JPH0929251A - Ultrapure water preparing apparatus - Google Patents

Ultrapure water preparing apparatus

Info

Publication number
JPH0929251A
JPH0929251A JP18001895A JP18001895A JPH0929251A JP H0929251 A JPH0929251 A JP H0929251A JP 18001895 A JP18001895 A JP 18001895A JP 18001895 A JP18001895 A JP 18001895A JP H0929251 A JPH0929251 A JP H0929251A
Authority
JP
Japan
Prior art keywords
water
ultrapure water
membrane
dissolved oxygen
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18001895A
Other languages
Japanese (ja)
Inventor
Masahiro Furukawa
征弘 古川
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP18001895A priority Critical patent/JPH0929251A/en
Publication of JPH0929251A publication Critical patent/JPH0929251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently eliminate dissolved oxygen in ultrapure water by arranging a membrane type deaeration device at the rear stage of an ion exchange pure water device in an apparatus wherein the primary pure water is introduced and the water is fed into a subsystem at least with a UV ray irradiation oxidation device and the ion exchange pure water device to obtain an ultrapure water. SOLUTION: In an ultrapure water preparing apparatus for preparing ultrapure water used for cleaning water for semiconductor, the primary pure water obtd. from various pretreatment processes is successively passed through a subtank 11, a pump 12, a heat exchanger 13, a low pressure UV oxidation device 14, an ion exchange device 15, a membrane type deaeration device 16 and an ultrafiltration membrane separation device 17 and the obtd. ultrapure water with extremely low dissolved oxygen is sent to a use point 18. In the membrane type deaeration device 16, water is made to flow on one side of the membrane and another side is evacuated by means of a vacuum pump to permeate dissolved oxygen through the membrane and to transfer the oxygen on the vacuum side for elimination. It is pref. that the degree of vacuum of this deaeration device 16 is regulated to 55-70Torr and the flow rate of gas such as N2 on the vacuum side is regulated to 5-25% of the amt. of water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超純水製造装置に係
り、特に溶存酸素濃度がきわめて低い超純水を得る超純
水製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrapure water production system, and more particularly to an ultrapure water production system for obtaining ultrapure water having an extremely low dissolved oxygen concentration.

【0002】[0002]

【従来の技術】従来、半導体洗浄用水として用いられて
いる超純水は、図2に示すように前処理システム1、一
次純水システム2及びサブシステム3から構成される超
純水製造装置で原水(工業用水、市水、井水等)を処理
することにより製造されている。図2において、各シス
テムの役割は次の通りである。
2. Description of the Related Art Conventionally, ultrapure water used as semiconductor cleaning water is used in an ultrapure water production system comprising a pretreatment system 1, a primary pure water system 2 and a subsystem 3 as shown in FIG. It is manufactured by treating raw water (industrial water, city water, well water, etc.). In FIG. 2, the role of each system is as follows.

【0003】凝集、加圧浮上(沈殿)、濾過装置等より
なる前処理システム1では、原水中の懸濁物質やコロイ
ド物質の除去を行う。逆浸透膜分離装置、脱気装置及び
イオン交換装置(混床式又は4床5塔式)を備える一次
純水システム2では原水中のイオンや有機成分の除去を
行う。なお、逆浸透膜分離装置では、塩類除去のほかに
イオン性、コロイド性のTOCを除去する。イオン交換
装置では、塩類除去のほかにイオン交換樹脂によって吸
着又はイオン交換されるTOC成分を除去する。脱気装
置(窒素脱気又は真空脱気)では溶存酸素の除去を行
う。
In the pretreatment system 1 comprising a flocculation, pressure floating (precipitation), a filtration device, etc., suspended substances and colloidal substances in raw water are removed. The primary pure water system 2 equipped with a reverse osmosis membrane separation device, a degassing device, and an ion exchange device (mixed bed type or four-bed, five-column type) removes ions and organic components in raw water. The reverse osmosis membrane separation device removes ionic and colloidal TOC in addition to removing salts. In addition to removing salts, the ion exchange device removes TOC components adsorbed or ion exchanged by the ion exchange resin. The deaerator (nitrogen deaeration or vacuum deaeration) removes dissolved oxygen.

【0004】熱交換器、低圧紫外線酸化装置、ポリッシ
ャー(非再生式イオン交換樹脂装置)及び限外濾過膜分
離装置を備えるサブシステム4では、水の純度をより一
層高め超純水にする。なお、低圧紫外線酸化装置では、
低圧紫外線ランプより出される185nmの紫外線によ
りTOCを有機酸さらにはCO2 まで分解する。分解さ
れた有機物及びCO2 は後段のイオン交換樹脂で除去さ
れる。限外濾過膜分離装置では、微小粒子が除去されイ
オン交換樹脂の流出粒子も除去される。
In the subsystem 4 including the heat exchanger, the low-pressure ultraviolet oxidation device, the polisher (non-regenerative ion exchange resin device) and the ultrafiltration membrane separation device, the purity of water is further increased to ultrapure water. In addition, in the low pressure ultraviolet oxidation device,
TOC is decomposed into organic acid and further CO 2 by the 185 nm ultraviolet ray emitted from the low-pressure ultraviolet lamp. The decomposed organic matter and CO 2 are removed by the ion exchange resin in the latter stage. In the ultrafiltration membrane separator, fine particles are removed and outflow particles of the ion exchange resin are also removed.

【0005】[0005]

【発明が解決しようとする課題】超純水中の溶存酸素
は、シリコンウェハーの自然酸化膜の厚さをコントロー
ルする上で重要な因子であるが、上記従来の超純水製造
装置によれば、溶存酸素濃度が5〜10ppb程度とな
ってしまい、さらに低い溶存酸素値が要求されるケース
では要求水質を満足できなくなる。
Dissolved oxygen in ultrapure water is an important factor in controlling the thickness of the natural oxide film on a silicon wafer. However, the dissolved oxygen concentration becomes about 5 to 10 ppb, and in the case where a lower dissolved oxygen value is required, the required water quality cannot be satisfied.

【0006】本発明は、超純水中の溶存酸素を効率的に
除去できる超純水製造装置を提供することを目的とす
る。
It is an object of the present invention to provide an ultrapure water production system capable of efficiently removing dissolved oxygen in ultrapure water.

【0007】[0007]

【課題を解決するための手段】本発明の超純水製造装置
は、一次純水を導入し、少なくとも紫外線照射酸化装置
(紫外線酸化装置)とイオン交換純水装置とを有するサ
ブシステムに通水して超純水を得る超純水製造装置にお
いて、該イオン交換純水装置の後段に膜式脱気装置を配
置したことを特徴とする。
In the ultrapure water production system of the present invention, primary pure water is introduced and water is passed through a subsystem having at least an ultraviolet irradiation oxidizer (ultraviolet oxidizer) and an ion exchange pure water device. In the ultrapure water production apparatus for obtaining ultrapure water by means of the above, a membrane type deaerator is arranged at a stage subsequent to the ion exchange pure water apparatus.

【0008】本発明者らは、図2に示されるような超純
水製造装置における溶存酸素濃度の推移を調べた結果、
サブシステム内の低圧紫外線酸化装置出口で一旦溶存酸
素濃度は低下するが、後段のポリッシャー出口で再度低
圧紫外線酸化装置入口の溶存酸素濃度まで(場合によっ
てはそれ以上に)上昇してしまい、結果的に低圧紫外線
酸化装置の溶存酸素除去効果が表れないことを確認し
た。即ち、一次純水システムの流出水の溶存酸素濃度は
約5〜10ppbであり、この水が低圧紫外線酸化装置
で処理されることにより、溶存酸素濃度は0〜5ppb
に低減するが、ポリッシャー出口水の溶存酸素濃度は再
び5〜10ppb程度に上昇しており、結果として得ら
れる超純水の溶存酸素濃度は5〜10ppbとなる。
The present inventors investigated the transition of the dissolved oxygen concentration in the ultrapure water production system as shown in FIG.
The dissolved oxygen concentration at the outlet of the low-pressure UV oxidizer in the subsystem temporarily decreases, but at the polisher outlet of the latter stage, it rises to the dissolved oxygen concentration at the inlet of the low-pressure UV oxidizer again (in some cases, more), resulting in It was confirmed that the dissolved oxygen removal effect of the low-pressure UV oxidizer did not appear. That is, the dissolved oxygen concentration of the outflow water of the primary pure water system is about 5 to 10 ppb, and the dissolved oxygen concentration is 0 to 5 ppb by treating this water with the low-pressure ultraviolet oxidation device.
However, the dissolved oxygen concentration of the outlet water of the polisher has risen to about 5 to 10 ppb again, and the dissolved oxygen concentration of the resulting ultrapure water is 5 to 10 ppb.

【0009】本発明者らは、この現象について鋭意検討
した結果、下記(1)式のような反応が低圧紫外線酸化
装置からポリッシャーの間で生じていることを見出し
た。
As a result of diligent studies on this phenomenon, the present inventors have found that the reaction represented by the following formula (1) occurs between the low pressure ultraviolet oxidation device and the polisher.

【0010】[0010]

【化1】 Embedded image

【0011】即ち、低圧紫外線酸化装置入口では水(H
2 O)とTOCが存在するが、一次純水中のTOCが極
めて低い場合、紫外線酸化装置における紫外線照射量が
設計値よりも過剰となる。(例えば、紫外線照射量をT
OC10ppbに対応した照射量とした紫外線酸化装置
にTOC5ppbの一次純水が流入する場合、紫外線照
射量がTOC5ppb分だけ過剰となる。)そして、H
2 Oが、この過剰な紫外線の照射によりOHラジカルを
介してH22 (過酸化水素)となり、溶存酸素はTO
C分解に使用されるために見掛け上溶存酸素濃度が低下
する。しかし、生成したH22 はポリッシャー(特に
ポリッシャー内のアニオン交換樹脂)の接触触媒作用で
分解され、再度O2 が発生するため、ポリッシャー出口
水の溶存酸素濃度が上昇する。
That is, water (H
2 O) and TOC exist, but when the TOC in the primary pure water is extremely low, the ultraviolet irradiation amount in the ultraviolet oxidation device becomes excessively higher than the designed value. (For example, the ultraviolet irradiation dose is T
When the primary pure water of TOC5ppb flows into the ultraviolet oxidizer having the irradiation amount corresponding to OC10ppb, the ultraviolet irradiation amount becomes excessive by the amount of TOC5ppb. ) And H
2 O becomes H 2 O 2 (hydrogen peroxide) through the OH radical by the irradiation of this excess ultraviolet light, and dissolved oxygen becomes TO.
Since it is used for C decomposition, the dissolved oxygen concentration apparently decreases. However, the generated H 2 O 2 is decomposed by the catalytic action of the polisher (in particular, the anion exchange resin in the polisher), and O 2 is again generated, so that the dissolved oxygen concentration of the outlet water of the polisher rises.

【0012】本発明は、紫外線酸化装置からイオン交換
装置を通ることにより発生した溶存酸素を膜式脱気装置
で除去することにより、得られる超純水中の溶存酸素値
を低下させるようにしたものである。
The present invention reduces the dissolved oxygen value in the ultrapure water obtained by removing the dissolved oxygen generated by passing through the ion exchange device from the ultraviolet oxidation device by the membrane type deaeration device. It is a thing.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明を詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0014】図1は本発明の超純水製造装置の一実施例
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the ultrapure water production system of the present invention.

【0015】各種前処理工程より得られた一次純水(通
常の場合、TOC濃度2ppb以下の純水)をサブタン
ク11、ポンプ12、熱交換器13、低圧紫外線酸化装
置14、イオン交換装置(本実施例ではアニオン交換樹
脂とカチオン交換樹脂とをイオン負荷に応じて混合した
デミナー)15、膜式脱気装置16及び限外濾過膜分離
装置17に順次に通水し、得られた極低溶存酸素の超純
水をユースポイント18に送る。
The primary pure water (generally, pure water having a TOC concentration of 2 ppb or less) obtained from various pretreatment steps is used as a subtank 11, a pump 12, a heat exchanger 13, a low-pressure ultraviolet oxidizer 14, an ion exchanger (the main one). In the example, water was sequentially passed through a deminer (a mixture of an anion exchange resin and a cation exchange resin depending on the ion load) 15, a membrane degasser 16 and an ultrafiltration membrane separator 17 to obtain an extremely low dissolved amount. The oxygen ultrapure water is sent to the use point 18.

【0016】膜式脱気装置としては、脱気膜の一方の側
に水を流し、他方の側を真空ポンプで排気し、溶存酸素
を膜を透過させて真空側に移行させて除去するようにし
たものが用いられる。なお、この膜の真空側には若干の
水分が脱気膜を透過して出てくるので、この真空側に窒
素等のガスを流し、水分を除去して膜性能の低下を防止
するのが好ましい。N2 流量は一定でも良く、変動させ
ても良い。
As the membrane type deaerator, water is made to flow on one side of the deaerator and the other side is evacuated by a vacuum pump so that dissolved oxygen permeates the membrane and is transferred to the vacuum side for removal. The one used is used. It should be noted that some moisture comes out through the degassing membrane on the vacuum side of this membrane, so that gas such as nitrogen is caused to flow on this vacuum side to remove moisture and prevent deterioration of membrane performance. preferable. The N 2 flow rate may be constant or may be varied.

【0017】脱気膜は、酸素、窒素、蒸気等のガスは通
過するが水は透過しない膜であれば良く、例えば、シリ
コンゴム系、ポリテトラフルオロエチレン系、ポリオレ
フィン系、ポリウレタン系等がある。この脱気膜として
は市販の各種のものを用いることができる。
The degassing film may be a film that allows gases such as oxygen, nitrogen and steam to pass through but does not allow water to pass through, and examples thereof include silicone rubber type, polytetrafluoroethylene type, polyolefin type and polyurethane type. . As the degassing membrane, various commercially available ones can be used.

【0018】この膜式脱気装置の真空度は55〜70T
orr、N2 等のガスの真空側流量は水流量の5〜25
%とするのが好ましい。なお、この運転条件は、膜性能
により任意に設定できるが、通常上記のような範囲が好
ましい。真空度が過度に低いと脱気効率が低下し、逆に
過度に大きいと膜を通して水も透過側に出てきて効率が
悪くなる。N2 流量は過度に少ないと水分除去が十分で
なく脱気効率が低下し、大きすぎると真空度が上がらず
脱気効率が低下する。
The degree of vacuum of this membrane type deaerator is 55 to 70T.
The vacuum side flow rate of gas such as orr and N 2 is 5 to 25 of the water flow rate.
% Is preferable. The operating conditions can be set arbitrarily depending on the membrane performance, but usually the above range is preferable. If the degree of vacuum is too low, the degassing efficiency will decrease. On the other hand, if it is too large, water will also come out to the permeate side through the membrane and the efficiency will deteriorate. If the N 2 flow rate is excessively low, moisture removal is insufficient and the degassing efficiency is lowered, and if it is too high, the degree of vacuum is not raised and the degassing efficiency is lowered.

【0019】なお、図1の構成は本発明の一例であり、
本発明はサブシステムにおいて紫外線酸化装置、イオン
交換装置及び膜式脱気装置を備えている限り各種の機器
を組み合わせることができる。例えば、膜脱気の後に限
外濾過(UF)装置や逆浸透膜装置を設置しても良い。
また、原水をpH4.5以下の酸性下、かつ、酸化剤存
在下で加熱分解処理して原水中の尿素及び他のTOC成
分を分解した後、脱イオン処理する装置を組み込むこと
もできる。紫外線酸化装置、イオン交換装置、膜式脱気
装置は多段に設置されても良い。なお、図1のように、
膜式脱気装置の後段にUF装置を設置することにより、
脱気膜で発生した微粒子を除去し、ユースポイントへの
持ち込みを阻止できる。
The configuration shown in FIG. 1 is an example of the present invention.
In the present invention, various devices can be combined as long as the subsystem includes an ultraviolet oxidation device, an ion exchange device, and a membrane degassing device. For example, an ultrafiltration (UF) device or a reverse osmosis membrane device may be installed after the membrane degassing.
It is also possible to incorporate a device for deionizing the raw water by heating and decomposing the raw water under acidic conditions of pH 4.5 or less and in the presence of an oxidizing agent to decompose urea and other TOC components in the raw water. The ultraviolet oxidation device, the ion exchange device, and the membrane type degassing device may be installed in multiple stages. In addition, as shown in FIG.
By installing a UF device in the latter stage of the membrane type deaerator,
The particles generated in the degassing film can be removed, and it can be prevented from being brought to the point of use.

【0020】本発明においては、紫外線酸化装置で紫外
線照射された水をイオン交換樹脂に接触させた後、膜脱
気処理することが重要であり、膜式脱気装置を紫外線酸
化装置とイオン交換樹脂との間に配置しても、得られる
超純水中の溶存酸素は低減しない。
In the present invention, it is important to carry out membrane degassing treatment after contacting the water irradiated with ultraviolet rays with the ultraviolet oxidizer with the ion exchange resin. The membrane degasser is ion exchanged with the ultraviolet oxidizer. Dissolving oxygen in the obtained ultrapure water does not decrease even if it is arranged between the resin and the resin.

【0021】[0021]

【実施例】以下に比較例及び実施例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Comparative Examples and Examples below.

【0022】比較例1 原水(厚木市水:TOC700〜800ppb、溶存酸
素8000ppb、電導度240μS/cm)を図2の
装置によって処理して超純水を製造した。
Comparative Example 1 Raw water (Atsugi City water: TOC 700 to 800 ppb, dissolved oxygen 8000 ppb, conductivity 240 μS / cm) was treated by the apparatus of FIG. 2 to produce ultrapure water.

【0023】実施例1〜3 サブシステムを、膜式脱気装置を組み込んだ図1のもの
とし、膜式脱気装置の運転条件及び通水量を表1の通り
としたほかは比較例1と同様にして超純水を製造した。
Examples 1 to 3 are the same as those of Comparative Example 1 except that the subsystems shown in FIG. 1 in which the membrane deaerator is incorporated are used, and the operating conditions and water flow of the membrane deaerator are as shown in Table 1. Ultrapure water was manufactured in the same manner.

【0024】この比較例及び実施例における各装置の仕
様は下記の通りである。
The specifications of each device in the comparative example and the example are as follows.

【0025】低圧紫外線照射酸化装置:80W×4本
(0.32kW) (発生波長:185nm及び254nm) ポリッシャー(デミナー):カチオン交換樹脂とアニオ
ン交換樹脂とを混合充填した混床式イオン交換装置 SV=70〜80hr-1 限外濾過膜分離装置:KU−1010(栗田工業株式会
社製) 脱気膜: Hoechst Celanese 製Liqui−Cel 1
本 ハウジング:5PCH−120 カートリッジ:5PCH−118,SN:1221
Low-pressure UV irradiation oxidizer: 80 W x 4 (0.32 kW) (Generation wavelength: 185 nm and 254 nm) Polisher (Dinner): Mixed bed type ion exchanger SV mixed and filled with cation exchange resin and anion exchange resin = 70-80 hr -1 ultrafiltration membrane separator: KU-1010 (manufactured by Kurita Water Industries Ltd.) Degassing membrane: Liquid-Cel 1 manufactured by Hoechst Celanese
This housing: 5PCH-120 Cartridge: 5PCH-118, SN: 1221

【0026】[0026]

【表1】 [Table 1]

【0027】得られた超純水の電導度と低圧紫外線酸化
装置以降の各装置の流出水の溶存酸素は表2に示す通り
であった。
The conductivity of the obtained ultrapure water and the dissolved oxygen in the outflow water of each device after the low pressure ultraviolet oxidation device are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】表2より、本発明例によると溶存酸素濃度
が極めて低い超純水が得られることが明らかである。
From Table 2, it is clear that according to the examples of the present invention, ultrapure water having an extremely low dissolved oxygen concentration can be obtained.

【0030】[0030]

【発明の効果】以上詳述した通り、本発明の超純水製造
装置によると、溶存酸素濃度が著しく低い超純水を製造
できる。
As described in detail above, according to the ultrapure water production system of the present invention, ultrapure water having a remarkably low dissolved oxygen concentration can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超純水製造装置の一実施例を示す系統
図である。
FIG. 1 is a system diagram showing an embodiment of an ultrapure water production system of the present invention.

【図2】従来の超純水製造装置を示す系統図である。FIG. 2 is a system diagram showing a conventional ultrapure water production system.

【符号の説明】 1 前処理システム 2 一次純水システム 3 サブシステム 11 サブタンク 12 ポンプ 13 熱交換器 14 低圧紫外線酸化装置 15 イオン交換装置(デミナー) 16 膜式脱気装置 17 限外濾過膜分離装置[Explanation of Codes] 1 Pretreatment System 2 Primary Pure Water System 3 Subsystem 11 Subtank 12 Pump 13 Heat Exchanger 14 Low Pressure UV Oxidation Device 15 Ion Exchanger (Deminer) 16 Membrane Degassing Device 17 Ultrafiltration Membrane Separation Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一次純水を導入し、少なくとも紫外線照
射酸化装置とイオン交換純水装置とを有するサブシステ
ムに通水して超純水を得る超純水製造装置において、 該イオン交換純水装置の後段に膜式脱気装置を配置した
ことを特徴とする超純水製造装置。
1. An ultrapure water producing apparatus for obtaining ultrapure water by introducing primary pure water and passing it through a subsystem having at least an ultraviolet irradiation oxidizer and an ion exchange pure water apparatus. An ultrapure water production system characterized in that a membrane-type deaerator is arranged in the latter stage of the system.
JP18001895A 1995-07-17 1995-07-17 Ultrapure water preparing apparatus Pending JPH0929251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18001895A JPH0929251A (en) 1995-07-17 1995-07-17 Ultrapure water preparing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18001895A JPH0929251A (en) 1995-07-17 1995-07-17 Ultrapure water preparing apparatus

Publications (1)

Publication Number Publication Date
JPH0929251A true JPH0929251A (en) 1997-02-04

Family

ID=16076028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18001895A Pending JPH0929251A (en) 1995-07-17 1995-07-17 Ultrapure water preparing apparatus

Country Status (1)

Country Link
JP (1) JPH0929251A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024639A1 (en) * 2002-09-12 2004-03-25 Chemitreat Pte Ltd Method of removing organic impurities from water
US6733661B2 (en) 2001-03-26 2004-05-11 Renesas Technology Corp. Ultrapure water producing apparatus
KR100796561B1 (en) * 2006-08-16 2008-01-23 지은상 Deionized water system with membrabe separation technology for power plant
JP2008119658A (en) * 2006-11-15 2008-05-29 Kurita Water Ind Ltd Ultraviolet oxidation apparatus and organic matter removal apparatus
JP2012510365A (en) * 2008-12-01 2012-05-10 テクニシェ・ユニヴェルシテイト・デルフト Process for producing ultrapure water using membranes
WO2019155672A1 (en) * 2018-02-07 2019-08-15 栗田工業株式会社 Fine particle management method for ultrapure water production system
JP2020199436A (en) * 2019-06-06 2020-12-17 栗田工業株式会社 Ultrapure water production device, and ultrapure water production method
JP2022029769A (en) * 2020-08-05 2022-02-18 水ing株式会社 Pure water production apparatus and pure water production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733661B2 (en) 2001-03-26 2004-05-11 Renesas Technology Corp. Ultrapure water producing apparatus
WO2004024639A1 (en) * 2002-09-12 2004-03-25 Chemitreat Pte Ltd Method of removing organic impurities from water
GB2408737A (en) * 2002-09-12 2005-06-08 Chemitreat Pte Ltd Method of removing organic impurities from water
JP2005538827A (en) * 2002-09-12 2005-12-22 ケミトリート ピーティーイー リミテッド Method for removing organic impurities from water
GB2408737B (en) * 2002-09-12 2006-06-07 Chemitreat Pte Ltd Method of removing organic impurities from water
KR100796561B1 (en) * 2006-08-16 2008-01-23 지은상 Deionized water system with membrabe separation technology for power plant
JP2008119658A (en) * 2006-11-15 2008-05-29 Kurita Water Ind Ltd Ultraviolet oxidation apparatus and organic matter removal apparatus
JP2012510365A (en) * 2008-12-01 2012-05-10 テクニシェ・ユニヴェルシテイト・デルフト Process for producing ultrapure water using membranes
WO2019155672A1 (en) * 2018-02-07 2019-08-15 栗田工業株式会社 Fine particle management method for ultrapure water production system
JP2019136628A (en) * 2018-02-07 2019-08-22 栗田工業株式会社 Particle management method for ultrapure water production system
JP2020199436A (en) * 2019-06-06 2020-12-17 栗田工業株式会社 Ultrapure water production device, and ultrapure water production method
JP2022029769A (en) * 2020-08-05 2022-02-18 水ing株式会社 Pure water production apparatus and pure water production method

Similar Documents

Publication Publication Date Title
JP3180348B2 (en) Pure water production method
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
WO2005095280A1 (en) Apparatus for producing ultrapure water
WO2018092831A1 (en) Water treatment method and device
WO2009082008A1 (en) Process and apparatus for removal of hydrogen peroxide, process and apparatus for production of ozonized water, and method and apparatus for washing
JPH0929251A (en) Ultrapure water preparing apparatus
JP2006192354A (en) Non-regenerative type ion exchange vessel and ultrapure water production apparatus
JP4635827B2 (en) Ultrapure water production method and apparatus
JP4552327B2 (en) Ultrapure water production equipment
JP2000015257A (en) Apparatus and method for making high purity water
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP5211414B2 (en) Ultrapure water production equipment
JPH09253638A (en) Ultrapure water making apparatus
JP7368310B2 (en) Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
JP4826864B2 (en) Ultrapure water production equipment
JP2002355683A (en) Ultrapure water making method and apparatus
JP2000308815A (en) Producing device of ozone dissolved water
JP3645007B2 (en) Ultrapure water production equipment
JP2002336887A (en) Extrapure water making device and extrapure water making method
JPH09253639A (en) Ultrapure water making apparatus
JPH1094785A (en) Ultrapure water producing method and device therefor
JP3727156B2 (en) Desalination equipment
JP3580648B2 (en) Ultrapure water production equipment
JPH08173978A (en) Method for removing organic substance
JP2003010849A (en) Secondary pure water making apparatus