KR20030076153A - Lithium ion secondary battery comprising overdischarge retardant - Google Patents

Lithium ion secondary battery comprising overdischarge retardant Download PDF

Info

Publication number
KR20030076153A
KR20030076153A KR1020020036438A KR20020036438A KR20030076153A KR 20030076153 A KR20030076153 A KR 20030076153A KR 1020020036438 A KR1020020036438 A KR 1020020036438A KR 20020036438 A KR20020036438 A KR 20020036438A KR 20030076153 A KR20030076153 A KR 20030076153A
Authority
KR
South Korea
Prior art keywords
lithium
secondary battery
positive electrode
lithium secondary
discharge
Prior art date
Application number
KR1020020036438A
Other languages
Korean (ko)
Other versions
KR100484713B1 (en
Inventor
고은영
홍승태
김형진
이형근
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2003579299A priority Critical patent/JP2005521220A/en
Priority to US10/478,802 priority patent/US7282300B2/en
Priority to SI200231058T priority patent/SI1490916T1/en
Priority to PCT/KR2002/002267 priority patent/WO2003081697A1/en
Priority to CNB028124847A priority patent/CN1234179C/en
Priority to EP02791014.0A priority patent/EP1490916B1/en
Publication of KR20030076153A publication Critical patent/KR20030076153A/en
Priority to US10/950,104 priority patent/US7695867B2/en
Application granted granted Critical
Publication of KR100484713B1 publication Critical patent/KR100484713B1/en
Priority to US12/558,100 priority patent/US9023525B2/en
Priority to US13/618,048 priority patent/US8835055B2/en
Priority to US14/290,024 priority patent/US9236610B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: Provided is a lithium secondary battery comprising an over-discharge preventing agent, which has excellent performance in the over-discharge test and the capacity recovery of 90% or more after the test. CONSTITUTION: The lithium secondary battery comprises a cathode comprising a lithium transition metal oxide which can absorb and release lithium ions; an anode comprising carbon, lithium metal or lithium alloy which can absorb and release lithium ions; a separator; and a non-water based electrolyte consisting of a lithium salt and an electrolytic compound. The lithium secondary battery is characterized in that the cathode comprises 0.1 to 10 parts by weight of the over-discharge preventing agent having the formula of Li2Ni1-xMxO2, wherein 0<=x<1 and M is a metal having the oxidation number of +2 selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg and Cd, based on 100 parts by weight of the cathode active materials.

Description

과방전 방지제를 포함하는 리튬 이차 전지{LITHIUM ION SECONDARY BATTERY COMPRISING OVERDISCHARGE RETARDANT}Lithium secondary battery containing an over-discharge prevention agent {LITHIUM ION SECONDARY BATTERY COMPRISING OVERDISCHARGE RETARDANT}

본 발명은 과방전 방지제를 포함하는 리튬 이차 전지에 관한 것으로, 더욱 상세하게는 리튬 니켈 산화물을 과방전 방지제로 사용하여 우수한 과방전 효과를 가지는 과방전 방지제를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a lithium secondary battery comprising an overdischarge prevention agent, and more particularly, to a lithium secondary battery including an overdischarge prevention agent having an excellent overdischarge effect using lithium nickel oxide as an overdischarge prevention agent.

최근의 이동 통신 및 정보전자 산업의 발달로 고용량이면서도 가벼운 리튬 이차 전지의 수요가 계속 증가되고 있다. 종래 리튬 이차 전지의 경우 과충전 방지와 과방전 방지 등의 이유로 보호회로를 장착하였다. 그러나, 종래 리튬 이차 전지의 경우 전지의 안전성 이유로 PTC나 열 퓨즈(Thermal fuse), 및 보호회로를 장착하기 때문에 비용면에서나 전지 팩(pack)의 부피 무게 면에서 바람직하지 않다. 따라서, 보호회로가 없는 새로운 전지의 개발이 요구되고 있다.With the recent development of the mobile communication and information electronics industries, the demand for high capacity and light lithium secondary batteries continues to increase. In the case of a conventional lithium secondary battery, a protection circuit is installed for reasons of overcharge prevention and overdischarge prevention. However, the conventional lithium secondary battery is not preferable in terms of cost or bulk weight of the battery pack because it is equipped with a PTC, a thermal fuse, and a protection circuit for the safety of the battery. Therefore, development of a new battery without a protection circuit is required.

그러나, 지금까지 알려진 보호회로가 없는 베어셀(bare cell)의 경우 과방전 시험 후에 다시 충방전을 하게 되면, 용량이 급격히 떨어지는 문제가 있다.However, in the case of a bare cell without a known protection circuit, charging and discharging again after an over-discharge test, there is a problem in that the capacity drops sharply.

현재의 전지 시스템으로는 음극의 비가역 용량이 양극보다 크므로 저전류(low current) 또는 정저항으로 전지가 계속 0V까지 방전되어 과방전이 일어날 경우, 비가역 용량이 큰 음극쪽의 전압이 먼저 상승하게 된다. 이럴 경우 음극쪽의 전압이 음극 집전체인 구리 호일이 산화되는 약 3.6V 이상의 특정 전압영역에 이르면 파우치형, 각형, 및 원통형 전지의 경우 구리가 녹아나오는 등의 문제로 인해 전지(cell)의 손상(damage)이 일어나 과방전이 일어난 후에 충방전이 제대로 진행되지 않는다. 따라서, 과방전 문제를 해결할 수 있는 새로운 방법의 개발이 요구되고 있다.In the current battery system, since the irreversible capacity of the negative electrode is greater than that of the positive electrode, when the battery is continuously discharged to 0 V with low current or constant resistance, the voltage at the negative electrode having the large irreversible capacity rises first. . In this case, when the voltage at the negative electrode reaches a specific voltage range of about 3.6 V or more, in which the copper foil, which is the negative electrode current collector, is oxidized, the cell is damaged due to problems such as copper melting in the pouch type, square type, and cylindrical cells. After the damage occurs and overdischarge occurs, charging and discharging does not proceed properly. Therefore, the development of a new method to solve the problem of over-discharge is required.

한편, 미국특허 제5,759,719호는 양극활물질인 LiNiO2에 전기화학적 전위(vs Li)가 낮은 Li2NiO2를 첨가하여 3V 평탄전위구간(plateau)을 줌으로써 전지의 용량증가를 보이고자 하였다.On the other hand, US Patent No. 5,759,719 was intended to show an increase in the capacity of the battery by adding a Li 2 NiO 2 having a low electrochemical potential (vs Li) to the positive electrode active material LiNiO 2 to give a 3V planar potential (plateau).

본 발명은 상기와 같은 종래 기술의 문제점을 고려하여, 양극 활물질을 포함하는 양극에 리튬 니켈 산화물을 과방전 방지제로 첨가하여 전지의 제반 성능을 저해하지 않으면서 과방전 효과를 크게 향상시킬 수 있는 리튬 이차 전지용 양극을 제공하는 것을 목적으로 한다.In view of the problems of the prior art as described above, the lithium nickel oxide is added to the positive electrode including the positive electrode active material as an anti-discharge agent to significantly improve the over-discharge effect without impairing the overall performance of the battery. It is an object to provide a positive electrode for a secondary battery.

본 발명의 다른 목적은 상기 양극을 포함하는 리튬 이차 전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery including the positive electrode.

도 1은 비교예 1의 과방전 전 후의 0.2C와 1.0C로 충방전 실험을 한 결과를 나타낸 것이다.Figure 1 shows the results of the charge and discharge experiments at 0.2C and 1.0C before and after the over-discharge of Comparative Example 1.

도 2는 본 발명에 따른 실시예 1의 과방전 전 후의 0.2C와 1.0C로 충방전 실험을 한 결과를 나타낸 것이다.Figure 2 shows the results of the charge and discharge experiments at 0.2C and 1.0C before and after the over-discharge of Example 1 according to the present invention.

도 3은 본 발명에 따른 실시예 2의 과방전 전 후의 0.2C와 1.0C로 충방전 실험을 한 결과를 나타낸 것이다.Figure 3 shows the results of the charge and discharge experiments at 0.2C and 1.0C before and after the overdischarge of Example 2 according to the present invention.

도 4는 본 발명에 따른 실시예 3의 과방전 전 후의 0.2C와 1.0C로 충방전 실험을 한 결과를 나타낸 것이다.Figure 4 shows the results of the charge and discharge experiments at 0.2C and 1.0C before and after the over-discharge of Example 3 according to the present invention.

도 5는 비교예 1의 바이셀의 3극 실험결과를 나타낸 것이다.5 shows the tripolar test results of the bicell of Comparative Example 1.

도 6은 본 발명에 따른 실시예 1의 바이셀의 3극 실험결과를 나타낸 것이다.Figure 6 shows the tripolar test results of the bicell of Example 1 according to the present invention.

도 7은 본 발명에 따른 실시예 2의 바이셀의 3극 실험결과를 나타낸 것이다.Figure 7 shows the tripolar test results of the bicell of Example 2 according to the present invention.

도 8은 본 발명에 따른 실시예 3의 바이셀의 3극 실험결과를 나타낸 것이다.Figure 8 shows the results of the three-pole experiment of the bicell of Example 3 according to the present invention.

도 9는 본 발명에 따른 실시예 1과 종래 비교예 1의 0.2C 방전에 의한 전지 용량 결과를 나타낸 것이다.Figure 9 shows the battery capacity results by the 0.2C discharge of Example 1 and Comparative Example 1 according to the present invention.

도 10은 비교예 1, 비교예 2 및 본 발명의 실시예 1 내지 3의 사이클라이프(cycle life)를 비교하여 나타내는 것이다.FIG. 10 shows the cycle life of Comparative Example 1, Comparative Example 2 and Examples 1 to 3 of the present invention in comparison.

도 11a는 3극 바이셀의 단면도를 나타낸 것이고, 도 11b는 3극 바이셀의 단면 중 측면부를 나타낸 것이다.FIG. 11A shows a cross-sectional view of a three-pole bicell, and FIG. 11B shows a side portion of a cross section of the three-pole bicell.

도면 부호 1은 파우치이고, 2는 리드이고, 3은 정극이고, 4는 부극이고, 5는 정극 집전체이고, 6은 부극 집전체이고, 7은 분리막이고, 8은 리튬금속이고, 9는 전해질이다.1 is a pouch, 2 is a lead, 3 is a positive electrode, 4 is a negative electrode, 5 is a positive electrode current collector, 6 is a negative electrode current collector, 7 is a separator, 8 is a lithium metal, 9 is an electrolyte to be.

상기 목적을 달성하기 위하여, 본 발명은 리튬이온을 흡장 및 방출할 수 있는 리튬 전이금속 산화물을 포함하는 리튬 이차 전지용 양극에 있어서,In order to achieve the above object, the present invention is a lithium secondary battery positive electrode comprising a lithium transition metal oxide capable of occluding and releasing lithium ions,

상기 양극이 양극활물질 100 중량부에 대하여 하기 화학식 1로 표시되는 과방전 방지제 0.1 내지 10 중량부를 포함하는 리튬 이차 전지용 양극을 제공한다.Provided is a cathode for a lithium secondary battery, wherein the cathode includes 0.1 to 10 parts by weight of an overdischarge preventing agent represented by Formula 1 based on 100 parts by weight of a cathode active material.

[화학식 1][Formula 1]

Li2Ni1-xMxO2 Li 2 Ni 1-x M x O 2

상기 식에서, x는 0≤x<1이고, M은 Mn, Fe, Co, Cu, Zn, Mg, 및 Cd으로 이루어진 군으로부터 선택되는 +2의 산화수를 갖는 금속이다.Wherein x is 0 ≦ x <1 and M is a metal having an oxidation number of +2 selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg, and Cd.

또한 본 발명은In addition, the present invention

a) 리튬이온을 흡장 및 방출할 수 있는 리튬 전이금속 산화물을 포함하는 양극; b) 리튬이온을 흡장 및 방출할 수 있는 탄소, 리튬 금속 또는 합금을 포함하는 음극; c) 분리막; 및 d) ⅰ) 리튬염; 및 ⅱ) 전해액 화합물을 포함하는 비수전해액a) a positive electrode comprising a lithium transition metal oxide capable of occluding and releasing lithium ions; b) a negative electrode comprising carbon, lithium metal or alloy capable of occluding and releasing lithium ions; c) membrane; And d) iii) a lithium salt; And ii) a non-aqueous electrolyte comprising an electrolyte compound

을 포함하는 리튬 이차 전지에 있어서,In a lithium secondary battery comprising:

상기 양극이 양극활물질 100 중량부에 대하여 상기 화학식 1로 표시되는 과방전 방지제 0.1 내지 10 중량부를 포함하는 리튬 이차 전지를 제공한다.It provides a lithium secondary battery that the positive electrode comprises 0.1 to 10 parts by weight of the over-discharge prevention agent represented by Formula 1 with respect to 100 parts by weight of the positive electrode active material.

더욱 상세하게는, 상기 과방전 방지제는 Li2NiO2인 것이 바람직하다.More specifically, the overdischarge prevention agent is preferably Li 2 NiO 2 .

이하에서 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 과방전 방지제로 리튬 니켈 산화물을 적당량 사용하면 양극과 음극의 비가역을 조절해줌으로써 과방전 특성에 탁월한 효과를 나타내면서도 전지의 용량을 감소시키지 않음을 확인하여 본 발명을 완성하게 되었다.The present inventors have completed the present invention by confirming that an appropriate amount of lithium nickel oxide is used as an overdischarge preventing agent, thereby controlling the irreversibility of the positive electrode and the negative electrode, thereby exhibiting an excellent effect on the overdischarge characteristics and not reducing the capacity of the battery.

본 발명의 리튬 이차 전지는 리튬이온을 흡장 및 방출할 수 있는 양극, 리튬이온을 흡장 및 방출할 수 있는 음극, 다공성 분리막, 및 전해액을 포함한다.The lithium secondary battery of the present invention includes a positive electrode capable of occluding and releasing lithium ions, a negative electrode capable of occluding and releasing lithium ions, a porous separator, and an electrolyte solution.

본 발명은 양극의 활물질과 함께 양극의 과방전 방지제로 상기 화학식 1의 과방전 방지제를 사용하여 양극과 음극의 비가역 용량을 조절해 줌으로써 전지의 용량을 감소시키지 않으면서 동시에 과방전 시험 후 90% 이상의 용량 회복을 도모할 수 있는 특징이 있다. 상기 화학식 1의 과방전 방지제는 첫 사이클 충전시 1몰 이상의 리튬을 방출하고, 첫 사이클 방전부터 그 이후 사이클에서는 1 몰 이하의 리튬 이온의 흡장 및 방출을 할 수 있는 물질이다. 따라서, 상기 과방전 방지제를 양극에 첨가할 경우 음극의 비가역을 보상해줄 정도 또는 그 이상의 리튬 이온을 제공하므로 첫 사이클에서의 음극의 큰 비가역을 보상할 수 있다.The present invention uses the overdischarge prevention agent of Formula 1 as the overdischarge prevention agent of the positive electrode together with the active material of the positive electrode to adjust the irreversible capacity of the positive electrode and the negative electrode at the same time without reducing the capacity of the battery more than 90% after the overdischarge test There is a characteristic which can aim at capacity recovery. The over-discharge prevention agent of Formula 1 is a material capable of releasing more than 1 mole of lithium during the first cycle charge, and occlude and release up to 1 mole of lithium ions from the first cycle discharge to subsequent cycles. Therefore, when the over-discharge prevention agent is added to the positive electrode, the lithium ion is provided to compensate for the irreversibility of the negative electrode or more, thereby compensating for the large irreversible of the negative electrode in the first cycle.

좀더 구체적으로 설명하면, 상기한 바와 같이 종래에는 과방전이 일어날 경우 비가역 용량이 큰 음극쪽의 전압이 먼저 상승하여 구리가 녹아나와 충방전이 제대로 진행되지 않는 문제가 있다. 이처럼 과방전 시 음극쪽 전압을 상승하지 못하게 하려면 양극쪽 비가역을 늘려서 양극쪽 전압이 먼저 내려오게 하면 된다. 이를 해결하는 방법은, 본 발명에서와 같이 양극에 Li-소오스(source)를 가지는 비가역 용량이 큰 물질을 첨가하여 양극쪽 비가역 용량을 크게 해주면 된다.More specifically, as described above, when overdischarge occurs in the related art, the voltage of the negative electrode having a large irreversible capacity rises first, so that copper melts and charge / discharge does not proceed properly. In order to prevent the negative voltage from rising during over-discharge, the positive voltage is increased first by increasing the negative irreversibility. In order to solve this problem, as shown in the present invention, a material having a large irreversible capacity having a Li-source (source) may be added to increase the irreversible capacity at the positive electrode side.

상기 화학식 1의 화합물은 공간군 Immm에 속하고, Ni, M 복합산화물(composite oxide)이 평면사배위(Ni,M)O4를 형성하며 평면사배위 구조가마주 대하는 변(O-O으로 형성된 변)을 공유하여 층 구조를 형성하고 있다. 이는 충방전 시 Ni 또는 M의 산화수가 +2에서 +4가 되며, Li2Ni1-xMxO2의 구조가 충방전을 행하는 동안 Li 이온의 탈삽입이 있어 Li2-zNi1-xMxO2(0≤z<2)로 노미널 조성(nominal composition)을 갖는다.Compound of Formula 1 belongs to the space group Immm, Ni, M composite oxide (composite oxide) forms a planar tetragonal (Ni, M) O 4 and the side opposite the planar quadrupole structure (side formed of OO) To form a layer structure. This is because the oxidation number of Ni or M becomes +2 to +4 during charge and discharge, and Li 2 Ni 1-x M x O 2 has Li 2z Ni 1 - due to the intercalation of Li ions during charge and discharge. x M x O 2 (0 ≦ z <2) to have a nominal composition.

또한, 본 발명에 따르면 음극의 비가역 용량을 보상해 줄 정도로 상기 화학식 1의 화합물을 양극에 첨가함으로써 최근 업체에서 요구하는 안전셀(safe cell)의 과방전 테스트에 매우 뛰어난 성능을 보여준다. 상기 안전셀(Safe cell)의 중요성은 점점 커지는 추세이므로 상기 화학식 1의 화합물을 첨가함으로써 과방전 특성에 뛰어나 성능을 보여주는 것이다. 본 발명에서 상기 화학식 1의 과방전 방지제는 Li2NiO2인 것이 바람직하다.In addition, according to the present invention by adding the compound of the formula (1) to the cathode to compensate for the irreversible capacity of the anode shows a very excellent performance in the over-discharge test of the safety cell (safe cell) recently required by the company. The importance of the safety cell (Safe cell) is an increasing trend is to show excellent performance in the over-discharge characteristics by the addition of the compound of the formula (1). In the present invention, the overdischarge preventing agent of Chemical Formula 1 is preferably Li 2 NiO 2 .

상기 화학식 1의 과방전 방지제의 사용량은 양극활물질 100 중량부에 대하여 0.1 내지 10 중량부로 사용하는 것이 바람직하다. 상기 과방전 방지제의 함량이 상기 범위 미만이면 과방전 시험시 양극의 전압이 하강하기 전에 음극의 전압이 상승하게 되어 음극 집전체인 구리 호일이 산화되는 3.6 V 이상의 특정 전압 영역에 이르면 파우치형, 각형, 및 원통형 전지의 경우 구리가 녹아나오는 문제가 발생하며, 이로 인해 전지(cell)의 손상(damage)이 일어나 과방전이 일어난 후에 충방전이 제대로 진행되지 않는다. 또한, 상기 범위를 초과하여 과방전 방지제를 첨가했을 경우는 과방전 테스트를 할 때 양극쪽 전압이 먼저 하강하므로 과방전 테스트 자체에는 큰 효과가 있을 수 있으나, Li2NiO2가 과량 첨가됨으로써 전지의 사이클특성이 나빠질 수 있다. 또한, Li2NiO2는 첫 사이클 충전 후에 LiNiO2로 상변화를 하는데, 일반적으로 LiNiO2는 LiCoO2보다 안정성 면에서 좋지 않으므로 Li2NiO2를 과량 첨가하는 것은 바람직하지 않다.The amount of the overdischarge preventing agent of Formula 1 is preferably used in 0.1 to 10 parts by weight based on 100 parts by weight of the positive electrode active material. If the content of the anti-discharge agent is less than the above range, the voltage of the negative electrode rises before the voltage of the positive electrode decreases in the over-discharge test, and reaches a specific voltage range of 3.6 V or higher in which the copper foil, which is the negative electrode current collector, is oxidized. In the case of a cylindrical battery, copper melts, which causes a problem of cell damage, and thus, charge and discharge do not proceed properly after overdischarge occurs. In addition, when the over-discharge prevention agent is added in excess of the above range, since the voltage on the positive side drops first when the over-discharge test is performed, the over-discharge test may have a great effect, but an excessive amount of Li 2 NiO 2 is added to the battery. Cycle characteristics may deteriorate. In addition, Li 2 NiO 2 phase-changes to LiNiO 2 after the first cycle charge. Generally, LiNiO 2 is not as good in terms of stability as LiCoO 2 , so it is not preferable to add an excessive amount of Li 2 NiO 2 .

본 발명에서 사용되는 양극 활물질은 리튬함유 전이금속 산화물을 사용하는 것이 바람직하며, 예를 들면 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2(여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2), LiCoPO4, 및 LiFePO4로 이루어진 군으로부터 1종 이상 선택되는 것을 사용할 수 있으며, 바람직하게 LiCoO2를 사용한다.The cathode active material used in the present invention is preferably a lithium-containing transition metal oxide, for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <A <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-Y Co Y O 2 , LiCo 1-Y Mn Y O 2 , LiNi 1-Y Mn Y O 2 (where 0 ≦ Y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2 ), LiMn 2-z Ni z O 4 , LiMn 2-z Co z O 4 (here, 0 <Z <2), LiCoPO 4 , and one selected from the group consisting of LiFePO 4 may be used, LiCoO 2 is preferably used.

또한, 본 발명의 리튬 이차 전지에 있어서, 음극의 활물질로는 리륨 이온을 흡장 및 방출할 수 있는 흑연, 탄소, 리튬 금속, 합금 등의 탄소계 재료를 사용할 수 있으며, 바람직하게는 인조흑연을 사용한다. 이때, 음극은 결합제를 포함할 수 있으며, 바람직하게는 PVDF 또는 SBR을 포함한다.In addition, in the lithium secondary battery of the present invention, as the active material of the negative electrode, carbon-based materials such as graphite, carbon, lithium metal, and alloy capable of occluding and releasing lithium ions can be used. Preferably, artificial graphite is used. do. In this case, the negative electrode may include a binder, and preferably includes PVDF or SBR.

상기 분리막은 다공성 분리막을 사용하는 것이 바람직하며, 예를 들면 폴리프로필렌계, 폴리에틸렌계, 폴리올레핀계 다공성 분리막을 사용할 수 있으며, 이에 한정되는 것은 아니다.The separator is preferably a porous separator, for example, a polypropylene-based, polyethylene-based, polyolefin-based porous separator may be used, but is not limited thereto.

본 발명의 비수전해액은 전해액 화합물로 환형 카보네이트와 선형 카보네이트를 포함할 수 있다. 상기 환형 카보네이트의 예를 들면 에틸렌 카보네이트(EC),프로필렌 카보네이트(PC), 감마부티로락톤(GBL) 등이 있다. 상기 선형 카보네이트의 예를 들면 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 에틸메틸카보네이트 (EMC), 및 메틸 프로필 카보네이트(MPC)로 이루어진 군으로부터 1 종 이상 선택되는 것이 바람직하다. 또한, 본 발명의 비수전해액은 상기 카보네이트 화합물과 함께 리튬염을 포함하며, 구체적 예를 들면 LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6, 및 LiN(CF3SO2)2로 이루어진 군으로부터 선택되는 것이 바람직하다.The nonaqueous electrolyte of the present invention may include a cyclic carbonate and a linear carbonate as the electrolyte compound. Examples of the cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), gamma butyrolactone (GBL), and the like. For example, the linear carbonate is preferably selected from the group consisting of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), and methyl propyl carbonate (MPC). In addition, the non-aqueous electrolyte of the present invention includes a lithium salt together with the carbonate compound, and specific examples thereof include LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 , and LiN (CF 3 SO 2 ) 2 . It is preferably selected from the group consisting of.

본 발명의 리튬 이차 전지는 통상적인 방법으로 양극과 음극 사이에 다공성의 분리막을 넣고, 비수전해액을 투입하여 제조하게 된다.The lithium secondary battery of the present invention is prepared by inserting a porous separator between a positive electrode and a negative electrode in a conventional manner, and a non-aqueous electrolyte.

본 발명에 따른 리튬 이차 전지의 외형은 캔으로 된 원통형, 각형 또는 파우치(pouch)형인 것이 바람직하다.The external shape of the lithium secondary battery according to the present invention is preferably a cylindrical, square or pouch type of cans.

이와 같이, 본 발명에 따르면 비가역 용량이 30% 이하인 음극 활물질을 포함하는 전지의 양극에 상기 화학식 1의 화합물(바람직하게는 Li2NiO2)을 과방전 방지제로 첨가하여 과방전 시험 후에도 90% 이상의 용량 회복을 실현할 수 있고 전지의 용량을 감소시키지 않는다.As described above, according to the present invention, the compound of Chemical Formula 1 (preferably Li 2 NiO 2 ) is added to the positive electrode of the battery including the negative electrode active material having an irreversible capacity of 30% or less as an over-discharge preventing agent and 90% or more after the over-discharge test. Capacity recovery can be realized and does not reduce the capacity of the battery.

이하의 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이지 이들만으로 한정하는 것이 아니다.The present invention will be described in more detail with reference to the following examples and comparative examples. However, an Example is for illustrating this invention and is not limited only to these.

[실시예]EXAMPLE

실시예 1Example 1

통상적인 방법으로 파우치 타입의 바이셀을 제조하였다. 이때, 양극 활물질로 LiCoO2를 사용하고, 양극활물질 100 중량부에 대하여 과방전 방지제로 Li2NiO2를 2 중량부 첨가하였다. 즉, LiCoO278.4 중량%, Li2NiO21.6 중량%, KS-6(도전재) 10 중량%, 및 PVDF(결합제) 10 중량%의 조성으로 용제인 NMP에 첨가하여 양극 혼합물 슬러리를 제조한 후 Al 집전체 위에 코팅하여 양극을 제조하였다. 또한, 음극 활물질로는 인조흑연을 사용하였고, 전해액으로는 1M LiPF6에 EC/PC/DEC계 용액을 사용하여 통상적인 방법으로 전지를 제조하였다.Pouch type bicells were prepared in a conventional manner. At this time, LiCoO 2 was used as the positive electrode active material, and 2 parts by weight of Li 2 NiO 2 was added as an overdischarge inhibitor with respect to 100 parts by weight of the positive electrode active material. That is, a positive electrode mixture slurry was prepared by adding 78.4 wt% of LiCoO 2 , 1.6 wt% of Li 2 NiO 2 , 10 wt% of KS-6 (conductive material), and 10 wt% of PVDF (binder) to NMP as a solvent. After the coating on Al current collector to prepare a positive electrode. In addition, artificial graphite was used as a negative electrode active material, and a battery was manufactured by a conventional method using an EC / PC / DEC solution in 1M LiPF 6 as an electrolyte.

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 실시하되, 과방전 방지제로 Li2NiO2를 양극활물질 100 중량부에 대하여 5 중량부 사용하여 전지를 제작하였다.The battery cell was fabricated in the same manner as in Example 1 except that 5 parts by weight of Li 2 NiO 2 was used with respect to 100 parts by weight of the positive electrode active material as an overdischarge inhibitor.

실시예 3Example 3

상기 실시예 1과 동일한 방법으로 실시하되, 과방전 방지제로 Li2NiO2를 양극활물질 100 중량부에 대하여 9 중량부 사용하여 전지를 제작하였다.The battery cell was fabricated in the same manner as in Example 1 except that 9 parts by weight of Li 2 NiO 2 was used with respect to 100 parts by weight of the positive electrode active material as an overdischarge inhibitor.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로 실시하되, 양극에 과방전 방지제(Li2NiO2)를 사용하지 않고 전지를 제작하였다.A battery was fabricated in the same manner as in Example 1, but without using an over-discharge preventing agent (Li 2 NiO 2 ) for the positive electrode.

비교예 2Comparative Example 2

상기 실시예 1과 동일한 방법으로 실시하되, 과방전 방지제로 Li2NiO2를 양극활물질 100 중량부에 대하여 15 중량부 사용하여 전지를 제작하였다.The battery cell was fabricated in the same manner as in Example 1 except that 15 parts by weight of Li 2 NiO 2 was used with respect to 100 parts by weight of the positive electrode active material as an overdischarge inhibitor.

실험예 1Experimental Example 1

상기 실시예 1 내지 3 및 비교예 1에서 제조된 파우치 타입의 바이셀에 대하여 통상적인 방법으로 과방전 전 후의 충전용량과 방전용량을 측정하였으며, 이에 대한 과방전 시험결과를 도 1(비교예 1) 및 도 2(실시예 1), 도 3(실시예 2), 및 도 4(실시예 3)에 나타내었다. 숫자는 과방전 전의 0.2C, 1C의 방전용량에 대한 과방전 후의 0.2C, 1C의 방전용량 회복률을 각각 나타낸 것이다. 도 1 및 도 2 내지 4에서 보면, 본 발명의 실시예 1 내지 3의 경우 비교예 1에 비해 과방전 시험 후의 90% 이상의 용량 회복률을 보인다.For the pouch-type bicells prepared in Examples 1 to 3 and Comparative Example 1, the charge capacity and the discharge capacity were measured before and after the overdischarge by a conventional method, and the results of the overdischarge test of FIG. 1 (Comparative Example 1 ) And FIG. 2 (Example 1), FIG. 3 (Example 2), and FIG. 4 (Example 3). The numbers indicate the discharge capacity recovery rates of 0.2 C and 1 C after over discharge with respect to the discharge capacity of 0.2 C and 1 C before over discharge, respectively. 1 and 2 to 4, Examples 1 to 3 of the present invention shows a recovery rate of 90% or more after the over-discharge test compared to Comparative Example 1.

실험예 2Experimental Example 2

상기 실시예 1 내지 3 및 비교예 1의 바이셀에 대하여 3전극 실험을 실시하였고, 그 결과를 도 5 내지 8에 각각 나타내었다. 일반적으로 전지의 용량이 성능을 평가할 때 정극, 부극의 2전극으로 구성하여 정극과 부극의 전압차이를 기술하는 것이 풀셀 전압이며, 3전극이란 전지의 정극과 부극 외에 리튬 금속을 전지내로 삽입하여 레퍼런스 전극(리튬 금속)의 전압과 정극의 전압 차이, 레퍼런스 전극(리튬 금속)의 전압과 부극의 전압 차이를 각각 측정하여 충반전 시에 실제 전지 내에서 정극과 부극이 레퍼런스 전극에 대해 어떻게 거동하는지를 알기 위해 구성한 전지 시스템이다.Trielectrode experiments were performed on the bicells of Examples 1 to 3 and Comparative Example 1, and the results are shown in FIGS. 5 to 8, respectively. In general, when evaluating the performance of a battery, it is a full-cell voltage that describes the voltage difference between the positive electrode and the negative electrode by configuring the two electrodes of the positive electrode and the negative electrode, and the three electrodes refer to the battery by inserting lithium metal into the battery in addition to the positive electrode and the negative electrode. Measure the voltage difference between the voltage of the electrode (lithium metal) and the positive electrode, and the voltage difference between the voltage of the reference electrode (lithium metal) and the negative electrode, respectively, to know how the positive and negative electrodes behave with respect to the reference electrode in the actual battery during charging and recharging. It is a battery system configured for.

도 5에서 보면, 비교예 1의 경우 동그라미로 표시한 부분과 같이 과방전시험시 음극의 전압이 상승하여 구리이온이 녹아나오는 평탄구간(plateau)을 보여준다.Referring to FIG. 5, in the case of Comparative Example 1, as shown in the circle, the voltage of the cathode increases during the overdischarge test to show a flat section in which copper ions are melted.

반면, 도 6 내지 8의 실시예 1 내지 3의 경우 구리 이온이 녹아나오는 평탄구간(plateau)이 나타나지 않음을 알 수 있다.On the other hand, in Examples 1 to 3 of FIGS. 6 to 8, it can be seen that a flat section in which copper ions are melted does not appear.

실험예 3Experimental Example 3

실시예 1 및 비교예 1에 대하여 0.2C 방전에 의한 전지 용량 시험을 하여 그 결과를 도 9에 나타내었다. 도 9에서 보면, 실시예 1의 경우는 비교예 1에 비해 전지용량이 감소되지 않았음을 알 수 있다.Example 1 and Comparative Example 1 were subjected to a battery capacity test by 0.2C discharge, and the results are shown in FIG. 9. 9, it can be seen that in Example 1, the battery capacity was not reduced compared to Comparative Example 1.

실험예 4Experimental Example 4

상기 비교예 1, 비교예 2 및 실시예 1 내지 3의 바이셀에 대하여 사이클 라이프를 측정하여 그 결과를 도 10에 나타내었다. 도 10에서 보는 바와 같이, 비교예 2의 Li2NiO2가 10 중량부 이상, 즉 15 중량부가 첨가된 바이셀은 100 사이클 이후 사이클 성능이 급격히 감소함을 보여준다.The cycle life of the bicells of Comparative Example 1, Comparative Example 2 and Examples 1 to 3 was measured and the results are shown in FIG. 10. As shown in FIG. 10, Comparative Example 2 Li 2 NiO 2 10 parts by weight or more, i.e., bi-cell 15, the additional weight added to show that the cycle performance decreases sharply after 100 cycles.

따라서, 본 발명에 따르면 첫사이클의 비가역 용량이 큰 Li2NiO2를 적당량 첨가하여 양극과 음극의 비가역 용량을 적절히 조절해 줌으로써 과방전 시험 시 음극의 전압 상승을 방지하여 과방전 시험 후에도 용량이 크게 떨어지지 않게 되었다.Therefore, according to the present invention, by adding an appropriate amount of Li 2 NiO 2 having a large irreversible capacity in the first cycle to appropriately adjust the irreversible capacity of the positive electrode and the negative electrode to prevent the voltage rise of the negative electrode during the over-discharge test, the capacity is large even after the over-discharge test. It did not fall.

이상에서 설명한 바와 같이, 본 발명은 양극에 함량이 조절된 상기 화학식 1의 화합물(바람직하게는 Li2NiO2)를 과방전 방지제로 투여하여 상기 과방전 방지제가 음극의 비가역을 보상해줄 정도 또는 그 이상의 리튬 이온을 제공함으로써 특히 과방전 시험시 음극의 전압 증가를 방지하여 시험 후 90% 이상의 용량 회복을 나타내는 리튬 이차 전지를 제공할 수 있다.As described above, in the present invention, the compound of Formula 1 (preferably Li 2 NiO 2 ) whose content is adjusted to the positive electrode is administered as an anti-discharge agent, so that the anti-discharge agent compensates for the irreversibility of the negative electrode or its By providing the above lithium ions, it is possible to provide a lithium secondary battery which exhibits a capacity recovery of 90% or more after the test, in particular, by preventing the voltage increase of the negative electrode during the overdischarge test.

Claims (8)

리튬이온을 흡장 및 방출할 수 있는 리튬 전이금속 산화물을 포함하는 리튬 이차 전지용 양극에 있어서,In a positive electrode for a lithium secondary battery comprising a lithium transition metal oxide capable of occluding and releasing lithium ions, 상기 양극이 양극활물질 100 중량부에 대하여 하기 화학식 1로 표시되는 과방전 방지제 0.1 내지 10 중량부를 포함하는 리튬 이차 전지용 양극:A positive electrode for a rechargeable lithium battery including 0.1 to 10 parts by weight of the overdischarge prevention agent represented by Formula 1 based on 100 parts by weight of the positive electrode active material: [화학식 1][Formula 1] Li2Ni1-xMxO2 Li 2 Ni 1-x M x O 2 상기 식에서, x는 0≤x<1이고, M은 Mn, Fe, Co, Cu, Zn, Mg, 및 Cd으로 이루어진 군으로부터 선택되는 +2의 산화수를 갖는 금속이다.Wherein x is 0 ≦ x <1 and M is a metal having an oxidation number of +2 selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg, and Cd. 제 1 항에 있어서, 상기 과방전 방지제가 Li2NiO2인 리튬 이차 전지용 양극.The positive electrode for a lithium secondary battery according to claim 1, wherein the anti-discharge agent is Li 2 NiO 2 . a) 리튬이온을 흡장 및 방출할 수 있는 리튬 전이금속 산화물을 포함하는 양극; b) 리튬이온을 흡장 및 방출할 수 있는 탄소, 리튬 금속 또는 합금을 포함하는 음극; c) 분리막; 및 d) ⅰ) 리튬염; 및 ⅱ) 전해액 화합물을 포함하는 비수전해액a) a positive electrode comprising a lithium transition metal oxide capable of occluding and releasing lithium ions; b) a negative electrode comprising carbon, lithium metal or alloy capable of occluding and releasing lithium ions; c) membrane; And d) iii) a lithium salt; And ii) a non-aqueous electrolyte comprising an electrolyte compound 을 포함하는 리튬 이차 전지에 있어서,In a lithium secondary battery comprising: 상기 양극이 양극활물질 100 중량부에 대하여 하기 화학식 1로 표시되는 과방전 방지제 0.1 내지 10 중량부를 포함하는 리튬 이차 전지:Lithium secondary battery comprising the positive electrode is 0.1 to 10 parts by weight of the over-discharge prevention agent represented by the formula (1) based on 100 parts by weight of the positive electrode active material: [화학식 1][Formula 1] Li2Ni1-xMxO2 Li 2 Ni 1-x M x O 2 상기 식에서, x는 0≤x<1이고, M은 Mn, Fe, Co, Cu, Zn, Mg, 및 Cd으로 이루어진 군으로부터 선택되는 +2의 산화수를 갖는 금속이다.Wherein x is 0 ≦ x <1 and M is a metal having an oxidation number of +2 selected from the group consisting of Mn, Fe, Co, Cu, Zn, Mg, and Cd. 제 3 항에 있어서, 상기 과방전 방지제가 Li2NiO2인 리튬 이차 전지.The lithium secondary battery of claim 3, wherein the anti-discharge agent is Li 2 NiO 2 . 제 3 항에 있어서, 상기 리튬 전이금속 산화물이 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2(여기에서, 0≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2), LiCoPO4, 및 LiFePO4로 이루어진 군으로부터 1종 이상 선택되는 리튬 이차 전지.The method of claim 3, wherein the lithium transition metal oxide is LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-Y Co Y O 2 , LiCo 1-Y Mn Y O 2 , LiNi 1-Y Mn Y O 2 (where 0 ≦ Y <1 ), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 , A lithium secondary battery selected from LiMn 2-z Co z O 4 (here, 0 <Z <2), LiCoPO 4 , and LiFePO 4 . 제 3 항에 있어서, 상기 d)ⅰ)의 리튬염이 LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6, 및 LiN(CF3SO2)2로 이루어진 군으로부터 1종 이상 선택되는 리튬 이온 전지.The method according to claim 3, wherein the lithium salt of d) iii) is at least one selected from the group consisting of LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 , and LiN (CF 3 SO 2 ) 2 . Lithium ion battery. 제 3 항에 있어서, 상기 d)ⅱ)의 전해액 화합물이 에틸렌 카보네이트(EC),프로필렌 카보네이트(PC), 및 감마부티로락톤(GBL)로 이루어진 군으로부터 1 종 이상 선택되는 환형 카보네이트; 및 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 에틸메틸카보네이트 (EMC), 및 메틸 프로필 카보네이트(MPC)로 이루어진 군으로부터 1 종 이상 선택되는 선형 카보네이트를 포함하는 리튬 이차 전지.The cyclic carbonate according to claim 3, wherein the electrolyte compound of d) ii) is at least one selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), and gamma butyrolactone (GBL); And a linear carbonate selected from the group consisting of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), and methyl propyl carbonate (MPC). 제 3 항에 있어서, 상기 리튬 이차 전지는 형태가 캔으로 된 원통형, 각형, 또는 파우치(pouch)형인 리튬 이차 전지.The lithium secondary battery of claim 3, wherein the lithium secondary battery has a cylindrical shape, a square shape, or a pouch type.
KR10-2002-0036438A 2002-03-22 2002-06-27 Lithium ion secondary battery comprising overdischarge retardant KR100484713B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10/478,802 US7282300B2 (en) 2002-03-22 2002-12-02 Lithium secondary battery comprising overdischarge-preventing agent
SI200231058T SI1490916T1 (en) 2002-03-22 2002-12-02 Lithium secondary battery comprising overdischarge-preventing agent
PCT/KR2002/002267 WO2003081697A1 (en) 2002-03-22 2002-12-02 Lithium secondary battery comprising overdischarge-preventing agent
CNB028124847A CN1234179C (en) 2002-03-22 2002-12-02 Lithium storage battery comprising over-discharge preventing agent
JP2003579299A JP2005521220A (en) 2002-03-22 2002-12-02 Lithium secondary battery containing overdischarge inhibitor
EP02791014.0A EP1490916B1 (en) 2002-03-22 2002-12-02 Lithium secondary battery comprising overdischarge-preventing agent
US10/950,104 US7695867B2 (en) 2002-03-22 2004-09-24 Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery
US12/558,100 US9023525B2 (en) 2002-03-22 2009-09-11 Cathode active material for lithium secondary battery
US13/618,048 US8835055B2 (en) 2002-03-22 2012-09-14 Cathode active material for lithium secondary battery
US14/290,024 US9236610B2 (en) 2002-03-22 2014-05-29 Cathode active material for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20020015713 2002-03-22
KR1020020015713 2002-03-22

Publications (2)

Publication Number Publication Date
KR20030076153A true KR20030076153A (en) 2003-09-26
KR100484713B1 KR100484713B1 (en) 2005-04-22

Family

ID=32225910

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0036438A KR100484713B1 (en) 2002-03-22 2002-06-27 Lithium ion secondary battery comprising overdischarge retardant

Country Status (2)

Country Link
KR (1) KR100484713B1 (en)
SI (1) SI1490916T1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836515B1 (en) * 2007-02-27 2008-06-12 한국전기연구원 Lithium secondary battery comprising an electrolyte for high voltage
EP2139059A1 (en) 2008-06-25 2009-12-30 Samsung SDI Co., Ltd. Rechargeable lithium battery
US8597833B2 (en) 2009-04-29 2013-12-03 Samsung Sdi Co., Ltd. Rechargeable lithium battery
KR20190035315A (en) 2017-09-26 2019-04-03 주식회사 엘지화학 Method for preparing positive electrode active material of lithium secondary battery
WO2019098764A1 (en) 2017-11-17 2019-05-23 주식회사 엘지화학 Method for preparing irreversible additive contained in positive electrode material for lithium secondary battery, positive electrode material containing irreversible additive prepared thereby, and lithium secondary battery comprising positive electrode material
KR20190056997A (en) 2017-11-17 2019-05-27 주식회사 엘지화학 Method for preparing irreversible additive comprised in cathod material for lithium secondary battery, cathode material comprising irreversible additive prepared by the same, and lithium secondary battery comprising cathod active material
KR20190059115A (en) * 2017-11-22 2019-05-30 주식회사 엘지화학 Irreversible Additive Comprised in Cathode Material for Lithium Secondary Battery, Preparing Method thereof, and Cathode Material Comprising the Same
US11398623B2 (en) 2017-11-22 2022-07-26 Lg Energy Solution, Ltd. Method for preparing positive electrode additives of lithium secondary battery
WO2022255666A1 (en) * 2021-06-01 2022-12-08 주식회사 엘지에너지솔루션 Lithium secondary battery containing positive electrode additive

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255539B1 (en) * 2010-12-14 2013-04-16 삼성에스디아이 주식회사 Positive electrode active material for lithium battery and lithium battery using the same
KR102093971B1 (en) 2017-06-21 2020-05-21 주식회사 엘지화학 Lithium secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2797390B2 (en) * 1989-04-03 1998-09-17 ソニー株式会社 Non-aqueous electrolyte secondary battery
JPH06349493A (en) * 1993-06-12 1994-12-22 Haibaru:Kk Secondary battery
JP3436600B2 (en) * 1993-12-27 2003-08-11 エヌイーシートーキン栃木株式会社 Rechargeable battery
JP3229531B2 (en) * 1995-12-27 2001-11-19 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
AU5601299A (en) * 1998-11-04 2000-05-11 Wilson Greatbatch Ltd. Mixed cathode material for high energy density electrochemical cells
JP3705728B2 (en) * 2000-02-29 2005-10-12 株式会社東芝 Non-aqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836515B1 (en) * 2007-02-27 2008-06-12 한국전기연구원 Lithium secondary battery comprising an electrolyte for high voltage
EP2139059A1 (en) 2008-06-25 2009-12-30 Samsung SDI Co., Ltd. Rechargeable lithium battery
US8597833B2 (en) 2009-04-29 2013-12-03 Samsung Sdi Co., Ltd. Rechargeable lithium battery
KR20190035315A (en) 2017-09-26 2019-04-03 주식회사 엘지화학 Method for preparing positive electrode active material of lithium secondary battery
WO2019098764A1 (en) 2017-11-17 2019-05-23 주식회사 엘지화학 Method for preparing irreversible additive contained in positive electrode material for lithium secondary battery, positive electrode material containing irreversible additive prepared thereby, and lithium secondary battery comprising positive electrode material
KR20190056997A (en) 2017-11-17 2019-05-27 주식회사 엘지화학 Method for preparing irreversible additive comprised in cathod material for lithium secondary battery, cathode material comprising irreversible additive prepared by the same, and lithium secondary battery comprising cathod active material
US11476466B2 (en) 2017-11-17 2022-10-18 Lg Energy Solution, Ltd. Method of preparing irreversible additive included in cathode material for lithium secondary battery, cathode material including irreversible additive prepared by the same, and lithium secondary battery including cathode material
KR20190059115A (en) * 2017-11-22 2019-05-30 주식회사 엘지화학 Irreversible Additive Comprised in Cathode Material for Lithium Secondary Battery, Preparing Method thereof, and Cathode Material Comprising the Same
US11398623B2 (en) 2017-11-22 2022-07-26 Lg Energy Solution, Ltd. Method for preparing positive electrode additives of lithium secondary battery
WO2022255666A1 (en) * 2021-06-01 2022-12-08 주식회사 엘지에너지솔루션 Lithium secondary battery containing positive electrode additive

Also Published As

Publication number Publication date
SI1490916T1 (en) 2015-10-30
KR100484713B1 (en) 2005-04-22

Similar Documents

Publication Publication Date Title
US7282300B2 (en) Lithium secondary battery comprising overdischarge-preventing agent
KR100533095B1 (en) The cathode active material comprising the overdischarge retardant and the lithium secondary battery using the same
KR100889453B1 (en) Electrode for lithium secondary battery comprising electrode additive and lithium secondary battery using the same
US11183711B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR100612089B1 (en) Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery
KR102447200B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100802851B1 (en) Non-aqueous electrolyte secondary battery
KR102345312B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
US8936880B2 (en) Cylindrical lithium secondary battery with pressure activated current interruptive device
KR102434070B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100644074B1 (en) COPPER COLLECTOR FOR SECONDARY BATTERY COMPRISING Cu-NITRILE COMPOUND COMPLEX FORMED ON SURFACE THEREOF
EP1215746A1 (en) Organic carbonate additives for nonaqueous electrolyte rechargeable electrochemical cells
KR100484713B1 (en) Lithium ion secondary battery comprising overdischarge retardant
US20080076023A1 (en) Lithium cell
JP2000133306A (en) Organic carbonate additive for rechargeable battery with non-aqueous electrolyte
KR100440485B1 (en) New non-aqueous electrolyte and lithium secondary battery using the same
KR100709833B1 (en) Lithium rechargeable battery free from gushing out of copper
KR100482816B1 (en) Non-aqueous-electrolyte and lithium secondary battery using the same
KR20210120196A (en) Electrolyte additives for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same and secondary battery
CA2298417C (en) Nitrite additives for nonaqueous electrolyte rechargeable cells
KR100804979B1 (en) Lithium ion secondary battery
KR100793605B1 (en) Anode active material comprising poly indene-co-coumarone and lithium secondary battery using the same
KR20080087344A (en) Lithium rechargeable battery
JP2000123870A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 15