JP2002205058A - Ultrapure water making method and ultrapure water making apparatus - Google Patents

Ultrapure water making method and ultrapure water making apparatus

Info

Publication number
JP2002205058A
JP2002205058A JP2001003878A JP2001003878A JP2002205058A JP 2002205058 A JP2002205058 A JP 2002205058A JP 2001003878 A JP2001003878 A JP 2001003878A JP 2001003878 A JP2001003878 A JP 2001003878A JP 2002205058 A JP2002205058 A JP 2002205058A
Authority
JP
Japan
Prior art keywords
ultrapure water
concentration
organic substance
carbon
toc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001003878A
Other languages
Japanese (ja)
Inventor
Yoshiharu Ota
嘉治 太田
Arihiro Nomura
有宏 野村
Takahiro Yonehara
崇広 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2001003878A priority Critical patent/JP2002205058A/en
Publication of JP2002205058A publication Critical patent/JP2002205058A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrapure water making apparatus which is capable of stably and inexpensively supplying ultrapure water of <=0.5 ppm in total organic acid carbon(TOC) and <=1 ppm in dissolved oxygen(DO) concentration and a method of making this ultrapure water. SOLUTION: This ultrapure water making apparatus consists of a pretreatment system, a primary pure water system and a polishing system and has at least a UV oxidation apparatus and an ion exchange apparatus arranged behind this UV oxidation apparatus. An organic matter adsorption apparatus packed with organic matter adsorption compounds consisting of pyrolysis products of sulfonated vinyl aromatic polymers in a macronetwork form of at least 85% in carbon content and 1.5:1 to 20:1 in atomic ratio of carbon and hydrogen is arranged in the flow passage from the UV oxidation apparatus to the ion exchange apparatus. The matter adsorption compounds can be regenerated up to the level at which the equivalent effect is obtainable by regeneration operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、全有機炭素(TO
C)濃度が0.5ppb以下、溶存酸素(DO)濃度が
1ppb以下の超純水を、効率よく生産し得る超純水製
造装置及びこの装置を用いた超純水の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to total organic carbon (TO).
C) The present invention relates to an ultrapure water production apparatus capable of efficiently producing ultrapure water having a concentration of 0.5 ppb or less and a dissolved oxygen (DO) concentration of 1 ppb or less, and a method of producing ultrapure water using the apparatus.

【0002】[0002]

【従来の技術】一般に、半導体の製造工程における洗浄
水に用いられる超純水は、前処理システム、一次純水シ
ステムおよびポリシングシステムからなる超純水製造装
置によって製造されている。
2. Description of the Related Art Generally, ultrapure water used as cleaning water in a semiconductor manufacturing process is produced by an ultrapure water producing apparatus including a pretreatment system, a primary pure water system, and a polishing system.

【0003】超純水は、水中の溶解成分や微小浮遊物を
上記の各システムで処理することにより極微量にまで減
少させた水であり、半導体製造工程においては洗浄水中
に溶解している有機質成分は熱処理工程で炭化して線間
短絡や絶縁不良を起こす原因となり、溶存酸素は半導体
表面に酸化膜を形成する原因となるため、全有機炭素
(TOC)濃度や溶存酸素(DO)濃度を特に少なくし
た超純水が用いられる。
[0003] Ultrapure water is water in which dissolved components and minute suspended matters in water are reduced to an extremely small amount by treating them with the above-described systems. In a semiconductor manufacturing process, organic substances dissolved in washing water are used. The components are carbonized in the heat treatment process to cause line-to-line short circuit and insulation failure, and dissolved oxygen causes an oxide film to be formed on the semiconductor surface. Therefore, the total organic carbon (TOC) concentration and dissolved oxygen (DO) concentration are reduced. Particularly, ultra-pure water reduced is used.

【0004】超純水の全有機炭素(TOC)濃度や溶存
酸素(DO)濃度を低減させるために、超純水製造装置
のポリシングシステムには、有機質成分を分解する紫外
線酸化装置と、有機質成分の分解で生じた有機酸や二酸
化炭素のような成分を吸着除去するためのイオン交換装
置等が設けられ、溶存酸素などの溶存ガスを除去するた
めに一次純水システムには、脱塩のためのイオン交換装
置や逆浸透膜装置とともに脱気装置等が設けられ、必要
に応じて膜脱気装置や酸素吸着樹脂装置等も設けられて
いる。
In order to reduce the total organic carbon (TOC) concentration and dissolved oxygen (DO) concentration of ultrapure water, a polishing system of an ultrapure water production apparatus includes an ultraviolet oxidizer for decomposing organic components, and an organic component. An ion exchange device is installed to adsorb and remove components such as organic acids and carbon dioxide generated by the decomposition of water.The primary pure water system is used to remove dissolved gases such as dissolved oxygen. A deaerator and the like are provided together with the ion exchange device and the reverse osmosis membrane device, and a membrane deaerator and an oxygen adsorption resin device and the like are provided as necessary.

【0005】一般のポリシングシステムでは、全有機炭
素(TOC)濃度がおおよそ10ppb程度の一次超純
水を、全有機炭素(TOC)濃度が2ppb程度にまで
溶存有機質炭素を減少させて半導体の洗浄水として供給
している。
[0005] In a general polishing system, primary ultrapure water having a total organic carbon (TOC) concentration of about 10 ppb is used, and dissolved organic carbon is reduced to a total organic carbon (TOC) concentration of about 2 ppb. As a supply.

【0006】ところで最近、半導体の高集積化に伴っ
て、半導体の配線パターンのピッチとして0.1μm、
あるいはそれよりもさらに細い極微細なピッチが要求さ
れるようになってきており、これにともなって半導体の
洗浄水である超純水にも全有機炭素(TOC)濃度が
0.5ppb以下、溶存酸素(DO)濃度が1ppb以
下の超純水が要求されるようになってきている。
[0006] Recently, with the high integration of semiconductors, the pitch of the semiconductor wiring pattern is 0.1 μm,
Alternatively, a finer and finer pitch than that is required, and accordingly, the total organic carbon (TOC) concentration is not more than 0.5 ppb and dissolved in ultrapure water which is a semiconductor washing water. Ultrapure water having an oxygen (DO) concentration of 1 ppb or less has been required.

【0007】超純水の全有機炭素(TOC)濃度を低下
させるには、超純水製造装置におけるポリシングシステ
ムの紫外線酸化装置の出力を高くして溶存有機質成分の
分解を促進させる方法が考えられるが、紫外線酸化装置
の出力を高くすると消費電力が大きくなって運転コスト
が高くなる上に、水の分解により過酸化水素が発生して
溶存酸素(DO)濃度が上昇してしまうという問題が生
じる。
In order to reduce the total organic carbon (TOC) concentration of ultrapure water, a method of increasing the output of an ultraviolet oxidizer of a polishing system in an ultrapure water production apparatus to promote the decomposition of dissolved organic components can be considered. However, when the output of the ultraviolet oxidizing device is increased, power consumption is increased and the operating cost is increased. In addition, there is a problem that hydrogen peroxide is generated due to decomposition of water and the dissolved oxygen (DO) concentration is increased. .

【0008】また、溶存酸素(DO)濃度を低減する方
法として、超純水を酸素吸着樹脂で処理することも考え
られるが、酸素吸着樹脂はわずかながら分解するため全
有機炭素(TOC)濃度を増加させる原因になるという
問題がある。
As a method of reducing the dissolved oxygen (DO) concentration, it is conceivable to treat ultrapure water with an oxygen-adsorbing resin. However, since the oxygen-adsorbing resin is slightly decomposed, the total organic carbon (TOC) concentration is reduced. There is a problem that causes it to increase.

【0009】また、ポリシングシステムに、有機質成分
を吸着する性質をもつ活性炭を配置することも考えられ
るが、通常の活性炭はそれ自体からイオンや微粒子を発
生するため、後段のイオン交換装置や限外濾過装置の負
荷を大きくしてしてしまい、2ppb以下のような極微
量の有機質成分を除去するような用途には利用できない
という問題があった。
It is also conceivable to arrange an activated carbon having a property of adsorbing organic components in the polishing system. However, ordinary activated carbon generates ions and fine particles from itself, so that an ion exchange device at the subsequent stage or an ultra There is a problem in that the load on the filtration device is increased, and the filter cannot be used for the purpose of removing a trace amount of organic components such as 2 ppb or less.

【0010】さらに、紫外線酸化装置とイオン交換装置
の組を多段に連結させて、全有機炭素(TOC)濃度や
溶存酸素(DO)濃度の除去率を高めることも考えられ
るが、このような方法でも結果的に消費電力が大きくな
り、また設備費が高くなって超純水の製造コストを高く
してしまうという問題があった。
Further, it is conceivable to increase the removal rate of the total organic carbon (TOC) concentration and dissolved oxygen (DO) concentration by connecting a set of an ultraviolet oxidation device and an ion exchange device in multiple stages. However, as a result, there has been a problem that power consumption is increased, and equipment costs are increased, thereby increasing the production cost of ultrapure water.

【0011】[0011]

【発明が解決しようとする課題】上述したように、半導
体の洗浄水に用いられる超純水には、全有機炭素(TO
C)濃度0.5ppb以下、溶存酸素(DO)濃度1p
pb以下のものが求められるようになってきているが、
全有機炭素(TOC)濃度を低減するため紫外線酸化装
置の出力を高くすると消費電力が大きくなって運転コス
トが高くなる上に、水の分解により溶存酸素(DO)濃
度が増加してしまうという問題がある。
As described above, ultrapure water used for semiconductor cleaning water includes total organic carbon (TO).
C) Concentration 0.5ppb or less, dissolved oxygen (DO) concentration 1p
pb or less is required,
Increasing the output of the ultraviolet oxidizer to reduce the total organic carbon (TOC) concentration increases power consumption and operating costs, and also increases the dissolved oxygen (DO) concentration due to water decomposition. There is.

【0012】また、活性炭を使用した場合には、それ自
体からイオンや微粒子を発生するため、後段のイオン交
換装置や限外ろ過装置の負担を大きくしてしまい、極微
量の有機質成分を除去するような用途には利用できない
という問題がある。
When activated carbon is used, ions and fine particles are generated from the activated carbon itself, which increases the load on the subsequent ion exchange device or ultrafiltration device, and removes a trace amount of organic components. There is a problem that it cannot be used for such purposes.

【0013】さらに、紫外線酸化装置とイオン交換装置
の組を多段に連結させた場合には、結果的に消費電力が
大きくなり、設備費も高くなって結果的に超純水の製造
コストを高くしてしまうという問題がある。
Further, when the set of the ultraviolet oxidation apparatus and the ion exchange apparatus are connected in multiple stages, the power consumption is increased, the equipment cost is increased, and the production cost of the ultrapure water is increased. There is a problem of doing it.

【0014】近年の超純水装置では一次純水装置の性能
が向上し、ポリシングシステムヘ供給される被処理水の
全有機炭素(TOC)濃度は10ppb程度となってい
るが、このような低い全有機炭素(TOC)濃度の範囲
においては、従来の全有機炭素(TOC)濃度の低減手
段を用いたのでは、全有機炭素(TOC)濃度を低減さ
せようとすると溶存酸素(DO)濃度が増加してしま
い、全有機炭素(TOC)濃度と溶存酸素(DO)濃度
とを両方とも1ppb以下の超純水を工業的に製造し得
る超純水製造装置は知られていなかったのである。
In the recent ultrapure water apparatus, the performance of the primary pure water apparatus has been improved, and the total organic carbon (TOC) concentration of the water to be treated supplied to the polishing system is about 10 ppb. In the range of the total organic carbon (TOC) concentration, when the conventional means for reducing the total organic carbon (TOC) concentration is used, the dissolved oxygen (DO) concentration becomes lower when the total organic carbon (TOC) concentration is reduced. There has been no known ultrapure water production apparatus capable of industrially producing ultrapure water having both the total organic carbon (TOC) concentration and the dissolved oxygen (DO) concentration of 1 ppb or less.

【0015】例えば、従来のポリシングシステムを用い
て全有機炭素(TOC)濃度が10ppbの超純水を処
理して、全有機炭素(TOC)濃度を2ppbにまで低
減させるには、低圧紫外線酸化装置の照射量は、水量1
3 /hあたり約0.25kWで十分であるが、全有機
炭素(TOC)濃度を1ppbにまで低減させるには低
圧紫外線酸化装置の照射量は約0.45kW必要とな
り、全有機炭素(TOC)濃度を0.5ppbにまで低
減させるには低圧紫外線酸化装置の照射量は約0.65
〜0.80kW必要となる。すなわち、全有機炭素(T
OC)濃度が10ppbの超純水を全有機炭素(TO
C)濃度が0.5ppb以下にするためには、必要な照
射量は全有機炭素(TOC)濃度が2ppbの超純水を
製造する場合に比較してポリシングシステムにおいて2
〜3倍以上必要の電力が必要になることがわかる。
For example, to treat ultrapure water having a total organic carbon (TOC) concentration of 10 ppb using a conventional polishing system to reduce the total organic carbon (TOC) concentration to 2 ppb, a low-pressure ultraviolet oxidation apparatus is used. Irradiation amount of water is 1
Approximately 0.25 kW per m 3 / h is sufficient, but in order to reduce the total organic carbon (TOC) concentration to 1 ppb, the irradiation amount of the low-pressure ultraviolet oxidizer needs to be about 0.45 kW, and the total organic carbon (TOC) ) In order to reduce the concentration to 0.5 ppb, the irradiation amount of the low-pressure ultraviolet oxidation device is about 0.65.
~ 0.80 kW is required. That is, total organic carbon (T
(OC) concentration of 10 ppb ultrapure water to total organic carbon (TO)
C) In order to reduce the concentration to 0.5 ppb or less, the required irradiation dose is 2 pp in the polishing system as compared with producing ultrapure water having a total organic carbon (TOC) concentration of 2 ppb.
It can be seen that the required power is up to three times or more.

【0016】また、このように紫外線の照射量を多くす
ると処理水中に過酸化水素やオゾンが発生し、これがそ
の後段に設置されたイオン交換装置により溶存酸素に変
えられて溶存酸素(DO)濃度が上昇してしまい、末端
の溶存酸素保証値を満足できなくなるという問題があっ
た。
When the irradiation amount of the ultraviolet rays is increased as described above, hydrogen peroxide and ozone are generated in the treated water, and this is converted into dissolved oxygen by an ion exchange device installed at a subsequent stage, and the dissolved oxygen (DO) concentration is increased. Has risen and the terminal dissolved oxygen guaranteed value cannot be satisfied.

【0017】さらに、酸素吸着樹脂等の溶存酸素除去手
段を用いて、溶存酸素(DO)濃度を低減することも可
能であるが、そのためには設備コストや運転コストが非
常に高いものになってしまうという問題があった。
Further, it is possible to reduce the concentration of dissolved oxygen (DO) by using a dissolved oxygen removing means such as an oxygen-adsorbing resin, but this requires extremely high equipment costs and operating costs. There was a problem that it would.

【0018】本発明は、かかる問題を解消すべくなされ
たもので、全有機炭素(TOC)濃度が0.5ppb以
下で、溶存酸素(DO)濃度も1ppb以下の超純水
を、安定して、かつ安価に供給し得る超純水製造装置及
び超純水の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and can stably convert ultrapure water having a total organic carbon (TOC) concentration of 0.5 ppb or less and a dissolved oxygen (DO) concentration of 1 ppb or less. It is an object of the present invention to provide an ultrapure water production apparatus and an ultrapure water production method which can be supplied at low cost.

【0019】[0019]

【課題を解決するための手段】本発明の超純水製造装置
は、前処理システム、1次純水システムおよびポリシン
グシステムからなり、前記ポリシングシステムに、少な
くとも紫外線酸化装置と、該紫外線酸化装置の後段に配
置されたイオン交換装置とを備えた超純水製造装置にお
いて、前記紫外線酸化装置から前記イオン交換装置に至
る流路に、炭素含有率が少なくとも85%で炭素と水素
の原子比率が1.5:1から20:1であるマクロ網状
のスルホン化されたビニル芳香族ポリマーの熱分解生成
物からなる有機物吸着化合物を充填した有機物吸着装置
を配置したことを特徴とする。
The ultrapure water producing apparatus according to the present invention comprises a pretreatment system, a primary pure water system, and a polishing system. The polishing system includes at least an ultraviolet oxidizing apparatus, and an ultraviolet oxidizing apparatus. In an ultrapure water production apparatus provided with an ion exchange device disposed at a subsequent stage, a flow path from the ultraviolet oxidation device to the ion exchange device has a carbon content of at least 85% and an atomic ratio of carbon to hydrogen of 1 An organic substance adsorption device filled with an organic substance adsorption compound comprising a pyrolysis product of a macro-reticulated sulfonated vinyl aromatic polymer having a ratio of 0.5: 1 to 20: 1 is provided.

【0020】上記の前処理システムとしては、例えば凝
集装置、重力濾過、保安フィルター等の装置を流路に沿
って配置したシステムやこのシステムに適宜他の装置を
付加し、またはこのシステムから一部の装置を除いたシ
ステムが例示される。
As the above pretreatment system, for example, a system in which devices such as a coagulation device, gravity filtration, and a security filter are arranged along a flow path, or other devices are added to this system as appropriate, or a part of this system is added. A system excluding the above device is exemplified.

【0021】また、1次純水システムとしては、例えば
活性炭塔、有機物スカベンジャー樹脂塔、保安フィルタ
ー、逆浸透膜装置、2床3塔型イオン交換塔、逆浸透膜
装置、混床イオン交換塔、逆浸透膜装置を流路に沿って
配置したシステムやこのシステムに適宜他の装置を付加
し、またはこのシステムから一部の装置を除いたシステ
ムが例示される。
Examples of the primary pure water system include an activated carbon tower, an organic matter scavenger resin tower, a security filter, a reverse osmosis membrane device, a two-bed three-column ion exchange tower, a reverse osmosis membrane device, a mixed-bed ion exchange tower, Examples include a system in which a reverse osmosis membrane device is arranged along a flow path, a system in which another device is added to this system as appropriate, or a system in which some devices are removed from this system.

【0022】さらに、ポリシングシステムとしては、熱
交換器、紫外線酸化装置、イオン交換装置、限外濾過装
置を流路に沿って配置したシステムやこのシステムに適
宜他の装置を付加し、またはこのシステムから一部の装
置を除いたシステムが挙げられる。
Further, as a polishing system, a system in which a heat exchanger, an ultraviolet oxidizing device, an ion exchanging device, and an ultrafiltration device are arranged along a flow path, or another device is added to this system as appropriate, or From which some devices are removed.

【0023】そして、本発明においては、上記の紫外線
酸化装置からイオン交換装置に至る流路に、炭素含有率
が少なくとも85%で炭素と水素の原子比率が1.5:
1から20:1であるマクロ網状のスルホン化されたビ
ニル芳香族ポリマーの熱分解生成物からなる有機物吸着
化合物を充填した有機物吸着装置が配置される。
In the present invention, the flow path from the ultraviolet oxidation device to the ion exchange device has a carbon content of at least 85% and an atomic ratio of carbon to hydrogen of 1.5:
An organic adsorber is provided which is filled with an organic adsorbent compound comprising a pyrolysis product of a 1 to 20: 1 macroreticulated sulfonated vinyl aromatic polymer.

【0024】本発明におけるビニル芳香族ポリマーと
は、ビニル芳香族モノマーの重合によって得られるポリ
マーであり、マクロ網状とは、ビニル芳香族ポリマーに
ある少なくとも25nmの半径の孔が広範囲にある状態
のものである。
[0024] The vinyl aromatic polymer in the present invention is a polymer obtained by polymerization of a vinyl aromatic monomer, and the macro network is a polymer in which a vinyl aromatic polymer has pores having a radius of at least 25 nm in a wide range. It is.

【0025】本発明で使用する熱分解生成物は、炭素含
有率が少なくとも85%で、炭素と水素の原子比率が
1.5:1から20:1の間で有効であり、特に原子比
率が2:1から10:1の時有利に働く。この熱分解生
成物は公知の方法で(たとえば米国特許第404099
0号、米国特許第4839331号、および特開昭62
−197308号)、マクロ網状のスルホン化されたビ
ニル芳香族ポリマー制御下の熱分解によって製造するこ
とができる。
The pyrolysis products used in the present invention are effective when the carbon content is at least 85% and the atomic ratio of carbon to hydrogen is between 1.5: 1 and 20: 1, especially It works advantageously from 2: 1 to 10: 1. This pyrolysis product is obtained in a known manner (eg, US Pat. No. 4,040,995).
No. 0, U.S. Pat. No. 4,839,331, and
197308), which can be prepared by controlled pyrolysis of a macroreticular sulfonated vinyl aromatic polymer.

【0026】出発物質ポリマーとして適している物質に
は、同類ポリマーだけでなく、たとえばスチレン、ビニ
ルトルエン、エチルビニルベンゼン、ビニルキシレン、
ビニルピリジンといったモノビニル不飽和モノマーと、
ジビニルベンゼン、トリビニルベンゼン、ジビニルトル
エン、ジビニルピリジンといったポリビニル不飽和モノ
マーを融合させた合成ポリマーがあげられる。
Materials suitable as starting polymers include not only homologous polymers but also styrene, vinyltoluene, ethylvinylbenzene, vinylxylene,
A monovinyl unsaturated monomer such as vinylpyridine;
Synthetic polymers obtained by fusing polyvinyl unsaturated monomers such as divinylbenzene, trivinylbenzene, divinyltoluene, and divinylpyridine are exemplified.

【0027】しかしながら一般には、モノビニル不飽和
ポリマーとポリビニル不飽和ポリマーを共重合させたも
のが有利である。特に有利に働くのはスチレンとジビニ
ルベンゼンからの合成ポリマーであり、その中でも75
〜90重量%のスチレンと25〜10重量%のジビニル
ベンゼンを重合させて得られたものが好ましい。
However, in general, copolymers of a monovinyl unsaturated polymer and a polyvinyl unsaturated polymer are advantageous. Particularly advantageous are synthetic polymers from styrene and divinylbenzene, of which 75
Those obtained by polymerizing styrene at 90% by weight and divinylbenzene at 25-10% by weight are preferred.

【0028】この重合は、たとえば米国特許第4040
990や米国特許第4839331に記述されている公
知の方法に従って行うことができる。有利な方法は米国
特許第4224415に開示されている懸濁重合法であ
る。
This polymerization is carried out, for example, in US Pat.
990 and U.S. Pat. No. 4,839,331. An advantageous method is the suspension polymerization method disclosed in U.S. Pat. No. 4,224,415.

【0029】同様に、ポリマーのスルホン化は、公知の
方法では、たとえば濃縮した硫酸、発煙硫酸、三酸化硫
酸、クロロスルホン酸等を用い、温度を上昇させて行
う。適した条件はたとえば米国特許第2366007、
米国特許第2500149、米国特許第422441
5、米国特許第4839331により知られている。
Similarly, the sulfonation of the polymer is carried out by a known method, for example, by using concentrated sulfuric acid, fuming sulfuric acid, sulfuric acid trioxide, chlorosulfonic acid or the like and increasing the temperature. Suitable conditions are described, for example, in US Pat. No. 2,366,007.
US Pat. No. 2,500,149, US Pat. No. 4,224,441
5, U.S. Pat. No. 4,839,331.

【0030】スルホン化されたポリマーの熱分解は、た
とえば米国特許第4040990や米国特許第4839
331にも記載されているように、空気中の不活性気体
(たとえば窒素、ヘリウム、ネオン、および/またはア
ルゴン)の中で約18分間(0.3時間)〜2時間のあ
いだ、約300〜1200℃の範囲、特に有効に働くた
めには約400〜800℃の範囲でポリマーを加熱する
ことで行うことができる。望ましくは不活性気体に、た
とえば二酸化炭素、酸素、水蒸気などの活性化気体を添
加し、もしくは活性化気体の中で約300〜1200℃
まで加熱することによって後処理を行う。しかし活性化
気体で処理されていない熱分解生成物は、一般に親水性
の有機汚染に対してより優れた吸着性を示す。
The thermal decomposition of the sulfonated polymer can be performed, for example, by the method described in US Pat. No. 4,040,990 or US Pat.
331, for about 18 minutes (0.3 hours) to 2 hours in an inert gas (eg, nitrogen, helium, neon, and / or argon) in air. This can be done by heating the polymer in the range of 1200 ° C, especially in the range of about 400-800 ° C for working effectively. Preferably, an activating gas such as carbon dioxide, oxygen, water vapor or the like is added to the inert gas, or approximately 300 to 1200 ° C. in the activating gas.
Post-treatment is carried out by heating to However, pyrolysis products that have not been treated with an activating gas generally exhibit better adsorption to hydrophilic organic contaminants.

【0031】ポリマーを熱分解すると、熱分解でも存在
しつづけるポリマー中の孔に加えて、ミクロ孔が新たに
形成される。国際純粋応用化学連合(IUPAC)の孔
サイズの定義によれば、熱分解生成物では孔半径が25
nm以上のマクロ孔と、孔半径が1〜25nmのメソ孔
と、孔半径が1nm以下のミクロ孔とに区別することが
でき、このとき、メソ孔とマクロ孔は円滑にミクロ孔へ
移行しながら、主な吸着はミクロ孔で行われていると考
えられる。
When the polymer is pyrolyzed, micropores are newly formed in addition to the pores in the polymer which are still present in the pyrolysis. According to the International Union of Pure and Applied Chemistry (IUPAC) definition of pore size, pyrolysis products have a pore radius of 25.
macropores having a pore radius of 1 nm or less, and micropores having a pore radius of 1 nm or less can be distinguished. At this time, the mesopores and the macropores smoothly transition to the micropores. However, it is considered that the main adsorption is performed in micropores.

【0032】本発明による吸着法では、主に次のような
熱分解生成物が使われる。つまり、少なくとも約0.1
ml/g、特に少なくとも約0.13ml/g(たとえ
ば0.20〜0.25ml/g)の固有の孔容積をもつ
マクロ孔と、少なくとも約0.1ml/g、特に少なく
とも約0.12ml/g(たとえば0.13〜0.20
ml/g)の固有の孔容積をもつメソ孔を形成する熱分
解生成物である。さらに通常は、少なくとも約0.1m
l/g、約0.2ml/g(たとえば0.2〜0.4m
l/g)の固有の孔容積をもつミクロ孔を形成する熱分
解生成物が有利である。上述した孔容積はそれぞれ粉体
工学2400ポロシメーターで窒素吸着等温線〜得られ
た値に対応している。ただし上述した孔容積は臨界的な
ものではなく、これよりも孔容積の小さい熱分解生成物
も基本的に同じように適している。
In the adsorption method according to the present invention, the following pyrolysis products are mainly used. That is, at least about 0.1
macropores having an intrinsic pore volume of at least about 0.13 ml / g, especially at least about 0.13 ml / g (eg, 0.20 to 0.25 ml / g), and at least about 0.1 ml / g, especially at least about 0.12 ml / g. g (for example, 0.13 to 0.20
(m / g) is a pyrolysis product that forms a mesopore with an intrinsic pore volume. More usually, at least about 0.1 m
1 / g, about 0.2 ml / g (for example, 0.2 to 0.4 m
Pyrolysis products which form micropores with an intrinsic pore volume of 1 / g) are advantageous. The pore volumes mentioned above correspond to the values obtained from the nitrogen adsorption isotherm to the values obtained with the powder engineering 2400 porosimeter, respectively. However, the pore volume described above is not critical, and pyrolysis products with a smaller pore volume are basically equally suitable.

【0033】半導体製造の洗浄水中の親水性有機汚染に
対する、比較的高い疎水性を持つ熱分解生成物の吸着性
は、熱分解生成物の表面の疎水性が増すにつれ、明確に
上昇する。すなわち、室温(24℃)かつ94%の湿度
で熱分解生成物1gあたり300mg以下の水分を吸着
することが出来る熱分解生成物が、本発明における親水
性の有機汚染の吸着方法では、最適であるとであること
実証されている。このとき、熱分解生成物1gあたり2
00mg以下の水を吸着出来る熱分解生成物を使って最
善の結果が得られた。他方、過酸化水素を吸着するには
むしろ比較的疎水性の低い熱分解生成物が適しており、
このとき、室温(24℃)で且94%の湿度で、熱分解
生成物1gあたり少なくとも200mg、たとえば20
0〜400mg、主に200〜300mgの水を吸着で
きる熱分解生成物は、熱分解生成物1gあたり200m
g以下の水しか吸着できないものよりも、通常適してい
る。
The adsorptivity of the relatively high hydrophobicity of pyrolysis products to hydrophilic organic contamination in the wash water of semiconductor production clearly increases as the surface of the pyrolysis products increases in hydrophobicity. That is, a pyrolysis product capable of adsorbing 300 mg or less of water per gram of the pyrolysis product at room temperature (24 ° C.) and a humidity of 94% is optimal for the method for adsorbing hydrophilic organic contamination in the present invention. It has been proven that there is. At this time, 2 g per 1 g of the thermal decomposition product
Best results were obtained with pyrolysis products that could adsorb less than 00 mg of water. On the other hand, relatively low-hydrophobic pyrolysis products are suitable for adsorbing hydrogen peroxide,
At this time, at room temperature (24 ° C.) and at a humidity of 94%, at least 200 mg per gram of the pyrolysis product, for example, 20 mg
The pyrolysis product capable of adsorbing 0 to 400 mg, mainly 200 to 300 mg of water is 200 m / g of the pyrolysis product.
It is usually more suitable than one that can only adsorb less than g of water.

【0034】したがって親水性の有機汚染と過酸化水素
を除去するには、主に2種類の熱分解生成物を利用する
ことができ、そのうち一方は熱分解生成物1gあたり少
なくとも200mgの水、他方は200mg以下の水を
吸着することが可能である。この除去方法は、洗浄水を
同時に両熱分解生成物の混合物を通過させるか、または
任意の順番でひとつずつ通過させるかで実行できる。
Thus, to remove hydrophilic organic contamination and hydrogen peroxide, two main types of pyrolysis products can be used, one of which is at least 200 mg of water per gram of pyrolysis products, the other being Can adsorb 200 mg or less of water. This removal method can be carried out by passing the washing water through a mixture of both pyrolysis products at the same time, or one by one in any order.

【0035】これらの熱分解生成物は化学的、熱的、お
よび物理的に非常に安定しており、一般に、約100〜
2000m2 /g、大抵は約500〜1200m2 /g
の固有表面積を有しているとともに、たとえば平均粒度
が約0.2〜1.5mmの、有利には約0〜1.0mm
の近似的に円形の粒子として使用することができる。好
適な熱分解生成物は、たとえばAmbersorb 3
48F、Ambersorb 572、Amberso
rb 575、Ambersorb 563、およびA
mbersorb 564(Rohm and Haa
s社、アメリカ、フィラデルフィア)の商品名で市販さ
れており、これらはすべて親水性の有機汚染と過酸化水
素を吸着するのに適している。しかしながら主には、親
水性の有機性汚染を吸着するにはAmbersorb
563および/または564、過酸化水素を吸着するに
はAmbersorb 572および/または575を
使用することができる。
These pyrolysis products are very stable chemically, thermally and physically and generally have
2000 m 2 / g, usually about 500-1200 m 2 / g
Of about 0.2 to 1.5 mm, preferably about 0 to 1.0 mm
Can be used as approximately circular particles. Suitable pyrolysis products are, for example, Ambersorb 3
48F, Ambersorb 572, Amberso
rb 575, Ambersorb 563, and A
mbersorb 564 (Rohm and Haa
(commercial name, Philadelphia, USA), all of which are suitable for absorbing hydrophilic organic contamination and hydrogen peroxide. However, Ambersorb is primarily used to adsorb hydrophilic organic contamination.
563 and / or 564, Ambersorb 572 and / or 575 can be used to adsorb hydrogen peroxide.

【0036】本発明による方法は、吸着法に通常用いら
れる方式に従って実行可能であり、このとき熱分解生成
物の層は主に、上向流式または下向流式で作動可能な吸
着フィルタないし円柱装置内に配置される。一般に、層
の高さは少なくとも約30cm、約60〜150cmが
推奨される。除去率を向上させるには、原則として層の
高さを増やすことで可能であるが、この場合には一般に
2つ以上の熱分解生成物の層を連続してつなぐほうが有
利である。主に、弱塩基性のアニオン交換装置を熱分解
生成物の層に次に設置する。
The process according to the invention can be carried out in accordance with the mode normally used for adsorption processes, in which the layer of pyrolysis products is mainly composed of an adsorption filter or an upflow or downflow operable adsorption filter or filter. It is located in a cylindrical device. Generally, a layer height of at least about 30 cm, and about 60-150 cm is recommended. In order to improve the removal rate, it is possible in principle to increase the height of the layer, but in this case it is generally advantageous to connect two or more layers of pyrolysis products in succession. Primarily a weakly basic anion exchange device is then installed in the pyrolysis product layer.

【0037】新しい熱分解生成物を使用するときは、使
用開始の前に数日間のあいだ脱イオン水を熱分解生成物
の層に通して、熱分解生成物を水和することが推奨され
る。このとき主にまず高温の水を層に通し、その後の処
理は室温で行う。
When using new pyrolysis products, it is recommended that the pyrolysis products be hydrated by passing deionized water through the pyrolysis product layer for a few days before beginning use. . At this time, first, high-temperature water is passed through the layer, and the subsequent treatment is performed at room temperature.

【0038】熱分解生成物が消費され尽くしたとき、ま
たは除去率が特定の値、たとえば90%以下に落ちたと
きは、洗浄水の供給を中断して、熱分解生成物を順流法
または向流法で精製し、再利用する。この精製は主に、
水蒸気を約100〜250℃の温度で熱分解生成物に通
すことによって行う。
When the pyrolysis products have been consumed or the removal rate has dropped to a specific value, for example, 90% or less, the supply of the washing water is interrupted, and the pyrolysis products are subjected to a downstream process or a counterflow process. Purify by flow method and reuse. This purification is mainly
This is accomplished by passing steam through the pyrolysis product at a temperature of about 100-250 ° C.

【0039】一般に、吸着された汚れをほぼすべて除去
するのに約12層容積以下の蒸気(凝集水として測定)
があれば足りる。
Generally, less than about 12 layers of steam (measured as flocculated water) to remove almost all the adsorbed dirt
Is enough.

【0040】流水率は、たとえば稼動時には1時間あた
り約5〜40床容積の洗浄水、再生時には1時問あたり
約0.1〜2.0床容積の水蒸気(凝集水として測定)
であってよい。
The flow rate is, for example, about 5 to 40 bed volumes of washing water per hour during operation, and about 0.1 to 2.0 bed volumes of steam per hour during regeneration (measured as coagulated water).
It may be.

【0041】再生過程で洗浄水の浄化が中断するのを防
ぐため、有利には2つまたは3つの熱分解生成物の層を
設けることができ、そのうちそれぞれ1つないし2つが
稼動している間、1つの層を再生する。
In order to prevent interruption of the purification of the wash water during the regeneration process, two or three layers of pyrolysis products can advantageously be provided, one or two of which respectively during operation. Regenerate one layer.

【0042】本発明において、有機物吸着装置が処理す
る被処理水は、全有機炭素(TOC)濃度が10ppb
以下、溶存酸素(DO)濃度が10ppb以下の超純水
であるが、通常は、全有機炭素(TOC)濃度1〜10
ppb、溶存酸素(DO)濃度が10ppb以下、好ま
しくは全有機炭素(TOC)濃度5ppb以下、溶存酸
素(DO)濃度が5ppb以下である。
In the present invention, the water to be treated, which is treated by the organic substance adsorption device, has a total organic carbon (TOC) concentration of 10 ppb.
Hereinafter, it is ultrapure water having a dissolved oxygen (DO) concentration of 10 ppb or less, but usually, a total organic carbon (TOC) concentration of 1 to 10
ppb, dissolved oxygen (DO) concentration is 10 ppb or less, preferably total organic carbon (TOC) concentration is 5 ppb or less, and dissolved oxygen (DO) concentration is 5 ppb or less.

【0043】[0043]

【発明の実施の形態】(実施例1)図1に示すシステム
構成を有する超純水製造装置を用いて超純水を製造し
た。
(Embodiment 1) Ultrapure water was produced using an ultrapure water production apparatus having the system configuration shown in FIG.

【0044】図1の前処理システムは、市水が供給され
る重力式の濾過装置1、活性炭塔2から構成され、一次
純水システムは、2床3塔型イオン交換塔3、逆浸透膜
装置(RO)4、混床イオン交換塔5から構成され、一
次純水はサブタンク6へ一旦貯溜される。ポリシングシ
ステムは、低圧紫外線(UV)酸化装置7、有機物吸着
装置8、イオン交換装置(ポリッシャー)9、限外ろ過
装置10から構成され、二次純水は、ユースポイントに
送られ、余剰の二次純水はサブタンク6へ還流される。
The pretreatment system of FIG. 1 comprises a gravity type filtration device 1 supplied with city water and an activated carbon tower 2. The primary pure water system has a two-bed three-column ion exchange tower 3, a reverse osmosis membrane. The apparatus comprises an apparatus (RO) 4 and a mixed-bed ion exchange tower 5, and primary pure water is temporarily stored in a sub-tank 6. The polishing system is composed of a low-pressure ultraviolet (UV) oxidizing device 7, an organic substance adsorbing device 8, an ion exchange device (polisher) 9, and an ultrafiltration device 10. Secondary pure water is sent to a point of use, The next pure water is returned to the sub tank 6.

【0045】上記の超純水製造装置において、有機物吸
着装置8の有機物吸着化合物としてローム&ハース社製
アンバーソーブ563を用い、低圧紫外線(UV)酸化
装置7の照射量を0.25kWとし、有機物吸着化合物
当該化合物1Lあたりの容積に対して1時間あたり40
倍量の通水速度、つまり空間速度(SV)=40で表1
に示す水質の一次超純水を通水して二次超純水を製造し
た。
In the above ultrapure water production apparatus, an organic substance adsorbing compound of the organic substance adsorbing device 8 is an ambersorb 563 manufactured by Rohm & Haas Co., and the irradiation amount of the low-pressure ultraviolet (UV) oxidizing device 7 is set to 0.25 kW. Adsorbed compound 40 per hour per volume of the compound
Table 1 with double flow rate, that is, space velocity (SV) = 40
The secondary ultrapure water was produced by passing the primary ultrapure water having the water quality shown in (1).

【0046】[0046]

【表1】 上記のポリシングシステムにおける低圧紫外線(UV)
酸化装置7出口、有機物吸着装置8出口およびイオン交
換装置9出口のそれぞれにおいて、比抵抗、全有機炭素
(TOC)濃度、溶存酸素(DO)濃度を測定した。結
果を全有機炭素除去率とともに表2に示す。
[Table 1] Low pressure ultraviolet (UV) in the above polishing system
At the outlet of the oxidizer 7, the outlet of the organic substance adsorber 8, and the outlet of the ion exchanger 9, the specific resistance, the total organic carbon (TOC) concentration, and the dissolved oxygen (DO) concentration were measured. The results are shown in Table 2 together with the total organic carbon removal rate.

【0047】[0047]

【表2】 (比較例1)実施例1の超純水製造装置において有機物
吸着装置8を設けなかった点を除いて実施例1と同じ構
成の超純水製造装置に実施例1で用いた市水と同一の市
水を通水して超純水を製造した。
[Table 2] (Comparative Example 1) The same as the city water used in Example 1 in the ultrapure water production apparatus of Example 1 except that the organic substance adsorption device 8 was not provided in the ultrapure water production apparatus of Example 1. To make ultrapure water.

【0048】上記のポリシングシステムにおける低圧紫
外線(UV)酸化装置出口およびイオン交換装置出口の
それぞれにおいて、比抵抗、全有機炭素(TOC)濃
度、溶存酸素(DO)濃度を測定した。結果を全有機炭
素除去率とともに表3に示す。
The resistivity, total organic carbon (TOC) concentration and dissolved oxygen (DO) concentration were measured at the outlet of the low-pressure ultraviolet (UV) oxidizer and the outlet of the ion exchanger in the polishing system, respectively. The results are shown in Table 3 together with the total organic carbon removal rate.

【表3】 (比較例2)低圧紫外線(UV)酸化装置の照射量を
0.7kWにした点を除いて比較例1と同じ構成の超純
水製造装置に実施例1で用いた市水と同一の市水を通水
して二次超純水を製造した。
[Table 3] (Comparative Example 2) The same city as the city water used in Example 1 in the ultrapure water production apparatus having the same configuration as that of Comparative Example 1 except that the irradiation amount of the low-pressure ultraviolet (UV) oxidizing apparatus was set to 0.7 kW. Water was passed to produce secondary ultrapure water.

【0049】上記のポリシングシステムにおける低圧紫
外線(UV)酸化装置出口およびイオン交換装置出口の
それぞれにおいて、比抵抗、全有機炭素(TOC)濃
度、溶存酸素(DO)濃度を測定した。結果を全有機炭
素除去率とともに表4に示す。
At the outlet of the low-pressure ultraviolet (UV) oxidizer and the outlet of the ion exchanger in the above polishing system, the specific resistance, the total organic carbon (TOC) concentration, and the dissolved oxygen (DO) concentration were measured. The results are shown in Table 4 together with the total organic carbon removal rate.

【表4】 同表に示す通り、この比較例2では全有機炭素(TO
C)濃度を比較例1よりも1.77ppbを下回ること
ができたが、溶存酸素(DO)濃度が比較例2よりも
2.2ppbも上昇し、紫外線照射の電力消費量は、実
施例1、比較例2の約2.8倍となった。
[Table 4] As shown in the table, in Comparative Example 2, the total organic carbon (TO
C) The concentration could be lower than 1.77 ppb than in Comparative Example 1, but the dissolved oxygen (DO) concentration increased by 2.2 ppb than in Comparative Example 2, and the power consumption of the ultraviolet irradiation was lower than that in Example 1. 2.8 times that of Comparative Example 2.

【0050】(比較例3)比較例2の装置において、全
有機炭素(TOC)濃度10ppbの一次純水がポリシ
ングシステムに供給されるようにし、低圧紫外線(U
V)照射装置の紫外線照射量を0.1〜0.7kWの範
囲で変えて、紫外線照射量と得られた二次純水の全有機
炭素(TOC)濃度との関係を測定した。
(Comparative Example 3) In the apparatus of Comparative Example 2, the primary pure water having a total organic carbon (TOC) concentration of 10 ppb was supplied to the polishing system.
V) The relationship between the ultraviolet irradiation amount and the total organic carbon (TOC) concentration of the obtained secondary pure water was measured while changing the ultraviolet irradiation amount of the irradiation device in the range of 0.1 to 0.7 kW.

【0051】結果は図3に示す通りであり、コストバラ
ンスの良い範囲では全有機炭素(TOC)濃度2ppb
以下の二次超純水を製造することはできなかった。
The results are as shown in FIG. 3, where the total organic carbon (TOC) concentration is 2 ppb in a good cost balance range.
The following secondary ultrapure water could not be produced.

【0052】(実施例2)図2に示す構成の一次超純水
システムを有する超純水装置を用いて、実施例1と同様
に超純水を製造した。
Example 2 Ultrapure water was produced in the same manner as in Example 1 using an ultrapure water apparatus having a primary ultrapure water system having the structure shown in FIG.

【0053】図2の前処理システムは、市水が供給され
る重力式ろ過装置11、活性炭塔12から構成され、一
次超純水システムは、カチオン交換塔13、脱気塔1
4、逆浸透膜装置(RO)15、混床イオン交換塔16
から構成され、逆浸透膜装置15の供給水にNaOHを
注入して、pHをおよそ10.5に調整している。一次
超純水は一旦サブタンク17に貯留され、ポリッシング
システムに供給される。ポリッシングシステムは、実施
例1と同様に低圧紫外線(UV)酸化装置18、有機物
吸着装置19、イオン交換装置(ポリッシャー)20、
限外ろ過装置21から構成され、二次超純水は、ユース
ポイントに送られ、余剰の二次超純水はサブタンク17
に還流される。
The pretreatment system shown in FIG. 2 comprises a gravity filtration device 11 to which city water is supplied, and an activated carbon tower 12. The primary ultrapure water system comprises a cation exchange column 13, a degassing column 1
4. Reverse osmosis membrane device (RO) 15, mixed bed ion exchange column 16
, And the pH is adjusted to about 10.5 by injecting NaOH into the feed water of the reverse osmosis membrane device 15. The primary ultrapure water is temporarily stored in the sub tank 17 and supplied to the polishing system. As in the first embodiment, the polishing system includes a low-pressure ultraviolet (UV) oxidizer 18, an organic adsorber 19, an ion exchanger (polisher) 20,
It comprises an ultrafiltration device 21, the secondary ultrapure water is sent to the point of use, and the excess secondary ultrapure water is
Refluxed.

【0054】上記超純水製造装置において、有機物吸着
装置19有機物吸着化合物としてローム&ハース社製ア
ンバーソープ563を用い、低圧紫外線(UV)酸化装
置18の照射量を0.15kWとし、有機物吸着化合物
に当該化合物1Lあたりの容積に対して、1時間あたり
40倍量の通水速度、つまり空間速度(SV)=40で
表5に示す水質の一次超純水を通水してー次超純水を製
造した。
In the above ultrapure water producing apparatus, the organic substance adsorbing apparatus 19 uses Amber Soap 563 manufactured by Rohm & Haas Co. as an organic substance adsorbing compound, the irradiation amount of the low-pressure ultraviolet (UV) oxidizing apparatus 18 is 0.15 kW, The primary ultrapure water having the water quality shown in Table 5 at 40 times the water flow rate per hour, that is, the space velocity (SV) = 40 with respect to the volume per liter of the compound, Water was produced.

【0055】[0055]

【表5】 上記のポリッシングシステムにおける低圧紫外線(U
V)酸化装置18出口、有機物吸着装置19出口及びイ
オン交換装置20出口のそれぞれにおいて、比抵抗、全
有機炭素(TOC)濃度、溶存酸素(DO)濃度を測定
した。結果を表6に示す。
[Table 5] The low-pressure ultraviolet light (U
V) The specific resistance, the total organic carbon (TOC) concentration, and the dissolved oxygen (DO) concentration were measured at the outlet of the oxidizer 18, the outlet of the organic substance adsorber 19, and the outlet of the ion exchanger 20, respectively. Table 6 shows the results.

【0056】[0056]

【表6】 (実施例3)実施例1の装置において、有機物吸着装置
8出口の全有機炭素(TOC)濃度が上昇した時点で、
ラインより分離し、再生操作を行った。
[Table 6] (Example 3) In the apparatus of Example 1, when the total organic carbon (TOC) concentration at the outlet of the organic substance adsorbing device 8 increases,
It was separated from the line, and the reproduction operation was performed.

【0057】再生では、126℃の水蒸気をl時間あた
り1床容積の速度で、約10床容積、熱分解生成物層に
流入させた。水蒸気流入完了後、約2時間静置し、熱分
解生成物が十分に冷却された後に、1時間あたり20床
容積の洗浄水で1時間洗浄を行った。
In the regeneration, about 10 bed volumes of steam at 126 ° C. were flowed into the pyrolysis product bed at a rate of one bed volume per hour. After the steam inflow was completed, the system was allowed to stand for about 2 hours, and after the pyrolysis products were sufficiently cooled, washing was performed for 1 hour with 20 bed volumes of washing water per hour.

【0058】図4に有機物吸着装置8出口の再生前後の
全有機炭素(TOC)濃度を示す。
FIG. 4 shows the total organic carbon (TOC) concentration before and after regeneration at the outlet of the organic substance adsorption device 8.

【0059】同図から明らかなように、再生操作によ
り、一旦上昇した全有機炭素(TOC)濃度が、上昇す
る前と同じ程度の濃度にまで、回復することができた。
As is clear from the figure, by the regenerating operation, the once increased total organic carbon (TOC) concentration could be recovered to the same level as before the increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に用いた超純水製造装置の構
成図
FIG. 1 is a configuration diagram of an ultrapure water production apparatus used in Embodiment 1 of the present invention.

【図2】本発明の実施例2に用いた超純水製造装置の構
成図
FIG. 2 is a configuration diagram of an ultrapure water production apparatus used in Embodiment 2 of the present invention.

【図3】比較例3における低圧紫外線(UV)照射装置
の紫外線照射量を0.1〜0.7kWの範囲で変えたと
きの紫外線照射量とポリシングシステムの出口全有機炭
素(TOC)濃度との関係を示すグラフ
FIG. 3 shows the UV irradiation amount and the total organic carbon (TOC) concentration at the outlet of the polishing system when the UV irradiation amount of the low-pressure ultraviolet (UV) irradiation device in Comparative Example 3 was changed in the range of 0.1 to 0.7 kW. Graph showing the relationship

【図4】実施例3における有機物吸着装置8出口の再生
前後の全有機炭素(TOC)濃度の変化を示すグラフ
FIG. 4 is a graph showing a change in total organic carbon (TOC) concentration before and after regeneration at an outlet of an organic substance adsorption device 8 in Example 3.

【符号の説明】[Explanation of symbols]

1、11……重力式の濾過装置、2、12……活性炭
塔、3……2床3塔型イオン交換塔、4、15……逆浸
透膜装置(RO)、5、16……混床イオン交換塔、
6、17……一次純水はサブタンク、7、18……低圧
紫外線(UV)酸化装置、8、19……有機物吸着装
置、9、20……イオン交換装置(ポリッシャー)、1
0、21……限外ろ過装置、13……カチオン交換塔、
14……脱気塔。
1, 11: gravity filtration device, 2, 12: activated carbon column, 3: two-bed, three-column ion exchange column, 4, 15: reverse osmosis membrane device (RO), 5, 16: mixed Floor ion exchange tower,
6, 17: primary water is sub-tank, 7, 18: low pressure ultraviolet (UV) oxidizer, 8, 19: organic adsorber, 9, 20: ion exchanger (polisher), 1
0, 21 ... ultrafiltration device, 13 ... cation exchange column,
14 ... A degassing tower.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/42 C02F 1/42 A 1/72 101 1/72 101 9/00 502 9/00 502N 502H 502J 502R 502F 502G 503 503B 504 504D 504E 504B (72)発明者 米原 崇広 神奈川県厚木市岡田2丁目9番8号 野村 マイクロ・サイエンス株式会社内 Fターム(参考) 4D024 AA03 AB04 BA02 BA17 BC01 CA01 DA04 DA07 DB05 DB10 DB19 4D025 AA04 BA08 BA13 BB04 BB08 CA05 CA10 DA01 DA02 DA04 DA05 4D037 AA03 AB02 AB11 BA18 BA23 BB01 BB02 CA01 CA03 CA15 4D050 AA05 AB11 AB32 BB01 BC09 BD08 CA03 CA06 CA08 CA09 4G066 AC14A BA20 BA23 BA25 BA38 DA07 FA22 GA01 GA06 GA32 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/42 C02F 1/42 A1 / 72 101 1/72 101 9/00 502 9/00 502N 502H 502J 502R 502F 502G 503 503B 504 504D 504E 504B (72) Inventor Takahiro Yonehara 2-9-8 Okada, Atsugi City, Kanagawa Prefecture Nomura Micro Science Co., Ltd. F-term (Reference) 4D024 AA03 AB04 BA02 BA17 BC01 CA01 DA04 DA07 DB05 DB19 4D025 AA04 BA08 BA13 BB04 BB08 CA05 CA10 DA01 DA02 DA04 DA05 4D037 AA03 AB02 AB11 BA18 BA23 BB01 BB02 CA01 CA03 CA15 4D050 AA05 AB11 AB32 BB01 BC09 BD08 CA03 CA06 CA08 CA09 4G066 AC14A BA20 BA23 GA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 前処理システム、1次純水システムおよ
びポリシングシステムからなり、前記ポリシングシステ
ムに、少なくとも紫外線酸化装置と、該紫外線酸化装置
の後段に配置されたイオン交換装置とを備えた超純水製
造装置において、 前記紫外線酸化装置から前記イオン交換装置に至る流路
に、炭素含有率が少なくとも85%で炭素と水素の原子
比率が1.5:1から20:1であるマクロ網状のスル
ホン化されたビニル芳香族ポリマーの熱分解生成物から
なる有機物吸着化合物を充填した有機物吸着装置を配置
したことを特徴とする超純水製造装置。
An ultrapure system comprising a pretreatment system, a primary pure water system, and a polishing system, wherein the polishing system includes at least an ultraviolet oxidizing device and an ion exchange device disposed downstream of the ultraviolet oxidizing device. In the water producing apparatus, a macro net-like sulfone having a carbon content of at least 85% and an atomic ratio of carbon to hydrogen of 1.5: 1 to 20: 1 is provided in a flow path from the ultraviolet oxidation apparatus to the ion exchange apparatus. An ultrapure water production apparatus, comprising an organic substance adsorption device filled with an organic substance adsorption compound composed of a thermal decomposition product of a converted vinyl aromatic polymer.
【請求項2】 前記有機物吸着化合物が、孔半径が25
nm以上で固有の孔容積が少なくとも0.1ml/gで
あるマクロ孔と孔半径が1〜25nm以上で固有の孔容
積が少なくとも0.1ml/gであるメソ孔とを有する
熱分解生成物であることを特徴とする請求項1に記載の
超純水製造装置。
2. The method according to claim 1, wherein the organic substance-adsorbing compound has a pore radius of 25.
a pyrolysis product having macropores having a specific pore volume of at least 0.1 nm / g at least nm and mesopores having a specific pore volume of at least 0.1 ml / g at a pore radius of 1 to 25 nm or more. The ultrapure water production apparatus according to claim 1, wherein:
【請求項3】 前記有機物吸着化合物が、孔半径が25
nm以上で固有の孔容積が少なくとも0.13ml/g
であるマクロ孔と、孔半径が1〜25nm以上で固有の
孔容積が少なくとも0.2ml/gであるメソ孔とを有
している熱分解生成物であることを特徴とする請求項1
または2記載の1超純水製造装置。
3. The organic substance-adsorbing compound having a pore radius of 25.
Specific pore volume of at least 0.13 ml / g above nm
And a mesopore having a pore radius of 1 to 25 nm or more and a specific pore volume of at least 0.2 ml / g.
Or the 1 ultrapure water production apparatus according to 2.
【請求項4】 前記有機物吸着化合物が、孔半径が1m
m以下で固有の孔容積が少なくとも0.1ml/gであ
るミクロ孔を有している熱分解生成物であることを特徴
とする請求項1乃至3のいずれか1項記載の超純水製造
装置。
4. The organic substance-adsorbing compound has a pore radius of 1 m.
4. Ultrapure water production according to any one of claims 1 to 3, characterized in that it is a pyrolysis product having micropores with an intrinsic pore volume of at least 0.1 ml / g below m. apparatus.
【請求項5】 前記有機物吸着化合物が、孔半径が1n
m以下で固有の孔容積が少なくとも0.2ml/gであ
るミクロ孔を有している熱分解生成物であることを特徴
とする請求項乃至4のいずれか1項記載の超純水製造装
置。
5. The organic substance-adsorbing compound having a pore radius of 1n.
The ultrapure water production apparatus according to any one of claims 1 to 4, wherein the pyrolysis product has micropores having an intrinsic pore volume of at least 0.2 ml / g at m or less. .
【請求項6】 前記有機物吸着化合物が、効果がなくな
った又は除去率が90%以下に落ちた使用済みの前記有
機物吸着化合物を、100〜250℃の水蒸気を該熱分
解生成物に通すことにより再生されたものであることを
特徴とする請求項1乃至5のいずれか1項記載の超純水
製造装置。
6. The organic substance-adsorbing compound, which has become ineffective or has a removal rate of 90% or less, is passed through the pyrolysis product by passing steam at 100 to 250 ° C. through the used organic substance-adsorbing compound. The ultrapure water production apparatus according to any one of claims 1 to 5, wherein the apparatus is regenerated.
【請求項7】 全有機炭素(TOC)濃度1〜10pp
bの供給水を、請求項1乃至5のいずれか1項記載の超
純水製造装置で処理して、全有機炭素(TOC)濃度
0.5ppb以下、溶存酸素(DO)濃度1ppb以下
の超純水を得ることを特徴とする超純水の製造方法。
7. A total organic carbon (TOC) concentration of 1 to 10 pp.
The supply water of b is treated with the ultrapure water production apparatus according to any one of claims 1 to 5, and the total organic carbon (TOC) concentration is 0.5 ppb or less and the dissolved oxygen (DO) concentration is 1 ppb or less. A method for producing ultrapure water, characterized by obtaining pure water.
JP2001003878A 2001-01-11 2001-01-11 Ultrapure water making method and ultrapure water making apparatus Withdrawn JP2002205058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003878A JP2002205058A (en) 2001-01-11 2001-01-11 Ultrapure water making method and ultrapure water making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003878A JP2002205058A (en) 2001-01-11 2001-01-11 Ultrapure water making method and ultrapure water making apparatus

Publications (1)

Publication Number Publication Date
JP2002205058A true JP2002205058A (en) 2002-07-23

Family

ID=18872152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003878A Withdrawn JP2002205058A (en) 2001-01-11 2001-01-11 Ultrapure water making method and ultrapure water making apparatus

Country Status (1)

Country Link
JP (1) JP2002205058A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2004181369A (en) * 2002-12-03 2004-07-02 Nomura Micro Sci Co Ltd Ultrapure water making apparatus
JP2013202581A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Ultrapure water production apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2004181369A (en) * 2002-12-03 2004-07-02 Nomura Micro Sci Co Ltd Ultrapure water making apparatus
JP2013202581A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Ultrapure water production apparatus

Similar Documents

Publication Publication Date Title
EP0634364B1 (en) Pure water manufacturing method
TWI648093B (en) Ultrapure water manufacturing device and method
JP3852926B2 (en) Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
JP5649520B2 (en) Ultrapure water production equipment
TW201829296A (en) Aqueous hydrogen peroxide purification method and purification device
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP2002205058A (en) Ultrapure water making method and ultrapure water making apparatus
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP6310819B2 (en) Pure water production apparatus, ultrapure water production system, and pure water production method
JP2002210494A (en) Device for manufacturing extrapure water
JP2000189760A (en) Pure water producing device
JP2002336886A (en) Extrapure water making device and extrapure water making method
JPH09253638A (en) Ultrapure water making apparatus
JP4826864B2 (en) Ultrapure water production equipment
JP2014133225A (en) Method for removing urea within pure water
JP6337933B2 (en) Water quality management system and operation method of water quality management system
JP2002361247A (en) Method for manufacturing pure water
JPS6287299A (en) Apparatus for producing ultrapure water
JP2018086657A (en) Pure water production apparatus, ultrapure water production system, and pure water producing method
US6123851A (en) Process for treating semiconductor fabrication reclaim
JPH04108588A (en) Production of ultrapure water
JPH0142754B2 (en)
JP2742975B2 (en) Regeneration method of ion exchange device
JP2003245659A (en) Method and device for treating drain water
JPH02293083A (en) Production of ultrapure water

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401