JP2002216770A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002216770A
JP2002216770A JP2001013581A JP2001013581A JP2002216770A JP 2002216770 A JP2002216770 A JP 2002216770A JP 2001013581 A JP2001013581 A JP 2001013581A JP 2001013581 A JP2001013581 A JP 2001013581A JP 2002216770 A JP2002216770 A JP 2002216770A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001013581A
Other languages
Japanese (ja)
Other versions
JP4595205B2 (en
Inventor
Masaya Nakamura
雅也 中村
Hirohiko Saito
博彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001013581A priority Critical patent/JP4595205B2/en
Publication of JP2002216770A publication Critical patent/JP2002216770A/en
Application granted granted Critical
Publication of JP4595205B2 publication Critical patent/JP4595205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery securing safety. SOLUTION: This nonaqueous electrolyte secondary battery includes a positive electrode and a negative electrode, and has positive electrode active material containing an olivine structure phosphorous compound including at least Li and Fe. At least one of the positive electrode and the negative electrode has a characteristic that electric conductivity thereof significantly change by electrochemical doping and de-doping and the nonaqueous electrolyte secondary battery has conductive modifier to cut off electric current flowing therein with the reduction of the electric conductivity. It is thought that the conductive modifier secures safety in over charging conditions and the positive electrode active material containing a phosphoric compound secures safety under a high temperature environment respectively. Accordingly, the nonaqueous electrolyte secondary battery having extremely high safety can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い安全性を有す
る非水電解質二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery having high safety.

【0002】[0002]

【従来の技術】近年、ビデオカメラや携帯型電話機等の
コードレス電子機器の発達はめざましいものがある。こ
れらの民生用途の電源としては電池電圧が高く、高エネ
ルギー密度を有したリチウム二次電池等の非水電解質二
次電池が注目されており実用化されてきている。さらに
現在、環境問題等の観点からは自動車の分野でも電気自
動車やハイブリッド自動車等のクリーンエネルギーを利
用する自動車の開発がなされており、この様な車載用の
電源としても非水電解質二次電池が注目されており、さ
らなる高性能化(高エネルギー密度化、高出力化等)や
低コスト化が検討されてきている。 上記電池の正極活
物質としては4V程度の電池電圧を示すLiCoO2
LiNiO2、LiMn24などのリチウム遷移金属複
合酸化物が、負極活物質としてはリチウム金属やリチウ
ムイオンを可逆的に吸蔵しうる炭素材料等が、また電解
液としては4V程度の電池電圧で使用できる有機系の電
解液がそれぞれ使用または検討されている。
2. Description of the Related Art In recent years, cordless electronic devices such as video cameras and portable telephones have been remarkably developed. Non-aqueous electrolyte secondary batteries such as lithium secondary batteries having a high battery voltage and a high energy density have attracted attention as power sources for these consumer applications, and have been put into practical use. Further, at present, from the viewpoint of environmental issues, vehicles using clean energy such as electric vehicles and hybrid vehicles are being developed in the field of vehicles, and a non-aqueous electrolyte secondary battery is also used as a power source for such vehicles. Attention has been paid to higher performance (higher energy density, higher output, etc.) and lower cost. LiCoO 2 showing a battery voltage of about 4 V as a positive electrode active material of the battery,
A lithium transition metal composite oxide such as LiNiO 2 or LiMn 2 O 4 is used. A negative electrode active material is a carbon material capable of reversibly occluding lithium metal or lithium ion, and an electrolyte is a battery voltage of about 4 V. Organic electrolytes that can be used have been used or studied.

【0003】非水電解質二次電池の高エネルギー密度
化、高出力化等の高性能化を図る際には、安全性の確保
が重要な問題である。たとえばリチウム二次電池では、
化学的活性の高いリチウム、可燃性の高い電解液、充電
状態での熱安定性の低い酸化物正極活物質を用いてるの
で電池の取扱いについては細心の注意が必要となる。特
に高性能のリチウム電池を市場に出す場合は、誤使用に
基づく危険に対する充分な安全対策を施すことが必要と
なる。たとえば、電池の短絡、過充電、高温下(80℃
以上)での放置等の誤使用による電池の破損等の不都合
が挙げられる。誤使用に基づく不都合の原因としては電
池材料間の化学反応が過熱により促進されることが挙げ
られる。その対策として、PTC素子の使用、融点の低
いポリプロピレン、ポリエチレンをセパレ−タに用いた
電池内部温度上昇に伴うセパレ−タのシャットダウン効
果による過電流のカット、内部圧力上昇によって作動す
る電流遮断機構が安全手段として考案されている。
[0003] When achieving high performance such as high energy density and high output of a nonaqueous electrolyte secondary battery, it is important to ensure safety. For example, in a lithium secondary battery,
Since lithium, which has high chemical activity, highly flammable electrolyte, and oxide positive electrode active material, which has low thermal stability in a charged state, are used, careful handling of batteries is required. In particular, when a high performance lithium battery is put on the market, it is necessary to take sufficient safety measures against danger due to misuse. For example, battery short circuit, overcharge, high temperature (80 ℃
In the above, there is an inconvenience such as breakage of the battery due to erroneous use such as leaving. The cause of the inconvenience due to misuse is that a chemical reaction between battery materials is promoted by overheating. As countermeasures, the use of PTC elements, the use of polypropylene and polyethylene having a low melting point as separators, the cut-off of overcurrent due to the shutdown effect of the separator due to the rise in internal temperature of the battery, and the current cut-off mechanism activated by the rise in internal pressure. Designed as a safety measure.

【0004】[0004]

【発明が解決しようとする課題】このように従来から多
くの安全手段が開発されているが、さらなる安全性向上
のためには多種類の安全手段を開発し併用することが望
まれる。
As described above, many safety means have been conventionally developed, but it is desired to develop and use various kinds of safety means in order to further improve safety.

【0005】したがって本発明は、従来と異なる手段で
安全性を確保した非水電解質二次電池を提供することを
解決すべき課題とする。
Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery in which safety is ensured by means different from conventional ones.

【0006】[0006]

【課題を解決するための手段】従来の安全確保の手段と
しては上述のように熱に応答して作動するものが多く、
過充電などにより電池に異常が発生した際に、その安全
手段が作動するまで長時間を要する。
As described above, many conventional means for ensuring safety operate in response to heat as described above.
When an abnormality occurs in the battery due to overcharging or the like, it takes a long time until the safety means operates.

【0007】ここで従来技術として熱に応答して作動す
る機構以外の安全手段をもつ非水電解質二次電池として
は特開平10−199505号公報に開示された電極に
電気化学的なドープ・脱ドープによりその導電率が著し
く変化する性質をもつ導電性調節材を含有させた非水電
解質二次電池がある。
Here, as a prior art, as a nonaqueous electrolyte secondary battery having a safety means other than a mechanism which operates in response to heat, an electrode disclosed in Japanese Patent Application Laid-Open No. Hei 10-199505 is disclosed. There is a non-aqueous electrolyte secondary battery containing a conductivity adjusting material having a property that its conductivity is significantly changed by doping.

【0008】この導電性調節材は電池の正常な作動電位
範囲においては良好な導電性を有し、作動範囲外の電圧
において絶縁状態になる性状を有する。これにより正常
な電池作動範囲では導電性調節材が良好な電子導電性を
示し、良好な電池反応が行われるのに対して、充電時に
おいて過充電状態に至った場合は、物質の導電性は大き
く低下し絶縁状態となる。したがって電池内部で応答性
よく電流遮断機能が働き、確実に破裂・発火等を防ぐこ
とができる。この安全手段をもつ非水電解質二次電池は
過充電が生じると速やかに電流の流れを遮断でき一段と
高い安全性を獲得できる。
The conductivity adjusting material has good conductivity in a normal operating potential range of the battery, and has a property of being insulated at a voltage outside the operating range. As a result, in the normal battery operating range, the conductivity adjusting material shows good electronic conductivity, and a good battery reaction is performed. On the other hand, when the battery reaches an overcharged state during charging, the conductivity of the substance is reduced. It greatly decreases and becomes insulated. Therefore, the current interruption function works with good responsiveness inside the battery, and it is possible to surely prevent the explosion and the ignition. The nonaqueous electrolyte secondary battery having this safety means can immediately cut off the flow of current when overcharging occurs, and can obtain higher safety.

【0009】しかしながら、非水電解質二次電池に対し
て充放電を行っていなくても、80℃を超えるような高
温下に非水電解質二次電池が置かれた場合に、充電状態
での電極等の自己発熱(熱暴走)に至る場合があり、従
来技術では、これを防ぐことは困難である。
However, even if the non-aqueous electrolyte secondary battery is not charged or discharged, the electrode in a charged state is charged when the non-aqueous electrolyte secondary battery is placed at a high temperature exceeding 80 ° C. Self-heating (thermal runaway) may occur, and it is difficult to prevent this with the conventional technology.

【0010】そこで本課題を解決する目的で本発明者ら
は鋭意研究の結果、高温下に放置した場合に熱暴走に至
る主な原因として、充電状態の正極活物質の高温下での
不安定さを発見した。つまり、高温下では正極活物質
(一般的に非水電解質二次電池の正極活物質にはリチウ
ム−金属複合酸化物が用いられる。)に含まれる酸素が
脱離し、その活性な酸素と電解液等との反応により連鎖
的に発熱していくと考えられる。したがってその対策と
して高温下においても酸素の脱離が少ない正極活物質を
用いればよいことに想到しそのような正極活物質とし
て、LiとFeとを含有するオリビン構造のリン酸化合
物含有正極活物質を見出した。これは、リンと酸素との
結合力が強いために、高温下においても安定な状態で存
在できるものと考えられる。
The inventors of the present invention have conducted intensive studies with the aim of solving this problem. As a result of thermal runaway when left at a high temperature, the main cause of the instability of a charged positive electrode active material at a high temperature is as follows. I found it. That is, at a high temperature, oxygen contained in the positive electrode active material (generally, a lithium-metal composite oxide is used as the positive electrode active material of a non-aqueous electrolyte secondary battery) is desorbed, and the active oxygen and the electrolytic solution are removed. It is considered that heat is generated in a chain due to the reaction with the like. Therefore, as a countermeasure, it has been conceived that a positive electrode active material with little desorption of oxygen even under high temperature may be used, and as such a positive electrode active material, a phosphate compound-containing positive electrode active material having an olivine structure containing Li and Fe. Was found. This is considered to be due to the strong bonding force between phosphorus and oxygen, which can exist in a stable state even at high temperatures.

【0011】以上の知見に基づいて以下の発明を行っ
た。すなわち、本発明の非水電解質二次電池は、リチウ
ムイオンを吸蔵乃至は放出できる正極活物質をもつ正極
と、リチウムイオンを吸蔵乃至は放出できる負極とを有
する非水電解質二次電池において、前記正極活物質は、
少なくともLiとFeとを含有するオリビン構造のリン
酸化合物含有正極活物質をもち、前記正極および前記負
極の少なくとも一方は、電気化学的なドープ・脱ドープ
により導電率が著しく変化する性質をもちその導電率の
低下により前記非水電解質二次電池に流れる電流を遮断
する導電性調節材をもつことを特徴とする。
The following inventions have been made based on the above findings. That is, the nonaqueous electrolyte secondary battery of the present invention is a nonaqueous electrolyte secondary battery having a positive electrode having a positive electrode active material capable of inserting or extracting lithium ions, and a negative electrode capable of inserting or extracting lithium ions. The positive electrode active material is
It has a phosphate compound-containing positive electrode active material having an olivine structure containing at least Li and Fe, and at least one of the positive electrode and the negative electrode has a property in which the conductivity is significantly changed by electrochemical doping / undoping. It is characterized by having a conductivity adjusting material for interrupting a current flowing through the non-aqueous electrolyte secondary battery due to a decrease in conductivity.

【0012】そして、前記導電性調節材はP型ドープ可
能な物質であって、前記正極に含有されていることが好
ましい。P型ドープ可能な物質としてはその導電性が発
現する電池電圧範囲が広く4V級の無機系リチウム含有
複合酸化物とのマッチング(電池としての使用電圧範囲
の調整)が容易であることからポリアニリン又はポリピ
ロールであることが好ましい。
It is preferable that the conductivity adjusting material is a substance that can be doped with P-type, and is contained in the positive electrode. As a P-type dopable substance, polyaniline or polyaniline can be used because it has a wide battery voltage range in which its conductivity is exhibited and can be easily matched with a 4V-class inorganic lithium-containing composite oxide (adjustment of the voltage range used as a battery). Preferably it is polypyrrole.

【0013】また、前記導電性調節材は、前記正極活物
質の表面に存在することが好ましい。正極活物質の表面
に導電性調節材を存在させることで非常時に導電性調節
材の導電性が低下したときにより確実に電流の流れを遮
断することができるからである。
Further, it is preferable that the conductivity adjusting material exists on the surface of the positive electrode active material. This is because the presence of the conductivity control material on the surface of the positive electrode active material can more reliably block the flow of current when the conductivity of the conductivity control material is reduced in an emergency.

【0014】そしてまた前記リン酸化合物含有正極活物
質は、一般式LiMxFe1-xPO4(M:鉄以外の一種
以上の金属元素、0≦x≦0.5)で表されることが好
ましい。また、前記正極活物質は、さらにリチウムマン
ガン含有複合酸化物、リチウムニッケル含有複合酸化物
およびリチウムコバルト含有複合酸化物のいずれか1種
以上を含有することができる。
The phosphoric acid compound-containing cathode active material is represented by a general formula LiM x Fe 1 -x PO 4 (M: one or more metal elements other than iron, 0 ≦ x ≦ 0.5). Is preferred. Further, the positive electrode active material may further contain at least one of a lithium manganese-containing composite oxide, a lithium nickel-containing composite oxide, and a lithium cobalt-containing composite oxide.

【0015】[0015]

【発明の実施の形態】以下に本発明の非水電解質二次電
池をリチウム二次電池に適用した実施形態に基づいて説
明する。なお、本発明は、以下の実施形態により限定さ
れるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The non-aqueous electrolyte secondary battery of the present invention will be described below based on an embodiment in which it is applied to a lithium secondary battery. Note that the present invention is not limited by the following embodiments.

【0016】本実施形態のリチウム二次電池は、正極と
負極と電解液とその他必要に応じた要素とからなる。本
実施形態のリチウム二次電池は、その形状には特に制限
を受けず、コイン型、円筒型、角型等、種々の形状の電
池として使用できる。本実施形態では、円筒型のリチウ
ム二次電池に基づいて説明を行う。
The lithium secondary battery of the present embodiment comprises a positive electrode, a negative electrode, an electrolytic solution, and other necessary elements. The shape of the lithium secondary battery of the present embodiment is not particularly limited, and can be used as batteries of various shapes such as a coin shape, a cylindrical shape, and a square shape. In the present embodiment, description will be given based on a cylindrical lithium secondary battery.

【0017】本実施形態のリチウム二次電池は、正極お
よび負極をシート形状として両者をセパレータを介して
積層し渦巻き型に多数回巻き回した巻回体を空隙を満た
す電解液とともに所定の円筒状のケース内に収納したも
のである。正極と正極端子部とについて、そして負極と
負極端子部とについては、それぞれ電気的に接合されて
いる。
In the lithium secondary battery of this embodiment, the positive electrode and the negative electrode are formed in a sheet shape, both of which are laminated via a separator, and wound in a spiral shape many times. Is stored in the case. The positive electrode and the positive electrode terminal are electrically connected to each other, and the negative electrode and the negative electrode terminal are electrically connected to each other.

【0018】正極は、リチウムイオンを充電時には放出
し且つ放電時には吸蔵することができる正極活物質をも
つ。正極活物質は、少なくともLiとFeとを含有する
オリビン構造のリン酸化合物含有正極活物質を含有す
る。リン酸化合物含有正極活物質としては、一般式Li
xFe1-xPO4(M:鉄以外の一種以上の金属元素、
0≦x≦0.5)で表される化合物が例示できる。ここ
でMで表される金属元素としてはCo、Ni、Mn、M
g、Ca、Sc、Ti、V、Cr、Cu、Zn、Ga、
Al、Li等が例示でき、そのなかでもCo、Ni、M
nが高エネルギー密度の理由から好ましい。このリン酸
化合物含有正極活物質はリンと酸素との結合が強く高温
下においても活性な酸素の発生が抑制できる。したがっ
て、好ましいリン酸化合物含有正極活物質の含有割合と
しては高温下(電池の安定性を要求される最高の温度)
で発生する酸素の量が電池の熱暴走を引き起こさない最
低限の割合以上である。たとえば、110℃以下の温度
において安定なリチウム二次電池を必要とする場合には
全体の正極活物質に対して25/85以上、さらには1
/3以上リン酸化合物含有正極活物質を含有させること
で安定性の高い電池を得ることができる。
The positive electrode has a positive electrode active material capable of releasing lithium ions during charging and occluding during discharging. The positive electrode active material contains a phosphate compound-containing positive electrode active material having an olivine structure containing at least Li and Fe. The phosphoric acid compound-containing positive electrode active material has the general formula Li
M x Fe 1-x PO 4 (M: one or more metal elements other than iron,
0 ≦ x ≦ 0.5). Here, as the metal element represented by M, Co, Ni, Mn, M
g, Ca, Sc, Ti, V, Cr, Cu, Zn, Ga,
Al, Li, etc. can be exemplified, among which Co, Ni, M
n is preferred for high energy density reasons. This phosphoric acid compound-containing positive electrode active material has a strong bond between phosphorus and oxygen and can suppress generation of active oxygen even at high temperatures. Therefore, the preferable content ratio of the phosphoric acid compound-containing cathode active material is high temperature (the highest temperature required for battery stability).
The amount of oxygen generated in the battery is not less than a minimum ratio that does not cause thermal runaway of the battery. For example, when a lithium secondary battery that is stable at a temperature of 110 ° C. or lower is required, 25/85 or more, and even 1
A battery with high stability can be obtained by incorporating a phosphoric acid compound-containing positive electrode active material of / 3 or more.

【0019】リン酸化合物含有正極活物質以外に正極活
物質として公知のリチウム−金属複合酸化物等の一般的
に正極活物質に用いられる物質を含有させることができ
る。なお、正極活物質のすべてをリン酸化合物含有正極
活物質とすることができることはいうまでもない。な
お、正極活物質にリン酸化合物含有正極活物質を含有さ
せることの副次的な効果としてコバルト等の高価な元素
の含有量を低下できコストを低下できる。
In addition to the phosphoric acid compound-containing cathode active material, a substance generally used as a cathode active material such as a lithium-metal composite oxide known as a cathode active material can be contained. Needless to say, all of the positive electrode active material can be a phosphoric acid compound-containing positive electrode active material. As a secondary effect of incorporating the phosphoric acid compound-containing cathode active material into the cathode active material, the content of expensive elements such as cobalt can be reduced, and the cost can be reduced.

【0020】公知のリチウム−金属複合酸化物として
は、たとえば、Li(1-Y)NiO2、Li(1-Y)MnO2
Li(1-Y)Mn24、Li(1-Y)CoO2や、各々にL
i、Al、そしてCr等の遷移金属を添加または置換し
た材料等である。この正極活物質の例示におけるYは0
〜1の数を示す。なお、これらのリチウム−金属複合酸
化物を正極活物質として用いる場合には単独で用いるば
かりでなくこれらを複数種類混合して用いることもでき
る。
Known lithium-metal composite oxides include, for example, Li (1-Y) NiO 2 , Li (1-Y) MnO 2 ,
Li (1-Y) Mn 2 O 4 , Li (1-Y) CoO 2 and L
Materials to which transition metals such as i, Al, and Cr are added or substituted. In the example of the positive electrode active material, Y is 0
Shows the number of ~ 1. When these lithium-metal composite oxides are used as the positive electrode active material, not only can they be used alone, but also a mixture of a plurality of them can be used.

【0021】正極は前述の正極活物質を結着材、導電材
等の公知の添加材と混合した後に金属箔等からなる集電
体上に塗布され正極合材層が形成される。
The positive electrode is formed by mixing the above-described positive electrode active material with a known additive such as a binder or a conductive material, and then coating the mixture on a current collector made of a metal foil or the like to form a positive electrode mixture layer.

【0022】負極については、リチウムイオンを充電時
には吸蔵し、かつ放電時には放出する負極活物質を用い
ることができれば、その材料構成で特に限定されるもの
ではなく、公知の材料構成のものを用いることができ
る。たとえば、リチウム金属、グラファイト又は非晶質
炭素等の炭素材料等である。そのなかでも特に炭素材料
を用いることが好ましい。比表面積が比較的大きくで
き、リチウムの吸蔵、放出速度が速いため大電流での充
放電特性、出力・回生密度に対して良好となる。特に、
出力・回生密度のバランスを考慮すると、充放電に伴な
い電圧変化の比較的大きい炭素材料を使用することが好
ましい。また、このような炭素材料を負極活物質に用い
ることで、より高い充放電効率と良好なサイクル特性と
が得られる。
The material of the negative electrode is not particularly limited as long as it can use a negative electrode active material that occludes lithium ions at the time of charging and releases it at the time of discharging. Can be. For example, a carbon material such as lithium metal, graphite, or amorphous carbon is used. Among them, it is particularly preferable to use a carbon material. Since the specific surface area can be made relatively large, and the lithium insertion and extraction speed is high, the charge / discharge characteristics at a large current and the output / regeneration density are good. In particular,
In consideration of the balance between the output and the regenerative density, it is preferable to use a carbon material having a relatively large voltage change due to charging and discharging. Further, by using such a carbon material for the negative electrode active material, higher charge / discharge efficiency and better cycle characteristics can be obtained.

【0023】このように負極活物質として炭素材料を用
いた場合には、これに必要に応じて導電材および結着材
を混合して得られた負極合材が集電体に塗布されてなる
ものを用いることが好ましい。
When a carbon material is used as the negative electrode active material as described above, a negative electrode mixture obtained by mixing a conductive material and a binder, if necessary, is applied to a current collector. It is preferable to use one.

【0024】そして正極又は負極の少なくとも一方には
導電性調節材をもつ。導電性調節材は電気化学的なドー
プ・脱ドープにより導電率が著しく変化する性質をもつ
物質である。導電性調節材としてはポリアセチレン、ポ
リアニリン、ポリピロール、ポリチオフェン、ポリアセ
ン、ポリアズレン、ポリフェニレンビニレン等の導電性
高分子、および電気化学的に充放電ができ導電率が変化
する材料であればよい。導電率の変化としては高電圧側
および低電圧側の2つの閾電圧を外れるとその導電性が
低下する(さらに好ましくは絶縁体になる)ものが好ま
しい。高電圧側の閾電圧は主に過充電時の電流の流れを
遮断するものである。低電圧側の閾電圧は主に過放電時
に電流を遮断し電池を保護するためのものである。な
お、本発明の本来の目的を達成するには少なくとも高電
圧側の閾電圧を前述した導電性調節材がもつ必要があ
る。この閾電圧の設定は正極、負極等の電池材料によっ
て適正な値が存在する。
At least one of the positive electrode and the negative electrode has a conductivity adjusting material. The conductivity adjusting material is a substance having a property that the conductivity is significantly changed by electrochemical doping and undoping. The conductive material may be a conductive polymer such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, polyazulene, polyphenylenevinylene, or a material that can be charged and discharged electrochemically and has a changed conductivity. As for the change in conductivity, it is preferable that the conductivity is reduced (more preferably an insulator) when the two threshold voltages on the high voltage side and the low voltage side are deviated. The threshold voltage on the high voltage side mainly interrupts the flow of current during overcharge. The threshold voltage on the low voltage side is mainly for protecting the battery by cutting off the current at the time of overdischarge. In order to achieve the original object of the present invention, it is necessary that the above-mentioned conductivity adjusting material has at least a threshold voltage on the high voltage side. There is an appropriate value for setting the threshold voltage depending on battery materials such as a positive electrode and a negative electrode.

【0025】非常時に電池の電流を効率的に遮断するた
めに導電性調節材は電池内部の電流の流れに対して直列
に接続することが好ましい。たとえば、導電性調節材
は、正極活物質の表面に存在させたり、集電体を有する
正極・負極の場合には集電体と正極活物質又は負極活物
質との間に設けたりすることができる。また、適正な導
電性調節材を用いることで正極又は負極に含まれる結着
材および導電材の一部又は全部を置換することができ
る。
In order to efficiently shut off the battery current in an emergency, it is preferable to connect the conductivity adjusting material in series with the current flow inside the battery. For example, the conductivity adjusting material may be present on the surface of the positive electrode active material, or may be provided between the current collector and the positive electrode active material or the negative electrode active material in the case of a positive electrode or a negative electrode having a current collector. it can. In addition, by using an appropriate conductivity adjusting material, part or all of the binder and the conductive material included in the positive electrode or the negative electrode can be replaced.

【0026】導電性調節材としてはP型ドープ可能な物
質であって、前記正極に含有されていることが好まし
い。P型ドープ可能な物質として正極に含有させること
で、導電性調節材を正極における電池化学反応に寄与さ
せることが可能となるからである。この場合に導電性調
節材はポリアセチレン、ポリアニリン、ポリピロール、
ポリチオフェン、ポリパラフェニレン、ポリアセン、ポ
リフェニレンビニレンが例示できる。この中で高分子の
材質としてはポリアニリン又はポリピロールであること
好ましい。ポリアニリン又はポリピロールは、その導電
性が発動する電池電圧範囲(すなわち閾電圧の範囲)が
広いため、4V級の無機系リチウム含有複合酸化物との
マッチング(電池としての使用電圧範囲の調整)が容易
である。さらに導電性高分子の性状として可溶性である
ことが好ましい。可溶性の導電性高分子材料を用いれ
ば、製造時点で導電性高分子材料が活物質等を均一に覆
うことが容易となるからである。その結果、導電性が低
下する電圧範囲に電池電圧が至った場合に、確実に電気
的な絶縁を保つことができる。
The conductivity adjusting material is a P-type dopable substance, and is preferably contained in the positive electrode. The reason for this is that when the positive electrode is contained in the positive electrode as a P-type dopable substance, the conductivity adjusting material can contribute to the battery chemical reaction in the positive electrode. In this case, the conductivity adjusting material is polyacetylene, polyaniline, polypyrrole,
Examples thereof include polythiophene, polyparaphenylene, polyacene, and polyphenylenevinylene. Among them, the polymer material is preferably polyaniline or polypyrrole. Since polyaniline or polypyrrole has a wide battery voltage range (that is, a threshold voltage range) at which its conductivity is activated, it is easy to match with a 4V-class inorganic lithium-containing composite oxide (adjust the operating voltage range as a battery). It is. Further, it is preferable that the conductive polymer is soluble in properties. This is because if a soluble conductive polymer material is used, it becomes easy for the conductive polymer material to uniformly cover the active material and the like at the time of manufacturing. As a result, when the battery voltage reaches a voltage range in which the conductivity decreases, electrical insulation can be reliably maintained.

【0027】電解液は、有機溶媒に支持塩を溶解させた
ものである。
The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent.

【0028】有機溶媒は、通常リチウム二次電池の電解
液の用いられる有機溶媒であれば特に限定されるもので
はなく、例えば、カーボネート類、ハロゲン化炭化水
素、エーテル類、ケトン類、ニトリル類、ラクトン類、
オキソラン化合物等を用いることができる。特に、プロ
ピレンカーボネート、エチレンカーボネート、1,2−
ジメトキシエタン、ジメチルカーボネート、ジエチルカ
ーボネート、エチルメチルカーボネート等及びそれらの
混合溶媒が適当である。
The organic solvent is not particularly limited as long as it is an organic solvent usually used for an electrolyte of a lithium secondary battery, and examples thereof include carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, and the like. Lactones,
An oxolane compound or the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-
Dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like and a mixed solvent thereof are suitable.

【0029】例に挙げたこれらの有機溶媒のうち、特
に、カーボネート類、エーテル類からなる群より選ばれ
た一種以上の非水溶媒を用いることにより、支持塩の溶
解性、誘電率および粘度において優れ、電池の充放電効
率も高いので、好ましい。
By using one or more non-aqueous solvents selected from the group consisting of carbonates and ethers among these organic solvents mentioned in the examples, the solubility, dielectric constant and viscosity of the supporting salt can be improved. It is preferable because it is excellent and the charge and discharge efficiency of the battery is high.

【0030】支持塩は、その種類が特に限定されるもの
ではないが、LiPF6、LiBF4、LiClO4およ
びLiAsF6から選ばれる無機塩、該無機塩の誘導
体、LiSO3CF3、LiC(SO3CF32、LiN
(SO3CF32、LiN(SO2252およびLi
N(SO2CF3)(SO249)から選ばれる有機
塩、並びにその有機塩の誘導体の少なくとも1種である
ことが好ましい。
The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 , LiN
(SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and Li
An organic salt selected from N (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and a derivative of the organic salt are preferably used.

【0031】これらの支持塩の使用により、電池性能を
さらに優れたものとすることができ、かつその電池性能
を室温以外の温度域においてもさらに高く維持すること
ができる。支持塩の濃度についても特に限定されるもの
ではなく、用途に応じ、支持塩および有機溶媒の種類を
考慮して適切に選択することが好ましい。
By using these supporting salts, the battery performance can be further improved, and the battery performance can be maintained higher even in a temperature range other than room temperature. The concentration of the supporting salt is not particularly limited, either, and it is preferable to appropriately select the concentration in consideration of the types of the supporting salt and the organic solvent depending on the application.

【0032】セパレータは、正極および負極を電気的に
絶縁し、電解液を保持する役割を果たすものである。た
とえば、多孔性合成樹脂膜、特にポリオレフィン系高分
子(ポリエチレン、ポリプロピレン)の多孔膜を用いれ
ばよい。なおセパレータは、正極と負極との絶縁を担保
するため、正極および負極よりもさらに大きいものとす
るのが好ましい。
The separator serves to electrically insulate the positive electrode and the negative electrode and retain the electrolyte. For example, a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene, polypropylene) may be used. Note that the separator is preferably larger than the positive electrode and the negative electrode in order to ensure insulation between the positive electrode and the negative electrode.

【0033】ケースは、特に限定されるものではなく、
公知の材料、形態で作成することができる。
The case is not particularly limited.
It can be made of a known material and form.

【0034】ガスケットは、ケースと正負の両端子部の
間の電気的な絶縁と、ケース内の密閉性とを担保するも
のである。たとえば、電解液にたいして、化学的、電気
的に安定であるポリプロピレンのような高分子等から構
成できる。
The gasket ensures electrical insulation between the case and both the positive and negative terminal portions and the hermeticity of the case. For example, it can be composed of a polymer such as polypropylene which is chemically and electrically stable with respect to the electrolytic solution.

【0035】[0035]

【実施例】(リチウム二次電池の作製) 〔正極〕表1で示す各試験例の組成で、正極活物質とし
てのリン酸化合物含有正極活物質およびその他リチウム
含有複合酸化物と、導電性調節材としてのN−メチル−
2−ピロリドンに対して可溶なポリアニリンと、導電材
としてのグラファイトと、必要に応じて結着材としての
PVDFとを溶剤としてのN−メチル−2−ピロリドン
中に混合してペーストを作製した。このペーストをAl
箔製の集電体上の両面に所定の重量、膜厚で塗布し、乾
燥した後に、所定の膜厚に加圧成形した。この電極を幅
5.4cm、長さ86cmにカットし、電流取り出し用
のリードタブ溶接部として長さ方向の25mm分の電極
合材を掻き取った。この電極の有効反応面積は5.4c
m×83.5cm×2=901.8cm2である。な
お、表中および本文中の「%」はすべて質量百分率であ
り、正極活物質組成式中の比は質量比である。
EXAMPLES (Preparation of Lithium Secondary Battery) [Positive Electrode] In the composition of each test example shown in Table 1, a phosphoric acid compound-containing positive electrode active material and other lithium-containing composite oxides as positive electrode active materials, and conductivity control N-methyl- as a material
A paste was prepared by mixing polyaniline soluble in 2-pyrrolidone, graphite as a conductive material, and, if necessary, PVDF as a binder in N-methyl-2-pyrrolidone as a solvent. . This paste is Al
It was applied to both sides of a foil current collector at a predetermined weight and thickness, dried, and then pressed to a predetermined thickness. This electrode was cut into a width of 5.4 cm and a length of 86 cm, and an electrode mixture material of 25 mm in the length direction was scraped off as a lead tab weld for current extraction. The effective reaction area of this electrode is 5.4c
m × 83.5 cm × 2 = 901.8 cm 2 . It should be noted that “%” in the table and the text are all percentages by mass, and the ratios in the positive electrode active material composition formula are mass ratios.

【0036】〔負極〕負極活物質としてのメソフェーズ
系カーボンを90%と、結着材としてのPVDFを10
%とを溶剤としてのN−メチル−2−ピロリドン中に混
合してペーストを作製した。このペーストをCu箔製の
集電体上両面に所定の重量、膜厚で塗布し、乾燥した後
に、所定の膜厚に加圧成形した。この電極を幅5.6c
m、長さ90.5cmにカットし、電流取り出し用のリ
ードタブ溶接部として長さ方向に0.5cm分の電極合
材を掻き取った。この電極の有効反応面積は5.6cm
×90cm×2=1008cm2である。
[Negative electrode] 90% mesophase carbon as a negative electrode active material and 10% PVDF as a binder
% Was mixed with N-methyl-2-pyrrolidone as a solvent to prepare a paste. This paste was applied on both surfaces of a current collector made of a Cu foil with a predetermined weight and thickness, dried, and then press-molded to a predetermined thickness. This electrode has a width of 5.6c.
m, and cut to a length of 90.5 cm, and a 0.5 cm length of electrode mixture was scraped off in the length direction as a lead tab weld for current extraction. The effective reaction area of this electrode is 5.6 cm
× is a 90cm × 2 = 1008cm 2.

【0037】〔非水電解液〕エチレンカーボネートとジ
メチルカーボネートとを体積比3:7で混合した溶媒
に、LiPF6を1mol/Lの濃度で溶解させ、電解
液を調製した。
[Non-Aqueous Electrolyte] LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 3: 7 to prepare an electrolyte.

【0038】〔電池の組み立て〕上記の正極、負極及び
電解液を使用して、18650サイズの電池を組み立て
た。なお、セパレ−タにはポリエチレン製の微多孔膜を
使用した。
[Assembly of Battery] A battery of 18650 size was assembled using the above positive electrode, negative electrode and electrolytic solution. In addition, a polyethylene microporous membrane was used as a separator.

【0039】(リチウム二次電池の安全性評価試験) 〔過充電評価〕5.5mA/cm2の一定電流で充電し
て電池の状態を観察した(電池に加えられる上限電圧と
して12V、通電時間の最大として12時間とし
た。)。そして電池に異常がない場合には○と、熱暴走
のみが生じた場合には△と、熱暴走と電池の破損とが併
せて生じた場合には×とそれぞれ評価した。
(Evaluation Test for Safety of Lithium Secondary Battery) [Evaluation of Overcharge] The battery was charged at a constant current of 5.5 mA / cm 2 and the state of the battery was observed (the upper limit voltage applied to the battery was 12 V, and the energization time was 12 hours). The maximum was 12 hours.) And, when there was no abnormality in the battery, it was evaluated as 熱, when only thermal runaway occurred, Δ, and when thermal runaway and battery damage occurred together, × was evaluated.

【0040】〔高温放置評価〕電池を4.2Vの満充電
の状態(室温にて充電を1.1mA/cm2の一定電流
で4.2Vまでおこない、その後、4.2Vの定電圧で
合計4時間充電を行った)とした後に、110℃の恒温
層内にて1日放置して、電池の様子を観察した。評価方
法は前述の過充電評価と同様の基準にて行った。
[Evaluation at High Temperature Storage] The battery was fully charged to 4.2 V (charged at room temperature to 4.2 V at a constant current of 1.1 mA / cm 2 , and thereafter, a total of 4.2 V was applied at a constant voltage of 4.2 V After charging for 4 hours), the battery was left in a thermostat at 110 ° C. for one day, and the state of the battery was observed. The evaluation method was based on the same standard as the above-mentioned overcharge evaluation.

【0041】(安全性の特性評価結果)安全性評価(過
充電試験および高温放置試験)の結果を表1に示す。導
電性調節材を含有する電池(試験例3〜19)ではすべ
て過充電試験の評価が○であった。これは過充電が生じ
たときに速やかにポリアニリンが電流を遮断したためと
考えられる。
(Results of Safety Characteristic Evaluation) Table 1 shows the results of the safety evaluation (overcharge test and high-temperature storage test). In all the batteries containing the conductivity controlling material (Test Examples 3 to 19), the evaluation of the overcharge test was ○. This is considered to be because polyaniline immediately cut off the current when overcharging occurred.

【0042】しかしながら、導電性調節材を含有してい
ても正極活物質にリン酸化合物含有正極活物質を含有し
ない電池(試験例3、4)では高温放置試験における評
価は△または×であった。
However, in the batteries (Test Examples 3 and 4) which did not contain the phosphoric acid compound-containing cathode active material in the cathode active material even though they contained the conductivity adjusting material, the evaluation in the high-temperature storage test was Δ or ×. .

【0043】それに対して正極活物質として種々のリン
酸化合物含有正極活物質を含有する電池(試験例5〜1
9)では、高温放置試験における評価はすべて○であっ
た。
On the other hand, batteries containing various phosphoric acid compound-containing positive electrode active materials as positive electrode active materials (Test Examples 5 to 1)
In 9), all evaluations in the high-temperature storage test were ○.

【0044】当然、導電性調節材とリン酸化合物含有正
極活物質との双方を欠く電池(試験例1、2)では過充
電試験および高温放置試験の双方とも評価は△又は×で
あった。
Of course, in the batteries lacking both the conductivity controlling material and the phosphoric acid compound-containing positive electrode active material (Test Examples 1 and 2), both the overcharge test and the high-temperature storage test were evaluated as Δ or ×.

【0045】したがって、電気化学的なドープ・脱ドー
プによりその導電率が著しく変化する性質をもつ導電性
調節材としてのポリアニリンと高温時において活性な酸
素の放出がすくないリン酸化合物含有正極活物質とを含
有する正極を用いることにより、種々の条件下において
安全性の高い非水電解質二次電池を得ることができた。
Therefore, polyaniline as a conductivity controlling material having a property that its conductivity is remarkably changed by electrochemical doping and undoping, and a phosphoric acid compound-containing positive electrode active material which does not easily release active oxygen at high temperatures. By using a positive electrode containing, a non-aqueous electrolyte secondary battery having high safety under various conditions could be obtained.

【0046】また、副次的な効果として導電性調節材と
してポリアニリンを合材中に含有させることにより結着
材としてのPVDFのすべてと導電材としてのグラファ
イトの一部とを置換することができた。
As a secondary effect, by incorporating polyaniline into the composite material as a conductivity controlling material, it is possible to replace all of PVDF as a binder and a part of graphite as a conductive material. Was.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】本発明で得られる非水電解質二次電池
は、正極活物質として少なくともLiとFeとを含有す
るオリビン構造のリン酸化合物含有正極活物質をもち、
さらに正極および負極の少なくとも一方に、電気化学的
なドープ・脱ドープにより導電率が著しく変化する性質
をもちその導電率の低下により非水電解質二次電池に流
れる電流を遮断する導電性調節材をもつことによって、
充放電下において電池に異常が起きた場合、即座に応答
でき、さらに高温下に電池が放置された場合においても
熱暴走に至らない非水電解質二次電池を提供することが
可能となる。
The non-aqueous electrolyte secondary battery obtained by the present invention has a cathode active material containing a phosphate compound having an olivine structure containing at least Li and Fe as a cathode active material,
Further, at least one of the positive electrode and the negative electrode, a conductivity adjusting material having a property that the conductivity is significantly changed by electrochemical doping / de-doping and blocking a current flowing through the non-aqueous electrolyte secondary battery due to a decrease in the conductivity. By having
It is possible to provide a non-aqueous electrolyte secondary battery that can respond immediately when an abnormality occurs in the battery during charge and discharge and that does not lead to thermal runaway even when the battery is left at a high temperature.

フロントページの続き Fターム(参考) 5H029 AJ12 AK01 AK03 AL06 AM03 AM04 AM05 AM07 DJ08 EJ13 HJ02 5H050 AA15 BA17 CA01 CA08 CA09 CB07 DA10 EA25 FA18 FA19 HA02 Continued on the front page F term (reference) 5H029 AJ12 AK01 AK03 AL06 AM03 AM04 AM05 AM07 DJ08 EJ13 HJ02 5H050 AA15 BA17 CA01 CA08 CA09 CB07 DA10 EA25 FA18 FA19 HA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵乃至は放出できる
正極活物質をもつ正極と、リチウムイオンを吸蔵乃至は
放出できる負極とを有する非水電解質二次電池におい
て、 前記正極活物質は、少なくともLiとFeとを含有する
オリビン構造のリン酸化合物含有正極活物質をもち、 前記正極および前記負極の少なくとも一方は、電気化学
的なドープ・脱ドープにより導電率が著しく変化する性
質をもちその導電率の低下により前記非水電解質二次電
池に流れる電流を遮断する導電性調節材をもつことを特
徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery including a positive electrode having a positive electrode active material capable of inserting and extracting lithium ions and a negative electrode capable of inserting and extracting lithium ions, wherein the positive electrode active material contains at least Li and A phosphoric acid compound-containing positive electrode active material having an olivine structure containing Fe and at least one of the positive electrode and the negative electrode has a property that the conductivity is significantly changed by electrochemical doping and undoping, and the A non-aqueous electrolyte secondary battery comprising a conductivity adjusting material for interrupting a current flowing through the non-aqueous electrolyte secondary battery due to a decrease.
【請求項2】 前記導電性調節材はP型ドープ可能な物
質であって、前記正極に含有されている請求項1に記載
の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductivity adjusting material is a substance that can be doped with P-type, and is contained in the positive electrode.
【請求項3】 前記導電性調節材はポリアニリン又はポ
リピロールである請求項2に記載の非水電解質二次電
池。
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the conductivity adjusting material is polyaniline or polypyrrole.
【請求項4】 前記導電性調節材は、前記正極活物質の
表面に存在する請求項2又は3に記載の非水電解質二次
電池。
4. The non-aqueous electrolyte secondary battery according to claim 2, wherein the conductivity adjusting material is present on a surface of the positive electrode active material.
【請求項5】 前記リン酸化合物含有正極活物質は、一
般式LiMxFe1-xPO4(M:鉄以外の一種以上の金
属元素、0≦x≦0.5)で表される請求項1〜4のい
ずれかに記載の非水電解質二次電池。
5. The phosphoric acid compound-containing cathode active material is represented by a general formula LiM x Fe 1-x PO 4 (M: one or more metal elements other than iron, 0 ≦ x ≦ 0.5). Item 5. The non-aqueous electrolyte secondary battery according to any one of Items 1 to 4.
【請求項6】 前記正極活物質は、さらにリチウムマン
ガン含有複合酸化物、リチウムニッケル含有複合酸化物
およびリチウムコバルト含有複合酸化物のいずれか1種
以上を含有する請求項1〜5のいずれかに記載の非水電
解質二次電池。
6. The positive electrode active material according to claim 1, further comprising at least one of a lithium manganese-containing composite oxide, a lithium nickel-containing composite oxide, and a lithium cobalt-containing composite oxide. The non-aqueous electrolyte secondary battery according to the above.
JP2001013581A 2001-01-22 2001-01-22 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4595205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013581A JP4595205B2 (en) 2001-01-22 2001-01-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013581A JP4595205B2 (en) 2001-01-22 2001-01-22 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002216770A true JP2002216770A (en) 2002-08-02
JP4595205B2 JP4595205B2 (en) 2010-12-08

Family

ID=18880412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013581A Expired - Fee Related JP4595205B2 (en) 2001-01-22 2001-01-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4595205B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259471A (en) * 2003-02-24 2004-09-16 Sumitomo Osaka Cement Co Ltd Manufacturing method of positive electrode active material for lithium ion battery
JP2005322550A (en) * 2004-05-11 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2009523309A (en) * 2006-03-08 2009-06-18 チャン、チュン−チエ Cathode material for lithium ion batteries
EP2113957A1 (en) 2008-04-22 2009-11-04 Dai-Ichi Kogyo Seiyaku Co., Ltd. Positive electrode for lithium secondary cell and lithium secondary cell using the same
WO2011052533A1 (en) 2009-10-30 2011-05-05 第一工業製薬株式会社 Lithium secondary battery
EP2492996A2 (en) 2011-02-22 2012-08-29 Fuji Jukogyo Kabushiki Kaisha Positive electrode active material, lithium ion storage device using the same, and manufacturing method thereof
US8257847B2 (en) 2006-07-19 2012-09-04 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
JP2012226904A (en) * 2011-04-18 2012-11-15 Iwate Univ Positive electrode for lithium secondary battery, and lithium secondary battery
JP2012248478A (en) * 2011-05-30 2012-12-13 Denso Corp Lithium ion secondary battery
JP2014013777A (en) * 2004-05-17 2014-01-23 Toyota Motor Engineering & Manufacturing North America Inc Battery and lithium-ion battery
JP2016091641A (en) * 2014-10-30 2016-05-23 国立大学法人岩手大学 Positive electrode for lithium secondary battery, method for enhancement of overdischarge resistance thereof, and lithium secondary battery
WO2017195332A1 (en) * 2016-05-12 2017-11-16 エリーパワー株式会社 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10290868B2 (en) 2005-06-01 2019-05-14 Board Of Regents, The University Of Texas System Cathodes for rechargeable lithium-ion batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JPH10188985A (en) * 1996-12-27 1998-07-21 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JPH10199508A (en) * 1997-01-14 1998-07-31 Ricoh Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JPH10188985A (en) * 1996-12-27 1998-07-21 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JPH10199508A (en) * 1997-01-14 1998-07-31 Ricoh Co Ltd Non-aqueous electrolyte secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259471A (en) * 2003-02-24 2004-09-16 Sumitomo Osaka Cement Co Ltd Manufacturing method of positive electrode active material for lithium ion battery
JP2005322550A (en) * 2004-05-11 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP4610925B2 (en) * 2004-05-11 2011-01-12 日本電信電話株式会社 Nonaqueous electrolyte secondary battery
JP2014013777A (en) * 2004-05-17 2014-01-23 Toyota Motor Engineering & Manufacturing North America Inc Battery and lithium-ion battery
US10290868B2 (en) 2005-06-01 2019-05-14 Board Of Regents, The University Of Texas System Cathodes for rechargeable lithium-ion batteries
JP2009523309A (en) * 2006-03-08 2009-06-18 チャン、チュン−チエ Cathode material for lithium ion batteries
US8257847B2 (en) 2006-07-19 2012-09-04 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
EP2113957A1 (en) 2008-04-22 2009-11-04 Dai-Ichi Kogyo Seiyaku Co., Ltd. Positive electrode for lithium secondary cell and lithium secondary cell using the same
WO2011052533A1 (en) 2009-10-30 2011-05-05 第一工業製薬株式会社 Lithium secondary battery
EP2492996A2 (en) 2011-02-22 2012-08-29 Fuji Jukogyo Kabushiki Kaisha Positive electrode active material, lithium ion storage device using the same, and manufacturing method thereof
JP2012226904A (en) * 2011-04-18 2012-11-15 Iwate Univ Positive electrode for lithium secondary battery, and lithium secondary battery
JP2012248478A (en) * 2011-05-30 2012-12-13 Denso Corp Lithium ion secondary battery
JP2016091641A (en) * 2014-10-30 2016-05-23 国立大学法人岩手大学 Positive electrode for lithium secondary battery, method for enhancement of overdischarge resistance thereof, and lithium secondary battery
WO2017195332A1 (en) * 2016-05-12 2017-11-16 エリーパワー株式会社 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2017195332A1 (en) * 2016-05-12 2019-03-07 エリーパワー株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4595205B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
EP1490916B1 (en) Lithium secondary battery comprising overdischarge-preventing agent
US10727535B2 (en) Electrolyte system for silicon-containing electrodes
JP5003117B2 (en) Batteries and battery units
EP1256995A1 (en) Nonaqueous electrolytic secondary battery
JP4905267B2 (en) Positive electrode mixture and non-aqueous electrolyte battery
KR20030051609A (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
KR101049331B1 (en) Lithium secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
KR20190059831A (en) Battery module with improved safety, battery pack comprising the battery module and vehicle comprising the same
KR101614185B1 (en) Positive electrode material for improved safety, and lithium secondary battery comprising the same
JP4843848B2 (en) Non-aqueous electrolyte secondary battery
US20140002942A1 (en) Secondary Lithium Ion Battery With Mixed Nickelate Cathodes
JP2009205848A (en) Nonaqueous electrolyte battery and negative electrode
EP2814084A1 (en) Secondary battery
KR20040079316A (en) Battery
JP5053044B2 (en) Nonaqueous electrolyte secondary battery
JP4595205B2 (en) Nonaqueous electrolyte secondary battery
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
EP2814083A1 (en) Secondary battery
EP2814093A1 (en) Positive electrode active material and secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP2009054469A (en) Nonaqueous secondary battery
JP2000348759A (en) Nonaqueous electrolytic solution and secondary battery using it
KR20030076153A (en) Lithium ion secondary battery comprising overdischarge retardant
JP2014035807A (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees