JP2002184942A - Mounting board - Google Patents

Mounting board

Info

Publication number
JP2002184942A
JP2002184942A JP2000378933A JP2000378933A JP2002184942A JP 2002184942 A JP2002184942 A JP 2002184942A JP 2000378933 A JP2000378933 A JP 2000378933A JP 2000378933 A JP2000378933 A JP 2000378933A JP 2002184942 A JP2002184942 A JP 2002184942A
Authority
JP
Japan
Prior art keywords
semiconductor device
face
circuit board
external circuit
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000378933A
Other languages
Japanese (ja)
Other versions
JP4577980B2 (en
Inventor
Kazutaka Maeda
和孝 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000378933A priority Critical patent/JP4577980B2/en
Publication of JP2002184942A publication Critical patent/JP2002184942A/en
Application granted granted Critical
Publication of JP4577980B2 publication Critical patent/JP4577980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mounting board having excellent electric connecting properties to an external circuit board and high reliability when semiconductor devices are mounted on both surfaces of the external circuit board. SOLUTION: The semiconductor devices 5 and 7 having semiconductor elements 13 mounted on circuit boards 11 and 18 are mounted on opposed main surfaces of an external circuit board 3 with an adhesive 9. The devices 5 and 7 mounted on the one main surface of the board 3 are of face-up type semiconductor devices 5, and the devices 5 and 7 mounted on the other main surface are of face-down type semiconductor devices 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、実装基板に関し、
特に、半導体素子を有する半導体装置が外部回路基板の
両面に実装された実装基板に関するものである。
TECHNICAL FIELD The present invention relates to a mounting board,
In particular, the present invention relates to a mounting board in which a semiconductor device having a semiconductor element is mounted on both sides of an external circuit board.

【0002】[0002]

【従来技術】近年、半導体素子の高速化および高集積
化、ならびに携帯機器の急速な普及に伴い、電子機器の
小型、軽量化の要求が高まっており、半導体素子や電子
部品の高密度実装技術の開発が進められているが、電子
機器の内部の実装面積は限られており、伝送速度に関す
る考慮から半導体素子同士を近接して設置することが要
求され、よりコンパクトな実装技術が必要となってい
る。
2. Description of the Related Art In recent years, with the increase in speed and integration of semiconductor devices and the rapid spread of portable devices, there has been an increasing demand for smaller and lighter electronic devices, and high-density mounting technology for semiconductor devices and electronic components. However, the mounting area inside an electronic device is limited, and it is required to install semiconductor elements close to each other in consideration of transmission speed, and more compact mounting technology is required. ing.

【0003】近年、高密度実装に対応した配線基板とし
て、配線基板の下面にハンダや導電性接着剤からなる接
合剤を格子状に配置したボールグリッドアレイパッケー
ジ(BGA)や、BGAをより小型化したチップスケー
ルパッケージ(CSP)が用いられている。
In recent years, as a wiring board corresponding to high-density mounting, a ball grid array package (BGA) in which a bonding agent made of solder or a conductive adhesive is arranged in a lattice pattern on the lower surface of the wiring board, or a BGA having a smaller size. A chip scale package (CSP) is used.

【0004】そして、これらのBGAやCSPには、図
7(a)に示すようなフェイスアップ型半導体装置61
や、図7(b)に示すようなフェイスダウン型半導体装
置63が知られており、半導体素子65の放熱方式や、
接地電源線の強化等による配線設計のちがいによって区
別して用いられている。
[0004] These BGA and CSP have a face-up type semiconductor device 61 as shown in FIG.
Further, a face-down type semiconductor device 63 as shown in FIG.
It is used differently depending on the difference in wiring design due to reinforcement of the ground power supply line and the like.

【0005】このフェイスアップ型半導体装置61は、
一般に図7(a)に示すように、半導体素子65の搭載
面と反対側の配線基板67の面に接合剤69が設けられ
ており、これらの接合剤69を介してフェイスアップ型
半導体装置61が外部回路基板71に接合されている。
一方、フェイスダウン型半導体装置63は、一般に図7
(b)に示すように、半導体素子65の搭載面と同じ側
の配線基板67の面に接合剤69が設けられており、こ
れらの接合剤69を介して配線基板67が外部回路基板
71に接合されている。これらの半導体装置61、63
は、表面実装が可能で、伝送速度および放熱性も良好で
ある。
[0005] This face-up type semiconductor device 61
Generally, as shown in FIG. 7A, a bonding agent 69 is provided on the surface of the wiring board 67 opposite to the mounting surface of the semiconductor element 65, and the face-up type semiconductor device 61 is provided via these bonding agents 69. Are joined to the external circuit board 71.
On the other hand, the face-down type semiconductor device 63 is generally
As shown in (b), a bonding agent 69 is provided on the surface of the wiring board 67 on the same side as the mounting surface of the semiconductor element 65, and the wiring substrate 67 is connected to the external circuit board 71 via these bonding agents 69. Are joined. These semiconductor devices 61 and 63
Can be surface-mounted and have good transmission speed and heat dissipation.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来、
外部回路基板71の片側だけに半導体装置61、63を
実装していたので、実装密度に限界があった。そこで、
外部回路基板71への実装密度を向上するには、半導体
装置61、63を外部回路基板71の両面に実装するこ
とが考えられる。
However, conventionally,
Since the semiconductor devices 61 and 63 are mounted on only one side of the external circuit board 71, the mounting density is limited. Therefore,
In order to improve the mounting density on the external circuit board 71, it is conceivable to mount the semiconductor devices 61 and 63 on both sides of the external circuit board 71.

【0007】このように、外部回路基板71の両面に表
面実装型の半導体装置61、63を実装すると、半導体
装置61、63や電子部品の実装密度を高めることがで
きるとともに、従来の片面にのみ実装した場合よりも、
半導体装置61、63間の配線長を短縮できることか
ら、半導体素子65の駆動回路から発信される伝送速度
の高速化を図ることができる。
As described above, when the surface-mounted semiconductor devices 61 and 63 are mounted on both surfaces of the external circuit board 71, the mounting density of the semiconductor devices 61 and 63 and the electronic components can be increased, and only the conventional single-sided device can be mounted. Rather than implementing
Since the wiring length between the semiconductor devices 61 and 63 can be reduced, the transmission speed transmitted from the drive circuit of the semiconductor element 65 can be increased.

【0008】しかしながら、BGAやCSPに半導体素
子65を搭載した半導体装置61、63を、ガラス−エ
ポキシ樹脂複合材料やガラス−ポリイミド樹脂複合材料
などの有機樹脂を含む外部回路基板71の両側に単に実
装しただけでは、使用環境、半導体素子65の駆動と停
止に伴う発熱、冷却の繰返しによって、外部回路基板7
1と半導体装置61、63との接続性が損なわれ、従来
の片面実装型の実装基板に比べて、長期にわたり安定な
接続を維持できないという問題がある。
However, the semiconductor devices 61 and 63 having the semiconductor element 65 mounted on a BGA or CSP are simply mounted on both sides of an external circuit board 71 containing an organic resin such as a glass-epoxy resin composite material or a glass-polyimide resin composite material. If only this is done, the use environment, the heat generated by driving and stopping the semiconductor element 65, and the repetition of cooling will cause the external circuit board 7
There is a problem that the connectivity between the semiconductor device 1 and the semiconductor devices 61 and 63 is impaired, and a stable connection cannot be maintained for a long time as compared with a conventional single-sided mounting substrate.

【0009】これは主として半導体装置61、63を構
成する配線基板67と外部回路基板71との熱膨張係数
差に起因する熱応力が接合剤69に繰り返し作用するこ
とにより、接合剤69が疲労し、最終的にクラックが発
生するためと考えられる。
[0009] This is mainly because the thermal stress caused by the difference in thermal expansion coefficient between the wiring board 67 and the external circuit board 71 constituting the semiconductor devices 61 and 63 repeatedly acts on the bonding agent 69, and the bonding agent 69 becomes fatigued. It is considered that cracks eventually occur.

【0010】しかるに、半導体装置61、63が外部回
路基板71の片面にのみ実装される方式であれば、実装
基板の剛性はさほど高くないため、配線基板67の反り
によって熱膨張差を緩和することができるが、両面に半
導体装置61、63を積層した実装基板では、実装基板
全体の剛性が高いため、反りによって熱膨張差を緩和す
ることができず、熱応力による接合剤69の熱疲労破壊
が発生しやすいという問題があった。
However, if the semiconductor devices 61 and 63 are mounted on only one surface of the external circuit board 71, the rigidity of the mounting board is not so high. However, in a mounting substrate in which the semiconductor devices 61 and 63 are stacked on both surfaces, the rigidity of the entire mounting substrate is high, so that the difference in thermal expansion cannot be reduced due to the warpage, and the thermal stress causes thermal fatigue fracture of the bonding agent 69 due to thermal stress. There is a problem that is easy to occur.

【0011】従って、本発明は、外部回路基板の両面に
半導体装置を実装しても、外部回路基板との電気的接続
性に優れ、信頼性の高い実装基板を提供することを目的
とする。
Accordingly, an object of the present invention is to provide a highly reliable mounting board which has excellent electrical connectivity with the external circuit board even when semiconductor devices are mounted on both surfaces of the external circuit board.

【0012】[0012]

【課題を解決するための手段】本発明の実装基板では、
配線基板に半導体素子を搭載してなる半導体装置を、外
部回路基板の対向する主面に、それぞれ接合剤により実
装してなるとともに、前記外部回路基板の一方主面に実
装された半導体装置がフェイスアップ型半導体装置とさ
れ、他方主面に実装された半導体装置がフェイスダウン
型半導体装置とされていることを特徴とするものであ
る。
According to the mounting board of the present invention,
A semiconductor device having a semiconductor element mounted on a wiring board is mounted on an opposing main surface of an external circuit board with a bonding agent, respectively, and the semiconductor device mounted on one main surface of the external circuit board has a face. The semiconductor device is an up-type semiconductor device, and the semiconductor device mounted on the other main surface is a face-down semiconductor device.

【0013】一般に、配線基板の半導体素子側の面が、
半導体素子を固着していない面よりも熱膨張が小さいた
め、フェイスアップ型半導体装置は外部回路基板に対し
て凸状に変形し、一方、フェイスダウン型半導体装置は
外部回路基板に対して凹状に変形することにより、外部
回路基板の両面に対向して実装された半導体装置を同じ
方向に反り変形させることができる。
Generally, the surface of the wiring board on the semiconductor element side is
Since the thermal expansion is smaller than the surface on which the semiconductor element is not fixed, the face-up type semiconductor device deforms convexly with respect to the external circuit board, while the face-down type semiconductor device deforms concavely with respect to the external circuit board. Due to the deformation, the semiconductor devices mounted opposite to both surfaces of the external circuit board can be warped and deformed in the same direction.

【0014】これにより、フェイスアップ型半導体装置
やフェイスダウン型半導体装置と、外部回路基板との間
に形成された接合剤に発生する応力を低減でき、ハンダ
等の接合剤の疲労断線を抑え、接続信頼性を飛躍的に向
上できる。
Thus, the stress generated in the bonding agent formed between the face-up type semiconductor device or the face-down type semiconductor device and the external circuit board can be reduced, and the fatigue breakage of the bonding agent such as solder can be suppressed. Connection reliability can be dramatically improved.

【0015】本発明の実装基板では、フェイスアップ型
半導体装置を構成する配線基板の熱膨張係数をα1、フ
ェイスダウン型半導体装置を構成する配線基板の熱膨張
係数をα2とした時、α2>α1の関係を満足すること
が望ましい。
In the mounting board of the present invention, when the thermal expansion coefficient of the wiring board constituting the face-up type semiconductor device is α1, and the thermal expansion coefficient of the wiring board constituting the face-down type semiconductor device is α2, α2> α1 It is desirable to satisfy the following relationship.

【0016】このようにすることによって、外部回路基
板に対して凹変形するフェイスダウン型半導体装置の熱
膨張が、外部回路基板に対して凸変形するフェイスアッ
プ型半導体装置の熱膨張よりも大きくなり、フェイスダ
ウン型半導体装置の反り形状がフェイスアップ型半導体
装置の反り形状に追従しやすくなるため、外部回路基板
と半導体装置を接続している接合剤の熱膨張差による歪
や応力を、さらに小さくすることができ、外部回路基板
と半導体装置を接続している接合剤の接続信頼性をさら
に向上できる。
By doing so, the thermal expansion of the face-down type semiconductor device that is concavely deformed with respect to the external circuit board is larger than the thermal expansion of the face-up type semiconductor device that is convexly deformed with respect to the external circuit board. Since the warped shape of the face-down type semiconductor device can easily follow the warped shape of the face-up type semiconductor device, the distortion and stress due to the difference in thermal expansion of the bonding agent connecting the external circuit board and the semiconductor device can be further reduced. The connection reliability of the bonding agent connecting the external circuit board and the semiconductor device can be further improved.

【0017】本発明の実装基板では、外部回路基板の熱
膨張係数をα0としたときに、α2>α0>α1の関係
を満足することが望ましい。
In the mounting board of the present invention, when the thermal expansion coefficient of the external circuit board is α0, it is desirable that the relationship α2>α0> α1 is satisfied.

【0018】外部回路基板の熱膨張係数をフェイスダウ
ン型半導体装置とフェイスアップ型半導体装置との中間
の値とすることにより、外部回路基板を含めてフェイス
ダウン型半導体装置の反り形状が、さらにフェイスアッ
プ型半導体装置の反り形状に追従しやすくなるため、接
合剤の接続信頼性をさらに向上できる。
By setting the coefficient of thermal expansion of the external circuit board to an intermediate value between the face-down type semiconductor device and the face-up type semiconductor device, the warped shape of the face-down type semiconductor device including the external circuit board further reduces the face. Since it becomes easier to follow the warped shape of the up-type semiconductor device, the connection reliability of the bonding agent can be further improved.

【0019】本発明の実装基板では、フェイスアップ型
半導体装置の、外部回路基板と反対側の位置に放熱体を
設けるとともに、フェイスアップ型半導体装置を構成す
る配線基板の熱膨張係数をα1、外部回路基板の熱膨張
係数をα0、および放熱体の熱膨張係数をα3とした時
に、α0>α1>α3の関係を満足することが望まし
い。
In the mounting board according to the present invention, a heat radiator is provided at a position of the face-up type semiconductor device opposite to the external circuit board, and the thermal expansion coefficient of the wiring board constituting the face-up type semiconductor device is α1, When the thermal expansion coefficient of the circuit board is α0 and the thermal expansion coefficient of the radiator is α3, it is desirable to satisfy the relationship α0>α1> α3.

【0020】このような構成を採用することにより、放
熱体により半導体装置からの放熱性を向上できるととも
に、外部回路基板、フェイスアップ型半導体装置、放熱
体の熱膨張係数を、上記の順になるように小さくしたの
で、実装基板が放熱体を含めても、これら放熱体、半導
体装置および外部回路基板の反り形状をさらに近づける
ことができ、接合剤の接続信頼性を向上できる。
By adopting such a configuration, the heat radiation from the semiconductor device can be improved by the heat radiator, and the thermal expansion coefficients of the external circuit board, the face-up type semiconductor device, and the heat radiator are set in the above order. Therefore, even if the mounting substrate includes a radiator, the warped shapes of the radiator, the semiconductor device, and the external circuit board can be further approximated, and the connection reliability of the bonding agent can be improved.

【0021】[0021]

【発明の実施の形態】(構造)本発明の実装基板の一形
態について、図1の概略断面図をもとに詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Structure) One embodiment of the mounting board of the present invention will be described in detail with reference to the schematic sectional view of FIG.

【0022】本発明の実装基板は、外部回路基板3の対
向する主面に、フェイスアップ型半導体装置5とフェイ
スダウン型半導体装置7が、複数の接合剤9を介して接
合されている。
In the mounting board of the present invention, a face-up type semiconductor device 5 and a face-down type semiconductor device 7 are joined to a main surface of the external circuit board 3 facing each other through a plurality of joining agents 9.

【0023】フェイスアップ型半導体装置5は、配線基
板11の上面に半導体素子13が搭載され、この半導体
素子13を気密封止するための蓋体17が配線基板11
の上面に設けられている。また、配線基板11の下面に
は複数の接合剤9が形成されている。
In the face-up type semiconductor device 5, a semiconductor element 13 is mounted on an upper surface of a wiring board 11, and a lid 17 for hermetically sealing the semiconductor element 13 is provided on the wiring board 11.
Is provided on the upper surface. A plurality of bonding agents 9 are formed on the lower surface of the wiring board 11.

【0024】一方、フェイスダウン型半導体装置7は、
配線基板18の上面中央部にキャビティ部21が形成さ
れ、半導体素子13が収容されている。そして、配線基
板18の下面にはCuを含む材料からなる放熱板23が
接合されている。
On the other hand, the face-down type semiconductor device 7
A cavity 21 is formed at the center of the upper surface of the wiring board 18 and houses the semiconductor element 13. A heat radiating plate 23 made of a material containing Cu is joined to the lower surface of the wiring board 18.

【0025】フェイスアップ型半導体装置5やフェイス
ダウン型半導体装置7(以後、半導体装置5、7とす
る)を構成している配線基板11、18は、絶縁基板2
5の内部に導体層27が形成され、また、その上面ある
いは下面には複数の接続パッド29が形成され、導体層
27と接続パッド29とはビアホール導体31を介して
接続されている。さらに、配線基板11に搭載された半
導体素子13とキャビティ21内の接続パッド29とは
ワイヤ33によって接続されている。
The wiring boards 11 and 18 constituting the face-up type semiconductor device 5 and the face-down type semiconductor device 7 (hereinafter, referred to as semiconductor devices 5 and 7) include an insulating substrate 2
5, a conductor layer 27 is formed, and a plurality of connection pads 29 are formed on the upper or lower surface thereof. The conductor layer 27 and the connection pads 29 are connected via via-hole conductors 31. Further, the semiconductor element 13 mounted on the wiring board 11 and the connection pad 29 in the cavity 21 are connected by a wire 33.

【0026】(材料および製法)本発明の実装基板にお
いて、半導体装置5、7を構成する絶縁基板25の材質
としては、アルミナ、ムライト等のセラミックス、ある
いは低温焼成のガラスセラミックスなどの電気絶縁材料
のいずれであっても良いが、半導体装置5、7が実装さ
れた構造においては、部品相互の熱膨張差を緩和し、発
生する応力を低減する上で絶縁基板25がガラスセラミ
ック焼結体からなることが望ましく、これらの材料を用
いて構成された配線基板11、18の熱膨張係数は6〜
15×10 -6(/℃)の範囲であることが望ましい。
(Material and Manufacturing Method)
And the material of the insulating substrate 25 forming the semiconductor devices 5 and 7
There are ceramics such as alumina and mullite
Or electrical insulating materials such as glass ceramics fired at low temperatures
May be used, but the semiconductor devices 5 and 7 are mounted.
In such a structure, the difference in thermal expansion between
In order to reduce the generated stress, the insulating substrate 25 is made of glass ceramic.
It is preferable to use these materials.
The thermal expansion coefficient of the wiring boards 11 and 18 thus configured is 6 to
15 × 10 -6(/ ° C.).

【0027】尚、一般に、配線基板11、18に半導体
素子13を搭載している半導体装置5、7では、半導体
素子13のサイズに比べて、配線基板11、18のサイ
ズが大きく、それらの面積比率が大きくなっているため
に、半導体装置5、7の熱膨張係数は主に配線基板11
の熱膨張係数で決定される。
Generally, in the semiconductor devices 5 and 7 in which the semiconductor elements 13 are mounted on the wiring boards 11 and 18, the sizes of the wiring boards 11 and 18 are larger than the size of the semiconductor elements 13. Since the ratio is large, the thermal expansion coefficients of the semiconductor devices 5 and 7 are mainly
Is determined by the coefficient of thermal expansion.

【0028】また、接合剤9はハンダを含有する金属材
料が主に用いられ、配線基板11、18の表面に形成さ
れた接続パッド29とは、金、錫、ニッケルのうち少な
くとも1種を含有する金属層を介して接続されている。
The bonding material 9 is mainly made of a metal material containing solder, and the connection pads 29 formed on the surfaces of the wiring boards 11 and 18 contain at least one of gold, tin and nickel. Are connected via a metal layer.

【0029】また、外部回路基板3は、いわゆるプリン
ト基板からなり、ガラス・エポキシ樹脂、ガラス・ポリ
イミド樹脂複合材料、およびアラミド繊維などの有機樹
脂を含む材料からなる絶縁体の表面および内部に、C
u、Au、Al、Ni、Sn−Pbなどの金属からなる
配線導体が被着形成されたものであり、熱膨張係数は1
2〜25×10-6(/℃)の範囲が望ましい。
The external circuit board 3 is made of a so-called printed board, and has a surface and inside of an insulator made of a material containing an organic resin such as a glass-epoxy resin, a glass-polyimide resin composite material, and aramid fiber.
A wiring conductor made of a metal such as u, Au, Al, Ni, or Sn—Pb is adhered and formed, and has a thermal expansion coefficient of 1
A range of 2 to 25 × 10 −6 (/ ° C.) is desirable.

【0030】また、外部回路基板3の厚みは、配線基板
11の熱膨張によって反り変形し、応力を低減できると
ともに、破壊しない程度の機械的強度を保持するため
に、0.5〜2mmの範囲が望ましい。また、このプリ
ント基板はフェイスダウン型半導体装置7用の配線基板
18の材料として用いることができる。
The thickness of the external circuit board 3 is in the range of 0.5 to 2 mm in order to warp and deform due to the thermal expansion of the wiring board 11 and to reduce the stress, and to maintain the mechanical strength to such a degree that it is not broken. Is desirable. This printed board can be used as a material for the wiring board 18 for the face-down type semiconductor device 7.

【0031】そして、実装面の平坦性を保持したり、実
装操作での変形を防止するために、外部回路基板3のヤ
ング率は、10〜30GPaが望ましい。
The Young's modulus of the external circuit board 3 is desirably 10 to 30 GPa in order to maintain the flatness of the mounting surface and prevent deformation during the mounting operation.

【0032】(作用)本発明の実装基板では、外部回路
基板3の対向する主面に外部回路基板3の一方主面にフ
ェイスアップ型半導体装置5を、他方主面にフェイスダ
ウン型半導体装置7を接合剤9を介して外部回路基板3
に接合したので、図2に示すように、外部回路基板3と
ともに、その上面に設けられたフェイスアップ型半導体
装置5が外部回路基板3に対して凸状に変形するととも
に、フェイスダウン型半導体装置7もフェイスアップ型
半導体装置5に追従して凹状に変形しやすくなり、これ
らの半導体装置5、7と外部回路基板3との間の接合剤
9に作用する歪みや応力を低減でき、ハンダ等の接合剤
の疲労断線を抑え、接続信頼性を飛躍的に向上できる。
(Operation) In the mounting board of the present invention, the face-up type semiconductor device 5 is provided on one main surface of the external circuit board 3 on the opposite main surface of the external circuit board 3 and the face-down type semiconductor device 7 is provided on the other main surface. To the external circuit board 3 via the bonding agent 9
As shown in FIG. 2, the external circuit board 3 and the face-up type semiconductor device 5 provided on the upper surface thereof are deformed into a convex shape with respect to the external circuit board 3 as shown in FIG. 7 also easily deforms into a concave shape following the face-up type semiconductor device 5, and can reduce distortion and stress acting on the bonding agent 9 between these semiconductor devices 5, 7 and the external circuit board 3. Can suppress the fatigue disconnection of the bonding agent and greatly improve the connection reliability.

【0033】また、フェイスアップ型半導体装置5を構
成している配線基板11の上面に設けられている蓋体1
7の熱膨張係数を配線基板11と同じかそれ以下とする
ことにより、外部回路基板3側に凸状に変形し易くなり
蓋体17の影響を軽減することができる。
The cover 1 provided on the upper surface of the wiring board 11 constituting the face-up type semiconductor device 5
By setting the coefficient of thermal expansion of 7 to be equal to or less than that of the wiring board 11, it is easy to deform into a convex shape on the external circuit board 3 side, and the influence of the lid 17 can be reduced.

【0034】一方、フェイスダウン型半導体装置7を構
成している配線基板18の外部回路基板3の反対側に設
けられている放熱板23の熱膨張係数を配線基板18と
同じかもしくはそれ以上とすることにより、外部回路基
板3側に対して凹状に変形し易くなり放熱板23の影響
を抑えることができる。
On the other hand, the heat expansion coefficient of the heat radiating plate 23 provided on the side opposite to the external circuit board 3 of the wiring board 18 constituting the face-down type semiconductor device 7 is equal to or higher than that of the wiring board 18. By doing so, it is easy to deform into a concave shape with respect to the external circuit board 3 side, and the influence of the heat sink 23 can be suppressed.

【0035】また、半導体装置5、7と外部回路基板3
を接続している接合剤9は、その高さ方向に応力緩和す
る作用を有するように略柱状に形成されることが望まし
い。
The semiconductor devices 5 and 7 and the external circuit board 3
Is desirably formed in a substantially columnar shape so as to have an action of relaxing stress in the height direction.

【0036】また、接合剤9は、配線基板11面に格子
状に形成することにより、接合剤9に発生する応力を分
散し、且つ低減することができる。
Further, by forming the bonding agent 9 in a lattice on the surface of the wiring board 11, the stress generated in the bonding agent 9 can be dispersed and reduced.

【0037】また、外部回路基板3の両面に対向して実
装される半導体装置5、7のサイズは、面積比が同じ
か、もしくは10%以内であれば、両面の半導体装置
5、7の反り変形の度合を近づけることができ接合剤9
に発生する歪みや応力を低くすることができる。
The size of the semiconductor devices 5 and 7 mounted on both surfaces of the external circuit board 3 so as to be opposed to each other is the same if the area ratio is the same or within 10%. The degree of deformation can be approximated and the bonding agent 9
Can be reduced.

【0038】さらに、配線基板11の主面ならびにキャ
ビティ21内に実装される半導体素子13のサイズは主
面の面積比で50%以内であることが、半導体素子13
の熱膨張の影響を軽減できる。
Further, the size of the semiconductor element 13 mounted on the main surface of the wiring board 11 and the cavity 21 is preferably within 50% by area ratio of the main surface.
Can reduce the influence of thermal expansion.

【0039】また、フェイスアップ型半導体装置5を構
成する配線基板11の熱膨張係数をα1、フェイスダウ
ン型半導体装置7を構成する配線基板18の熱膨張係数
をα2とした時、α2>α1の関係を満足することが望
ましい。
When the thermal expansion coefficient of the wiring board 11 constituting the face-up type semiconductor device 5 is α1, and the thermal expansion coefficient of the wiring board 18 constituting the face-down type semiconductor device 7 is α2, α2> α1 It is desirable to satisfy the relationship.

【0040】フェイスダウン型半導体装置7の熱膨張係
数α2が、フェイスアップ型半導体装置5の熱膨張係数
α1よりも大きければ、フェイスダウン型半導体装置7
の反り形状がフェイスアップ型半導体装置5の反り形状
に追従しやすくなるため、外部回路基板3と半導体装置
5、7を接続している接合剤9の熱膨張差による歪や応
力を、さらに小さくすることができ、外部回路基板3と
半導体装置5、7を接続している接合剤9の接続信頼性
をさらに向上できる。特に、フェイスダウン型半導体装
置7の熱膨張係数が、フェイスアップ型半導体装置5の
熱膨張係数よりも2×10-6(/℃)以上大きいこと
が、特に望ましい。
If the thermal expansion coefficient α2 of the face-down type semiconductor device 7 is larger than the thermal expansion coefficient α1 of the face-up type semiconductor device 5,
Since the warp shape of the semiconductor device 5 easily follows the warp shape of the face-up type semiconductor device 5, the distortion and stress due to the difference in thermal expansion of the bonding agent 9 connecting the external circuit board 3 and the semiconductor devices 5 and 7 are further reduced. The connection reliability of the bonding agent 9 connecting the external circuit board 3 and the semiconductor devices 5 and 7 can be further improved. In particular, it is particularly desirable that the thermal expansion coefficient of the face-down type semiconductor device 7 is larger than the thermal expansion coefficient of the face-up type semiconductor device 5 by 2 × 10 −6 (/ ° C.) or more.

【0041】また、外部回路基板の熱膨張係数をα0と
したときに、α2>α0>α1の関係を満足することが
望ましい。
When the coefficient of thermal expansion of the external circuit board is α0, it is desirable to satisfy the relationship α2>α0> α1.

【0042】外部回路基板3として、例えば、熱膨張係
数が12〜25×10-6(/℃)のプリント基板を用い
た場合に、フェイスアップ型半導体装置5として、熱膨
張係数が外部回路基板3よりも小さいセラミック製の配
線基板11やガラスセラミックス製の配線基板11を用
い、対向するフェイスダウン型半導体装置7の配線基板
18として、ガラス繊維やアラミド繊維にエポキシ樹脂
やポリイミド樹脂などの熱硬化性樹脂を含浸して作製し
た熱膨張係数が外部回路基板3よりも大きいプリント基
板を用いることにより、実装基板を構成する配線基板1
1と外部回路基板3の熱膨張係数をフェイスダウン型半
導体装置7>外部回路基板3>フェイスアップ型半導体
装置5の順に小さくすることができ、外部回路基板3の
両面に設けた半導体装置5、7の反りを外部回路基板3
とともに追従させることができる。
For example, when a printed circuit board having a thermal expansion coefficient of 12 to 25 × 10 −6 (/ ° C.) is used as the external circuit board 3, the face-up type semiconductor device 5 has a thermal expansion coefficient of the external circuit board. Using a ceramic wiring board 11 or a glass ceramic wiring board 11 smaller than 3 as the wiring board 18 of the opposed face-down type semiconductor device 7, glass fiber or aramid fiber and thermosetting epoxy resin or polyimide resin. By using a printed circuit board having a thermal expansion coefficient larger than that of the external circuit board 3 made by impregnating the conductive resin, the wiring board 1 constituting the mounting board is used.
1 and the thermal expansion coefficient of the external circuit board 3 can be reduced in the order of the face-down type semiconductor device 7> the external circuit board 3> the face-up type semiconductor device 5, and the semiconductor devices 5 provided on both surfaces of the external circuit board 3. 7 warps the external circuit board 3
Can be followed.

【0043】図3は、本発明の他の実装基板を示すもの
で、フェイスアップ型半導体装置5の蓋体17には半導
体素子13から発生する熱を放熱するために放熱体19
が設けられている。
FIG. 3 shows another mounting substrate according to the present invention. A radiator 19 for radiating heat generated from the semiconductor element 13 is provided on a lid 17 of the face-up type semiconductor device 5.
Is provided.

【0044】この放熱体19はコバールやAlSiCか
らなる比較的熱膨張係数の小さい材料が好適に用いら
れ、その熱膨張係数は5〜15×10-6(/℃)の範囲
であり、用いられる配線基板11、18の熱膨張係数や
ヤング率に応じて変更することができる。
The radiator 19 is preferably made of a material having a relatively small coefficient of thermal expansion, such as Kovar or AlSiC, and has a coefficient of thermal expansion in the range of 5 to 15 × 10 −6 (/ ° C.). It can be changed according to the thermal expansion coefficient and Young's modulus of the wiring boards 11 and 18.

【0045】以上のように構成された実装基板では、フ
ェイスアップ型半導体装置5と外部回路基板3との熱膨
張係数差に起因した反り(撓み)変形を阻害しないため
には、フェイスアップ型半導体装置5の放熱体19の熱
膨張係数は、同配線基板11の熱膨張係数よりも小さい
方がより好適であり、フェイスアップ型半導体装置5を
構成する配線基板11の熱膨張係数をα1、外部回路基
板3の熱膨張係数をα0、および放熱体19の熱膨張係
数をα3とした時に、α0>α1>α3の関係を満足す
ることが望ましい。
In the mounting board configured as described above, in order not to inhibit the warpage (bending) deformation caused by the difference in the thermal expansion coefficient between the face-up type semiconductor device 5 and the external circuit board 3, the face-up type semiconductor It is more preferable that the thermal expansion coefficient of the radiator 19 of the device 5 is smaller than the thermal expansion coefficient of the wiring substrate 11. The thermal expansion coefficient of the wiring substrate 11 constituting the face-up type semiconductor device 5 is α1, When the thermal expansion coefficient of the circuit board 3 is α0 and the thermal expansion coefficient of the radiator 19 is α3, it is desirable that the relationship α0>α1> α3 is satisfied.

【0046】例えば、熱膨張係数が外部回路基板3より
も小さいセラミック製の配線基板11からなるフェイス
アップ型半導体装置5の上面側に、例えば、熱膨張係数
がこのフェイスアップ型半導体装置5を構成している配
線基板11よりも小さいコバールやAlSiC等からな
る放熱体19を接合することにより実装基板1を構成す
る配線基板11と外部回路基板3の熱膨張係数を、外部
回路基板3>フェイスアップ型半導体装置5>放熱体1
9の順に小さくすることができるため、放熱体19を含
めても外部回路基板3とその両面に設けられた半導体装
置5、7の反り変形をさらに追従させることができる。
For example, the face-up type semiconductor device 5 having a thermal expansion coefficient smaller than that of the external circuit board 3 is formed on the upper surface side of the face-up type semiconductor device 5 comprising the ceramic wiring board 11. The thermal expansion coefficient of the wiring board 11 and the external circuit board 3 constituting the mounting board 1 by joining a heat radiator 19 made of Kovar, AlSiC, or the like smaller than the wiring board 11 that is smaller than the external circuit board 3> face-up Type semiconductor device 5> radiator 1
9, the warping deformation of the external circuit board 3 and the semiconductor devices 5 and 7 provided on both surfaces thereof can be further followed even when the heat radiator 19 is included.

【0047】また、半導体素子13の上面に放熱体19
を設置することで、半導体装置5、の放熱性を高め、温
度変化を小さくできるため、半導体装置5、7を構成す
る配線基板18の熱膨張を抑制し、半導体装置5、7と
外部回路基板3とを接合している接合剤9の歪を小さく
することができ、接合剤9の断線を防止し、接続信頼性
をさらに高めることができる。この放熱体19は半導体
装置5、7の両方、もしくは片方に設けることができ
る。
The radiator 19 is provided on the upper surface of the semiconductor element 13.
Since the heat dissipation of the semiconductor device 5 can be enhanced and the temperature change can be reduced by installing the semiconductor device 5, the thermal expansion of the wiring board 18 constituting the semiconductor devices 5 and 7 is suppressed, and the semiconductor devices 5 and 7 and the external circuit board are connected. Distortion of the bonding agent 9 that joins the bonding member 3 can be reduced, disconnection of the bonding agent 9 can be prevented, and connection reliability can be further improved. The heat radiator 19 can be provided on both or one of the semiconductor devices 5 and 7.

【0048】尚、本発明は、上記例に限定されるもので
はなく、要旨を変更しない範囲で変更可能である。例え
ば、フェイスダウン型半導体装置7に用いられる配線基
板18として、図1に示したような貫通していないキャ
ビティ部21を有する非貫通型の配線基板18の他に、
図4に示すように、貫通されたキャビティ21を有する
貫通型の配線基板41があり、配線遅延等対策のための
接地電源線強化を重視する場合に非中貫型配線基板が、
一方、配線基板18の放熱性を重視する場合には貫通型
の配線基板41が好適に用いられる。
It should be noted that the present invention is not limited to the above example, and can be changed without changing the gist. For example, as the wiring board 18 used in the face-down type semiconductor device 7, in addition to the non-penetrating type wiring board 18 having the cavity 21 not penetrating as shown in FIG.
As shown in FIG. 4, there is a through-type wiring substrate 41 having a penetrated cavity 21, and when emphasis is placed on ground power supply lines for measures such as wiring delay, a non-penetrating type wiring substrate is used.
On the other hand, when importance is placed on the heat dissipation of the wiring board 18, a through-type wiring board 41 is preferably used.

【0049】また、接合剤9に関し、図5(a)、
(b)、(c)に示すように配列された複数の接合剤9
からなる接合剤群15の外周部に、配線基板11、18
内の導体層27と接合していない、いわば機械的に接合
するための補助接合剤39を設けてもよく、その大きさ
(面積)、間隔および配列は任意に変えることができ
る。
As for the bonding agent 9, FIG.
(B) A plurality of bonding agents 9 arranged as shown in (c)
The wiring boards 11 and 18 are provided on the outer periphery of the bonding agent group 15 made of
An auxiliary bonding agent 39 that is not bonded to the inner conductor layer 27, that is, may be provided for mechanical bonding, so to say, may be arbitrarily changed in size (area), interval, and arrangement.

【0050】また、これらの接合剤9や補助接合剤39
がハンダペーストで形成される際に、溶融したハンダ
が、表面張力によって上下のパッドの位置を補正するセ
ルフアライメント効果をより高めることができる。
The bonding agent 9 and the auxiliary bonding agent 39
When the solder paste is formed with the solder paste, the molten solder can enhance the self-alignment effect of correcting the positions of the upper and lower pads by the surface tension.

【0051】また、補助接合剤39が半導体装置5、7
と外部回路基板3との間でスペーサの役割を担い、接合
剤9に加えて接続部の面積を大きくでき、そして、ハン
ダボール自身が半導体装置5、7や外部回路基板3の変
形による圧縮応力を緩和することができる。
The auxiliary bonding agent 39 is used for the semiconductor devices 5 and 7.
Plays a role of a spacer between the semiconductor device 5 and the external circuit board 3, and can increase the area of the connection portion in addition to the bonding agent 9. Can be alleviated.

【0052】さらに、この補助接合剤39は電気的な導
通を有していないため、たとえ熱疲労によって破壊して
もパッケージの信頼性には影響しない。
Further, since the auxiliary bonding agent 39 has no electrical conduction, even if it is broken by thermal fatigue, it does not affect the reliability of the package.

【0053】また、半導体素子13を実装する他の方法
として、図6に示すように、その一方主面に形成された
端子部と配線基板11に形成された接続パッドとの間に
ハンダバンプ51を形成して接続され、さらに、半導体
素子13と配線基板11との間に有機樹脂を含有するア
ンダーフィル充填剤53を流し込んで封止するフリップ
チップ方式の接合法を用いることもできる。
As another method for mounting the semiconductor element 13, as shown in FIG. 6, a solder bump 51 is provided between a terminal portion formed on one main surface and a connection pad formed on the wiring board 11. A flip-chip bonding method in which an underfill filler 53 containing an organic resin is poured between the semiconductor element 13 and the wiring board 11 for sealing is formed.

【0054】[0054]

【実施例】表1に示す3種類の絶縁材料を用いて、フェ
イスアップ型半導体装置5用及びフェイスダウン型半導
体装置7用の配線基板11、18を作製した。また、こ
の配線基板11、18の切出片を用いて、超音波法によ
りヤング率を、熱機械分析法により熱膨張係数を温度−
50〜150℃の範囲で測定した。
EXAMPLE Using three kinds of insulating materials shown in Table 1, wiring boards 11 and 18 for the face-up type semiconductor device 5 and the face-down type semiconductor device 7 were manufactured. Using the cut pieces of the wiring boards 11 and 18, the Young's modulus was determined by the ultrasonic method, and the coefficient of thermal expansion was determined by the thermomechanical analysis method.
It measured in the range of 50 to 150 ° C.

【0055】半導体素子13の載置方法は、いずれもフ
リップチップ方式を用いた。パッケージサイズは17m
m×17mm×1.0mm、半導体素子13サイズは1
1mm×11mm×0.27mmである。底面には、接
合剤9を形成するための256個の接続パッド29を設
けた。
The mounting method of the semiconductor element 13 used the flip chip method in all cases. Package size is 17m
mx 17 mm x 1.0 mm, semiconductor element 13 size is 1
It is 1 mm × 11 mm × 0.27 mm. On the bottom surface, 256 connection pads 29 for forming the bonding agent 9 were provided.

【0056】そして上記配線基板11の接続パッド29
にハンダ(Sn63%−Pb37%)ペーストをスクリ
ーン印刷により塗布し、ハンダボール搭載後に加熱溶融
してハンダの層を形成させた。
The connection pads 29 on the wiring board 11
A solder (Sn 63% -Pb 37%) paste was applied by screen printing and heated and melted after mounting a solder ball to form a solder layer.

【0057】一方、外部回路基板3として、ガラス−エ
ポキシ樹脂からなる絶縁材料の両面に銅箔からなる接続
パッド29を形成し、熱膨張係数が14×10-6/℃の
プリント基板を準備した。
On the other hand, as the external circuit board 3, connection pads 29 made of copper foil were formed on both surfaces of an insulating material made of glass-epoxy resin, and a printed board having a thermal expansion coefficient of 14 × 10 -6 / ° C. was prepared. .

【0058】そして、この外部回路基板3の片面の接続
パッド29にハンダ(Sn63%−Pb37%)ペース
トをスクリーン印刷により塗布した後、上記の配線基板
11の接続パッド29とこの外部回路基板3の接続パッ
ド29とを位置合わせし、加熱溶融させて実装した。そ
の後、外部回路基板3の反対面の接続パッド29にハン
ダペーストをスクリーン印刷により塗布し、配線基板1
1のランドを位置合わせし、加熱溶融させて図1に示す
実装基板を作製した。
Then, after solder (Sn 63% -Pb 37%) paste is applied to the connection pads 29 on one side of the external circuit board 3 by screen printing, the connection pads 29 of the wiring board 11 and the The connection pads 29 were aligned and heated and melted for mounting. Thereafter, a solder paste is applied to the connection pads 29 on the opposite surface of the external circuit board 3 by screen printing, and
The lands of No. 1 were aligned and heated and melted to produce the mounting substrate shown in FIG.

【0059】次に、上記のようにして作製した実装基板
を、−40℃と125℃の各温度になるように到達した
恒温槽に試験サンプルを投入し、25分/25分の保持
を1サイクルとして最高2000サイクルまで繰り返し
行った。
Next, the test sample is put into the thermostat having reached the respective temperatures of −40 ° C. and 125 ° C., and the holding substrate manufactured as described above is held for 25 minutes / 25 minutes. The cycle was repeated up to 2000 cycles.

【0060】そして、100サイクル終了毎に外部回路
基板3と配線基板11、18との電気抵抗を測定し、電
気抵抗に+20%以上の変化が現れるまでのサイクル数
を評価し、表2に示した。
The electrical resistance between the external circuit board 3 and the wiring boards 11 and 18 was measured every 100 cycles, and the number of cycles until the electrical resistance changed by + 20% or more was evaluated. Was.

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】表1、2より明らかなように、外部回路基
板3の両面に対向して、フェイスアップ型半導体装置5
とフェイスダウン型半導体装置7を実装した本発明の実
装基板では、1000サイクルを超えても抵抗変化は全
く認められず、極めて安定で良好な電気的接続状態を維
持できた。これに対して、フェイスアップ型半導体装置
5を外部回路基板3の両面に実装して作製した実装基板
(試料No.1)では、500サイクルの早い段階から
抵抗変化が検出され、実装信頼性が低いことがわかっ
た。
As is clear from Tables 1 and 2, the face-up type semiconductor device 5
In the mounting board of the present invention on which the face-down type semiconductor device 7 was mounted, no change in resistance was observed even after exceeding 1000 cycles, and an extremely stable and good electrical connection state could be maintained. On the other hand, in a mounting board (sample No. 1) manufactured by mounting the face-up type semiconductor device 5 on both surfaces of the external circuit board 3, a change in resistance is detected as early as 500 cycles, and the mounting reliability is reduced. It turned out to be low.

【0064】さらに、フェイスダウン型半導体装置7を
構成する配線基板18の熱膨張係数をフェイスアップ型
半導体装置5を構成する配線基板11の熱膨張係数より
も大きくした試料No.3、No.4およびNo.5で
は、1500サイクルを超えても抵抗変化は全く認めら
れなかった。特に、α2>α0>α1の試料No.5で
は、特に疲労寿命が長くなった。
Further, in the sample No. 5 in which the thermal expansion coefficient of the wiring board 18 constituting the face-down type semiconductor device 7 was larger than the thermal expansion coefficient of the wiring board 11 constituting the face-up type semiconductor device 5. 3, No. 4 and no. In No. 5, no resistance change was observed even after 1500 cycles. In particular, sample No. of α2>α0> α1. In No. 5, the fatigue life was particularly prolonged.

【0065】また、フェイスアップ型半導体装置5の上
部にコバール(熱膨張係数5×10 -6(/℃)製の放熱
体19を設けて作製した実装基板の試料No.7では、
抵抗変化の寿命が1500〜1700サイクルとなり、
一方、放熱体にAlSiC(熱膨張係数10×10
-6(/℃)を用いた試料No.6の1100〜1200
サイクルよりも疲労寿命が長かった。
Further, on the face-up type semiconductor device 5,
Kovar (coefficient of thermal expansion 5 × 10 -6(/ ° C) heat radiation
Sample No. of the mounting board manufactured by providing the body 19 In 7,
The life of the resistance change becomes 1500 to 1700 cycles,
On the other hand, AlSiC (coefficient of thermal expansion 10 × 10
-6(/ ° C.) 6 of 1100-1200
The fatigue life was longer than the cycle.

【0066】[0066]

【発明の効果】以上詳述したように、本発明の実装基板
は、外部回路基板の一方主面にフェイスアップ型半導体
装置を実装し、一方、他方主面に対向してフェイスダウ
ン型半導体装置を実装することにより、半導体装置の半
導体素子側の面が、半導体素子を固着していない面より
も熱膨張が小さいため、フェイスアップ型半導体装置は
外部回路基板に対して凸状に変形し、一方、フェイスダ
ウン型半導体装置は外部回路基板に対して凹状に変形
し、これにより、外部回路基板の両面に対向して実装さ
れたこれらの半導体装置が同じ方向に反り変形させるこ
とができる。
As described in detail above, the mounting board of the present invention has a face-up type semiconductor device mounted on one main surface of an external circuit board, and a face-down type semiconductor device facing one other main surface. By mounting, the surface of the semiconductor device on the semiconductor element side has a smaller thermal expansion than the surface to which the semiconductor element is not fixed, so that the face-up type semiconductor device is deformed in a convex shape with respect to the external circuit board, On the other hand, the face-down type semiconductor device is deformed concavely with respect to the external circuit board, so that these semiconductor devices mounted on both sides of the external circuit board can be warped and deformed in the same direction.

【0067】このため、半導体装置と外部回路基板との
間に形成された接合剤に発生する応力を低減でき、接合
剤におけるハンダの疲労断線を抑え、接続信頼性を飛躍
的に向上できる。
For this reason, the stress generated in the bonding agent formed between the semiconductor device and the external circuit board can be reduced, the fatigue disconnection of the solder in the bonding agent can be suppressed, and the connection reliability can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実装基板を示す概略断面図である。FIG. 1 is a schematic sectional view showing a mounting board of the present invention.

【図2】本発明の実装基板が反り変形した状態を示す模
式図である。
FIG. 2 is a schematic diagram showing a state in which the mounting board of the present invention is warped and deformed.

【図3】本発明の蓋体の上部に放熱体を設けた実装基板
を示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing a mounting substrate provided with a heat radiator on an upper portion of a lid according to the present invention.

【図4】キャビティ部を中貫した配線基板で構成された
フェイスダウン型半導体装置を示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing a face-down type semiconductor device constituted by a wiring substrate having a cavity portion penetrating therethrough.

【図5】接合剤および補助接合剤の配置例を示す図であ
る。
FIG. 5 is a diagram showing an example of arrangement of a bonding agent and an auxiliary bonding agent.

【図6】半導体素子をフリップチップ接合した半導体装
置を外部回路基板の両面に設けた本発明の実装基板を示
す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing a mounting board of the present invention in which semiconductor devices in which semiconductor elements are flip-chip bonded are provided on both surfaces of an external circuit board.

【図7】(a)は外部回路基板の片面にフェイスアップ
型半導体装置を実装した実装基板、(b)はフェイスダ
ウン型半導体装置を実装した実装基板の概略断面図であ
る。
7A is a schematic cross-sectional view of a mounting board on which a face-up type semiconductor device is mounted on one surface of an external circuit board, and FIG.

【符号の説明】[Explanation of symbols]

3、71 外部回路基板 5、61 フェイスアップ型半導体装置 7、63 フェイスダウン型半導体装置 9、69 接合剤 11、18、41、67 配線基板 13、65 半導体素子 15 接合剤群 17 蓋体 19 放熱体 21 キャビティ 23 放熱板 25 絶縁基板 27 導体層 29 接続パッド 31 ビアホール導体 33 ワイヤ 39 補助接合剤 3, 71 External circuit board 5, 61 Face-up type semiconductor device 7, 63 Face-down type semiconductor device 9, 69 Bonding agent 11, 18, 41, 67 Wiring board 13, 65 Semiconductor element 15 Bonding agent group 17 Cover 19 Heat radiation Body 21 Cavity 23 Heat sink 25 Insulating substrate 27 Conductive layer 29 Connection pad 31 Via hole conductor 33 Wire 39 Auxiliary bonding agent

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】配線基板に半導体素子を搭載してなる半導
体装置を、外部回路基板の対向する主面に、それぞれ接
合剤により実装してなるとともに、前記外部回路基板の
一方主面に実装された半導体装置がフェイスアップ型半
導体装置とされ、他方主面に実装された半導体装置がフ
ェイスダウン型半導体装置とされていることを特徴とす
る実装基板。
1. A semiconductor device having a semiconductor element mounted on a wiring board is mounted on an opposing main surface of an external circuit board with a bonding agent, and is mounted on one main surface of the external circuit board. Wherein the semiconductor device is a face-up type semiconductor device, and the semiconductor device mounted on the other main surface is a face-down type semiconductor device.
【請求項2】フェイスアップ型半導体装置を構成する配
線基板の熱膨張係数をα1、フェイスダウン型半導体装
置を構成する配線基板の熱膨張係数をα2とした時、α
2>α1の関係を満足することを特徴とする請求項1記
載の実装基板。
2. The thermal expansion coefficient of a wiring board constituting a face-up type semiconductor device is α1, and the thermal expansion coefficient of a wiring board constituting a face-down type semiconductor device is α2.
2. The mounting board according to claim 1, wherein a relationship of 2> α1 is satisfied.
【請求項3】外部回路基板の熱膨張係数をα0としたと
きに、α2>α0>α1の関係を満足することを特徴と
する請求項1または2記載の実装基板。
3. The mounting board according to claim 1, wherein a relationship of α2>α0> α1 is satisfied when a thermal expansion coefficient of the external circuit board is α0.
【請求項4】フェイスアップ型半導体装置の、外部回路
基板と反対側の位置に放熱体を設けるとともに、前記フ
ェイスアップ型半導体装置を構成する配線基板の熱膨張
係数をα1、前記外部回路基板の熱膨張係数をα0、お
よび前記放熱体の熱膨張係数をα3とした時に、α0>
α1>α3の関係を満足することを特徴とする請求項1
乃至3のうちいずれかに記載の実装基板。
4. A heat radiator is provided at a position of the face-up type semiconductor device opposite to the external circuit board, a coefficient of thermal expansion of a wiring board constituting the face-up type semiconductor device is α1, and the external circuit board has When the thermal expansion coefficient is α0 and the thermal expansion coefficient of the radiator is α3, α0>
2. The relationship of α1> α3 is satisfied.
4. The mounting board according to any one of the above aspects.
JP2000378933A 2000-12-13 2000-12-13 Mounting board Expired - Fee Related JP4577980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378933A JP4577980B2 (en) 2000-12-13 2000-12-13 Mounting board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378933A JP4577980B2 (en) 2000-12-13 2000-12-13 Mounting board

Publications (2)

Publication Number Publication Date
JP2002184942A true JP2002184942A (en) 2002-06-28
JP4577980B2 JP4577980B2 (en) 2010-11-10

Family

ID=18847407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378933A Expired - Fee Related JP4577980B2 (en) 2000-12-13 2000-12-13 Mounting board

Country Status (1)

Country Link
JP (1) JP4577980B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196874A (en) * 2004-12-13 2006-07-27 Canon Inc Semiconductor device
JP2009070891A (en) * 2007-09-11 2009-04-02 Sumitomo Bakelite Co Ltd Semiconductor device
KR101190920B1 (en) 2010-10-18 2012-10-12 하나 마이크론(주) Stacked semiconductor package and method of manufacturing thereof
KR101247138B1 (en) * 2005-09-14 2013-03-29 하테체 베타일리궁스 게엠베하 Flip-chip module and method of producing a flip-chip module
US9254653B2 (en) 2013-02-26 2016-02-09 Seiko Epson Corporation Wiring structure, method of manufacturing wiring structure, liquid droplet ejecting head, and liquid droplet ejecting apparatus
US9579892B2 (en) 2013-02-26 2017-02-28 Seiko Epson Corporation Wiring structure, method of manufacturing wiring structure, liquid droplet ejecting head, and liquid droplet ejecting apparatus
JP2019174587A (en) * 2018-03-28 2019-10-10 住友大阪セメント株式会社 Optical waveguide element module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280696A (en) * 1991-03-08 1992-10-06 Hitachi Ltd High integrated semiconductor device
JPH04280695A (en) * 1991-03-08 1992-10-06 Hitachi Ltd High integrated semiconductor device and semiconductor module provided therewith
JPH1079405A (en) * 1996-09-04 1998-03-24 Hitachi Ltd Semiconductor device and electronic component mounting the same
WO2001071806A1 (en) * 2000-03-21 2001-09-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, method of manufacturing electronic device, electronic device, and portable information terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280696A (en) * 1991-03-08 1992-10-06 Hitachi Ltd High integrated semiconductor device
JPH04280695A (en) * 1991-03-08 1992-10-06 Hitachi Ltd High integrated semiconductor device and semiconductor module provided therewith
JPH1079405A (en) * 1996-09-04 1998-03-24 Hitachi Ltd Semiconductor device and electronic component mounting the same
WO2001071806A1 (en) * 2000-03-21 2001-09-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, method of manufacturing electronic device, electronic device, and portable information terminal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196874A (en) * 2004-12-13 2006-07-27 Canon Inc Semiconductor device
KR101247138B1 (en) * 2005-09-14 2013-03-29 하테체 베타일리궁스 게엠베하 Flip-chip module and method of producing a flip-chip module
JP2009070891A (en) * 2007-09-11 2009-04-02 Sumitomo Bakelite Co Ltd Semiconductor device
KR101190920B1 (en) 2010-10-18 2012-10-12 하나 마이크론(주) Stacked semiconductor package and method of manufacturing thereof
US9254653B2 (en) 2013-02-26 2016-02-09 Seiko Epson Corporation Wiring structure, method of manufacturing wiring structure, liquid droplet ejecting head, and liquid droplet ejecting apparatus
US9579892B2 (en) 2013-02-26 2017-02-28 Seiko Epson Corporation Wiring structure, method of manufacturing wiring structure, liquid droplet ejecting head, and liquid droplet ejecting apparatus
JP2019174587A (en) * 2018-03-28 2019-10-10 住友大阪セメント株式会社 Optical waveguide element module
JP7059749B2 (en) 2018-03-28 2022-04-26 住友大阪セメント株式会社 Optical waveguide element module

Also Published As

Publication number Publication date
JP4577980B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP3437369B2 (en) Chip carrier and semiconductor device using the same
US7679176B2 (en) Semiconductor device and electronic control unit using the same
JP4828164B2 (en) Interposer and semiconductor device
US20040173891A1 (en) Intermediate board, intermediate board with a semiconductor device, substrate board with an intermediate board, structural member including a semiconductor device, an intermediate board and a substrate board, and method of producing an intermediate board
WO2006132151A1 (en) Interposer and semiconductor device
WO1997020347A1 (en) Semiconductor device, process for producing the same, and packaged substrate
JPH0964099A (en) Semiconductor device and its mounting structure
JPH09298255A (en) Ceramic circuit board and semiconductor device using the board
US6828676B2 (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor device unit
JP4577980B2 (en) Mounting board
JP4646642B2 (en) Package for semiconductor devices
JP3631638B2 (en) Mounting structure of semiconductor device package
JP2001338999A (en) Semiconductor element storing package
JP2002170924A (en) Laminated type semiconductor device and mounting board
JP2002231850A (en) Semiconductor device storing wiring board
JPH10256428A (en) Semiconductor package
JP3872236B2 (en) Wiring board and its mounting structure
JPH10256413A (en) Semiconductor package
JP3561671B2 (en) Semiconductor device
JPH09321168A (en) Semiconductor package and semiconductor device
JP2001244390A (en) Package for semiconductor device and mounting structure
JP2001102492A (en) Wiring board and mounting structure thereof
KR20050031599A (en) Semiconductor package having thermal interface material
JP3610239B2 (en) Wiring board for mounting semiconductor device and mounting structure thereof
JP4071893B2 (en) Wiring board and its mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees