JP2003048706A - Raw material for carbon material and carbon material obtained by using the same - Google Patents

Raw material for carbon material and carbon material obtained by using the same

Info

Publication number
JP2003048706A
JP2003048706A JP2001235214A JP2001235214A JP2003048706A JP 2003048706 A JP2003048706 A JP 2003048706A JP 2001235214 A JP2001235214 A JP 2001235214A JP 2001235214 A JP2001235214 A JP 2001235214A JP 2003048706 A JP2003048706 A JP 2003048706A
Authority
JP
Japan
Prior art keywords
silicon
carbon
carbon material
secondary battery
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001235214A
Other languages
Japanese (ja)
Other versions
JP4945862B2 (en
Inventor
Tatsuro Sasaki
龍朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001235214A priority Critical patent/JP4945862B2/en
Publication of JP2003048706A publication Critical patent/JP2003048706A/en
Application granted granted Critical
Publication of JP4945862B2 publication Critical patent/JP4945862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a raw material for a carbon material, the carbon material, an negative electrode material for a secondary battery, and a lithium secondary battery, capable of exhibiting a high charge and discharge capacity. SOLUTION: The raw material for the carbon material contains a carbon precursor containing silicon and carbonaceous small spheres, and the carbon material is obtained by carbonizing the raw material for the carbon material. Further, the negative electrode material for the secondary battery contains the above carbon material, and the lithium secondary battery is obtained by using the negative electrode material for the secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素材用原料、炭
素材およびそれを用いた二次電池負極材、リチウム二次
電池に関する。
TECHNICAL FIELD The present invention relates to a raw material for a carbon material, a carbon material, a negative electrode material for a secondary battery using the same, and a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、ビデオカメラやノート型パソコン
などのポータブル機器の普及に伴い、移動用電源として
小型高容量の二次電池に対する需要が高まり、リチウム
二次電池の使用が拡大されてきた。上記に示したリチウ
ム二次電池の負極材用炭素材としては、特開平5−74
457号公報記載の黒鉛を使用しているものが挙げられ
る。黒鉛は、サイクル性が非常によいことが特長である
が、理論充放電容量が372mAh/gであるため、こ
れ以上の充放電容量は望めないという欠点がある。ま
た、黒鉛材料以外では、特開平5−28996号公報、
特開平7−73868号公報に示されるピッチコークス
を使用した負極材が挙げられる。この材料は易黒鉛化炭
素材であるが、焼成温度が2000℃を超える領域では
黒鉛化が進行する。黒鉛になってしまうと充放電容量が
決定されてしまう。また黒鉛化される前の温度域(10
00〜1800℃)においては充放電容量の高い炭素材
が得られている。しかしながら、サイクル性が乏しく、
ピッチコークスは不純物を多く含んでおり、電池特性に
悪影響を及ぼす。
2. Description of the Related Art In recent years, with the widespread use of portable devices such as video cameras and notebook computers, the demand for small high-capacity secondary batteries as mobile power sources has increased, and the use of lithium secondary batteries has expanded. As the carbon material for the negative electrode material of the lithium secondary battery described above, there is disclosed in Japanese Patent Laid-Open No. 5-74
An example is one using the graphite described in Japanese Patent No. 457. Graphite has a feature that it has very good cycleability, but since it has a theoretical charge / discharge capacity of 372 mAh / g, it has a drawback that a charge / discharge capacity higher than that cannot be expected. In addition to graphite materials, JP-A-5-28996 discloses
A negative electrode material using pitch coke disclosed in JP-A-7-73868 can be used. This material is a graphitizable carbon material, but graphitization proceeds in the region where the firing temperature exceeds 2000 ° C. If it becomes graphite, the charge / discharge capacity will be determined. The temperature range before graphitization (10
(00 to 1800 ° C.), a carbon material having a high charge / discharge capacity is obtained. However, the cycleability is poor,
Pitch coke contains a large amount of impurities and adversely affects the battery characteristics.

【0003】また、熱処理温度が500℃〜700℃程
度の低温で処理された炭素負極は、次世代の高容量型炭
素負極の有力候補の一つである。可逆容量で850mA
h/gと、重量あたりの容量で黒鉛をこえる。また、低
温処理であるため、エネルギーメリットも高い。しかし
ながら、電位が高く、充放電での電位のヒステリシスが
大きいのが難点である。炭素以外のリチウムイオン負極
材として注目されているのが特開平5−166536号
公報に示される金属酸化物含有炭素材、及び特開平6−
290782号公報に示される窒素含有炭素材である。
しかしながら、これらの炭素材では充放電容量800m
Ah/gと非常に大容量ではあるが、瞬間放電量が非常
に高いことからその制御が困難であるとされている。
A carbon negative electrode treated at a low heat treatment temperature of about 500 ° C. to 700 ° C. is one of the promising candidates for the next-generation high-capacity carbon negative electrode. 850mA with reversible capacity
The graphite exceeds h / g and the capacity per weight. Further, since it is a low temperature treatment, it has a high energy merit. However, it has a drawback that the potential is high and the hysteresis of the potential during charge and discharge is large. As a lithium ion negative electrode material other than carbon, attention is paid to a metal oxide-containing carbon material disclosed in JP-A-5-166536 and JP-A-6-
It is a nitrogen-containing carbon material disclosed in Japanese Patent No. 290782.
However, these carbon materials have a charge / discharge capacity of 800 m.
Although it has a very large capacity of Ah / g, it is said that its control is difficult because the instantaneous discharge amount is very high.

【0004】また、リチウムイオンのインターカレーシ
ョン能が非常に高い材料としてケイ素元素があり、それ
を用いたケイ素含有炭素材として、特開平05−144
74公報,特開平7−315822公報,再表98/0
24135公報,特開平08−231273公報等があ
る。これらにおいて、有機ケイ素化合物、無機ケイ素化
合物を使用している場合、ケイ素と結合している有機又
は無機元素の影響を受けケイ素元素が持っている充放電
容量が十分に活かされていない。また、ケイ素元素を使
用している場合でも、易黒鉛化炭素前駆体,難黒鉛化炭
素前駆体又は炭素材にケイ素元素を混合し炭化処理して
いる。この場合、ケイ素の炭素材への分散性は良い。し
かし、炭素材表面へのケイ素元素の露出により容量は高
いが、充放電効率が悪い。あるいは、ケイ素元素の炭素
材表面への露出は少ないが、ケイ素元素へのリチウムイ
オンのインターカレーションによるケイ素元素の膨張に
よる炭素材の破損を押える事が困難で、充放電効率を低
下させる傾向にある。
Further, there is silicon element as a material having a very high intercalation ability of lithium ions, and as a silicon-containing carbon material using the element, there is disclosed in Japanese Patent Laid-Open No. 05-144.
74 publication, JP-A-7-315822 publication, re-list 98/0.
24135, JP-A-08-231273 and the like. In these cases, when an organic silicon compound or an inorganic silicon compound is used, the charge / discharge capacity of the silicon element is not fully utilized due to the influence of the organic or inorganic element bonded to silicon. Further, even when the silicon element is used, the carbon element is carbonized by mixing the graphitizable carbon precursor, the non-graphitizable carbon precursor or the carbon material with the silicon element. In this case, the dispersibility of silicon in the carbon material is good. However, although the capacity is high due to the exposure of silicon element to the surface of the carbon material, the charge / discharge efficiency is poor. Alternatively, although the exposure of the silicon element to the surface of the carbon material is small, it is difficult to suppress the damage of the carbon material due to the expansion of the silicon element due to the intercalation of lithium ions into the silicon element, which tends to reduce the charge / discharge efficiency. is there.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、高充
放電容量を発揮することができる炭素材用原料、炭素
材、二次電池負極材およびリチウム二次電池を提供する
ことである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a carbon material raw material, a carbon material, a secondary battery negative electrode material and a lithium secondary battery which can exhibit a high charge / discharge capacity.

【0006】[0006]

【課題を解決するための手段】このような目的は、下記
(1)〜(10)の本発明により達成される。 (1)ケイ素含有炭素前駆体および炭素質小球体を含む
ことを特徴とする炭素材用原料、(2)前記ケイ素含有
炭素前駆体は、ケイ素粉末とピッチとの混合物から構成
される前記(1)に記載の炭素材用原料、(3)前記ケ
イ素含有炭素前駆体は、ケイ素粉末、アルミナ粉末およ
びピッチとの混合物から構成される前記(1)に記載の
炭素材用原料、(4)前記ケイ素粉末は、前記ケイ素含
有炭素前駆体全体の15〜60重量%である前記(1)
ないし(3)に記載の炭素材用原料、(5)前記ケイ素
含有炭素前駆体は、炭素材用原料全体の20〜60重量
%である前記(1)ないし(4)のいずれかに記載の炭
素材用原料、(6)前記炭素質小球体は、メソカーボン
マイクロビーズである前記(1)ないし(5)のいずれ
かに記載の炭素材用原料、(7)前記炭素質小球体は、
平均粒子径1〜50μmである前記(1)ないし(6)
のいずれかに記載の炭素材用原料、(8)前記(1)な
いし(7)のいずれかに記載の炭素材用原料を炭化処理
してなる炭素材、(9)前記(8)に記載の炭素材を含
有する二次電池負極材、(10)前記(9)に記載の二
次電池負極材を用いたリチウム二次電池。
The above objects are achieved by the present invention described in (1) to (10) below. (1) A raw material for a carbon material characterized by containing a silicon-containing carbon precursor and carbonaceous microspheres, (2) the silicon-containing carbon precursor is composed of a mixture of a silicon powder and a pitch. (3) The carbon material raw material, (3) The silicon-containing carbon precursor is composed of a mixture of silicon powder, alumina powder and pitch, and the carbon material raw material according to (1), (4) above. The silicon powder accounts for 15 to 60% by weight of the whole silicon-containing carbon precursor (1).
To (3), the carbon material raw material (5), wherein the silicon-containing carbon precursor is 20 to 60% by weight of the total carbon material raw material, (1) to (4) Raw material for carbon material, (6) The carbonaceous microspheres are mesocarbon microbeads. Raw material for carbonaceous material according to any one of (1) to (5), (7) The carbonaceous microspheres are:
The above (1) to (6) having an average particle diameter of 1 to 50 μm
(8) The carbon material raw material, (8) the carbon material obtained by carbonizing the carbon material raw material according to any one of (1) to (7), (9) the above (8) (10) A lithium secondary battery using the secondary battery negative electrode material according to (9) above, which contains the carbonaceous material.

【0007】以下、本発明の炭素材用原料、炭素材、二
次電池負極材およびリチウム二次電池について、詳細に
説明する。本発明の炭素材用原料は、ケイ素含有炭素前
駆体および炭素質小球体を含むものである。また、本発
明の炭素材は前記炭素材用原料を炭素化処理したもので
あり、二次電池負極材は前記炭素材を含むものであり、
リチウム二次電池は前記二次電池負極材を用いたもので
ある。
The raw material for carbon material, the carbon material, the negative electrode material for the secondary battery and the lithium secondary battery of the present invention will be described in detail below. The raw material for carbon material of the present invention contains a silicon-containing carbon precursor and carbonaceous microspheres. Further, the carbon material of the present invention is obtained by carbonizing the raw material for carbon material, and the secondary battery negative electrode material contains the carbon material.
The lithium secondary battery uses the negative electrode material for the secondary battery.

【0008】本発明で用いるケイ素含有炭素前駆体とし
ては、例えば、シロキサン,シラザン等の有機ケイ素化
合物、有機ケイ素化合物と石油ピッチ,石炭ピッチ等の
易黒鉛化炭素前駆体、又はかかる易黒鉛化炭素前駆体と
フェノール樹脂,フラン樹脂,エポキシ樹脂等の難黒鉛
化炭素前駆体との混合物、又はケイ素又はケイ素酸化
物,ケイ素炭化物等の無機ケイ素化合物と前記易黒鉛化
炭素前駆体又は難黒鉛化炭素前駆体との混合物等が挙げ
られる。これらの中でもケイ素粉末と易黒鉛化炭素前駆
体又は難黒鉛化炭素前駆体との混合物が好ましい。これ
により、二次電池に用いた場合に高充放電容量を発揮す
ることができる。さらには、前記ケイ素含有炭素前駆体
は、特に限定されないが、ケイ素粉末とピッチとの混合
物であることが好ましい。これにより酸素含有量が少な
く、炭素化率を上がることができるので、上記の効果に
加え、二次電池に用いた場合に放電容量保持率を向上す
ることができる。また、前記ケイ素粉末の配合量は、前
記ケイ素含有炭素前駆体の15〜60重量%が好まし
く、特に20〜50重量%が好ましい。前記ケイ素粉末
が前記範囲内であると、ケイ素の特性を損なうことなく
二次電池に用いた場合に高充放電容量を発揮することが
できる。
Examples of the silicon-containing carbon precursor used in the present invention include organosilicon compounds such as siloxane and silazane, graphitizable carbon precursors such as organosilicon compounds and petroleum pitch, coal pitch, or such graphitizable carbon. A mixture of a precursor and a non-graphitizable carbon precursor such as a phenol resin, a furan resin or an epoxy resin, or an inorganic silicon compound such as silicon or silicon oxide or silicon carbide and the above-mentioned graphitizable carbon precursor or non-graphitizable carbon Examples thereof include a mixture with a precursor. Among these, a mixture of silicon powder and a graphitizable carbon precursor or a non-graphitizable carbon precursor is preferable. Thereby, when used in a secondary battery, a high charge / discharge capacity can be exhibited. Furthermore, the silicon-containing carbon precursor is not particularly limited, but is preferably a mixture of silicon powder and pitch. As a result, the oxygen content is small and the carbonization rate can be increased. Therefore, in addition to the above effects, the discharge capacity retention rate can be improved when used in a secondary battery. Further, the blending amount of the silicon powder is preferably 15 to 60% by weight of the silicon-containing carbon precursor, and particularly preferably 20 to 50% by weight. When the silicon powder is in the above range, a high charge / discharge capacity can be exhibited when used in a secondary battery without impairing the characteristics of silicon.

【0009】また、前記ケイ素含有炭素前駆体は、特に
限定されないが、ケイ素粉末、アルミナ粉末およびピッ
チとの混合物であることが好ましい。これにより、二次
電池に用いた場合に充放電効率の低下を抑制し、充放電
効率を更に向上することができる。この場合、前記ケイ
素粉末及びアルミナ粉末の配合量については、特に限定
されないが、ケイ素粉末は、前記ケイ素含有炭素前駆体
の15〜60重量%が好ましく、特に20〜50重量%
が好ましく、ケイ素粉末とアルミナ粉末の合計量は、前
記ケイ素含有炭素前駆体の16〜80重量%が好まし
く、特に25〜70重量%が好ましい。前記範囲内であ
ると二次電池に用いた場合に高充放電容量を保持したま
ま、充放電効率が向上することができる。前記ケイ素含
有炭素前駆体は、特に限定されないが、炭素材用原料の
20〜60重量%で有ることが好ましく、特に30〜5
0重量%が好ましい。前記ケイ素含有炭素前駆体が前記
範囲内であると上記効果に加え、二次電池に用いた場合
に放電容量保持率を向上することができる。
The silicon-containing carbon precursor is not particularly limited, but is preferably a mixture of silicon powder, alumina powder and pitch. As a result, it is possible to suppress a decrease in charge / discharge efficiency when used in a secondary battery and further improve the charge / discharge efficiency. In this case, the blending amounts of the silicon powder and the alumina powder are not particularly limited, but the silicon powder is preferably 15 to 60% by weight of the silicon-containing carbon precursor, and particularly 20 to 50% by weight.
Is preferable, and the total amount of the silicon powder and the alumina powder is preferably 16 to 80% by weight of the silicon-containing carbon precursor, and particularly preferably 25 to 70% by weight. Within the above range, when used in a secondary battery, the charge / discharge efficiency can be improved while maintaining a high charge / discharge capacity. The silicon-containing carbon precursor is not particularly limited, but is preferably 20 to 60% by weight of the carbonaceous material, and particularly 30 to 5%.
0% by weight is preferred. When the silicon-containing carbon precursor is within the above range, in addition to the above effects, the discharge capacity retention rate can be improved when used in a secondary battery.

【0010】本発明で用いる炭素質小球体は、炭素材と
して、あるいは炭化処理して炭素材となる球体又は曲面
を有する形状の粉末をいう。例えば、球状のフェノール
樹脂、メラミン樹脂、ポリイミド,メソフェーズ小球体
等、あるいはこれらを炭化処理し得られる炭素質小球体
等の易黒鉛化炭素前駆体や難黒鉛化炭素前駆体、あるい
は前記易黒鉛化炭素前駆体や難黒鉛化炭素前駆体を炭化
処理した後、機械的に球体近い形状に粉砕処理した粉
末、又は紡糸し繊維化したものを炭化処理し粉砕した粉
末等が挙げられる。これらの中でもメソフェーズ小球
体、これを炭化処理して得られるメソフェーズ含有炭素
質小球体、あるいは黒鉛化処理して得られるメソカーボ
ンマイクロビーズが好ましく、この中でも特にメソカー
ボンマイクロビーズが好ましい。これにより、ケイ素の
リチウムとの反応による膨張収縮力を球体の曲面で分散
させることにより、二次電池に用いた場合に高い充放電
効率を発揮することができる。前記炭素質小球体は、特
に限定されないが、炭素材用原料全体の40〜80重量
%が好ましく、特に50〜70重量%が好ましい。前記
炭素質小球体が前記範囲内であるとケイ素の高容量特性
を維持しながら、二次電池に用いた場合に高充放電効率
を発揮することができる。
The carbonaceous small spheres used in the present invention mean powders having a spherical shape or a curved surface as a carbon material or carbonized to become a carbon material. For example, a graphitizable carbon precursor or a non-graphitizable carbon precursor such as spherical phenol resin, melamine resin, polyimide, mesophase spheres, or carbonaceous spheres obtained by carbonizing these, or the above-mentioned graphitizable carbon Examples include powders obtained by carbonizing a carbon precursor or a non-graphitizable carbon precursor and then mechanically pulverizing it into a shape close to a sphere, or powders obtained by spinning and fiberizing carbonized and pulverized. Among these, mesophase microspheres, mesophase-containing carbonaceous microspheres obtained by carbonizing the same, or mesocarbon microbeads obtained by graphitizing treatment are preferable, and among them, mesocarbon microbeads are particularly preferable. As a result, by dispersing the expansion / contraction force due to the reaction of silicon with lithium on the curved surface of the sphere, it is possible to exhibit high charge / discharge efficiency when used in a secondary battery. The carbonaceous microspheres are not particularly limited, but are preferably 40 to 80% by weight, and particularly preferably 50 to 70% by weight of the total carbonaceous material. When the carbonaceous microspheres are within the above range, high charge / discharge efficiency can be exhibited when used in a secondary battery while maintaining the high capacity characteristics of silicon.

【0011】また、前記炭素質小球体は、特に限定され
ないが、平均粒径1〜50μmが好ましく、特に5〜3
0μmが好ましい。前記炭素質小球体の粒径が前記範囲
内であると上述の効果に加え、負極材作製時の取り扱い
性が良く、また、作製後の負極材塗布面が平滑となる。
The carbonaceous spheres are not particularly limited, but preferably have an average particle size of 1 to 50 μm, and particularly 5 to 3
0 μm is preferable. When the particle size of the carbonaceous spheres is within the above range, in addition to the above-mentioned effects, the handleability during the production of the negative electrode material is good, and the negative electrode material coated surface after the production becomes smooth.

【0012】本発明では、前記炭素材用原料を炭化処理
して炭素材を得ることができる。炭化処理は特に限定さ
れないが、例えば、前記ケイ素含有炭素前駆体と炭素質
小球体を粉砕または溶融混合した後、窒素雰囲気下で5
0〜200℃/時間で昇温し、400〜600℃で1〜
5時間保持し冷却後、100μm以下まで粉砕する。粉
砕処理品を更に窒素雰囲気下で10〜150℃/時間で
昇温し800〜1200℃にて1〜10時間保持し室温
まで冷却し、前記炭素材を得ることができる。
In the present invention, the carbon material can be obtained by carbonizing the raw material for carbon material. The carbonization treatment is not particularly limited. For example, after the silicon-containing carbon precursor and the carbonaceous spheres are pulverized or melt-mixed, the carbonization is performed under a nitrogen atmosphere at 5
The temperature is raised at 0 to 200 ° C / hour, and at 1 to 400 ° C to 600 ° C.
After being kept for 5 hours and cooled, it is ground to 100 μm or less. The crushed product is further heated in a nitrogen atmosphere at 10 to 150 ° C./hour, kept at 800 to 1200 ° C. for 1 to 10 hours, and cooled to room temperature to obtain the carbon material.

【0013】また、本発明では前記炭素材を含む二次電
池負極材を得ることができる。二次電池負極材に適用す
る場合、例えば、前記炭素材100重量部に対しポリエ
チレン,ポリプロピレン等を含むフッ素系高分子、ブチ
ルゴム,ブタジエンゴム等のゴム状高分子等の有機高分
子結着剤1〜30重量部及び適量のN−メチル−2−ピ
ロリドン,ジメチルホルムアミド等の粘度調整用溶剤を
混練し、ペースト状にした混合物を圧縮成形,ロール成
形等によりシート状、ペレット状等に成形し得ることが
できる。また、粘度調整用溶剤量を調整、スラリー状に
した混合物を銅箔、ニッケル箔等の集電体に塗布成形し
得ることもできる。
Further, according to the present invention, a secondary battery negative electrode material containing the above carbon material can be obtained. When applied to a secondary battery negative electrode material, for example, an organic polymer binder 1 such as a fluoropolymer containing polyethylene, polypropylene or the like, or a rubber-like polymer such as butyl rubber or butadiene rubber based on 100 parts by weight of the carbon material 1 -30 parts by weight and an appropriate amount of a solvent for adjusting viscosity such as N-methyl-2-pyrrolidone and dimethylformamide are kneaded, and a paste-like mixture can be formed into a sheet, a pellet or the like by compression molding, roll molding or the like. be able to. It is also possible to adjust the amount of the solvent for adjusting the viscosity and apply the slurry mixture to a current collector such as a copper foil or a nickel foil for molding.

【0014】また、本発明では前記二次電池用負極材を
用いたリチウム二次電池を得ることができる。リチウム
二次電池に前記二次電池用負極材を適用する場合、例え
ば、前記二次電池用負極材はセパレータを介して正極材
と対抗して配置され、電解液を用いリチウム二次電池が
得られる。正極材としては特に限定されないが、リチウ
ムコバルト酸化物、リチウムニッケル酸化物,リチウム
マンガン酸化物等の複合酸化物やポリアニリン,ポリピ
ロール等の導電性高分子等を用いることができる。セパ
レータとしては特に限定されないが、ポリエチレン,ポ
リプロピレン等の微多孔質、不織布等を用いることがで
きる。電解液としては特に限定されないが、非水系溶媒
に電解質となるリチウム塩を溶解したものを用いる。電
解質としてはLiClO4,LiPF6等のリチウム金属
塩、テトラアルキルアンモニウム塩等を用いることがで
きる。非水系溶媒としては、プロピレンカーボネート、
エチレンカーボネート、γ−ブチロラクトン等の環状エ
ステル類、ジエチルカーボネート等の鎖状エステル類、
ジメトキシエタン等のエーテル類等の混合物等を用いる
ことができる。また、上記塩類をポリエチレンオキサイ
ド、ポリアクリロニトリル等に混合された固体電解質を
用いることもできる。
Further, according to the present invention, a lithium secondary battery using the negative electrode material for secondary battery can be obtained. When the negative electrode material for a secondary battery is applied to a lithium secondary battery, for example, the negative electrode material for a secondary battery is arranged to face the positive electrode material via a separator, and a lithium secondary battery is obtained using an electrolytic solution. To be The positive electrode material is not particularly limited, but composite oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and conductive polymers such as polyaniline and polypyrrole can be used. The separator is not particularly limited, but a microporous material such as polyethylene or polypropylene, a non-woven fabric, or the like can be used. The electrolytic solution is not particularly limited, but a nonaqueous solvent in which a lithium salt serving as an electrolyte is dissolved is used. As the electrolyte, a lithium metal salt such as LiClO 4 or LiPF 6 or a tetraalkylammonium salt can be used. As the non-aqueous solvent, propylene carbonate,
Cyclic esters such as ethylene carbonate and γ-butyrolactone, chain esters such as diethyl carbonate,
A mixture of ethers such as dimethoxyethane can be used. It is also possible to use a solid electrolyte prepared by mixing the above salts with polyethylene oxide, polyacrylonitrile, or the like.

【0015】以下、本発明を実施例及び比較例により詳
細に説明するが、本発明はこれに限定されるものではな
い。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0016】実施例1 <炭素材の製造> ケイ素含有炭素前駆体の作製 軟化点120℃のピッチ500重量部を1Lのフラスコ
入れ、180〜240℃でピッ チを溶解した。溶解し
たピッチにケイ素粉末150重量部、アルミナ粉末25
重量部を 徐々に逐添し、添加終了後、更に1時間攪拌
した後、室温まで冷却し、粗砕しケイ素含 有炭素前駆
体Aを得た。 炭素材用原料の混合 上記にて得られたケイ素含有炭素前駆体を全体の40
重量%使用し、炭素質小球体としてメソカーボンマイク
ロビーズであるKMFC(川崎製鉄(株)製)を全体の
60重量%使用し、V型ブレンダーを用いて30分間混
合した。次いで、衝撃式粉砕機でスクリーン1mmφで
100μm以下に粉砕した。 不融化処理および整粒 上記粉砕品を窒素雰囲気下で100℃/時間で550℃
まで昇温して1.5時間保持した。その後、冷却して振
動ボールミルを用いて45μm以下まで粉砕した。 炭化処理 上記粉砕品を100℃/時間で1000℃まで昇温して
3時間保持した。その後、冷却して45μm篩で篩い、
炭素材を得た。
Example 1 <Production of carbon material> Preparation of silicon-containing carbon precursor 500 parts by weight of a pitch having a softening point of 120 ° C. was put into a 1 L flask and the pitch was dissolved at 180 to 240 ° C. 150 parts by weight of silicon powder and 25 alumina powder in the melted pitch
By weight, the parts were gradually added, and after the addition was completed, the mixture was stirred for another 1 hour, cooled to room temperature, and crushed to obtain a silicon-containing carbon precursor A. Mixing of raw materials for carbon material 40% of the silicon-containing carbon precursor obtained above
By weight, KMFC (manufactured by Kawasaki Steel Co., Ltd.), which is mesocarbon microbeads, was used as carbonaceous microspheres in an amount of 60% by weight based on the total amount, and mixed for 30 minutes using a V-type blender. Then, it was crushed to 100 μm or less with a screen 1 mmφ by an impact crusher. Infusibilization and sizing The crushed product was 550 ° C at 100 ° C / hour in a nitrogen atmosphere.
The temperature was raised to and held for 1.5 hours. Then, it was cooled and pulverized to 45 μm or less using a vibrating ball mill. Carbonization treatment The pulverized product was heated to 1000 ° C at 100 ° C / hour and held for 3 hours. Then, cool and sieve with a 45 μm sieve,
A carbon material was obtained.

【0017】<二次電池の製造> 上述の炭素材に結合剤としてポリフッ化ビニリデン1
0重量%、アセチレンブラック3重量%を添加し、希釈
溶媒としてN−メチル−2−ピロリドンを適量加え混合
し、スラリー状の負極混合物を調整した。調整した負極
スラリー状混合物を10μmの銅箔の両面に塗布し、そ
の後、110℃で1時間真空乾燥した。真空乾燥後、ロ
ールプレスによって電極を加圧成形した。これを幅40
mmで長さ290mmの大きさに切り出し負極を作製し
た。但し、負極両端10mmの部分は銅箔が露出してお
り、この一方に負極タブを圧着した。 正極は正極活物質をLiCoO2300重量部、アセ
チレンブラック15重量部、ポリフッ化ビニリデン15
重量部を添加し、希釈溶媒としてN−メチル−2−ピロ
リドンを適量加え混合し、スラリー状の正極混合物を調
整した。調整した正極スラリー状混合物を25μmのア
ルミ箔の両面に塗布し、その後、110℃で1時間真空
乾燥した。真空乾燥後、ロールプレスによって電極を加
圧成形した。これを幅40mmで長さ280mmの大き
さに切り出し正極を作製した。但し、正極両端10mm
の部分はアルミ箔が露出しており、この一方に正極タブ
を圧着した。 前記正極、セパレータ(ポリプロピレン製多孔質フィ
ルム:幅45mm、厚さ25μm)、前記負極、セパレ
ータ、前記正極…の順で前記負極が外側になるよう渦巻
き状に捲回して電極を作製した。作製した電極を単三型
の電池缶に挿入し負極タブを缶底と溶接する。電解液と
して体積比が1:1のエチレンカーボネートとジエチレ
ンカーボネートの混合液に6フッ化リン酸リチウムを1
モル/リットル溶解させたものを電池缶に注入した後、
正極タブを正極蓋に溶接し、正極蓋をかしめ付けて二次
電池を作製した。
<Manufacture of Secondary Battery> Polyvinylidene fluoride 1 as a binder in the above carbon material.
0% by weight and 3% by weight of acetylene black were added, and an appropriate amount of N-methyl-2-pyrrolidone was added as a diluent solvent and mixed to prepare a slurry-like negative electrode mixture. The prepared negative electrode slurry-like mixture was applied to both surfaces of a 10 μm copper foil, and then vacuum dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-molded by a roll press. Width 40
A negative electrode was prepared by cutting it out into a size of 290 mm and a length of 290 mm. However, the copper foil was exposed at the portion of 10 mm on both ends of the negative electrode, and a negative electrode tab was pressure-bonded to this one. For the positive electrode, the positive electrode active material was 300 parts by weight of LiCoO 2 , 15 parts by weight of acetylene black, and 15 parts of polyvinylidene fluoride.
A weight part was added, and an appropriate amount of N-methyl-2-pyrrolidone was added as a diluent solvent and mixed to prepare a slurry-like positive electrode mixture. The prepared positive electrode slurry-like mixture was applied on both sides of a 25 μm aluminum foil, and then vacuum dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-molded by a roll press. This was cut into a size of 40 mm in width and 280 mm in length to prepare a positive electrode. However, both ends of the positive electrode are 10 mm
The aluminum foil was exposed at the portion of, and the positive electrode tab was pressure-bonded to this one side. An electrode was manufactured by spirally winding the positive electrode, the separator (porous film made of polypropylene: width 45 mm, thickness 25 μm), the negative electrode, the separator, the positive electrode in this order so that the negative electrode is on the outside. The prepared electrode is inserted into an AA battery can and the negative electrode tab is welded to the can bottom. As an electrolytic solution, 1 volume of lithium hexafluorophosphate is added to a mixed solution of ethylene carbonate and diethylene carbonate having a volume ratio of 1: 1.
After injecting the dissolved mol / l into the battery can,
The positive electrode tab was welded to the positive electrode lid, and the positive electrode lid was caulked to manufacture a secondary battery.

【0018】実施例2 実施例1で得たケイ素含有炭素前駆体Aの使用量を全体
の30重量%とし、KMFCの使用量を全体の70重量
%とした以外は、実施例1と同様にした。
Example 2 The same as Example 1 except that the silicon-containing carbon precursor A obtained in Example 1 was used in an amount of 30% by weight and the KMFC was used in an amount of 70% by weight. did.

【0019】実施例3 実施例1において、アルミナ粉末の添加量をケイ素含有
炭素前駆体全体に対して10重量%としたケイ素含有炭
素前駆体Bを使用した以外は、実施例1と同様にした。
Example 3 The same as Example 1 except that the silicon-containing carbon precursor B was used in which the amount of alumina powder added was 10% by weight based on the whole silicon-containing carbon precursor. .

【0020】実施例4 実施例1で得たケイ素含有炭素前駆体Aの使用量を全体
の15重量%とし、KMFCの使用量を全体の85重量
%とした以外は実施例1と同様にした。
Example 4 Same as Example 1 except that the silicon-containing carbon precursor A obtained in Example 1 was used in an amount of 15% by weight and the KMFC was used in an amount of 85% by weight. .

【0021】実施例5 実施例1で得たケイ素含有炭素前駆体Aの使用量を全体
の70重量%とし、KMFCの使用量を全体の30重量
%とした以外は実施例1と同様にした。
Example 5 The same procedure was performed as in Example 1 except that the silicon-containing carbon precursor A obtained in Example 1 was used in an amount of 70% by weight and the KMFC was used in an amount of 30% by weight. .

【0022】実施例6 実施例1において、アルミナ粉末を添加していないケイ
素含有炭素前駆体Cを使用した以外は、実施例1と同様
にした。
Example 6 The procedure of Example 1 was repeated, except that the silicon-containing carbon precursor C to which no alumina powder was added was used.

【0023】実施例7 炭素質小球体として、球状フェノール樹脂(住友ベーク
ライト製PR−ACS−7P)を用いた以外は、実施例
1と同様にした。
Example 7 The procedure of Example 1 was repeated except that a spherical phenol resin (PR-ACS-7P manufactured by Sumitomo Bakelite) was used as the carbonaceous microspheres.

【0024】比較例1 炭素質小球体を使用しない以外は、実施例1と同様にし
た。
Comparative Example 1 The procedure of Example 1 was repeated except that carbonaceous microspheres were not used.

【0025】比較例2 ケイ素含有炭素前駆体Aを使用しない以外は、実施例1
と同様にした。
Comparative Example 2 Example 1 except that the silicon-containing carbon precursor A was not used.
Same as.

【0026】比較例3 ケイ素を含有しない炭素前駆体(大阪化成(株)製TG
P)を用いた以外は、実施例1と同様にした。
Comparative Example 3 Carbon precursor containing no silicon (TG manufactured by Osaka Kasei Co., Ltd.)
Same as Example 1 except that P) was used.

【0027】上述の実施例および比較例により得られた
結果を表1に示す。なお、比表面積は、炭素材製造後に
ユアサアイオニクス社製NOVA1200を用いて、窒
素ガスBET3点法で測定した。2.5V放電容量、初
回充放電効率および放電容量保持率については、二次電
池製造後に測定した。充電条件は、電流25mA/gの
低電流で1mVになるまで保持し、その後、1.25m
Ah/g以下に電流が減衰するまでとした。また、放電
条件のカットオフ電位は2.5Vとした。放電容量保持
率は初回放電容量に対する300サイクル後の放電容量
の保持率とした。
Table 1 shows the results obtained by the above-mentioned Examples and Comparative Examples. The specific surface area was measured by the nitrogen gas BET three-point method using NOVA1200 manufactured by Yuasa Ionics Inc. after the carbon material was manufactured. The 2.5 V discharge capacity, the initial charge / discharge efficiency and the discharge capacity retention rate were measured after the secondary battery was manufactured. The charging conditions are as follows: a low current of 25 mA / g is maintained until it reaches 1 mV, then 1.25 m
It was set until the current decreased to Ah / g or less. The cut-off potential of the discharge condition was 2.5V. The discharge capacity retention rate was defined as the retention rate of the discharge capacity after 300 cycles with respect to the initial discharge capacity.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示すように、実施例1〜7は、ケイ
素含有炭素前駆体を使用しているため放電容量に優れ
る。特に実施例1と3は、適量のアルミナ粉末を配合し
ていることから充放電効率に優れる。また、特に実施例
1〜4は、ケイ素を含有したピッチからなるケイ素含有
炭素前駆体及びメソフェーズ含有炭素質小球体の混合物
を炭化処理して使用しているため放電容量保持率も優れ
る。
As shown in Table 1, Examples 1 to 7 are excellent in discharge capacity because they use the silicon-containing carbon precursor. In particular, Examples 1 and 3 are excellent in charge / discharge efficiency because they contain a proper amount of alumina powder. Further, particularly in Examples 1 to 4, since the mixture of the silicon-containing carbon precursor composed of the pitch containing silicon and the mesophase-containing carbonaceous small spheres was carbonized and used, the discharge capacity retention rate was also excellent.

【0030】[0030]

【発明の効果】本発明によれば、二次電池の高充放電容
量を発揮することができる。また、ケイ素含有ピッチと
メソカーボンマイクロビーズからなる組成物を炭化処理
した炭素材を用いる場合、特に二次電池の放電容量保持
率を保持及び充放電効率を向上することができる。
According to the present invention, the high charge / discharge capacity of the secondary battery can be exhibited. When a carbon material obtained by carbonizing a composition containing silicon-containing pitch and mesocarbon microbeads is used, the discharge capacity retention rate of the secondary battery can be maintained and the charge / discharge efficiency can be improved.

フロントページの続き Fターム(参考) 4G046 CA00 CA07 CB09 CC01 4H058 DA13 DA22 DA24 EA12 FA03 GA16 HA03 HA13 5H029 AJ03 AK03 AK16 AL06 AM03 AM04 AM05 AM07 DJ16 HJ01 HJ05 5H050 AA08 BA17 CA08 CA09 CB07 FA17 GA10 HA01 HA05 Continued front page    F-term (reference) 4G046 CA00 CA07 CB09 CC01                 4H058 DA13 DA22 DA24 EA12 FA03                       GA16 HA03 HA13                 5H029 AJ03 AK03 AK16 AL06 AM03                       AM04 AM05 AM07 DJ16 HJ01                       HJ05                 5H050 AA08 BA17 CA08 CA09 CB07                       FA17 GA10 HA01 HA05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素含有炭素前駆体および炭素質小球
体を含むことを特徴とする炭素材用原料。
1. A raw material for a carbonaceous material, comprising a silicon-containing carbon precursor and carbonaceous microspheres.
【請求項2】 前記ケイ素含有炭素前駆体は、ケイ素粉
末とピッチとの混合物から構成される請求項1に記載の
炭素材用原料。
2. The raw material for carbon material according to claim 1, wherein the silicon-containing carbon precursor is composed of a mixture of silicon powder and pitch.
【請求項3】 前記ケイ素含有炭素前駆体は、ケイ素粉
末、アルミナ粉末およびピッチとの混合物から構成され
る請求項1に記載の炭素材用原料。
3. The raw material for a carbon material according to claim 1, wherein the silicon-containing carbon precursor is composed of a mixture of silicon powder, alumina powder and pitch.
【請求項4】 前記ケイ素粉末は、前記ケイ素含有炭素
前駆体全体の15〜60重量%である請求項2または3
に記載の炭素材用原料。
4. The silicon powder accounts for 15 to 60% by weight of the total silicon-containing carbon precursor.
The raw material for carbon material described in.
【請求項5】 前記ケイ素含有炭素前駆体は、炭素材用
原料全体の20〜60重量%である請求項1ないし4の
いずれかに記載の炭素材用原料。
5. The raw material for carbon material according to claim 1, wherein the silicon-containing carbon precursor is 20 to 60% by weight of the total raw material for carbon material.
【請求項6】 前記炭素質小球体は、メソカーボンマイ
クロビーズである請求項1ないし5のいずれかに記載の
炭素材用原料。
6. The raw material for carbon material according to claim 1, wherein the carbonaceous microspheres are mesocarbon microbeads.
【請求項7】 前記炭素質小球体は、平均粒子径1〜5
0μmである請求項1ないし6のいずれかに記載の炭素
材用原料。
7. The carbonaceous spheres have an average particle size of 1 to 5
The carbon material raw material according to claim 1, which has a thickness of 0 μm.
【請求項8】 請求項1ないし7のいずれかに記載の炭
素材用原料を炭化処理してなる炭素材。
8. A carbon material obtained by carbonizing the carbon material raw material according to claim 1.
【請求項9】 請求項8に記載の炭素材を含有する二次
電池負極材。
9. A secondary battery negative electrode material containing the carbon material according to claim 8.
【請求項10】 請求項9に記載の二次電池負極材を用
いたリチウム二次電池。
10. A lithium secondary battery using the secondary battery negative electrode material according to claim 9.
JP2001235214A 2001-08-02 2001-08-02 Carbon material and carbon material using the same Expired - Fee Related JP4945862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235214A JP4945862B2 (en) 2001-08-02 2001-08-02 Carbon material and carbon material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235214A JP4945862B2 (en) 2001-08-02 2001-08-02 Carbon material and carbon material using the same

Publications (2)

Publication Number Publication Date
JP2003048706A true JP2003048706A (en) 2003-02-21
JP4945862B2 JP4945862B2 (en) 2012-06-06

Family

ID=19066698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235214A Expired - Fee Related JP4945862B2 (en) 2001-08-02 2001-08-02 Carbon material and carbon material using the same

Country Status (1)

Country Link
JP (1) JP4945862B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830612B1 (en) 2006-05-23 2008-05-21 강원대학교산학협력단 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR101072068B1 (en) 2007-12-13 2011-10-10 주식회사 엘지화학 Secondary battery
JP2015090748A (en) * 2013-11-05 2015-05-11 エム・ティー・カーボン株式会社 Silicon-containing amorphous carbon material, manufacturing method thereof, and lithium ion secondary battery
JP2018081923A (en) * 2017-12-25 2018-05-24 戸田工業株式会社 Silicon-containing amorphous carbon material and lithium ion secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236104A (en) * 1995-02-24 1996-09-13 Asahi Organic Chem Ind Co Ltd Manufacture of silicon-containing carbon particle and negative electrode containing the carbon particle
JPH09213335A (en) * 1995-11-24 1997-08-15 Toshiba Corp Lithium secondary cell
WO1998024135A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
JP2000203818A (en) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2001006683A (en) * 1999-06-23 2001-01-12 Toyota Central Res & Dev Lab Inc Active material for lithium battery
JP2002231225A (en) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP2002255529A (en) * 2001-03-02 2002-09-11 Samsung Sdi Co Ltd Carbonaceous material and lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236104A (en) * 1995-02-24 1996-09-13 Asahi Organic Chem Ind Co Ltd Manufacture of silicon-containing carbon particle and negative electrode containing the carbon particle
JPH09213335A (en) * 1995-11-24 1997-08-15 Toshiba Corp Lithium secondary cell
WO1998024135A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
JP2000203818A (en) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2001006683A (en) * 1999-06-23 2001-01-12 Toyota Central Res & Dev Lab Inc Active material for lithium battery
JP2002231225A (en) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP2002255529A (en) * 2001-03-02 2002-09-11 Samsung Sdi Co Ltd Carbonaceous material and lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830612B1 (en) 2006-05-23 2008-05-21 강원대학교산학협력단 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
US8999581B2 (en) 2006-05-23 2015-04-07 Samsung Electronics Co., Ltd. Negative active material for lithium secondary battery, method for preparing the same, negative electrode comprising the same, and lithium secondary battery comprising same
US9882209B2 (en) 2006-05-23 2018-01-30 Samsung Electronics Co., Ltd. Negative active material for lithium secondary battery, method for preparing the same, negative electrode comprising the same, and lithium secondary battery comprising same
KR101072068B1 (en) 2007-12-13 2011-10-10 주식회사 엘지화학 Secondary battery
JP2015090748A (en) * 2013-11-05 2015-05-11 エム・ティー・カーボン株式会社 Silicon-containing amorphous carbon material, manufacturing method thereof, and lithium ion secondary battery
WO2015068361A1 (en) * 2013-11-05 2015-05-14 エム・ティー・カーボン株式会社 Silicon-containing amorphous carbon material, method for producing same, and lithium ion secondary battery
TWI650894B (en) * 2013-11-05 2019-02-11 日商Mt碳素有限公司 Antimony-containing amorphous carbon material and manufacturing method thereof, lithium ion secondary battery
JP2018081923A (en) * 2017-12-25 2018-05-24 戸田工業株式会社 Silicon-containing amorphous carbon material and lithium ion secondary battery

Also Published As

Publication number Publication date
JP4945862B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP6126902B2 (en) Composite graphite particles and uses thereof
JP4760379B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4046601B2 (en) Negative electrode material for lithium secondary battery and lithium secondary battery using the same
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
KR20090017535A (en) High-voltage charge type nonaqueous electrolyte secondary battery
WO2013088712A1 (en) Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2003223892A (en) Lithium secondary battery and method for manufacturing negative electrode material therefor
JP2003132889A (en) Anode material for lithium ion secondary battery and its manufacturing method
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP2004103405A (en) Raw material for carbonaceous material, silicon-containing carbonaceous material, negative electrode material of secondary battery, and lithium secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP3875048B2 (en) Method for producing negative electrode active material
JP3518137B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
KR101592773B1 (en) Anode active material and secondary battery comprising the same
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2000260479A (en) Lithium ion secondary battery
JP4087138B2 (en) Carbon material and silicon-containing carbon material using the same
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP2003197192A (en) Nonaqueous secondary battery
WO2020110942A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
JP4945862B2 (en) Carbon material and carbon material using the same
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2010267629A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
JP4170006B2 (en) Carbon material and negative electrode material for secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees