JPH08173978A - Method for removing organic substance - Google Patents

Method for removing organic substance

Info

Publication number
JPH08173978A
JPH08173978A JP32737194A JP32737194A JPH08173978A JP H08173978 A JPH08173978 A JP H08173978A JP 32737194 A JP32737194 A JP 32737194A JP 32737194 A JP32737194 A JP 32737194A JP H08173978 A JPH08173978 A JP H08173978A
Authority
JP
Japan
Prior art keywords
toc
persulfate
water
amount
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32737194A
Other languages
Japanese (ja)
Other versions
JP3259557B2 (en
Inventor
Hiroshi Morita
博志 森田
Kashu Obata
嘉修 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP32737194A priority Critical patent/JP3259557B2/en
Publication of JPH08173978A publication Critical patent/JPH08173978A/en
Application granted granted Critical
Publication of JP3259557B2 publication Critical patent/JP3259557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE: To reduce the amount of persulfuric acid and/or persulfate to be added as an oxidizing agent in the removal of organic substances in raw water by deionization treatment after the TOC component in the raw water being decomposed by heating in the presence of the oxidizing agent. CONSTITUTION: The amount of persulfuric acid and/or persulfate to be added as an oxidizing agent, which is reduced as S2 O8 <2-> , is made 20-45 pts.wt. per 1 pt.wt. of TOC in raw water. In this way, in a heat decomposition method, TOC can adequately be heat-decomposed by the addition of persulfate in an amount less than a theoretical value to accomplish efficient treatment with the reduced amount of perfulfate at low costs, so that a deionization process is prevented from being affected by the heat decomposition with excessive persulfate. In this way, the scale of equipment in the deionization process can be contracted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機物の除去方法に係
り、特に、水中の溶存有機物を簡便な方法で分解、除去
して、半導体洗浄用等として広く使用される超純水又は
超純水製造用の1次純水に要求される低TOC(全有機
体炭素)濃度を達成することを可能とする有機物の除去
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing organic substances, and more particularly to ultrapure water or ultrapure water which is widely used for cleaning semiconductors by decomposing and removing dissolved organic substances in water by a simple method. The present invention relates to a method for removing organic substances that can achieve the low TOC (total organic carbon) concentration required for primary pure water for production.

【0002】[0002]

【従来の技術及び先行技術】主に半導体基盤洗浄用に用
いられる超純水において、TOCの除去は他の不純物
(微粒子、イオンなど)の除去と同様に極めて重要であ
る。このため、目標水準にまでTOCを低減させた処理
水を得るべく、現在、逆浸透膜分離装置、イオン交換純
水装置、低圧紫外線酸化装置などによる処理が行われて
いる。しかしながら、これらの装置を用いて、工業用
水、井水、水道水及び回収水を処理してTOC5ppb
以下の処理水を得るためには、前後段2基の逆浸透膜分
離装置と多数の紫外線ランプを必要とし、装置建設コス
トや運転コスト等、システム全体のコストアップの要因
となっていた。
2. Description of the Prior Art In ultrapure water mainly used for cleaning semiconductor substrates, removal of TOC is as important as removal of other impurities (fine particles, ions, etc.). For this reason, in order to obtain treated water whose TOC has been reduced to a target level, treatment is currently being performed by a reverse osmosis membrane separation device, an ion exchange pure water device, a low pressure ultraviolet oxidation device, and the like. However, these devices are used to treat industrial water, well water, tap water and recovered water to obtain TOC5ppb.
In order to obtain the following treated water, two reverse osmosis membrane separators at the front and rear stages and a large number of ultraviolet lamps are required, which has been a factor of increasing the cost of the entire system such as equipment construction cost and operation cost.

【0003】このような状況のもとに、本出願人は、先
に過硫酸塩などの酸化剤を添加して原水中のTOCを加
熱分解する方法を提案した(PCT/JP94/001
52。以下「先願」という。)。この方法によれば、原
水のTOC濃度に応じた適当量以上の酸化剤を添加する
ことにより、所定時間、所定温度の反応によってTOC
を1段階で5ppb以下にまで低減することができ、し
かも加熱工程を含むため、バイオファウリングも軽減さ
せることができる。
Under these circumstances, the applicant of the present invention has previously proposed a method of thermally decomposing TOC in raw water by adding an oxidizing agent such as persulfate (PCT / JP94 / 001).
52. Hereinafter referred to as "first application". ). According to this method, by adding an appropriate amount or more of an oxidizing agent according to the TOC concentration of the raw water, the TOC can be obtained by a reaction at a predetermined temperature for a predetermined time.
Can be reduced to 5 ppb or less in one step, and since a heating step is included, biofouling can also be reduced.

【0004】[0004]

【発明が解決しようとする課題】上記先願の方法では、
酸化剤である過硫酸塩の添加量について、TOC1mg
/l当り70mg/l程度とされているのみであるが、
本発明者らは、上記先願の方法に基き、過硫酸塩の添加
量について、より一層詳細な研究を行った結果、先願に
係る加熱分解法において、酸化剤としての過硫酸塩の添
加量を著しく低減できることが可能であることを見出し
た。
SUMMARY OF THE INVENTION In the method of the above-mentioned prior application,
Regarding the addition amount of persulfate which is an oxidant, TOC 1 mg
Although it is only about 70 mg / l per liter,
Based on the method of the above-mentioned prior application, the present inventors conducted a more detailed study on the addition amount of persulfate, and as a result, in the thermal decomposition method according to the previous application, the addition of persulfate as an oxidant was added. It has been found that it is possible to significantly reduce the amount.

【0005】従って、本発明の目的は、原水を酸化剤の
存在下で加熱処理して原水中のTOC成分を分解した
後、脱イオン処理することにより原水中の有機物を除去
するに当り、酸化剤としての過硫酸及び/又は過硫酸塩
の添加量を先願で示される量或いは単純な湿式酸化反応
のための理論量よりもはるかに少ない量とすることがで
きる有機物の除去方法を提供することにある。
Therefore, an object of the present invention is to treat raw water by heating it in the presence of an oxidizing agent to decompose TOC components in the raw water, and then deionize the raw water to remove organic substances from the raw water. Provided is a method for removing an organic substance, wherein the addition amount of persulfuric acid and / or persulfate as an agent can be made to be much less than the amount shown in the prior application or the theoretical amount for a simple wet oxidation reaction. Especially.

【0006】[0006]

【課題を解決するための手段】本発明の有機物の除去方
法は、原水を酸化剤の存在下で加熱処理して原水中のT
OC成分を分解した後、脱イオン処理することにより原
水中の有機物を除去するに当り、酸化剤として過硫酸及
び/又は過硫酸塩をS28 2- 換算で原水中のTOC1
重量部当り20〜45重量部添加することを特徴とす
る。
The method for removing organic substances according to the present invention is characterized in that raw water is subjected to heat treatment in the presence of an oxidizing agent to remove T in raw water.
After decomposing the OC component and then removing the organic matter in the raw water by deionizing, persulfuric acid and / or persulfate as an oxidizer is converted into S 2 O 8 2− in TOC 1 in the raw water.
It is characterized by adding 20 to 45 parts by weight per part by weight.

【0007】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0008】なお、以下において、過硫酸塩と過硫酸と
を「過硫酸塩等」と称す。
In the following, persulfate and persulfate are referred to as "persulfate and the like".

【0009】本発明の有機物の除去方法においては、必
要に応じて前処理を施した原水に酸化剤として過硫酸塩
等を添加して加熱分解処理した後、脱イオン処理し、更
に必要に応じて後処理する。
In the method for removing organic matter of the present invention, if necessary, persulfate or the like is added as an oxidizing agent to raw water which has been pretreated, followed by heat decomposition treatment, deionization treatment and, if necessary, further treatment. And post-process.

【0010】原水としては、一般に半導体洗浄工程から
の回収水、工水、市水、井水及びこれらを混合したもの
が用いられ、半導体洗浄工程からの回収水については、
適当な前処理工程を経た後、加熱分解処理工程に導入す
るのが好ましい。
As the raw water, generally, recovered water from the semiconductor cleaning process, industrial water, city water, well water and a mixture thereof are used. Regarding the recovered water from the semiconductor cleaning process,
It is preferable to introduce the compound into a heat decomposition treatment step after a suitable pretreatment step.

【0011】前処理工程としては、原水水質に応じて任
意の手段を設けることができ、例えば、凝集、濾過、浮
上、吸着、イオン交換などの手段を採用することができ
る。具体的な前処理工程としては、次の(i) 〜(iii) が
挙げられる。特に、半導体洗浄工程からの回収水につい
ては、下記(iii) の前処理により、活性炭吸着塔で含有
されるH22 を除去した後、強アニオン交換塔でフッ
素の除去を行って加熱分解処理工程に導入するのが好ま
しい。
As the pretreatment step, any means can be provided depending on the quality of the raw water, and for example, means such as coagulation, filtration, flotation, adsorption, ion exchange and the like can be adopted. Specific pretreatment steps include the following (i) to (iii). In particular, for the water recovered from the semiconductor washing process, the H 2 O 2 contained in the activated carbon adsorption tower was removed by the pretreatment described in (iii) below, and then the strong anion exchange tower was used to remove fluorine for thermal decomposition. It is preferably introduced into the treatment process.

【0012】(i) 凝集・加圧浮上・濾過装置 (ii) イオン交換塔 (iii) 活性炭吸着塔→アニオン交換塔 本発明において、加熱分解処理に当り、原水に添加する
酸化剤としては、パーオキシ二硫酸ナトリウム(Na2
28 )、パーオキシ二硫酸カリウム(K22
8 )、パーオキシ二硫酸アンモニウム((NH42
28 )等の過硫酸塩や過硫酸(H228 )が挙げ
られるが、Na228 ,K228などの過硫酸
塩が好適である。
(I) Coagulation / pressure floating / filtration device (ii) Ion exchange tower (iii) Activated carbon adsorption tower → anion exchange tower In the present invention, as the oxidizing agent added to the raw water during the heat decomposition treatment, peroxidation is used. Sodium disulfate (Na 2
S 2 O 8 ), potassium peroxydisulfate (K 2 S 2 O
8 ), ammonium peroxydisulfate ((NH 4 ) 2 S
2 O 8 ) and persulfates (H 2 S 2 O 8 ), and persulfates such as Na 2 S 2 O 8 and K 2 S 2 O 8 are preferable.

【0013】本発明において、酸化剤としての過硫酸塩
等の添加量は、原水中のTOC1重量部当りS28 2-
として20〜45重量部の範囲で、原水水質や要求され
る処理水水質に応じて任意に決定される。TOC1重量
部当りのS28 2- 換算の過硫酸塩等の添加量が20重
量部よりも少ないと、必要な酸化剤が不足し、TOCが
多く残留し、逆に45重量部より多いと、過剰となり、
後段の装置に負荷をかけ、後段装置からTOC成分を溶
出させるなどの不具合を生じる。過硫酸塩等はTOC1
重量部当りのS28 2- の割合として25〜35重量部
添加するのが好ましい。
In the present invention, the addition amount of persulfate or the like as an oxidizing agent is S 2 O 8 2− per 1 part by weight of TOC in raw water.
Is in the range of 20 to 45 parts by weight and is arbitrarily determined according to the raw water quality and the required treated water quality. If the amount of persulfate converted into S 2 O 8 2-based on 1 part by weight of TOC is less than 20 parts by weight, the required oxidizing agent will be insufficient and a large amount of TOC will remain, and conversely it will be more than 45 parts by weight. And the excess,
A load is applied to the device at the latter stage, and problems such as elution of the TOC component from the device at the latter stage occur. Persulfate is TOC1
It is preferable to add 25 to 35 parts by weight as a ratio of S 2 O 8 2− per part by weight.

【0014】この加熱分解処理における加熱温度は、9
0℃以上、特に110〜150℃とするのが好ましく、
また、加熱分解反応時間は、加熱温度や酸化剤の添加量
によっても異なるが、通常の場合1〜15分とするのが
好ましい。
The heating temperature in this thermal decomposition treatment is 9
0 ° C or higher, particularly preferably 110 to 150 ° C,
In addition, the thermal decomposition reaction time varies depending on the heating temperature and the amount of the oxidizing agent added, but in general, it is preferably 1 to 15 minutes.

【0015】この加熱分解処理に際しては、触媒として
白金担持触媒、白金メッキ触媒等の白金系の酸化触媒に
接触させても良い。
In this heat decomposition treatment, the catalyst may be brought into contact with a platinum-based catalyst such as a platinum-supported catalyst or a platinum plating catalyst.

【0016】なお、加熱分解処理のpH条件について
は、特に調整の必要はないが、酸性側の方がTOCが分
解し易い。通常、中性の原水に過硫酸塩等を添加すると
pHは酸性側となるので、特にpH調整の必要はない。
The pH condition of the heat decomposition treatment does not need to be adjusted, but TOC is more likely to decompose on the acidic side. Usually, when a persulfate or the like is added to neutral raw water, the pH becomes acidic, so that it is not particularly necessary to adjust the pH.

【0017】加熱分解処理水は、次いで、脱イオン処理
に供するが、この脱イオン処理に先立ち、必要に応じ
て、酸化剤除去処理を行う。
The heat-decomposed water is then subjected to a deionization treatment, and if necessary, an oxidizing agent removal treatment is performed prior to this deionization treatment.

【0018】即ち、加熱分解工程における過剰の酸化剤
が加熱分解処理水中に含有されて脱イオン処理工程に流
入すると、脱イオン処理工程の逆浸透膜やイオン交換樹
脂を酸化劣化させ、劣化した樹脂の溶出によるTOCの
増加や装置寿命の低減等の問題を生じる。
That is, when the excess oxidizing agent in the heat decomposition step is contained in the heat decomposition treatment water and flows into the deionization treatment step, the reverse osmosis membrane and the ion exchange resin in the deionization treatment step are oxidatively deteriorated and the deteriorated resin is deteriorated. This causes problems such as an increase in TOC and a reduction in device life due to the elution of water.

【0019】本発明においては、酸化剤としての過硫酸
塩等の添加量が少ないことから、加熱分解処理水中に含
まれる過硫酸塩等の量は少なく、従って、酸化剤除去処
理は必ずしも必要とされないが、酸化剤除去処理を行う
ことにより、酸化剤による脱イオン処理工程への影響を
確実に防止することができる。
In the present invention, since the addition amount of persulfate or the like as the oxidizing agent is small, the amount of the persulfate or the like contained in the water for thermal decomposition treatment is small, and therefore the oxidizing agent removal treatment is not always necessary. Although not performed, the effect of the oxidizing agent on the deionization treatment step can be reliably prevented by performing the oxidizing agent removal treatment.

【0020】この酸化剤除去処理手段としては、活性炭
及び/又は適当な触媒を充填した充填塔を採用すること
ができる。
As the oxidizing agent removing treatment means, a packed column packed with activated carbon and / or a suitable catalyst can be used.

【0021】活性炭としては、粒状、粉状、繊維状のい
ずれでも良いが、特に粒状か繊維状のものが通水効率の
面で有利である。活性炭のタイプ(ヤシガラ系、石炭
系、その他)には特に制限はない。一方、触媒として
は、一般に用いられている白金系、パラジウム系のもの
など、多様なものを用いることができる。
The activated carbon may be granular, powdery or fibrous, but granular or fibrous is particularly advantageous in terms of water flow efficiency. There is no particular limitation on the type of activated carbon (coconut shell type, coal type, etc.). On the other hand, as the catalyst, various catalysts such as commonly used platinum catalyst and palladium catalyst can be used.

【0022】上記活性炭及び触媒は、そのいずれか一方
を用いるだけでも目的は達せられるが、場合によって、
両者を併用しても良い。その他、酸化剤除去手段として
は、紫外線照射も採用可能である。
The purpose of the above-mentioned activated carbon and catalyst can be achieved by using only one of them, but in some cases,
You may use both together. In addition, ultraviolet irradiation can also be adopted as the oxidizing agent removing means.

【0023】酸化剤除去処理条件は、加熱分解処理水中
に残留する過硫酸塩等が、後段の脱イオン処理工程のイ
オン交換樹脂や逆浸透膜を酸化劣化させない程度の、十
分低濃度にまで除去できるような条件であれば良く、加
熱分解処理水中の残留過硫酸塩等の濃度や、酸化剤除去
工程の仕様、即ち、活性炭や触媒の形状、粒径、充填量
等によって適宜決定される。例えば、10ppmの残留
Na225 を含む加熱分解処理水を、20/40メ
ッシュの粒状活性炭充填塔で処理する場合、SV=40
hr-1程度以下とするのが好ましい。
Oxidizing agent removal treatment conditions are such that the persulfate remaining in the heat-decomposition-treated water is removed to a sufficiently low concentration such that the ion exchange resin and reverse osmosis membrane in the subsequent deionization treatment step are not oxidized and deteriorated. The condition is that it can be obtained, and it is appropriately determined depending on the concentration of the residual persulfate and the like in the heat-decomposition-treated water and the specifications of the oxidizing agent removal step, that is, the shape, particle size, and filling amount of the activated carbon and the catalyst. For example, when heat-decomposed water containing 10 ppm of residual Na 2 S 2 O 5 is treated in a granular activated carbon packed column of 20/40 mesh, SV = 40
It is preferably about hr −1 or less.

【0024】なお、加熱分解処理水は、通常pH4以下
の酸性であるので、このような残留酸化剤除去装置を腐
食から保護するために、加熱分解処理工程と酸化剤除去
工程との間にpH調整のためのアルカリ注入手段を設
け、酸性水を中和した後、酸化剤除去工程に導入するの
が好ましい。
Since the heat-decomposed water is usually acidic with a pH of 4 or less, in order to protect such a residual oxidant removing device from corrosion, the pH between the heat-decomposing step and the oxidant removing step is adjusted. It is preferable to provide an alkali injecting means for adjustment, neutralize the acidic water, and then introduce the oxidant removal step.

【0025】本発明において、脱イオン処理手段として
は、イオン交換塔、逆浸透膜分離装置等を必要に応じて
組み合せて用いることができる。即ち、例えば、イオン
交換塔→逆浸透膜分離装置、逆浸透膜分離装置→イオン
交換塔、或いは、逆浸透膜分離装置→逆浸透膜分離装置
とすることができる。
In the present invention, as the deionization treatment means, an ion exchange column, a reverse osmosis membrane separation device or the like can be used in combination as required. That is, for example, an ion exchange column → reverse osmosis membrane separation device, a reverse osmosis membrane separation device → ion exchange tower, or a reverse osmosis membrane separation device → reverse osmosis membrane separation device can be used.

【0026】また、後処理手段としては、要求される処
理水水質に応じて、任意の手段を採用することができ、
紫外線酸化による殺菌、TOC分解、或いは、イオン交
換、逆浸透膜分離、精密濾過膜分離、限外濾過膜分離装
置等、一般には超純水製造における二次純水製造工程
(サブシステム)に相当する工程、即ち、低圧紫外線照
射装置(有機物分解)→混床式イオン交換塔(非再生型
イオン交換器:分解生成物の除去)→限外濾過膜分離装
置(イオン交換塔から流出するイオン交換樹脂の微粒子
の分離)が採用される。
As the post-treatment means, any means can be adopted according to the required quality of treated water.
Sterilization by UV oxidation, TOC decomposition, or ion exchange, reverse osmosis membrane separation, microfiltration membrane separation, ultrafiltration membrane separation device, etc., generally equivalent to the secondary pure water production process (subsystem) in ultrapure water production Process, namely, low-pressure ultraviolet irradiation device (organic matter decomposition) → mixed bed type ion exchange tower (non-regenerative ion exchanger: removal of decomposition products) → ultrafiltration membrane separation device (ion exchange flowing out from the ion exchange tower) Separation of resin particles) is adopted.

【0027】脱イオン処理工程及び後処理工程の具体例
としては、次の(i) 〜(v) が挙げられる。
Specific examples of the deionization treatment step and the post-treatment step include the following (i) to (v).

【0028】(i) 脱炭酸塔→アニオン交換塔→逆浸透
膜分離装置→二次純水製造工程 (ii) 逆浸透膜分離装置→低圧逆浸透膜分離装置→二次
純水製造工程 (iii) カチオン交換塔→脱炭酸塔→アニオン交換塔→逆
浸透膜分離装置→二次純水製造工程 (iv) 弱アニオン交換塔→強カチオン交換塔→強アニオ
ン交換塔→二次純水製造工程 (v) 逆浸透膜分離装置→イオン交換塔(混床式イオン
交換塔又は(強カチオン交換塔→強アニオン交換塔))
→二次純水製造工程 これら脱イオン処理工程及び後処理工程の装置は予め加
熱処理によりTOC成分を除去している上に、酸化剤と
しての過硫酸塩等の添加量も少ないため、負荷が軽減さ
れ、小容量小型装置を採用できる。
(I) Decarbonation tower → anion exchange tower → reverse osmosis membrane separation device → secondary pure water production process (ii) reverse osmosis membrane separation device → low pressure reverse osmosis membrane separation device → secondary pure water production process (iii ) Cation exchange tower → decarboxylation tower → anion exchange tower → reverse osmosis membrane separation device → secondary pure water production step (iv) weak anion exchange tower → strong cation exchange tower → strong anion exchange tower → secondary pure water production step ( v) Reverse osmosis membrane separator → ion exchange tower (mixed bed type ion exchange tower or (strong cation exchange tower → strong anion exchange tower))
→ Secondary deionized water production process These deionization process and post-treatment devices do not have a load because the TOC component is removed by heat treatment in advance and the addition amount of persulfate as an oxidizing agent is small. It is reduced, and small capacity small equipment can be adopted.

【0029】[0029]

【作用】加熱分解法によるTOCの除去方式において
は、 (a) 簡単な装置でTOCを低レベルにまで除去でき
る。 (b) 原水のTOC濃度に応じて、酸化剤添加量を調整
するだけで対応できる。 (c) 加熱工程があるので、菌の繁殖を防止し、バクテ
リアファウリングを軽減できる。 といった優れた利点がある。
In the method of removing TOC by the thermal decomposition method, (a) TOC can be removed to a low level with a simple device. (b) It can be dealt with only by adjusting the amount of the oxidizing agent added according to the TOC concentration of the raw water. (c) Since there is a heating step, bacterial growth can be prevented and bacterial fouling can be reduced. There are excellent advantages such as.

【0030】本発明者らは、このような利点を有する過
硫酸塩等を用いる加熱分解法について詳しく研究したと
ころ、過硫酸塩等の添加量は、先願で示されていた量な
いし単純な湿式酸化反応のための理論量よりもはるかに
少ない量で足りることを見出した。なお、ここで言う理
論量とは、以下の反応式から導かれる量のことである。
The present inventors have studied in detail the thermal decomposition method using a persulfate having the above-mentioned advantages. As a result, the amount of the persulfate added is the amount shown in the previous application or a simple amount. It was found that much less than the theoretical amount for the wet oxidation reaction is sufficient. The theoretical amount mentioned here is an amount derived from the following reaction formula.

【0031】即ち、TOCとしての処理対象の一つとな
るイソプロピルアルコール(IPA:C37 OH)
(この物質は、半導体洗浄廃水を回収し、これを原水と
して純水を得る場合に洗浄廃水に含まれている代表的な
物質である。)を、過硫酸塩としてNa228 を用
いて分解する場合、次のような反応式に従って分解反応
が起こる。
That is, isopropyl alcohol (IPA: C 3 H 7 OH), which is one of the objects to be treated as TOC
(This substance is a typical substance contained in the cleaning wastewater when semiconductor cleaning wastewater is recovered and pure water is obtained by using this as raw water.), And Na 2 S 2 O 8 is used as persulfate. When used for decomposition, a decomposition reaction occurs according to the following reaction formula.

【0032】C3H7OH+9Na2S2O8+9H2O→3CO3+4H2O+9N
a2SO4 +9H2SO4 上記反応式より明らかなように、1モルのIPA(3モ
ルの炭素)に対して9モルのNa228 が必要であ
る。これを濃度で表すと、1ppmのTOCの酸化分解
には59.5ppmのNa228 (K228
あれば67.5ppm)を要することとなる。このた
め、先願においては、TOC1mg/l当り、過硫酸塩
70mg/l程度の添加が好ましいとされている。
C 3 H 7 OH + 9Na 2 S 2 O 8 + 9H 2 O → 3CO 3 + 4H 2 O + 9N
a 2 SO 4 + 9H 2 SO 4 As is clear from the above reaction formula, 9 mol of Na 2 S 2 O 8 is required for 1 mol of IPA (3 mol of carbon). Expressing this in terms of concentration, 59.5 ppm of Na 2 S 2 O 8 (67.5 ppm for K 2 S 2 O 8 ) is required for the oxidative decomposition of 1 ppm of TOC. For this reason, in the prior application, it is preferable to add about 70 mg / l of persulfate per 1 mg / l of TOC.

【0033】しかしながら、本発明者らの研究により、
過硫酸塩の添加量と分解するTOCの量との関係を詳し
く調べた結果、上述の理論量比より少ない過硫酸塩等の
添加でTOCが十分に、しかも再現性良く分解されるこ
とが見出された。
However, according to the research conducted by the present inventors,
As a result of detailed investigation of the relationship between the amount of persulfate added and the amount of TOC decomposed, it was found that TOC was decomposed sufficiently and with good reproducibility even if the amount of persulfate, etc., was smaller than the above theoretical amount ratio. Was issued.

【0034】例えば、IPAの分解においては、1pp
mのTOCに対し、おおよそ40〜45ppm程度のN
228 (即ち、上述の理論量の7割程度)を添加
すれば、IPA由来のTOCは2ppb程度にまで低減
できた(130℃,5分間反応)。このようなことは、
IPAの分解に限らず、例えば厚木市水中のTOC成分
の分解においても認められた。
For example, in the decomposition of IPA, 1 pp
m TOC of about 40-45ppm N
By adding a 2 S 2 O 8 (that is, about 70% of the above theoretical amount), TOC derived from IPA could be reduced to about 2 ppb (reaction at 130 ° C. for 5 minutes). Such a thing,
Not only the decomposition of IPA, but also the decomposition of TOC components in the water of Atsugi City, for example.

【0035】この知見に基づき、実際の超純水製造シス
テム中の加熱分解装置の運転条件のうち、反応温度、時
間は変えずに、酸化剤としての過硫酸塩の添加量を、先
願で設定した値に対し、1〜5割低減させることが可能
となった。
Based on this finding, the amount of persulfate added as an oxidant in the actual operating conditions of the thermal decomposition apparatus in the ultrapure water production system was determined by the prior application without changing the reaction temperature and time. It has become possible to reduce the set value by 10 to 50%.

【0036】[0036]

【実施例】以下に実験例及び実施例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to experimental examples and examples.

【0037】実験例1 試薬特級のIPAを超純水に溶解した水を原水とし、酸
化剤としてNa228 を用い、TOCの加熱分解実
験を行った。
Experimental Example 1 A TOC thermal decomposition experiment was carried out using water prepared by dissolving special grade IPA in ultrapure water as raw water and Na 2 S 2 O 8 as an oxidizing agent.

【0038】反応温度を130℃、反応時間を5分間、
原水TOCを約1000ppb(IPA:1667pp
b)に固定し、Na228 注入量を表1に示す通り
種々変えて、処理水TOCへの影響を調べた。結果を表
1に示す。
The reaction temperature is 130 ° C., the reaction time is 5 minutes,
Raw water TOC is about 1000 ppb (IPA: 1667 pp
It was fixed to b), and the influence on the treated water TOC was examined by changing the injection amount of Na 2 S 2 O 8 variously as shown in Table 1. The results are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】表1より、1ppmのNa228 (S
28 2- としては0.8ppm)当りのTOC分解量は
25ppbであり、モル比としては、1モルのCを2モ
ルのNa228 で分解できることが明らかである。
From Table 1, 1 ppm of Na 2 S 2 O 8 (S
The amount of TOC decomposed per 0.8 ppm of 2 O 8 2- ) is 25 ppb, and it is clear that 1 mol of C can be decomposed with 2 mol of Na 2 S 2 O 8 in terms of molar ratio.

【0041】実験例2 厚木市水(TOC:570ppb)を原水として実験例
1と同様の実験を行い、結果を表2に示した。
Experimental Example 2 The same experiment as in Experimental Example 1 was conducted using Atsugi city water (TOC: 570 ppb) as raw water, and the results are shown in Table 2.

【0042】[0042]

【表2】 [Table 2]

【0043】表2より、1ppmのNa228 で3
0ppb前後のTOCを分解することができ、モル比と
しては1モルのCを1.7モル前後のNa228
分解できることが明らかである。
From Table 2, it is possible to obtain 3 with 1 ppm of Na 2 S 2 O 8 .
It is clear that TOC of about 0 ppb can be decomposed, and 1 mol of C can be decomposed with about 1.7 mol of Na 2 S 2 O 8 as a molar ratio.

【0044】実施例1 図1に示す純水製造システムにより、下記原水を通水処
理した。
Example 1 The following raw water was passed through the pure water production system shown in FIG.

【0045】原水:原水1(IPA溶解超純水,TO
C:1500ppb)と原水2(厚木市水,TOC:6
00ppb)とを原水1:原水2=3:1の割合で混合
した水(TOC:1275ppb) 本実施例のシステムでは、原水を加温熱交換器1で加熱
した後、酸化剤としてNa228 を添加し、加熱分
解反応器2でTOCの加熱分解を行う。加熱分解処理水
は、次いで冷却熱交換器3で冷却した後、中和用のNa
OHを添加し、活性炭塔4で残留Na228 の除去
を行う。次いで、流量調整用のタンク5を経て逆浸透膜
分離装置6、イオン交換塔7に順次通水して処理水を得
た。各部の仕様及び処理条件は下記の通りである。な
お、図1中、カッコ内の数値は、各部の通水流量であ
る。また、〜はサンプリングポイントを示す。
Raw water: Raw water 1 (IPA dissolved ultrapure water, TO
C: 1500 ppb) and raw water 2 (Atsugi city water, TOC: 6)
Water (TOC: 1275 ppb), which is a mixture of raw water 1: raw water 2 = 3: 1 (TOC: 1275 ppb). In the system of the present embodiment, the raw water is heated by the heating heat exchanger 1 and then Na 2 S 2 is used as an oxidant. O 8 is added, and TOC is thermally decomposed in the thermal decomposition reactor 2. The heat-decomposed water is then cooled in the cooling heat exchanger 3 and then Na for neutralization is used.
OH is added and residual Na 2 S 2 O 8 is removed in the activated carbon tower 4. Next, water was sequentially passed through the reverse osmosis membrane separation device 6 and the ion exchange tower 7 via the flow rate adjusting tank 5 to obtain treated water. The specifications and processing conditions of each part are as follows. In addition, in FIG. 1, the numerical value in parentheses is the water flow rate of each part. Further, ~ indicates sampling points.

【0046】Na228 添加量:50ppm 加熱分解反応器: 反応器容量=10リットル 反応温度=130℃ 平均滞留時間=5分間 活性炭塔: 活性炭=クラレケミカル(株)製「クラレコールKW
20/40」を3リットル充填 SV=40hr-1 逆浸透膜分離装置: 装置=日東電工(株)製「NTU 729 HRS2」 透過水回収率=70% イオン交換塔: イオン交換樹脂=三菱化学(株)製「ダイヤイオンSM
N−UP」(強酸性カチオン交換樹脂と強塩基性アニオ
ン交換樹脂との混合品)を500ml充填 SV=29.4hr-1 各部で採取した水の水質を分析し、結果を表3に示し
た。
Addition amount of Na 2 S 2 O 8 : 50 ppm Thermal decomposition reactor: Reactor capacity = 10 liters Reaction temperature = 130 ° C Average residence time = 5 minutes Activated carbon tower: Activated carbon = Kuraray Coal KW manufactured by Kuraray Chemical Co., Ltd.
20/40 "filled with 3 liters SV = 40hr -1 Reverse osmosis membrane separation device: Device =" NTU 729 HRS2 "manufactured by Nitto Denko Corporation Permeate recovery rate = 70% Ion exchange tower: Ion exchange resin = Mitsubishi Chemical ( Co., Ltd. "Diaion SM
N-UP "(a mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin) was charged in an amount of 500 ml SV = 29.4 hr -1 The water quality of water collected at each part was analyzed, and the results are shown in Table 3. .

【0047】[0047]

【表3】 [Table 3]

【0048】表3より、TOC1重量部に対するNa2
28 添加量がS28 2- 換算で約32重量部の加熱
分解処理で、TOCの極めて少ない純水が得られること
が明らかである。
From Table 3, Na 2 per 1 part by weight of TOC is added.
In S 2 O 8 addition amount heat decomposing about 32 parts by weight S 2 O 8 2-terms, it is clear that very few pure water TOC is obtained.

【0049】[0049]

【発明の効果】以上詳述した通り、本発明の有機物の除
去方法によれば、TOCの加熱分解に当り、酸化剤とし
ての過硫酸塩等の添加量を低減して低コストで効率的な
処理を行うことができる。また、過硫酸塩等の添加量が
少ないことから、結果として、過剰の過硫酸塩等による
加熱分解処理後の脱イオン処理工程への影響が防止され
ると共に、添加した過硫酸塩等に由来する加熱分解処理
水中の硫酸塩及び硫酸濃度が低いことから、脱イオン処
理工程の装置規模の縮小を図ることもできる。
As described above in detail, according to the method for removing organic substances of the present invention, the amount of persulfate or the like as an oxidant added is reduced at the time of thermal decomposition of TOC, resulting in low cost and efficient operation. Processing can be performed. In addition, since the amount of persulfate added is small, as a result, the influence of excess persulfate on the deionization treatment step after the thermal decomposition treatment is prevented and the addition of persulfate, etc. Since the concentration of sulfate and sulfuric acid in the heat-decomposition-treated water is low, the device scale of the deionization process can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における純水製造システムを示すフロ
ーチャートである。
FIG. 1 is a flowchart showing a pure water production system in a first embodiment.

【符号の説明】 1 加温熱交換器 2 加熱分解反応器 3 冷却熱交換器 4 活性炭塔 5 タンク 6 逆浸透膜分離装置 7 イオン交換塔[Explanation of symbols] 1 heating heat exchanger 2 thermal decomposition reactor 3 cooling heat exchanger 4 activated carbon tower 5 tank 6 reverse osmosis membrane separation device 7 ion exchange tower

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/58 CDV A Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area C02F 1/58 CDV A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水を酸化剤の存在下で加熱処理して原
水中のTOC成分を分解した後、脱イオン処理すること
により原水中の有機物を除去するに当り、酸化剤として
過硫酸及び/又は過硫酸塩をS28 2- 換算で原水中の
TOC1重量部当り20〜45重量部添加することを特
徴とする有機物の除去方法。
1. A raw water is heated in the presence of an oxidizing agent to decompose TOC components in the raw water, and then deionized to remove organic substances in the raw water. Alternatively, a persulfate is added in an amount of 20 to 45 parts by weight per 1 part by weight of TOC in the raw water in terms of S 2 O 8 2- .
JP32737194A 1994-12-28 1994-12-28 How to remove organic matter Expired - Fee Related JP3259557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32737194A JP3259557B2 (en) 1994-12-28 1994-12-28 How to remove organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32737194A JP3259557B2 (en) 1994-12-28 1994-12-28 How to remove organic matter

Publications (2)

Publication Number Publication Date
JPH08173978A true JPH08173978A (en) 1996-07-09
JP3259557B2 JP3259557B2 (en) 2002-02-25

Family

ID=18198399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32737194A Expired - Fee Related JP3259557B2 (en) 1994-12-28 1994-12-28 How to remove organic matter

Country Status (1)

Country Link
JP (1) JP3259557B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111943A (en) * 2004-10-18 2006-04-27 Kurita Water Ind Ltd Sulfuric-acid-recycling type cleaning system and operating method therefor
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2006278687A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Sulfuric-acid recycling single-wafer cleaning system
JP2007244930A (en) * 2006-03-13 2007-09-27 Kurita Water Ind Ltd Treatment method and treatment apparatus for organic substance-containing waste water
WO2022264479A1 (en) * 2021-06-17 2022-12-22 オルガノ株式会社 Pure water production apparatus and pure water production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2006111943A (en) * 2004-10-18 2006-04-27 Kurita Water Ind Ltd Sulfuric-acid-recycling type cleaning system and operating method therefor
JP2006278687A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Sulfuric-acid recycling single-wafer cleaning system
JP4600666B2 (en) * 2005-03-29 2010-12-15 栗田工業株式会社 Sulfuric acid recycle type single wafer cleaning system
JP2007244930A (en) * 2006-03-13 2007-09-27 Kurita Water Ind Ltd Treatment method and treatment apparatus for organic substance-containing waste water
WO2022264479A1 (en) * 2021-06-17 2022-12-22 オルガノ株式会社 Pure water production apparatus and pure water production method

Also Published As

Publication number Publication date
JP3259557B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
EP0634364B1 (en) Pure water manufacturing method
JP3426072B2 (en) Ultrapure water production equipment
JP2005538827A (en) Method for removing organic impurities from water
JPH0790219B2 (en) Pure water production apparatus and production method
JP4599803B2 (en) Demineralized water production equipment
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP3864934B2 (en) Pure water production equipment
WO2021131360A1 (en) Pure water production method, pure water production system, ultra-pure water production method, and ultra-pure water production system
JP3656458B2 (en) Pure water production method
JP2000015257A (en) Apparatus and method for making high purity water
JP2002210494A (en) Device for manufacturing extrapure water
JP3546548B2 (en) Ultrapure water production equipment
JP3259557B2 (en) How to remove organic matter
JP2003266097A (en) Ultrapure water making apparatus
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
WO2022024815A1 (en) Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method
JPH10309588A (en) Water treatment, water treating device and pure water producing device
JP3858359B2 (en) How to remove organic matter
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP3528287B2 (en) Pure water production method
KR101036880B1 (en) Wastewater recycling apparatus and method of preparing ultrapure water using reusable water prepared by the same
JP3992996B2 (en) Wastewater treatment method and apparatus
JPH0992315A (en) Pure water manufacturing device for phosphoric acid type fuel cell
JP3794113B2 (en) Method for removing TOC component and dissolved oxygen

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20131214

LAPS Cancellation because of no payment of annual fees