JP4826864B2 - Ultrapure water production equipment - Google Patents

Ultrapure water production equipment Download PDF

Info

Publication number
JP4826864B2
JP4826864B2 JP2001114263A JP2001114263A JP4826864B2 JP 4826864 B2 JP4826864 B2 JP 4826864B2 JP 2001114263 A JP2001114263 A JP 2001114263A JP 2001114263 A JP2001114263 A JP 2001114263A JP 4826864 B2 JP4826864 B2 JP 4826864B2
Authority
JP
Japan
Prior art keywords
water
membrane
gas
pure water
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001114263A
Other languages
Japanese (ja)
Other versions
JP2002307080A (en
Inventor
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001114263A priority Critical patent/JP4826864B2/en
Publication of JP2002307080A publication Critical patent/JP2002307080A/en
Application granted granted Critical
Publication of JP4826864B2 publication Critical patent/JP4826864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は超純水製造装置に係り、特に、ウエハ洗浄水として好適な、溶存酸素(DO)濃度はきわめて低いが、適度な溶存ガスを含有する超純水を製造するための超純水製造装置に関する。
【0002】
【従来の技術】
従来、半導体のウエハ洗浄水として用いられている超純水は、図2に示すように前処理システム1、一次純水システム2及びサブシステム3から構成される超純水製造装置で原水(工業用水、市水、井水等)を処理することにより製造されている。即ち、凝集、加圧浮上(沈殿)、濾過装置等よりなる前処理システム1で、原水中の懸濁物質やコロイド物質を除去した後、逆浸透膜分離装置、脱気装置及びイオン交換装置(混床式又は4床5塔式)を備える一次純水システム2で、原水中のイオンや有機成分を除去し、熱交換器、低圧紫外線酸化装置、イオン交換純水装置及び限外濾過膜分離装置を備えるサブシステム3で、水の純度をより一層高めて超純水が製造される。このサブシステム3において、低圧紫外線酸化装置では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸さらにはCOまで分解する。生成した有機酸及びCOは後段のイオン交換樹脂で除去される。限外濾過膜分離装置では、微小粒子が除去されイオン交換樹脂の流出粒子も除去される。
【0003】
このような超純水製造装置では、製造された超純水をウエハ洗浄水として使用するために、可能な限りDOを除去することが求められており、超純水製造における最終工程のサブシステムに更に脱気装置を設置することが多くなってきている。例えば特開平9−29251号公報には、イオン交換純水装置の後段に膜式脱気装置を設けてDO濃度を低減することが記載されている。膜式脱気装置は、ガス透過膜で隔てられた気室及び水室を有し、水室に水を流し、気室を真空ポンプで吸引して、水中のDO等の溶存ガスをガス透過膜を透過させて気室に移行させて除去するものであり、水中の溶存ガスを極低濃度にまで除去することができる。
【0004】
【発明が解決しようとする課題】
膜式脱気装置をサブシステムに設けた場合、DOのみならず他の溶存ガスをも除去することになる。このため、DO低減化の目的は達成できるが、DO以外の溶存ガス濃度も低下した超純水となる。
【0005】
ところで、ウエハの超音波洗浄においては、洗浄水として用いる超純水中の溶存ガスのキャビテーション効果で洗浄効果が高められている。このため、膜式脱気装置を設けたサブシステムで製造された、溶存ガス濃度の低下した超純水では、ウエハの超音波洗浄において、キャビテーションの発生が不足し、洗浄効果が不十分となることがある。
【0006】
また、サブシステムに膜式脱気装置が配置されていない装置でも、一次純水システムに脱気装置が配置され、密閉系で一次純水がサブシステムに供給される系では、サブシステムで溶存ガス濃度が著しく低い超純水が製造される場合があり、上記のような問題が発生する。
【0007】
本発明は上記従来の問題点を解決し、DO濃度がきわめて低く、一方で適度な溶存ガス濃度を有し、ウエハの超音波洗浄に使用した場合に、良好なキャビテーション効果を得ることができる超純水を製造することができる超純水製造装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の超純水製造装置は、サブシステムによって純水を処理して超純水を製造する超純水製造装置において、該サブシステムは、ガス透過膜を介して気室と水室とが仕切られた膜式脱気装置と、該膜式脱気装置の後段に配置された、ガス透過膜によって隔てられた気室及び水室を有した膜式ガス溶解装置を備え、純水を該膜式脱気装置に通水した後該膜式ガス溶解装置に通水する超純水製造装置であって、該膜式脱気装置の水室に純水を通水し、かつ、該膜式脱気装置の気室に窒素ガスを供給すると共に減圧して、該純水中の溶存ガスをガス透過膜を透過させて気室側に移行させて除去し、該膜式ガス溶解装置の気室に窒素ガスを水室側圧力以上で供給すると共に、該膜式ガス溶解装置の水室に純水を通水して、該純水にガスを溶解させるようにしたことを特徴とする。
【0009】
本発明の超純水製造装置では、サブシステムに膜式ガス溶解装置を設け、純水に酸素以外のガスを溶解させて所望の溶存ガス濃度に調整することができる。このため、DOを低く抑えた上で溶存ガス濃度を上げてウエハ洗浄に好適な超純水を製造することができる。
【0010】
本発明においては、サブシステムは、膜式脱気装置を備え、この膜式脱気装置の後段に膜式ガス溶解装置が配置されているため、膜式脱気装置によりDOを極低濃度にまで除去した後、膜式ガス溶解装置でガスを溶解させて、目的とする極低DO濃度で所定溶存ガス濃度の超純水を製造することができる。
【0011】
即ち、一次純水システムからサブシステムに供給される純水のDOが10mg/L以上である場合、或いはサブシステムにおいてDOが10mg/L以上になる恐れがある場合、サブシステムには、特開平9−29251号公報記載のように、膜式脱気装置を配置するのが好ましい。通常、サブシステムには紫外線酸化装置、イオン交換純水装置が設けられることが多いが、紫外線の過剰照射は、イオン交換純水装置でのDO発生原因となるので、サブシステムに膜式脱気装置を設けることが好ましい。この場合、膜式脱気装置によりDOのみならず他の溶存ガスも除去されるが、その後段に膜式ガス溶解装置を設けることにより、超純水中の溶存ガス濃度を所望の値に高めることができる。
【0012】
また、本発明においては、膜式ガス溶解装置の気室に供給される、窒素ガスの流量G(Nm/hr)に対する、膜式ガス溶解装置の水室に通水される純水の通水量L(m/hr)の割合であるL/G比が20以下となるように、該ガス及び一次純水を膜式ガス溶解装置に導入することが好ましい。
【0013】
このような本発明の超純水製造装置では、ウエハの超音波洗浄に好適な、DO濃度10μg/L以下で、溶存ガス濃度5mg/L以上の超純水を製造することができる。
【0014】
【発明の実施の形態】
以下に図面を参照して本発明の超純水製造装置の実施の形態を詳細に説明する。
【0015】
図1(a),(b)は参考例に係る超純水製造装置のサブシステムを示す系統図であり、図1(c)は本発明の超純水製造装置のサブシステムの実施の形態を示す系統図である。
【0016】
本発明において、サブシステムで処理する純水は、図2に示す如く、原水(工業用水、市水、井水等)を凝集、加圧浮上(沈殿)、濾過装置等よりなる前処理システム1及び一次純水システム2で処理して得られた純水(一次純水)である。前処理システム及び一次純水システムの構成には特に制限はなく、一次純水システムとしては、逆浸透膜分離装置、イオン交換装置、非再生式電気脱塩装置などの脱塩装置;活性炭、合成吸着樹脂などの吸着装置;紫外線酸化装置などの酸化装置、膜式脱気装置、真空式脱気装置、触媒式脱気装置などの脱気装置を任意の順で配置したものを用いることができる。
【0017】
このような一次純水システムにより、好ましくは比抵抗10MΩ・cm以上の純水を製造し、サブシステムに導入する。
【0018】
本発明において、純水を処理して超純水を製造するサブシステムの膜式脱気装置及び膜式ガス溶解装置以外の構成にも特に制限はない。一般に、サブシステムには、サブタンク、熱交換器、紫外線酸化装置、イオン交換純水装置、膜分離装置などがこの順で設けられるが、配置順序の変更も任意であり、更に、逆浸透膜分離装置、電気脱塩装置などが追加される場合もある。
【0019】
図1(a)に示すサブシステムは、純水を低圧紫外線酸化装置11、膜式ガス溶解装置12、イオン交換純水装置13及び限外濾過膜分離装置14で順次処理するものである。
【0020】
低圧紫外線酸化装置11としては、波長170nm以上、好ましくは180〜200nmの紫外線を照射して純水中のTOCを分解するものであれば良く、特に制限はない。また、イオン交換純水装置13及び限外濾過膜分離装置14としても、特に制限はなく、通常のサブシステムに用いられているものを使用することができる。
【0021】
膜式ガス溶解装置12は、その構成自体は通常の膜式脱気装置と同様の構成とされており、ガス透過膜を介して気室と水室とが仕切られたものである。この膜式ガス溶解装置12では、水室に低圧紫外線酸化装置11で処理した純水を通水すると共に、気室に、実質的に酸素を含有しないガスを水室側圧力以上で供給することにより、該ガスをガス透過膜を透過させて水側へ移行させることにより、水の溶存ガス濃度を高める。膜式ガス溶解装置12の気室の圧力が水室側圧力よりも低いと水側へのガスの移行が十分に行われないため、気室は水室側圧力以上、好ましくは水室側圧力よりも0.01〜0.2MPa高い圧力、より好ましくは水室側圧力よりも0.02〜0.05MPa程度高い圧力の加圧条件とする。
【0022】
膜式ガス溶解装置12の気室に供給する、実質的に酸素を含まないガスとしては、得られた超純水をウエハの洗浄に使用した場合特に洗浄効果に影響しないガス、例えば、窒素(N)、アルゴンなどの不活性ガスや、洗浄に使用した場合、洗浄効果を向上させる有用ガス、例えば水素、アンモニアなどが挙げられるが、不活性ガスであれば、製造した超純水を任意の洗浄工程に使用することができ好ましい。このガスは、酸素を含まないことが好ましいが、得られる超純水のDO濃度を目的とする低濃度に抑えられる程度であれば、微量の酸素を含んでいてもよい。
【0023】
膜式ガス溶解装置12に供給するガスとしては、特に純度99.9%以上のNガスが好ましい。
【0024】
この膜式ガス溶解装置12のL/G比は、20以下、好ましくは10〜20とする。この範囲よりもL/G比が小さいと、供給ガス量が多くなり不経済であり、多いとガス量が不足して溶存ガス濃度を十分に高めることができない場合がある。
【0025】
このような膜式ガス溶解装置12はサブシステムの任意の箇所に設けられる。図1(a)に示すサブシステムは、低圧紫外線酸化装置11、膜式ガス溶解装置12、イオン交換純水装置13及び限外濾過膜分離装置14で順次処理するものであるが、図1(b)に示す如く、低圧紫外線酸化装置11、イオン交換純水装置13、膜式ガス溶解装置12及び限外濾過膜分離装置14で順次処理するものであっても良い。ただし、膜式ガス溶解装置12の後段にイオン交換純水装置13を設けた場合には、膜式ガス溶解装置12から溶出した微量イオンをイオン交換純水装置13で除去することができ、好ましい。
【0026】
また、前述の如く、サブシステムに膜式脱気装置を設ける場合があるが、この場合には、膜式ガス溶解装置は膜式脱気装置の後段に設ける。図1(c)は、膜式脱気装置15を設けたサブシステムの例を示し、このサブシステムでは、純水は、低圧紫外線酸化装置11、膜式脱気装置15、膜式ガス溶解装置12、イオン交換純水装置13及び限外濾過膜分離装置14で順次処理される。この場合にも、膜式脱気装置15及び膜式ガス溶解装置12の後段にイオン交換純水装置13が設けられているため、膜式脱気装置15及び膜式ガス溶解装置12から溶出した微量イオンをイオン交換純水装置13で除去することができ好ましい。
【0027】
膜式脱気装置15は、膜式ガス溶解装置12と同様にガス透過膜を介して気室と水室とが仕切られたものであり、この膜式脱気装置15では、水室に低圧紫外線酸化装置11で処理した純水を通水すると共に、気室を真空ポンプ(図示せず)により20〜100Torr(2.7×10−3〜1.3×10−2MPa)程度の真空度に吸引して、水中のDO等の溶存ガスをガス透過膜を透過させて気室側に移行させて除去する。
【0028】
この膜式脱気装置15の気室には、必要に応じて、N、アルゴン等の不活性ガスを供給しても良い。膜式脱気装置15の気室にガスを供給することにより、脱気効率を高めることができる。この場合、不活性ガスの供給量は、多過ぎると気室の真空度が上がらず、少な過ぎると脱気効率の向上効果を十分に得ることができないことから、L/G比で20〜40程度とするのが好ましい。
【0029】
なお、本発明において、膜式ガス溶解装置及び膜式脱気装置に用いられるガス透過膜としては、O,N等のガスは通過するが水は透過しない膜であれば良く、例えば、ポリプロピレン系、シリコンゴム系、ポリテトラフルオロエチレン系、ポリオレフィン系、ポリウレタン系等がある。また、膜形式についても特に制限はなく、中空糸、スパイラル型等の各種のものを用いることができるが、特に中空糸型が好適である。このガス透過膜としては市販の各種のものを用いることができる。
【0030】
本発明において、ウエハの超音波洗浄水の用途においては、このようなサブシステムにより、DO100ppb以下、N等のDO以外の溶存ガス濃度5mg/L以上、好ましくはDOが10ppb以下で溶存ガス濃度が5〜12mg/L程度の超純水を製造することが好ましい。
【0031】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0032】
実施例1
市水(電導度:1.1ms/m,DO濃度:7.2mg/L,N(溶解N)濃度:12.1mg/L)を逆浸透膜分離装置、混床式イオン交換純水装置及び膜式脱気装置で順次処理して得られた、比抵抗17MΩ・cm,DO濃度:100μg/L,N濃度:2.5mg/Lの純水を図1(c)に示すサブシステムに1.5m/hrで通水して処理する超純水製造装置において、膜式ガス溶解装置によるガス溶解効果を調べた。
【0033】
低圧紫外線酸化装置(日本フォトサイエンス(株)製;OXL型ランプ4本)11に通水した後の純水を膜式脱気装置(セルガード社製、4インチガス透過膜)15に通水した後膜式ガス溶解装置(セルガード社製、4インチガス透過膜)12に通水した。
【0034】
膜式脱気装置15の気室にはNガスを0.05Nm/hr(L/G比=30)で供給すると共に、真空ポンプで60Torr(8.0×10−3MPa)の真空度に減圧した。
【0035】
また、膜式ガス溶解装置12の気室には水室側と同圧力(大気圧よりも0.01MPa高い圧力)でNを0.075Nm/hrで供給した(L/G比=20)。
【0036】
得られた超純水のDO濃度とN濃度を調べ、結果を表1に示した。
【0037】
実施例2
実施例1において、膜式ガス溶解装置12の気室の圧力を水室側よりも0.05MPa高い条件としたこと以外は同様にして処理を行い、得られた超純水のDO濃度とN濃度を調べ、結果を表1に示した。
【0038】
比較例1
実施例1において、膜式ガス溶解装置12の代りに膜式脱気装置(セルガード社製、4インチガス透過膜)を設けて、2段膜脱気を行ったこと以外は同様にして処理を行い、得られた超純水のDO濃度とN濃度を調べ、結果を表1に示した。
【0039】
なお、この2段目の膜式脱気装置も1段目の膜式脱気装置と同様に、気室にNガスを0.05Nm/hrで供給すると共に、真空ポンプで60Torrに減圧した。
【0040】
【表1】

Figure 0004826864
【0041】
表1より明らかなように、本発明によれば、DO濃度がきわめて低く、N濃度が適度に高い超純水を製造することができる。
【0042】
【発明の効果】
以上詳述した通り、本発明の超純水製造装置によれば、DO濃度が著しく低く、かつ十分な溶存ガス濃度の超純水を製造することができる。本発明の超純水製造装置により製造された超純水は、ウエハの超音波洗浄水として、良好なキャビテーション効果で高い洗浄効果を得ることができる。
【図面の簡単な説明】
【図1】 図1(a),(b)は参考例に係る超純水製造装置のサブシステムを示す系統図であり、図1(c)は本発明の超純水製造装置のサブシステムの実施の形態を示す系統図である。
【図2】 従来の超純水製造装置を示す系統図である。
【符号の説明】
1 前処理システム
2 一次純水システム
3 サブシステム
11 低圧紫外線酸化装置
12 膜式ガス溶解装置
13 イオン交換純水装置
14 限外濾過膜分離装置
15 膜式脱気装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrapure water production apparatus, and in particular, ultrapure water production for producing ultrapure water suitable for wafer cleaning water, which has an extremely low dissolved oxygen (DO) concentration but contains an appropriate dissolved gas. Relates to the device.
[0002]
[Prior art]
Conventionally, as shown in FIG. 2, ultrapure water used as semiconductor wafer cleaning water is raw water (industrial water) in an ultrapure water production apparatus including a pretreatment system 1, a primary pure water system 2, and a subsystem 3. Water, city water, well water, etc.). That is, after removing suspended substances and colloidal substances in raw water with a pretreatment system 1 comprising agglomeration, pressurized flotation (precipitation), filtration device, etc., a reverse osmosis membrane separation device, a deaeration device and an ion exchange device ( Primary pure water system 2 equipped with mixed bed type or 4 bed 5 tower type) removes ions and organic components in raw water, heat exchanger, low-pressure ultraviolet oxidation device, ion exchange pure water device and ultrafiltration membrane separation In the subsystem 3 including the apparatus, the purity of water is further increased and ultrapure water is produced. In this subsystem 3, the low-pressure ultraviolet oxidizer decomposes TOC into an organic acid and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp. The produced organic acid and CO 2 are removed by a subsequent ion exchange resin. In the ultrafiltration membrane separation device, fine particles are removed and the outflow particles of the ion exchange resin are also removed.
[0003]
In such an ultrapure water production apparatus, in order to use the produced ultrapure water as wafer cleaning water, it is required to remove DO as much as possible. More and more deaeration devices have been installed. For example, Japanese Patent Application Laid-Open No. 9-29251 describes that a membrane type deaerator is provided downstream of an ion-exchange pure water device to reduce the DO concentration. The membrane type deaerator has an air chamber and a water chamber separated by a gas permeable membrane. Water flows into the water chamber, the air chamber is sucked with a vacuum pump, and dissolved gas such as DO in water is gas permeable. The membrane is permeated through the air chamber and removed, and the dissolved gas in water can be removed to an extremely low concentration.
[0004]
[Problems to be solved by the invention]
When the membrane type deaerator is provided in the subsystem, not only DO but other dissolved gases are removed. For this reason, although the objective of DO reduction can be achieved, it becomes ultrapure water in which the concentration of dissolved gas other than DO is also reduced.
[0005]
By the way, in the ultrasonic cleaning of the wafer, the cleaning effect is enhanced by the cavitation effect of the dissolved gas in the ultra pure water used as the cleaning water. For this reason, in ultrapure water with a reduced dissolved gas concentration manufactured by a subsystem equipped with a membrane deaerator, cavitation is insufficient in ultrasonic cleaning of the wafer, and the cleaning effect is insufficient. Sometimes.
[0006]
In addition, even if the membrane deaerator is not installed in the subsystem, the deaerator is installed in the primary pure water system, and in the system where the primary pure water is supplied to the subsystem in a closed system, it is dissolved in the subsystem. In some cases, ultrapure water having a remarkably low gas concentration is produced, and the above-described problems occur.
[0007]
The present invention solves the above-mentioned conventional problems, and has an extremely low DO concentration, while having an appropriate dissolved gas concentration, and can provide a good cavitation effect when used for ultrasonic cleaning of a wafer. An object of the present invention is to provide an ultrapure water production apparatus capable of producing pure water.
[0008]
[Means for Solving the Problems]
The ultrapure water production apparatus of the present invention is an ultrapure water production apparatus for producing ultrapure water by treating pure water with a subsystem, wherein the subsystem has an air chamber and a water chamber through a gas permeable membrane. and partitioned membrane type degassing apparatus, which is disposed downstream of the membrane type degassing unit, and a membrane type gas dissolving apparatus having a gas chamber and a water chamber separated by a gas permeable membrane, pure water An ultrapure water production apparatus that passes through the membrane-type degassing apparatus and then passes through the membrane-type gas dissolving apparatus, passing pure water through the water chamber of the membrane-type degassing apparatus, and Nitrogen gas is supplied to the air chamber of the membrane deaerator and the pressure is reduced, and the dissolved gas in the pure water is removed by passing through the gas permeable membrane and moving to the air chamber side. nitrogen gas is supplied with water chamber side pressure above the air chamber, and passed through the deionized water in the water chamber of the membrane-type gas dissolving apparatus, to dissolve the gas in the pure water Characterized in that way the.
[0009]
In the ultrapure water production apparatus of the present invention, a membrane gas dissolving device is provided in the subsystem, and a gas other than oxygen can be dissolved in pure water to adjust the concentration to a desired dissolved gas. For this reason, it is possible to produce ultrapure water suitable for wafer cleaning by increasing the dissolved gas concentration while keeping DO low.
[0010]
In the present invention, the sub-system comprises a membrane type degassing unit, downstream of the membrane type degassing apparatus for Makushiki gas dissolving apparatus is arranged, in an extremely low concentration DO by membrane type degassing unit Then, the gas is dissolved by a membrane gas dissolving apparatus, and ultrapure water having a predetermined dissolved gas concentration and a desired extremely low DO concentration can be produced.
[0011]
That is, if the DO of pure water supplied from the primary pure water system to the subsystem is 10 mg / L or more, or if there is a risk that the DO may be 10 mg / L or more in the subsystem, the subsystem includes It is preferable to arrange a membrane type deaerator as described in JP-A-9-29251. Usually, the subsystem is often equipped with an ultraviolet oxidizer and ion-exchanged deionized water device. However, excessive irradiation of ultraviolet rays causes DO in the ion-exchanged pure water device. An apparatus is preferably provided. In this case, not only the DO but also other dissolved gas is removed by the membrane deaerator, but the dissolved gas concentration in the ultrapure water is increased to a desired value by providing a membrane gas dissolver in the subsequent stage. be able to.
[0012]
Further, in the present invention, the passage of pure water that is supplied to the water chamber of the membrane gas dissolving apparatus with respect to the flow rate G (Nm 3 / hr) of nitrogen gas supplied to the air chamber of the membrane gas dissolving apparatus. The gas and primary pure water are preferably introduced into the membrane gas dissolving apparatus so that the L / G ratio, which is the ratio of the amount of water L (m 3 / hr), is 20 or less.
[0013]
Such an ultrapure water production apparatus of the present invention can produce ultrapure water having a DO concentration of 10 μg / L or less and a dissolved gas concentration of 5 mg / L or more, which is suitable for ultrasonic cleaning of a wafer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the ultrapure water production apparatus of the present invention will be described below in detail with reference to the drawings.
[0015]
Figure 1 (a), (b) is a system diagram showing a sub-system of the ultrapure water production apparatus according to a reference example, FIG. 1 (c) embodiment of the subsystems of the ultrapure water production apparatus of the present invention FIG.
[0016]
In the present invention, as shown in FIG. 2, the pure water to be treated by the subsystem is a pretreatment system 1 comprising raw water (industrial water, city water, well water, etc.) agglomerating, pressurized flotation (precipitation), a filtration device and the like. And the pure water (primary pure water) obtained by processing with the primary pure water system 2. There are no particular restrictions on the configuration of the pretreatment system and the primary pure water system. The primary pure water system includes a desalination apparatus such as a reverse osmosis membrane separation apparatus, an ion exchange apparatus, and a non-regenerative type electric desalination apparatus; activated carbon, synthesis Adsorption devices such as adsorption resin; oxidation devices such as UV oxidation devices, membrane degassing devices, vacuum degassing devices, catalytic degassing devices and other degassing devices arranged in any order can be used. .
[0017]
By such a primary pure water system, pure water having a specific resistance of 10 MΩ · cm or more is preferably produced and introduced into the subsystem.
[0018]
In the present invention, there is no particular limitation on the configuration other than the membrane type degassing device and the membrane type gas dissolving device of the subsystem that processes pure water to produce ultra pure water. In general, a sub-system is provided with a sub-tank, heat exchanger, ultraviolet oxidation device, ion-exchanged deionized water device, membrane separation device, etc. in this order, but the arrangement order can be changed arbitrarily, and reverse osmosis membrane separation. A device, an electric desalination device, etc. may be added.
[0019]
The subsystem shown in FIG. 1A sequentially processes pure water by a low-pressure ultraviolet oxidizer 11, a membrane gas dissolving device 12, an ion exchange pure water device 13, and an ultrafiltration membrane separator 14.
[0020]
The low-pressure ultraviolet oxidizer 11 is not particularly limited as long as it decomposes TOC in pure water by irradiating ultraviolet rays having a wavelength of 170 nm or longer, preferably 180 to 200 nm. Further, the ion-exchange pure water device 13 and the ultrafiltration membrane separation device 14 are not particularly limited, and those used in ordinary subsystems can be used.
[0021]
The membrane type gas dissolving device 12 has the same configuration as that of a normal membrane type deaerator, and the air chamber and the water chamber are partitioned through a gas permeable membrane. In the membrane gas dissolving device 12, pure water treated by the low-pressure ultraviolet oxidizer 11 is passed through the water chamber, and a gas substantially free of oxygen is supplied to the air chamber at a pressure higher than the water chamber side pressure. Thus, the dissolved gas concentration of water is increased by allowing the gas to pass through the gas permeable membrane and shift to the water side. If the pressure of the air chamber of the membrane gas dissolving device 12 is lower than the water chamber side pressure, gas cannot be sufficiently transferred to the water side, so that the air chamber is at or above the water chamber side pressure, preferably the water chamber side pressure. Pressure is higher by 0.01 to 0.2 MPa, more preferably by about 0.02 to 0.05 MPa higher than the water chamber side pressure.
[0022]
As the gas substantially free of oxygen supplied to the air chamber of the membrane gas dissolving apparatus 12, a gas that does not affect the cleaning effect when the obtained ultrapure water is used for cleaning the wafer, for example, nitrogen ( N 2 ), an inert gas such as argon, and useful gases that improve the cleaning effect when used for cleaning, such as hydrogen and ammonia, etc. It can be used for the washing step. This gas preferably contains no oxygen, but may contain a trace amount of oxygen as long as the DO concentration of the obtained ultrapure water can be suppressed to a low concentration.
[0023]
The gas supplied to the membrane gas dissolving device 12 is particularly preferably N 2 gas having a purity of 99.9% or more.
[0024]
The L / G ratio of the membrane gas dissolving device 12 is 20 or less, preferably 10-20. If the L / G ratio is smaller than this range, the amount of supplied gas increases, which is uneconomical. If the ratio is large, the gas amount is insufficient and the dissolved gas concentration may not be sufficiently increased.
[0025]
Such a membrane gas dissolving device 12 is provided at an arbitrary position of the subsystem. The subsystem shown in FIG. 1 (a) is sequentially processed by the low-pressure ultraviolet oxidizer 11, the membrane gas dissolving device 12, the ion exchange pure water device 13 and the ultrafiltration membrane separation device 14, but FIG. As shown in b), the low-pressure ultraviolet oxidizer 11, the ion exchange pure water device 13, the membrane gas dissolving device 12, and the ultrafiltration membrane separator 14 may be sequentially processed. However, when the ion exchange pure water device 13 is provided at the subsequent stage of the membrane gas dissolving device 12, trace ions eluted from the membrane gas dissolving device 12 can be removed by the ion exchange pure water device 13, which is preferable. .
[0026]
In addition, as described above, a membrane type degassing device may be provided in the subsystem. In this case, the membrane type gas dissolving device is provided after the membrane type degassing device. FIG.1 (c) shows the example of the subsystem which provided the membrane type deaeration apparatus 15, In this subsystem, pure water is the low pressure ultraviolet-ray oxidation apparatus 11, the membrane type deaeration apparatus 15, and the membrane type gas dissolution apparatus. 12, the ion exchange pure water apparatus 13 and the ultrafiltration membrane separation apparatus 14 are sequentially processed. Also in this case, since the ion-exchanged pure water device 13 is provided in the subsequent stage of the membrane type degassing device 15 and the membrane type gas dissolving device 12, it was eluted from the membrane type degassing device 15 and the membrane type gas dissolving device 12. A trace amount of ions can be removed by the ion-exchange pure water device 13, which is preferable.
[0027]
The membrane type deaerator 15 has a gas chamber and a water chamber separated from each other through a gas permeable membrane in the same manner as the membrane type gas dissolver 12. The pure water treated by the ultraviolet oxidizer 11 is passed through and the air chamber is vacuumed by a vacuum pump (not shown) of about 20 to 100 Torr (2.7 × 10 −3 to 1.3 × 10 −2 MPa). It is sucked in every time and dissolved gas such as DO in water is removed by passing through the gas permeable membrane and moving to the air chamber side.
[0028]
The air chamber of the film-type deaerator 15, as needed, N 2, may be supplied with an inert gas such as argon. By supplying gas to the air chamber of the membrane deaerator 15, the deaeration efficiency can be increased. In this case, if the supply amount of the inert gas is too large, the degree of vacuum of the air chamber does not increase, and if it is too small, the effect of improving the deaeration efficiency cannot be obtained sufficiently, so that the L / G ratio is 20 to 40. It is preferable to set the degree.
[0029]
In the present invention, the gas permeable membrane used in the membrane gas dissolving device and the membrane degassing device may be a membrane that allows gas such as O 2 and N 2 to pass therethrough but does not pass water. There are polypropylene, silicon rubber, polytetrafluoroethylene, polyolefin, polyurethane and the like. Also, the membrane type is not particularly limited, and various types such as a hollow fiber and a spiral type can be used, but the hollow fiber type is particularly preferable. Various commercially available gas permeable membranes can be used.
[0030]
In the present invention, in the use of ultrasonic cleaning water for wafers, by such a subsystem, dissolved gas concentration of DO 100 ppb or less, dissolved gas concentration other than DO such as N 2 is 5 mg / L or more, preferably DO is 10 ppb or less. However, it is preferable to produce ultrapure water of about 5 to 12 mg / L.
[0031]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0032]
Example 1
City water (conductivity: 1.1 ms / m, DO concentration: 7.2 mg / L, N 2 (dissolved N 2 ) concentration: 12.1 mg / L) was used as a reverse osmosis membrane separator, mixed-bed ion-exchanged pure water. The pure water having a specific resistance of 17 MΩ · cm, DO concentration: 100 μg / L, and N 2 concentration: 2.5 mg / L, obtained by sequentially treating with the apparatus and the membrane type deaerator, is shown in FIG. In an ultrapure water production apparatus in which water was passed through the system at 1.5 m 3 / hr, the gas dissolution effect of the membrane gas dissolution apparatus was examined.
[0033]
The pure water after passing through the low-pressure ultraviolet oxidation device (Nippon Photo Science Co., Ltd .; 4 OXL type lamps) 11 was passed through the membrane type deaerator (Cellguard 4 inch gas permeable membrane) 15. Water was passed through a back membrane gas dissolving device (4 inch gas permeable membrane manufactured by Celgard).
[0034]
N 2 gas is supplied to the air chamber of the membrane deaerator 15 at 0.05 Nm 3 / hr (L / G ratio = 30), and the vacuum is 60 Torr (8.0 × 10 −3 MPa) by a vacuum pump. Depressurized every time.
[0035]
Further, N 2 was supplied at 0.075 Nm 3 / hr to the air chamber of the membrane gas dissolving device 12 at the same pressure as the water chamber side (pressure higher than the atmospheric pressure by 0.01 MPa) (L / G ratio = 20). ).
[0036]
The DO concentration and N 2 concentration of the obtained ultrapure water were examined, and the results are shown in Table 1.
[0037]
Example 2
In Example 1, the treatment was performed in the same manner except that the pressure in the air chamber of the membrane gas dissolving device 12 was set to 0.05 MPa higher than the water chamber side, and the DO concentration and N of the obtained ultrapure water were determined. Two concentrations were examined and the results are shown in Table 1.
[0038]
Comparative Example 1
In Example 1, instead of the membrane gas dissolving device 12, a membrane type deaeration device (manufactured by Celgard, 4 inch gas permeable membrane) was provided, and treatment was performed in the same manner except that two-stage membrane deaeration was performed. Then, the DO concentration and N 2 concentration of the obtained ultrapure water were examined, and the results are shown in Table 1.
[0039]
The second-stage membrane deaerator is supplied with N 2 gas at 0.05 Nm 3 / hr to the air chamber and reduced to 60 Torr with a vacuum pump, as with the first-stage membrane deaerator. did.
[0040]
[Table 1]
Figure 0004826864
[0041]
As is clear from Table 1, according to the present invention, ultrapure water having an extremely low DO concentration and a moderately high N 2 concentration can be produced.
[0042]
【The invention's effect】
As described above in detail, according to the ultrapure water production apparatus of the present invention, it is possible to produce ultrapure water having a significantly low DO concentration and a sufficient dissolved gas concentration. The ultrapure water produced by the ultrapure water production apparatus of the present invention can obtain a high cleaning effect with a good cavitation effect as ultrasonic cleaning water for a wafer.
[Brief description of the drawings]
FIGS. 1A and 1B are system diagrams showing a subsystem of an ultrapure water production apparatus according to a reference example, and FIG. 1C is a subsystem of the ultrapure water production apparatus of the present invention. It is a systematic diagram showing the embodiment.
FIG. 2 is a system diagram showing a conventional ultrapure water production apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pretreatment system 2 Primary pure water system 3 Subsystem 11 Low-pressure ultraviolet oxidizer 12 Membrane gas dissolution device 13 Ion exchange pure water device 14 Ultrafiltration membrane separator 15 Membrane deaerator

Claims (3)

サブシステムによって純水を処理して超純水を製造する超純水製造装置において、
該サブシステムは、ガス透過膜を介して気室と水室とが仕切られた膜式脱気装置と、該膜式脱気装置の後段に配置された、ガス透過膜によって隔てられた気室及び水室を有した膜式ガス溶解装置を備え、純水を該膜式脱気装置に通水した後該膜式ガス溶解装置に通水する超純水製造装置であって、
該膜式脱気装置の水室に純水を通水し、かつ、該膜式脱気装置の気室に窒素ガスを供給すると共に減圧して、該純水中の溶存ガスをガス透過膜を透過させて気室側に移行させて除去し、
該膜式ガス溶解装置の気室に窒素ガスを水室側圧力以上で供給すると共に、該膜式ガス溶解装置の水室に純水を通水して、該純水にガスを溶解させるようにしたことを特徴とする超純水製造装置。
In the ultrapure water production equipment that produces pure water by treating pure water with the subsystem,
The sub-system includes a membrane type deaeration device in which an air chamber and a water chamber are partitioned through a gas permeable membrane, and an air chamber separated by the gas permeable membrane , which is arranged in a subsequent stage of the membrane type deaeration device and a membrane type gas dissolving apparatus having a water chamber, the pure water an ultrapure water manufacturing apparatus for passing water to the membrane-type gas dissolving apparatus was passed through a membrane type degassing unit,
Purified water is passed through the water chamber of the membrane type deaerator, and nitrogen gas is supplied to the air chamber of the membrane type deaerator and the pressure is reduced, so that the dissolved gas in the pure water is removed from the gas permeable membrane. To pass through the air chamber and remove it,
Nitrogen gas is supplied to the air chamber of the membrane gas dissolving device at a pressure higher than the water chamber side pressure, and pure water is passed through the water chamber of the membrane gas dissolving device to dissolve the gas in the pure water. The ultrapure water production apparatus characterized by having made it.
請求項1において、該膜式ガス溶解装置の気室に供給される、前記窒素ガスの流量(Nm/hr)に対する、該膜式ガス溶解装置の水室に通水される純水の通水量(m/hr)の割合であるL/G比が20以下となるように、該ガス及び純水が該膜式ガス溶解装置に導入されることを特徴とする超純水製造装置。Oite to claim 1, pure water is supplied to the air chamber of the membrane-type gas dissolving apparatus, to the flow rate (Nm 3 / hr) of the nitrogen gas, is passed through the water chamber of the membrane-type gas dissolving apparatus The ultrapure water production is characterized in that the gas and pure water are introduced into the membrane gas dissolution apparatus so that the L / G ratio, which is the ratio of the water flow rate (m 3 / hr), is 20 or less apparatus. 請求項1又は2において、溶存酸素濃度10μg/L以下で、溶存ガス濃度5mg/L以上の超純水を製造することを特徴とする超純水製造装置。 3. The apparatus for producing ultrapure water according to claim 1, wherein ultrapure water having a dissolved oxygen concentration of 10 μg / L or less and a dissolved gas concentration of 5 mg / L or more is produced.
JP2001114263A 2001-04-12 2001-04-12 Ultrapure water production equipment Expired - Fee Related JP4826864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114263A JP4826864B2 (en) 2001-04-12 2001-04-12 Ultrapure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114263A JP4826864B2 (en) 2001-04-12 2001-04-12 Ultrapure water production equipment

Publications (2)

Publication Number Publication Date
JP2002307080A JP2002307080A (en) 2002-10-22
JP4826864B2 true JP4826864B2 (en) 2011-11-30

Family

ID=18965362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114263A Expired - Fee Related JP4826864B2 (en) 2001-04-12 2001-04-12 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP4826864B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470101B2 (en) * 2004-03-24 2010-06-02 栗田工業株式会社 Nitrogen-dissolved ultrapure water production method
JP4756327B2 (en) * 2005-06-21 2011-08-24 栗田工業株式会社 Nitrogen gas dissolved water production method
JP5320665B2 (en) * 2006-09-29 2013-10-23 栗田工業株式会社 Ultrapure water production apparatus and method
JP5663410B2 (en) * 2011-06-10 2015-02-04 オルガノ株式会社 Ultrapure water production method and apparatus
JP6819175B2 (en) * 2016-09-20 2021-01-27 栗田工業株式会社 Diluting chemical manufacturing equipment and diluting chemical manufacturing method
JP6268660B1 (en) * 2017-05-18 2018-01-31 三菱重工環境・化学エンジニアリング株式会社 Biological treatment apparatus, biological treatment method, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192610B2 (en) * 1996-05-28 2001-07-30 キヤノン株式会社 Method for cleaning porous surface, method for cleaning semiconductor surface, and method for manufacturing semiconductor substrate
JP3332323B2 (en) * 1996-10-29 2002-10-07 オルガノ株式会社 Cleaning method and cleaning device for electronic component members
JP3856558B2 (en) * 1997-03-31 2006-12-13 忠弘 大見 Ultrapure water sterilization method and sterilization ultrapure water supply system

Also Published As

Publication number Publication date
JP2002307080A (en) 2002-10-22

Similar Documents

Publication Publication Date Title
JP5045099B2 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
TWI648093B (en) Ultrapure water manufacturing device and method
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
US20050263458A1 (en) Process for removing organics from ultrapure water
JP2005538827A (en) Method for removing organic impurities from water
JP2008272713A (en) Method for producing ultrapure water, and production device therefor
JP2004000919A (en) Apparatus for producing desalted water
JP4826864B2 (en) Ultrapure water production equipment
JP4552327B2 (en) Ultrapure water production equipment
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP4447212B2 (en) Ultrapure water production method and ultrapure water production apparatus
JPH0929251A (en) Ultrapure water preparing apparatus
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2002336886A (en) Extrapure water making device and extrapure water making method
JP2002355683A (en) Ultrapure water making method and apparatus
JP6417734B2 (en) Ultrapure water production method
JP6629383B2 (en) Ultrapure water production method
JP3543435B2 (en) Ultrapure water production method
JP2002001069A (en) Method for producing pure water
JP3645007B2 (en) Ultrapure water production equipment
JP3992996B2 (en) Wastewater treatment method and apparatus
US20230242419A1 (en) Ultrapure water production system and ultrapure water production method
JPH05138167A (en) Ultra pure water supplying equipment
JP2003010849A (en) Secondary pure water making apparatus
JP3617468B2 (en) Decarbonation method and pure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees