電位が上昇している。このような電
気化学的特性の差異はLi−Nb複合酸化物の存在によ
るところが大きいと思われる。実施例5と比較例9を正
極活性物質として用いたモデルセルを作成し、交流イン
ピーダンス測定を行った。複素インピーダンスプロット
(Cole-Cole Plot)において連続する2つの半円が実施
例5において認められ、等価回路解析によれば異なる電
気化学的性質を有する二種の電極が直列回路を形成して
いることが確認された。すなわち実施例5においてはL
iNiO系化合物の表面もしくは粒界層に異なる電気
化学的性質を有する化合物層が形成されていると判断さ
れる。この異種化合物の存在を確認するために、Arス
パッタリングを行いながらESCA分析を行ったが、深
さ方向での成分元素の偏析、および実施例5と比較例9
の試料間の差異は認められなかった。次にさらに微細な
構造解析のため、FIB(Focused Ion Beam)システム
で厚み約0.3マイクロメートルの薄片試料を作成し、
FE(Field Emission)―TEMによる観察とEDXお
よびEELS測定を行った。本方法によればナノメート
ルオーダーでの解析が可能である。その結果、実施例5
および比較例9は粒子サイズが数十〜数百nmの微粒子
の集合体であった。さらに線方向元素分布を測定したと
ころ、実施例5については粒子表面近傍もしくは粒界層
に厚み10〜30nm程度の偏析層が認められた。比較
例9においてはNbの偏析層は認められなかった。実施
例5の測定図を図5に、比較例9の測定図を図6に示
す。この結果より交流インピーダンス測定で実施例5に
おいて認められたLiNiO系とは異種の電気化学的
性質を有する化合物層は、Li―Nb―O系化合物であ
ると推定される。またLi―Nb―O系化合物としては
前述のLiNbO以外に例えばLiNbO、Li
Nb等の化合物があるが、いずれの化合物も正
極電位(vs.Li/Li+)が2Vから1.5Vの範
囲で放電容量を有している。またこれらLi―Nb―O
系化合物は高い熱安定性を有しており、通常の急加熱時
の熱安定性評価条件においては全く発火しなかった。
FIG. 1 shows a discharge curve in the initial cycle and a charge curve in the second cycle for the positive electrode active materials for non-aqueous secondary batteries of Example 5 and Comparative Example 9. In FIG. 1, a plot of Example 5 is shown by a solid line, and a plot of Comparative Example 9 is shown by a broken line. Further, as can be seen from FIG. 2, the Li-Nb composite oxide has a charge / discharge capacity between 2.7 V and 4.2 V. In FIG. 1, Example 5 is compared with Comparative Example 9 at the end of the discharge in the initial cycle (3.5).
(From 2.7 V to 2.7 V). Also, at the charge of the second cycle, the inflection point of the charge curve near 3.5 V showed a hysteresis as compared with Comparative Example 9, and the positive electrode active material for a nonaqueous secondary battery of Example 5 The potential is rising slowly. It seems that such a difference in electrochemical characteristics is largely due to the presence of the Li-Nb composite oxide. A model cell using Example 5 and Comparative Example 9 as positive electrode active materials was prepared, and AC impedance measurement was performed. In the complex impedance plot (Cole-Cole Plot), two consecutive semicircles are observed in Example 5, and according to the equivalent circuit analysis, two kinds of electrodes having different electrochemical properties form a series circuit. Was confirmed. That is, in the fifth embodiment, L
It is determined that a compound layer having different electrochemical properties is formed on the surface or the grain boundary layer of the iNiO 2 -based compound. In order to confirm the presence of this heterogeneous compound, ESCA analysis was performed while performing Ar sputtering. However, segregation of component elements in the depth direction, and Example 5 and Comparative Example 9 were performed.
No difference between the samples was observed. Next, for a finer structure analysis, a thin sample with a thickness of about 0.3 micrometer was prepared using a FIB (Focused Ion Beam) system.
Observation by FE (Field Emission) -TEM and EDX and EELS measurement were performed. According to this method, analysis on the order of nanometers is possible. As a result, Example 5
And Comparative Example 9 was an aggregate of fine particles having a particle size of several tens to several hundreds of nm. Further, when the elemental distribution in the linear direction was measured, a segregation layer having a thickness of about 10 to 30 nm was observed in Example 5 near the particle surface or in the grain boundary layer. In Comparative Example 9, no Nb segregation layer was observed. The measurement diagram of Example 5 is shown in FIG. 5, and the measurement diagram of Comparative Example 9 is shown in FIG. From this result, it is presumed that the compound layer having a different electrochemical property from the LiNiO 2 -based compound observed in Example 5 in the AC impedance measurement is a Li—Nb—O-based compound. As the Li—Nb—O-based compound, other than the above-described LiNbO 3 , for example, Li 3 NbO 4 , Li 3
There are 5 Nb 2 O 5 or the like compound of any of the compounds also positive electrode potential (vs.Li/Li+) has a discharge capacity in the range of 2V to 1.5V. These Li-Nb-O
The system compound had high thermal stability and did not ignite at all under the conditions for evaluating thermal stability during normal rapid heating.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
高い熱安定性と大きな放電容量を有する正極活物質およ
びそれを用いた高性能で安全性の高い非水系二次電池が
得られる。
As described above, according to the present invention,
A positive electrode active material having high thermal stability and a large discharge capacity, and a high-performance and highly safe nonaqueous secondary battery using the same can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例5と比較例9の充放電曲線を比
較して示すグラフである。
FIG. 1 is a graph showing a comparison between charge and discharge curves of Example 5 of the present invention and Comparative Example 9.

【図2】LiNbOの充放電曲線を示すグラフであ
る。
FIG. 2 is a graph showing a charge / discharge curve of LiNbO 3 .

【図3】本発明の実施例において使用した試験電池の構
成を示す断面図である。
FIG. 3 is a cross-sectional view illustrating a configuration of a test battery used in an example of the present invention.

【図4】本発明の各実施例および比較例で測定された放
電容量BとX線回折(003)面半値幅との関係を示す
散布図である。
FIG. 4 is a scatter diagram showing a relationship between a discharge capacity B measured in each example and a comparative example of the present invention and a half-width at X-ray diffraction (003) plane.

【図5】本発明の実施例5のFE―TEM写真図および
Nb分布を示す図である。
FIG. 5 is a FE-TEM photograph and Nb distribution of Example 5 of the present invention.

【図6】比較例9のFE―TEM写真図およびNb分布
を示す図である。
FIG. 6 is a FE-TEM photograph and Nb distribution of Comparative Example 9.

【符号の説明】[Explanation of symbols]

1 ステンレスケース 2 ガスケット 3 封口板 4 負極 5 正極 6 セパレータ DESCRIPTION OF SYMBOLS 1 Stainless case 2 Gasket 3 Sealing plate 4 Negative electrode 5 Positive electrode 6 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仁科 正行 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 5H029 AJ03 AK03 AL12 AM03 AM05 AM07 BJ03 CJ02 DJ17 HJ02 HJ13 HJ14 HJ18 HJ19 5H050 AA08 BA16 CA08 CA09 CB12 DA02 FA19 GA02 HA02 HA13 HA14 HA18 HA19  ────────────────────────────────────────────────── ─── Continued on front page (72) Inventor Masayuki Nishina 1-8-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Dowa Mining Co., Ltd. 5H029 AJ03 AK03 AL12 AM03 AM05 AM07 BJ03 CJ02 DJ17 HJ02 HJ13 HJ14 HJ18 HJ19 5H050 AA08 BA16 CA08 CA09 CB12 DA02 FA19 GA02 HA02 HA13 HA14 HA18 HA19

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一般式:LiaNi1-x-y-zCoxyNb
zb(但し、MはMn、FeおよびAlよりなる群から
選ばれる一種以上の元素、1≦a≦1.1、0.1≦x≦
0.3、0≦y≦0.1、0.01≦z≦0.05、2≦
b≦2.2)で示されるリチウムとニッケルとコバルト
と元素Mとニオブと酸素からなる少なくとも一種類以上
の化合物で構成される組成物からなり、初回放電時に正
極電位(vs.Li/Li+)が2Vから1.5Vの範
囲内でα[mAh/g]の放電容量を示し、そのX線回
折における層状結晶構造の(003)面の半値幅をβ
[deg]としたとき、αおよびβがそれぞれ60≦α≦
150および0.14≦β≦0.20の条件を同時に満
たすことを特徴とする非水系二次電池用正極活物質。
1. A general formula: Li a Ni 1-xyz Co x M y Nb
z O b (where M is one or more elements selected from the group consisting of Mn, Fe and Al, 1 ≦ a ≦ 1.1, 0.1 ≦ x ≦
0.3, 0 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0.05, 2 ≦
b ≦ 2.2), comprising a composition composed of at least one compound of lithium, nickel, cobalt, element M, niobium and oxygen, and having a positive electrode potential (vs. Li / Li +) at the time of initial discharge. Indicates a discharge capacity of α [mAh / g] within the range of 2 V to 1.5 V, and the half width of the (003) plane of the layered crystal structure in the X-ray diffraction is β.
[Deg], α and β are respectively 60 ≦ α ≦
A positive electrode active material for a non-aqueous secondary battery, wherein the positive electrode active material satisfies the conditions of 150 and 0.14 ≦ β ≦ 0.20 simultaneously.
【請求項2】 前記αおよびβがそれぞれ80≦α≦1
50および0.15≦β≦0.20である、請求項1記
載の非水系二次電池用正極活物質。
2. The method according to claim 1, wherein α and β are each 80 ≦ α ≦ 1.
The positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein 50 and 0.15 ≦ β ≦ 0.20.
【請求項3】 一般式:LiaNi1-x-yCoxy
b(但し、MはMn、FeおよびAlよりなる群から選
ばれる一種以上の元素、1≦a≦1.1、0.1≦x≦
0.3、0≦y≦0.1、2≦b≦2.2)で示されるリ
チウムとニッケルとコバルトと元素Mと酸素からなる少
なくとも一種類以上の化合物と、リチウムとニオブと酸
素からなる少なくとも一種類以上の化合物とで構成され
る組成物からなり、初回放電時に正極電位(vs.Li
/Li+)が2Vから1.5Vの範囲内でα[mAh/
g]の放電容量を示し、そのX線回折における層状結晶
構造の(003)面の半値幅をβ[deg]としたとき、
αおよびβがそれぞれ80≦α≦150および0.15
≦β≦0.20の条件を同時に満たすことを特徴とする
非水系二次電池用正極活物質。
3. The general formula: Li a Ni 1-xy Co x M y O
b (where M is at least one element selected from the group consisting of Mn, Fe and Al, 1 ≦ a ≦ 1.1, 0.1 ≦ x ≦
0.3, 0 ≦ y ≦ 0.1, 2 ≦ b ≦ 2.2) at least one compound comprising lithium, nickel, cobalt, element M and oxygen, and lithium, niobium and oxygen A positive electrode potential (vs. Li) at the time of initial discharge.
/ Li +) in the range of 2V to 1.5V, α [mAh /
g], and when the half-value width of the (003) plane of the layered crystal structure in the X-ray diffraction is β [deg],
α and β are 80 ≦ α ≦ 150 and 0.15, respectively.
A positive electrode active material for a non-aqueous secondary battery, which satisfies the condition of ≦ β ≦ 0.20 at the same time.
【請求項4】 一般式:LiaNi1-x-y-zCoxyNb
zb(但し、MはMn、FeおよびAlよりなる群から
選ばれる一種以上の元素、1≦a≦1.1、0.1≦x≦
0.3、0≦y≦0.1、0.01≦z≦0.05、2≦
b≦2.2)で示されるリチウムとニッケルとコバルト
と元素Mとニオブと酸素からなる少なくとも二種類以上
の化合物で構成される組成を有する粒子からなり、該粒
子が略球形状であってその表面近傍または内部に上記組
成よりもニオブ濃度の高い少なくとも一種類以上の化合
物を含有する略球殻層を有することを特徴とする非水系
二次電池用正極活物質。
Wherein the general formula: Li a Ni 1-xyz Co x M y Nb
z O b (where M is one or more elements selected from the group consisting of Mn, Fe and Al, 1 ≦ a ≦ 1.1, 0.1 ≦ x ≦
0.3, 0 ≦ y ≦ 0.1, 0.01 ≦ z ≦ 0.05, 2 ≦
b ≦ 2.2), particles having a composition composed of at least two or more compounds composed of lithium, nickel, cobalt, element M, niobium and oxygen, wherein the particles have a substantially spherical shape. A positive electrode active material for a non-aqueous secondary battery, comprising a substantially spherical shell layer containing at least one compound having a niobium concentration higher than the above composition in the vicinity of or inside the surface.
【請求項5】 前記略球殻層に含有される化合物がリチ
ウムとニオブと酸素からなる少なくとも一種類以上の化
合物である、請求項4記載の非水系二次電池用正極活物
質。
5. The positive electrode active material for a non-aqueous secondary battery according to claim 4, wherein the compound contained in the substantially spherical shell layer is at least one compound composed of lithium, niobium and oxygen.
【請求項6】 請求項1〜5のいずれかに記載の正極活
物質を正極活物質として用いたことを特徴とする非水系
二次電池。
6. A non-aqueous secondary battery using the positive electrode active material according to claim 1 as a positive electrode active material.
【請求項7】 Nb化合物を含有するNi、Co、M
(但し、MはMn、FeおよびAlよりなる群から選ば
れる一種以上の元素)の共沈水酸化物とLiの化合物と
の混合物を酸化性雰囲気で焼成することを特徴とする、
請求項1〜5のいずれかに記載の非水系二次電池用正極
活物質の製造方法。
7. Ni, Co, M containing an Nb compound
(Where M is at least one element selected from the group consisting of Mn, Fe and Al), wherein a mixture of a coprecipitated hydroxide and a compound of Li is fired in an oxidizing atmosphere.
A method for producing the positive electrode active material for a non-aqueous secondary battery according to claim 1.
【請求項8】 Ni、Co、M(但し、MはMn、Fe
およびAlよりなる群から選ばれる一種以上の元素)お
よびNbの共沈水酸化物とLiの化合物との混合物を酸
化性雰囲気で焼成することを特徴とする、請求項1〜5
のいずれかに記載の非水系二次電池用正極活物質の製造
方法。
8. Ni, Co, M (where M is Mn, Fe
And a mixture of a coprecipitated hydroxide of Nb and a compound of Li and a compound of Li in an oxidizing atmosphere.
The method for producing a positive electrode active material for a non-aqueous secondary battery according to any one of the above.
【請求項9】 前記焼成を680℃〜780℃で行う請
求項7または8のいずれかに記載の非水系二次電池用正
極活物質の製造方法。
9. The method for producing a positive electrode active material for a non-aqueous secondary battery according to claim 7, wherein the firing is performed at 680 ° C. to 780 ° C.
JP2000339879A 2000-11-08 2000-11-08 Cathode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same Expired - Fee Related JP4406744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000339879A JP4406744B2 (en) 2000-11-08 2000-11-08 Cathode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000339879A JP4406744B2 (en) 2000-11-08 2000-11-08 Cathode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2002151071A true JP2002151071A (en) 2002-05-24
JP4406744B2 JP4406744B2 (en) 2010-02-03

Family

ID=18814886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000339879A Expired - Fee Related JP4406744B2 (en) 2000-11-08 2000-11-08 Cathode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4406744B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
JP2009140787A (en) * 2007-12-07 2009-06-25 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery employing the same
JP2010267400A (en) * 2009-05-12 2010-11-25 Toyota Motor Corp Method of manufacturing cathode active material
WO2011027455A1 (en) * 2009-09-04 2011-03-10 トヨタ自動車株式会社 Positive electrode active material for lithium secondary battery, and use thereof
JP2012079608A (en) * 2010-10-05 2012-04-19 Hitachi Ltd Lithium ion secondary battery
JP2012178295A (en) * 2011-02-28 2012-09-13 Hitachi Ltd Lithium secondary battery
WO2014034430A1 (en) * 2012-08-28 2014-03-06 住友金属鉱山株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP2014053321A (en) * 2013-11-11 2014-03-20 Hitachi Ltd Positive electrode active material, positive electrode, and lithium ion secondary battery
WO2014156153A1 (en) 2013-03-27 2014-10-02 株式会社Gsユアサ Active material for nonaqueous electrolyte electricity storage elements
JP2015072800A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
KR20170117063A (en) 2015-02-17 2017-10-20 도다 고교 가부시끼가이샤 A positive electrode active material for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery
WO2018123951A1 (en) 2016-12-26 2018-07-05 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell and method for manufacturing same, and non-aqueous electrolyte secondary cell
KR20180124996A (en) 2016-03-30 2018-11-21 바스프 토다 배터리 머티리얼스 엘엘씨 Cathode active material for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same
KR20190040293A (en) 2016-08-31 2019-04-17 스미토모 긴조쿠 고잔 가부시키가이샤 POSITIVE ACTIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, PROCESS FOR PRODUCING THE SAME, AND NON-
WO2019155919A1 (en) 2018-02-06 2019-08-15 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for preparing same, method for evaluating positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10522830B2 (en) 2013-11-22 2019-12-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
WO2020027204A1 (en) 2018-08-03 2020-02-06 住友金属鉱山株式会社 Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell
WO2020195431A1 (en) 2019-03-27 2020-10-01 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
WO2020195432A1 (en) 2019-03-27 2020-10-01 住友金属鉱山株式会社 Positive-electrode active material for lithium-ion secondary cell, method for manufacturing positive-electrode active material, and lithium-ion secondary cell
WO2020262264A1 (en) 2019-06-25 2020-12-30 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
WO2021006124A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
WO2021006127A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for lithium-ion secondary battery
WO2021006125A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
WO2021006128A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2021006129A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
US11018339B2 (en) 2016-03-30 2021-05-25 Basf Toda Battery Materials Llc Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same
WO2022065443A1 (en) 2020-09-25 2022-03-31 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
EP2466671A2 (en) 2007-09-04 2012-06-20 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
JP2009140787A (en) * 2007-12-07 2009-06-25 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery employing the same
JP2010267400A (en) * 2009-05-12 2010-11-25 Toyota Motor Corp Method of manufacturing cathode active material
WO2011027455A1 (en) * 2009-09-04 2011-03-10 トヨタ自動車株式会社 Positive electrode active material for lithium secondary battery, and use thereof
JP5348510B2 (en) * 2009-09-04 2013-11-20 トヨタ自動車株式会社 Positive electrode active material for lithium secondary battery and use thereof
US9159998B2 (en) 2009-09-04 2015-10-13 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, and use thereof
JP2012079608A (en) * 2010-10-05 2012-04-19 Hitachi Ltd Lithium ion secondary battery
JP2012178295A (en) * 2011-02-28 2012-09-13 Hitachi Ltd Lithium secondary battery
JPWO2014034430A1 (en) * 2012-08-28 2016-08-08 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5614513B2 (en) * 2012-08-28 2014-10-29 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
WO2014034430A1 (en) * 2012-08-28 2014-03-06 住友金属鉱山株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
US9774036B2 (en) 2012-08-28 2017-09-26 Sumitomo Metal Mining Co., Ltd. Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
KR20150048122A (en) 2012-08-28 2015-05-06 스미토모 긴조쿠 고잔 가부시키가이샤 Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
US9692043B2 (en) 2013-03-27 2017-06-27 Tokyo University Of Science Educational Foundation Administrative Organization Active material for nonaqueous electrolyte energy storage device
WO2014156153A1 (en) 2013-03-27 2014-10-02 株式会社Gsユアサ Active material for nonaqueous electrolyte electricity storage elements
JP2015072800A (en) * 2013-10-03 2015-04-16 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2014053321A (en) * 2013-11-11 2014-03-20 Hitachi Ltd Positive electrode active material, positive electrode, and lithium ion secondary battery
US10522830B2 (en) 2013-11-22 2019-12-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery
KR20170117063A (en) 2015-02-17 2017-10-20 도다 고교 가부시끼가이샤 A positive electrode active material for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery
CN107408689A (en) * 2015-02-17 2017-11-28 户田工业株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, rechargeable nonaqueous electrolytic battery
US11492266B2 (en) 2015-02-17 2022-11-08 Toda Kogyo Corp. Processes for preparing positive electrode active substance for non-aqueous electrolyte secondary batteries
KR20180124996A (en) 2016-03-30 2018-11-21 바스프 토다 배터리 머티리얼스 엘엘씨 Cathode active material for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same
US11018339B2 (en) 2016-03-30 2021-05-25 Basf Toda Battery Materials Llc Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same
KR20190040293A (en) 2016-08-31 2019-04-17 스미토모 긴조쿠 고잔 가부시키가이샤 POSITIVE ACTIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, PROCESS FOR PRODUCING THE SAME, AND NON-
US11165062B2 (en) 2016-08-31 2021-11-02 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
KR20190095302A (en) 2016-12-26 2019-08-14 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof and non-aqueous electrolyte secondary battery
JPWO2018123951A1 (en) * 2016-12-26 2019-10-31 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN110392950A (en) * 2016-12-26 2019-10-29 住友金属矿山株式会社 Non-aqueous electrolyte secondary battery positive active material and its manufacturing method and non-aqueous electrolyte secondary battery
KR102603503B1 (en) 2016-12-26 2023-11-20 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US11735726B2 (en) 2016-12-26 2023-08-22 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP7176412B2 (en) 2016-12-26 2022-11-22 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2018123951A1 (en) 2016-12-26 2018-07-05 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell and method for manufacturing same, and non-aqueous electrolyte secondary cell
WO2019155919A1 (en) 2018-02-06 2019-08-15 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for preparing same, method for evaluating positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11870071B2 (en) 2018-02-06 2024-01-09 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, method for evaluating positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020027204A1 (en) 2018-08-03 2020-02-06 住友金属鉱山株式会社 Negative electrode active material for lithium ion secondary cell, method for manufacturing negative electrode active material for lithium ion secondary cell, and lithium ion secondary cell
US11894555B2 (en) 2018-08-03 2024-02-06 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2020195432A1 (en) 2019-03-27 2020-10-01 住友金属鉱山株式会社 Positive-electrode active material for lithium-ion secondary cell, method for manufacturing positive-electrode active material, and lithium-ion secondary cell
WO2020195431A1 (en) 2019-03-27 2020-10-01 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
WO2020262264A1 (en) 2019-06-25 2020-12-30 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
WO2021006129A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2021006128A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2021006125A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
WO2021006127A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for lithium-ion secondary battery
WO2021006124A1 (en) 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
WO2022065443A1 (en) 2020-09-25 2022-03-31 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
KR20230074480A (en) 2020-09-25 2023-05-30 스미토모 긴조쿠 고잔 가부시키가이샤 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, lithium ion secondary battery

Also Published As

Publication number Publication date
JP4406744B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4406744B2 (en) Cathode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4271448B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
GB2506810A (en) Lithium metal compound oxide having layered structure
JP2015133318A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP2010092848A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5606654B2 (en) Lithium metal composite oxide
JP2006032321A (en) Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it
JP4604347B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6693415B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2005196992A (en) Positive pole material for lithium secondary battery and battery
KR20140040828A (en) Spinel type lithium-manganese-nickel-containing composite oxide
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP4296274B2 (en) Lithium manganate positive electrode active material and all-solid lithium secondary battery
JP2013051086A (en) Electrode material for secondary battery, and method of manufacturing the same
JP3503688B2 (en) Lithium secondary battery
JPWO2020022305A1 (en) Positive electrode active material
JP2002279987A (en) Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4406744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees