JP4296274B2 - Lithium manganate positive electrode active material and all-solid lithium secondary battery - Google Patents

Lithium manganate positive electrode active material and all-solid lithium secondary battery Download PDF

Info

Publication number
JP4296274B2
JP4296274B2 JP2004089498A JP2004089498A JP4296274B2 JP 4296274 B2 JP4296274 B2 JP 4296274B2 JP 2004089498 A JP2004089498 A JP 2004089498A JP 2004089498 A JP2004089498 A JP 2004089498A JP 4296274 B2 JP4296274 B2 JP 4296274B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004089498A
Other languages
Japanese (ja)
Other versions
JP2005276680A (en
Inventor
光春 田渕
晃里 高原
友成 竹内
博之 蔭山
龍哉 中村
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004089498A priority Critical patent/JP4296274B2/en
Publication of JP2005276680A publication Critical patent/JP2005276680A/en
Application granted granted Critical
Publication of JP4296274B2 publication Critical patent/JP4296274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、無機固体電解質を電解質として用いる全固体リチウム二次電池用に適するマンガン酸リチウム系正極活物質及び該活物質を含む正極を用いた全固体リチウム二次電池に関する。   The present invention relates to a lithium manganate positive electrode active material suitable for an all solid lithium secondary battery using an inorganic solid electrolyte as an electrolyte, and an all solid lithium secondary battery using a positive electrode containing the active material.

最近の国内における携帯電話、PDA、ノートパソコンなどのモバイル機器の急速な普及および高機能化に伴い、その電源としての二次電池の高性能化、低コスト化、安全性向上の要求は厳しさを増している。   As mobile devices such as mobile phones, PDAs, and notebook computers have been rapidly spread and enhanced in recent years, the demand for higher performance, lower cost, and improved safety of secondary batteries as power sources has become severe. Is increasing.

かかる要求に応え得る二次電池として、現状の二次電池の中で最大のエネルギー密度を有するリチウム二次電池の生産量が急速に伸びてきている。リチウム二次電池は、通常、コバルト酸リチウム等のリチウム−遷移金属複合酸化物を用いた正極、有機電解液及び炭素負極より構成されている。   As a secondary battery capable of meeting such demand, the production amount of a lithium secondary battery having the maximum energy density among the current secondary batteries is rapidly increasing. A lithium secondary battery is usually composed of a positive electrode using a lithium-transition metal composite oxide such as lithium cobaltate, an organic electrolyte, and a carbon negative electrode.

上記リチウム二次電池の構成部材の内、特に正極は電池電圧および容量を概ね決定づける重要な構成部材の一つである。現在、正極活物質として汎用されているコバルト酸リチウムは、高作動電圧かつ高容量で信頼性が高い反面、コバルト資源が希少でかつ偏在していることから原料コスト高を招いており低コスト化のための安価な正極活物質の開発が求められている。   Among the constituent members of the lithium secondary battery, the positive electrode is one of important constituent members that generally determine the battery voltage and capacity. Lithium cobalt oxide, which is currently widely used as a positive electrode active material, has high operating voltage, high capacity, and high reliability. On the other hand, cobalt resources are scarce and unevenly distributed, leading to higher raw material costs and lower costs. There is a need for the development of inexpensive cathode active materials for

コバルト酸リチウム系の正極活物質に代わり得る材料として、マンガン酸リチウム(LiMn24)系の材料が提案されている。その理由は、マンガン酸リチウム系材料は、コバルト酸リチウム系材料と類似した充放電特性を有し、かつコバルト化合物に比べ資源的に豊富で安価なマンガン化合物を原料として用いることができるからである。 A lithium manganate (LiMn 2 O 4 ) -based material has been proposed as a material that can replace the lithium cobaltate-based positive electrode active material. The reason is that the lithium manganate-based material has charge / discharge characteristics similar to those of the lithium cobaltate-based material, and can use as a raw material a manganese compound that is resource-rich and inexpensive compared to the cobalt compound. .

一方、安全性向上の面からは、現状の有機電解液に比べて化学的に安定でかつ漏液の心配がない無機固体電解質を電解質として用いた全固体リチウム二次電池が提案されており盛んに研究開発が行われている。   On the other hand, from the aspect of improving safety, all-solid lithium secondary batteries using an inorganic solid electrolyte that is chemically stable and has no risk of leakage as compared with current organic electrolytes have been proposed. Research and development is underway.

例えば、コバルト酸リチウム又はニッケル酸リチウムを正極活物質として用い、且つ硫化物系固体電解質を用いた全固体リチウム二次電池は、有機電解液を用いたリチウム二次電池に匹敵する優れた充放電特性を有することが明らかにされている(特許文献1参照)。また、マンガン酸リチウムを正極および負極の活物質として用い、リチウムイオン伝導性を有する結晶質酸化物からなる固体電解質を用いた全固体リチウム二次電池も提案されている(特許文献2参照)。   For example, an all-solid lithium secondary battery using lithium cobaltate or lithium nickelate as a positive electrode active material and using a sulfide-based solid electrolyte is excellent charge / discharge comparable to a lithium secondary battery using an organic electrolyte. It has been clarified to have characteristics (see Patent Document 1). An all-solid lithium secondary battery using a solid electrolyte made of a crystalline oxide having lithium ion conductivity using lithium manganate as an active material for positive and negative electrodes has also been proposed (see Patent Document 2).

しかしながら、これらの全固体リチウム二次電池において、有機電解質を用いるリチウム二次電池と同等以上の充放電サイクル特性を得るために、充放電サイクル特性に密接に関係する正極活物質−固体電解質接触界面でのリチウムイオン移動を考慮して、該二次電池用のマンガン酸リチウム正極活物質において、いかなる素材特性を有することが必要であるのかは未だ明らかにされていない。   However, in these all-solid lithium secondary batteries, in order to obtain charge / discharge cycle characteristics equivalent to or better than those of lithium secondary batteries using organic electrolytes, the positive electrode active material-solid electrolyte contact interface closely related to the charge / discharge cycle characteristics In view of the lithium ion migration in the battery, it has not been clarified yet what material characteristics are necessary for the lithium manganate positive electrode active material for the secondary battery.

従って、かかる素材特性の解明なしでは、良好な充放電サイクル特性を有する低コスト全固体リチウム二次電池の開発は困難である。
特開平8−162151号公報 特開2001−210374号公報
Therefore, it is difficult to develop a low-cost all-solid lithium secondary battery having good charge / discharge cycle characteristics without elucidating such material characteristics.
JP-A-8-162151 JP 2001-210374 A

本発明は、高容量でかつ容量の劣化が抑制され、充放電サイクル特性に優れた全固体リチウム二次電池用に適したマンガン酸リチウム系正極活物質を提供することを主な目的とする。   The main object of the present invention is to provide a lithium manganate-based positive electrode active material suitable for use in an all-solid lithium secondary battery that has a high capacity, suppresses capacity deterioration, and has excellent charge / discharge cycle characteristics.

本発明者は、上記目的を達成すべく、鋭意検討を重ねた結果、立方晶スピネル型構造を有するマンガン酸リチウムの化学組成及び粒度分布を精密に制御することにより、優れた電池特性を有する全固体リチウム二次電池に適した正極活物質が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has achieved excellent battery characteristics by precisely controlling the chemical composition and particle size distribution of lithium manganate having a cubic spinel structure. The inventors have found that a positive electrode active material suitable for a solid lithium secondary battery can be obtained, and have completed the present invention.

本発明は、以下のマンガン酸リチウム系正極活物質、これを含む正極及び全固体リチウム二次電池を提供するものである。   The present invention provides the following lithium manganate-based positive electrode active material, a positive electrode including the same, and an all-solid lithium secondary battery.

1.立方晶スピネル型構造を有し、組成式
Li1+x(Mn2-yy2-x4 (I)
(式中、MはAl、Mg、Cr、Mn、Fe、Co、Ni、Cu又はZnを示す。xは、MがMnである場合は、0<x<0.33の範囲の数であり、MがMn以外である場合は、0≦x<0.33の範囲の数である。yは、0≦y≦1の範囲の数である。)で表され、且つ1μm以下の粒子の存在比が40重量%以下であるマンガン酸リチウム系正極活物質。
1. It has a cubic spinel structure and has the composition formula Li 1 + x (Mn 2- y My ) 2-x O 4 (I)
(In the formula, M represents Al, Mg, Cr, Mn, Fe, Co, Ni, Cu, or Zn. When M is Mn, x is a number in the range of 0 <x <0.33. In the case where M is other than Mn, the number is in the range of 0 ≦ x <0.33. Y is the number in the range of 0 ≦ y ≦ 1, and the particle size is 1 μm or less. A lithium manganate-based positive electrode active material having an abundance ratio of 40% by weight or less.

2.上記項1に記載された正極活物質を含む全固体リチウム二次電池用正極。   2. A positive electrode for an all-solid lithium secondary battery, comprising the positive electrode active material according to Item 1.

3.上記項2に記載された正極を用い、且つ無機固体電解質を用いた全固体リチウム二次電池。   3. An all-solid lithium secondary battery using the positive electrode described in the above item 2 and using an inorganic solid electrolyte.

4.無機固体電解質が、硫化物系無機固体電解質である上記項3に記載の全固体リチウム二次電池。   4). Item 4. The all-solid lithium secondary battery according to Item 3, wherein the inorganic solid electrolyte is a sulfide-based inorganic solid electrolyte.

本発明のマンガン酸リチウム系正極活物質は、高容量でかつ容量の劣化が抑制されており、充放電サイクル特性に優れた全固体リチウム二次電池用として好適に利用できる。   The lithium manganate positive electrode active material of the present invention has a high capacity and suppresses the deterioration of capacity, and can be suitably used for an all solid lithium secondary battery excellent in charge / discharge cycle characteristics.

従って、本発明のマンガン酸リチウム系正極活物質を用いた全固体リチウム二次電池は、該リチウム二次電池の低コスト化等に貢献し得る。   Therefore, the all-solid-state lithium secondary battery using the lithium manganate positive electrode active material of the present invention can contribute to cost reduction of the lithium secondary battery.

マンガン酸リチウム系正極活物質
本発明のマンガン酸リチウム系正極活物質は、Li/Mn比に着目した特定の化学組成を有し、且つ特定の粒度分布即ち1μm以下(サブミクロン)の粒子をできる限り低減した粉体特性を有することにより、特徴付けられる。
Lithium manganate-based positive electrode active material The lithium manganate-based positive electrode active material of the present invention has a specific chemical composition focused on the Li / Mn ratio, and can produce particles with a specific particle size distribution, that is, 1 μm or less (submicron). Characterized by having as much reduced powder properties.

化学組成
本発明のマンガン酸リチウム系正極活物質は立方晶スピネル型構造を有し、組成式
Li1+x(Mn2-yy2-x4 (I)
(式中、MはAl、Mg、Cr、Mn、Fe、Co、Ni、Cu又はZnを示す。xは、MがMnである場合は、0<x<0.33の範囲の数であり、MがMn以外である場合は
、0≦x<0.33の範囲の数である。yは、0≦y≦1の範囲の数である。)で表される。
Chemical Composition The lithium manganate positive electrode active material of the present invention has a cubic spinel structure, and has the composition formula Li 1 + x (Mn 2− y My ) 2−x O 4 (I)
(In the formula, M represents Al, Mg, Cr, Mn, Fe, Co, Ni, Cu, or Zn. When M is Mn, x is a number in the range of 0 <x <0.33. , M is other than Mn, the number is in the range of 0 ≦ x <0.33, and y is the number in the range of 0 ≦ y ≦ 1.

組成式(I)において、MがMnである場合、即ち異種金属イオンを含まないマンガン酸リチウムの場合は、過剰リチウム量x=0(LiMn24)でないことが望ましい。これは、LiMn24の組成を作製しようとすると、以前の報告(T. Nakamura and A. Kajiyama, Solid State Ionics, 133, 195-202, (2000)及びR. Kanno, M. Yonemura, T. Kohigashi, Y. Kawamoto, M. Tabuchi and T. Kamiyama, J. Power Sources, 97-98, 423-426, (2001))に記載されているように、酸素欠損相LiMn24-d(0<d<0.03)が生
じやすく、立方晶構造が不安定となり結果としてx>0の試料に比べて著しい充放電容量のサイクル劣化を導くことが報告されているためである。
In the composition formula (I), when M is Mn, that is, in the case of lithium manganate not containing a different metal ion, it is desirable that the amount of excess lithium is not x = 0 (LiMn 2 O 4 ). This, when you try to prepare a composition of LiMn 2 O 4, previously reported (T. Nakamura and A. Kajiyama, Solid State Ionics, 133, 195-202, (2000) and R. Kanno, M. Yonemura, T As described in Kohigashi, Y. Kawamoto, M. Tabuchi and T. Kamiyama, J. Power Sources, 97-98, 423-426, (2001)), the oxygen-deficient phase LiMn 2 O 4-d ( This is because 0 <d <0.03) is likely to occur, and the cubic structure becomes unstable, and as a result, it has been reported that significant cycle deterioration of charge / discharge capacity is induced as compared with a sample of x> 0.

また、x=0.33となると、Li1.33Mn1.674組成となりマンガンの形式電荷は
3.99となりほぼ4価に近くなる。マンガン酸リチウムの場合3価のマンガンが充電により4価に変化することによってリチウム脱離が可能となり充電容量が得られること、現在用いられているリチウム二次電池はリチウムイオンを構造中に有しない炭素材料が用いられ、充電しないと電池として使用できないことを考慮すると、4価のマンガン価数を有するLi1.33Mn1.674組成においては充電不可能なのでリチウム二次電池の正極活物
質として用いることができない。従ってx値はM=Mnの場合0<x<0.33に位置していることが望ましい。
Further, when x = 0.33, the composition becomes Li 1.33 Mn 1.67 O 4 , and the formal charge of manganese becomes 3.99, which is almost tetravalent. In the case of lithium manganate, trivalent manganese changes to tetravalent by charging, so that lithium can be removed and charge capacity can be obtained. Currently used lithium secondary batteries do not have lithium ions in the structure. Considering that carbon materials are used and cannot be used as a battery unless they are charged, Li 1.33 Mn 1.67 O 4 composition with a tetravalent manganese valence cannot be used for charging, so it should be used as a positive electrode active material for lithium secondary batteries. I can't. Therefore, it is desirable that the x value is located at 0 <x <0.33 when M = Mn.

一方、組成式(I)において、MがMn以外の金属である場合、即ちMn以外の異種金属を含む場合、例えば、LiNi0.5Mn1.54、LiCrMnO4、LiCoMnO4
においては、Mnイオンはすべて4価であるが、Niイオン、Coイオンが充放電可能元素として働くためx=0であっても問題はない。このような化合物は、Mnイオンの酸化還元電位である4Vに比べて高い5V領域にて充放電を行うため、有機電解液に比べ化学的安定性に優れた無機固体電解質を用いる全固体リチウム二次電池用正極活物質として好適に用いることができる。
On the other hand, in the composition formula (I), when M is a metal other than Mn, that is, when a different metal other than Mn is included, for example, in LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiCoMnO 4 , Mn ions are Although all are tetravalent, since Ni ions and Co ions work as chargeable / dischargeable elements, there is no problem even if x = 0. Such a compound charges and discharges in a 5 V region, which is higher than 4 V, which is the oxidation-reduction potential of Mn ions. Therefore, all-solid lithium secondary batteries using an inorganic solid electrolyte that is superior in chemical stability to organic electrolytes are used. It can be suitably used as a positive electrode active material for a secondary battery.

y値に関しては、用いる金属種の価数や充放電時の作動電圧によって0から1の間で変化できる。これは、組成式中のマンガン価数(3価から4価の間でのみ変化)によって規定されているためである。上記のようにNiイオンを固溶させる場合、Niイオンは2価で入るため、組成式(I)においてマンガンがすべて4価になる組成までしか固溶させることができないので、y=0.5が固溶限界である。一方、CoやCrイオンは3価で固溶するためマンガンがすべて4価になるのはy=1までである。   The y value can vary between 0 and 1 depending on the valence of the metal species used and the operating voltage during charging and discharging. This is because it is defined by the manganese valence (changes only between trivalent and tetravalent) in the composition formula. When Ni ions are dissolved as described above, since Ni ions are divalent, y can be dissolved only up to a composition in which manganese is tetravalent in the composition formula (I). Is the solid solubility limit. On the other hand, since Co and Cr ions are trivalent and form a solid solution, all the manganese becomes tetravalent until y = 1.

粒度分布
本発明のマンガン酸リチウム系正極活物質は、1μm以下の粒子の存在比が40重量%以下と規定している。その理由は、次の通りである。
Particle Size Distribution In the lithium manganate positive electrode active material of the present invention, the abundance ratio of particles of 1 μm or less is defined as 40% by weight or less. The reason is as follows.

全固体リチウム二次電池において正極活物質は、充放電時に粉末表面においてリチウムイオンおよび電子のやりとりを固体電解質、集電体との間で行っているため、粉体の比表面積が大きければ大きい(粒子径が小さい)ほど容易に上記界面でのイオン、電子のやりとりが行えることが期待できる。しかしながら、粒径の小さな粒子は、充填性に乏しく電極内に空隙が多く含まれるため、結果として固体電解質や集電体との界面接触面積が小さくなってしまい充放電サイクル特性が向上しないことが考えられる。そのため1μm以下(サブミクロン)の微粒子量はできる限り低減する必要がある。   In the all-solid-state lithium secondary battery, the positive electrode active material exchanges lithium ions and electrons between the solid electrolyte and the current collector on the surface of the powder during charge / discharge, so that the larger the specific surface area of the powder is, the larger ( It can be expected that the smaller the particle size), the easier the exchange of ions and electrons at the interface. However, particles with a small particle size are poor in packing properties and contain many voids in the electrode. As a result, the interface contact area with the solid electrolyte and current collector is reduced, and the charge / discharge cycle characteristics may not be improved. Conceivable. Therefore, it is necessary to reduce the amount of fine particles of 1 μm or less (submicron) as much as possible.

従って、本発明におけるマンガン酸リチウム系正極活物質は、1μm以下の粒子の存在比即ち含有量が40重量%以下であることが必要である。また、当該物質の1μm以下の
粒子存在比は、35重量%以下であることが好ましい。
Therefore, the lithium manganate positive electrode active material in the present invention is required to have an abundance ratio of particles of 1 μm or less, that is, a content of 40% by weight or less. Further, the particle abundance ratio of 1 μm or less of the substance is preferably 35% by weight or less.

本発明のマンガン酸リチウム系正極活物質の平均粒径は、通常、10μm以下である。かかる粉末試料内のサブミクロン粒子含有量を見積もる方法としては、特に限定されないが、通常の粒度分布計、走査型電子顕微鏡観察による方法等を採用できる。例えば、レーザー回折・散乱式粒度分布計を用いて、試料を0.2重量%のヘキサメタリン酸ナトリウム水溶液などに分散させた後、0.03μmから280μmまでの範囲で粒度分布測定を行い1μm以下の粒子含有量を算出できる。   The average particle diameter of the lithium manganate positive electrode active material of the present invention is usually 10 μm or less. A method for estimating the submicron particle content in the powder sample is not particularly limited, and a normal particle size distribution meter, a method by observation with a scanning electron microscope, or the like can be employed. For example, using a laser diffraction / scattering particle size distribution analyzer, the sample is dispersed in a 0.2% by weight sodium hexametaphosphate aqueous solution, and then the particle size distribution is measured in the range from 0.03 μm to 280 μm to 1 μm or less. The particle content can be calculated.

マンガン酸リチウム系正極活物質の製造方法
本発明の特定の化学組成及び特定の粒度分布を有するマンガン酸リチウム系正極活物質の製造方法は、特に限定されない。
Manufacturing method of lithium manganate positive electrode active material The manufacturing method of the lithium manganate positive electrode active material having a specific chemical composition and a specific particle size distribution of the present invention is not particularly limited.

例えば、リチウム源、マンガン源及び異種金属源を、所定モル比で、乾式混合又は湿式混合し、大気中、還元雰囲気中、酸化雰囲気中等で、500〜1,200℃程度の温度範囲で焼成し、必要に応じて、分級することにより、調製することができる。   For example, a lithium source, a manganese source, and a dissimilar metal source are dry-mixed or wet-mixed at a predetermined molar ratio and fired in a temperature range of about 500 to 1,200 ° C. in the air, in a reducing atmosphere, in an oxidizing atmosphere, or the like. If necessary, it can be prepared by classification.

上記製造方法において、800℃以上の焼成温度域では、Liの揮発が顕著になるため目的組成より過剰のリチウム源を加えて焼成しても良い。また、得られた試料をふるい等を用いて分級することによって、サブミクロン粒子量を更に低減しても良い。   In the above manufacturing method, in a firing temperature range of 800 ° C. or higher, Li volatilization becomes significant, and therefore, an excess lithium source from the target composition may be added and fired. Further, the amount of submicron particles may be further reduced by classifying the obtained sample using a sieve or the like.

リチウム源としては、例えば、水酸化リチウム、炭酸リチウム、酢酸リチウム、硝酸リチウム、塩化リチウムなどの無水物、水和物等を使用することができる。マンガン源としては、例えば、水酸化マンガン、酸化水酸化マンガン、シュウ酸マンガン、マンガン酸化物、炭酸マンガン、酢酸マンガン、硝酸マンガン、塩化マンガンなどの無水物、水和物等を使用することができる。異種金属源としては、例えば、Al、Mg、Cr、Fe、Co、Ni、Cu、Zn等の金属の水酸化物、酸化物、酸化水酸化物、炭酸塩、シュウ酸塩、硝酸塩、酢酸塩、塩化物などの無水物、水和物等を使用することができる。   As the lithium source, for example, anhydrides such as lithium hydroxide, lithium carbonate, lithium acetate, lithium nitrate, and lithium chloride, hydrates, and the like can be used. As the manganese source, for example, manganese hydroxide, manganese oxide hydroxide, manganese oxalate, manganese oxide, manganese carbonate, manganese acetate, manganese nitrate, manganese chloride and other anhydrides and hydrates can be used. . Examples of the different metal source include metal hydroxides such as Al, Mg, Cr, Fe, Co, Ni, Cu, and Zn, oxides, oxide hydroxides, carbonates, oxalates, nitrates, and acetates. Further, anhydrides such as chlorides, hydrates, and the like can be used.

得られたマンガン酸リチウム系正極活物質は、できる限りマンガン酸リチウム相単相であることが望ましいが、充放電特性に重大な劣化を引き起こさない限り、炭酸リチウム、水酸化リチウム、他のリチウムマンガン酸化物(Li2MnO3、LiMnO2等)、マンガン酸化物、異種金属酸化物などが含まれていても良い。 The obtained lithium manganate-based positive electrode active material is desirably a single phase of lithium manganate phase as much as possible, but lithium carbonate, lithium hydroxide, other lithium manganese, and so on, as long as the charge / discharge characteristics are not seriously deteriorated. Oxides (Li 2 MnO 3 , LiMnO 2, etc.), manganese oxides, dissimilar metal oxides, and the like may be included.

得られた本発明のマンガン酸リチウム系正極活物質は、正極活物質として高い機能を有するものであり、必要に応じて、導電材、バインダー樹脂等を加え、常法に従って、正極を作製することができる。   The obtained lithium manganate-based positive electrode active material of the present invention has a high function as a positive electrode active material, and if necessary, a conductive material, a binder resin, etc. are added, and a positive electrode is produced according to a conventional method. Can do.

全固体リチウム二次電池
上記本発明マンガン酸リチウム系正極活物質を用いて作製した正極、固体電解質、負極等を構成部材として、充放電サイクル特性等に優れた全固体リチウム二次電池を調製することができる。
All-solid lithium secondary battery An all-solid lithium secondary battery having excellent charge / discharge cycle characteristics and the like is prepared using a positive electrode, a solid electrolyte, a negative electrode, etc., produced using the above-described lithium manganate-based positive electrode active material of the present invention. be able to.

電池構成部材は、上記正極を用いること、電解質として無機固体電解質を用いること以外は、特に限定されない。無機固体電解質としては、例えば、硫化物系固体電解質、酸素酸塩系固体電解質等を用いることができる。その中でも硫化物系固体電解質は室温で高いイオン導電性を示すこと、粒界抵抗が低いため電池作製が容易であることから特に好ましい。   The battery component is not particularly limited except that the positive electrode is used and an inorganic solid electrolyte is used as the electrolyte. As the inorganic solid electrolyte, for example, a sulfide solid electrolyte, an oxyacid salt solid electrolyte, or the like can be used. Among them, the sulfide-based solid electrolyte is particularly preferable because it exhibits high ionic conductivity at room temperature and the battery can be easily manufactured because of its low grain boundary resistance.

硫化物系固体電解質としては、例えば、Li2S−P25、Li2S−B23、Li2
−SiS2系などのガラス系電解質、Li4-xGe1-xx4(0.2≦0x≦0.8)な
どの結晶系電解質を使用することができる。また、酸素酸塩系固体電解質としては、例えば、Li1.3Al0.3Ti1.7(PO43、Li1.4Al0.4Ge1.6(PO43などを使用することができる。
Examples of the sulfide-based solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , and Li 2 S.
A glass-based electrolyte such as SiS 2 or a crystalline electrolyte such as Li 4-x Ge 1-x P x S 4 (0.2 ≦ 0x ≦ 0.8) can be used. Further, as the oxyacid salt solid electrolyte, for example, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.4 Al 0.4 Ge 1.6 (PO 4 ) 3 can be used.

上記固体電解質は単体でも混合物でも用いることができ、正極と負極の間に介在させるだけでなくマンガン酸リチウム系正極活物質との界面接触面積を多く取るため正極側に混合させても良い。その混合方法も通常の乾式混合ばかりでなくアセトニトリルなどの溶媒を用いた湿式混合を必要に応じて使い分けることが出来る。また、その正極側に入れる固体電解質と正極−負極を隔てる電解質の種類は、充放電特性に重大な影響を及ぼさない限り一致させる必要はない。   The solid electrolyte may be used alone or as a mixture, and may be mixed not only between the positive electrode and the negative electrode but also on the positive electrode side in order to increase the interface contact area with the lithium manganate positive electrode active material. As the mixing method, not only normal dry mixing but also wet mixing using a solvent such as acetonitrile can be used as needed. The type of the electrolyte separating the solid electrolyte and the positive electrode-negative electrode placed on the positive electrode side does not need to be matched as long as the charge / discharge characteristics are not significantly affected.

負極としては、リチウム二次電池に用いられる炭素材料に加えて、金属リチウム、金属インジウム、金属アルミニウム、チタン酸リチウムなどを用いることができる。   As the negative electrode, in addition to the carbon material used for the lithium secondary battery, metallic lithium, metallic indium, metallic aluminum, lithium titanate, or the like can be used.

本発明の全固体リチウム二次電池は、例えば、次のようにして作製することができる。即ち、マンガン酸リチウム系正極活物質粉末と硫化物系固体電解質粉末を、グローブボックス中で、重量比7:3の割合で秤量後、試薬瓶に入れアセトニトリル溶媒およびジルコニアボールを加えよく振盪させた後、大気にさらすことなく65℃で1時間程度真空乾燥することにより溶媒を除去して、正極合材粉末を得る。ポリエチレンテレフタレート(PET)管中に、硫化物固体電解質粉末を入れ、上下より金属押し棒に挟んだ後185MPaにてプレスし、固体電解質層を形成する。その一方に作製した正極合材粉末を入れ同様に370MPaにてプレスし、その後集電体であるチタンメッシュ及びチタン箔を正極合材の上に入れ、再度555MPaにてプレスする。   The all solid lithium secondary battery of the present invention can be produced, for example, as follows. That is, lithium manganate-based positive electrode active material powder and sulfide-based solid electrolyte powder were weighed in a glove box at a weight ratio of 7: 3, placed in a reagent bottle, added with acetonitrile solvent and zirconia balls, and shaken well. Thereafter, the solvent is removed by vacuum drying at 65 ° C. for about 1 hour without exposure to the atmosphere to obtain a positive electrode mixture powder. A sulfide solid electrolyte powder is put into a polyethylene terephthalate (PET) tube, sandwiched between metal push bars from above and below, and pressed at 185 MPa to form a solid electrolyte layer. The positive electrode composite powder produced on one side is put and pressed in the same manner at 370 MPa, and then a titanium mesh and a titanium foil as current collectors are put on the positive electrode mixture and pressed again at 555 MPa.

図1に、全固体リチウム二次電池の一例の断面図を示す。図1のリチウム二次電池に、上記正極および電解質層を含むPET管を組み込み、正極と反対側に負極としてインジウム金属箔を入れ、再度上部よりプレスすることにより全固体リチウム二次電池が作製できる。   FIG. 1 shows a cross-sectional view of an example of an all-solid lithium secondary battery. An all-solid lithium secondary battery can be produced by incorporating the PET tube including the positive electrode and the electrolyte layer into the lithium secondary battery of FIG. 1, inserting an indium metal foil as the negative electrode on the side opposite to the positive electrode, and pressing again from above. .

以下、実施例及び比較例を挙げて、本発明をより一層具体的に説明するが、本発明は実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited by an Example.

なお、各例で得られた生成相は粉末X線回折測定により確認し、マンガン酸リチウム系粉末の形状は走査型電子顕微鏡(SEM)観察した。また、マンガン酸リチウム系粉末の粒度分布は、レーザー回折・散乱式粒度分析計を用いて、測定した。   The production phase obtained in each example was confirmed by powder X-ray diffraction measurement, and the shape of the lithium manganate powder was observed with a scanning electron microscope (SEM). The particle size distribution of the lithium manganate powder was measured using a laser diffraction / scattering particle size analyzer.

実施例1
シュウ酸マンガン2水和物0.1mol(17.90g)を秤量し、電気炉にて大気中400℃、5時間熱分解して、0.05molのMn23微粉末を作製した。得られた粉末に対し水酸化リチウム1水和物をLi/Mn比0.54(0.0135mol)になる量(0.566g)を加え、乾式法にて十分に混合した。混合物を500kg/cm2
錠剤成形後、電気炉に入れ、大気中850℃、10時間焼成した。得られた粉末を加熱可能な圧力容器に入れ、酸素ガスを5atmまで導入後、400℃、20時間熱処理し、室温まで冷却後圧力容器より取り出し、目的とするマンガン酸リチウム系粉末(Li1.05Mn1.954)を得た。
Example 1
Manganese oxalate dihydrate 0.1 mol (17.90 g) was weighed and pyrolyzed in an electric furnace at 400 ° C. in the air for 5 hours to produce 0.05 mol of Mn 2 O 3 fine powder. Lithium hydroxide monohydrate was added to the obtained powder in an amount (0.566 g) to give a Li / Mn ratio of 0.54 (0.0135 mol), and mixed well by a dry method. The mixture was tableted at 500 kg / cm 2 , placed in an electric furnace, and baked in the atmosphere at 850 ° C. for 10 hours. The obtained powder is put into a heatable pressure vessel, oxygen gas is introduced to 5 atm, heat treated at 400 ° C. for 20 hours, cooled to room temperature, taken out from the pressure vessel, and the target lithium manganate powder (Li 1.05 Mn 1.95 O 4 ) was obtained.

得られた試料のX線回折図形より、すべてのピークが   From the X-ray diffraction pattern of the obtained sample, all the peaks are

で表されるマンガン酸リチウムの単位胞で指数付けできた。得られたマンガン酸リチウムの格子定数は8.227Åであり、前記文献(J. Power Sources, 97-98, 423-426, (2001))に記載されているマンガン酸リチウムの格子定数8.23634(13)Åに近く、マンガン酸リチウム粉末が得られたことがわかる。 The unit cell of lithium manganate expressed by The obtained lithium manganate has a lattice constant of 8.227 、, and the lattice constant of lithium manganate described in the above document (J. Power Sources, 97-98, 423-426, (2001)) 8.23634 (13) Close to the soot, it can be seen that lithium manganate powder was obtained.

図2に、得られた粉末のSEM写真を示す。このSEM観察により、この粉末は、粒子径0.5〜2μm程度の粒子からなっていることがわかった。   FIG. 2 shows an SEM photograph of the obtained powder. This SEM observation revealed that the powder was composed of particles having a particle size of about 0.5 to 2 μm.

図3(b)に、得られた粉末の粒度分布の測定結果を示す。図中、縦棒が各粒径での分率、黒丸が累積分布を示す。測定は、粉末試料を、0.2重量%のヘキサメタリン酸ナトリウム水溶液に分散させた後、0.03μmから280μmまでの範囲で粒度分布測定を行った。図3(b)より、平均粒径2.4μm(図中の累積粒度分布が50%の累積度数と交差する点)で、1μm以下の粒子の存在比は17重量%と見積もられ、サブミクロン粒子量の少ないマンガン酸リチウム系粉末が得られていることがわかる。   FIG. 3B shows the measurement result of the particle size distribution of the obtained powder. In the figure, vertical bars indicate the fractions for each particle size, and black circles indicate the cumulative distribution. In the measurement, a powder sample was dispersed in a 0.2 wt% sodium hexametaphosphate aqueous solution, and then a particle size distribution measurement was performed in a range from 0.03 μm to 280 μm. From FIG. 3 (b), the abundance ratio of particles having an average particle diameter of 2.4 μm (the point where the cumulative particle size distribution in the figure intersects the cumulative frequency of 50%) is 1 μm or less is estimated to be 17% by weight. It can be seen that a lithium manganate powder having a small amount of micron particles is obtained.

得られた粉末210mgをグローブボックス中で秤量し、粉砕した硫化物ガラス粉末(0.01Li3PO4−0.63Li2S−0.36SiS2組成)90mgとともに試料瓶に入れた。この試料瓶に、ジルコニアビーズおよびアセトニトリル5mlを加え、ふたをして10分間振盪した。振盪後、試料瓶を大気にさらすことなく真空乾燥器に入れ65℃、1時間程度真空乾燥してアセトニトリルを蒸散させた。得られた正極合材を室温まで冷却後、電池試験用に用いた。 210 mg of the obtained powder was weighed in a glove box, and placed in a sample bottle together with 90 mg of pulverized sulfide glass powder (0.01Li 3 PO 4 -0.63Li 2 S-0.36SiS 2 composition). To this sample bottle, zirconia beads and 5 ml of acetonitrile were added, capped and shaken for 10 minutes. After shaking, the sample bottle was placed in a vacuum dryer without exposing to the atmosphere, and vacuum dried at 65 ° C. for about 1 hour to evaporate acetonitrile. The obtained positive electrode mixture was cooled to room temperature and then used for battery testing.

粉砕した硫化物ガラス粉末(0.01Li3PO4−0.63Li2S−0.36SiS2組成)70mgと上記正極合材20mgをグローブボックス中で秤量した。 70 mg of the ground sulfide glass powder (0.01Li 3 PO 4 -0.63Li 2 S-0.36SiS 2 composition) and 20 mg of the positive electrode mixture were weighed in a glove box.

図1中の内径10mmのPET管と金属押し棒を用いて、PET管内に硫化物ガラス粉末を充填し、185MPaにて乾式プレスし固体電解質層を形成した。プレス後、金属押し棒の片側を開け、正極合材を充填し370MPaにて乾式プレスし正極合材層を固体電解質層上に形成させた。プレス後、金属押し棒の正極合材充填側を開け、10mm径の金属チタニウムメッシュを入れ、555MPaにて乾式プレスし正極合材内にメッシュを充填した。プレス後、正極と反対側の金属押し棒をはずし、固体電解質層のひび割れ、剥離などの問題がないことを確認後、厚み0.3mm、直径10mmの金属インジウム箔を入れて図1のような電気化学セル内に導入し、押し棒上部よりさらに締め付けて試験用セルを作製した。   The PET tube was filled with sulfide glass powder using a PET tube having an inner diameter of 10 mm and a metal push rod in FIG. 1, and dry-pressed at 185 MPa to form a solid electrolyte layer. After pressing, one side of the metal push rod was opened, filled with the positive electrode mixture, and dry pressed at 370 MPa to form a positive electrode mixture layer on the solid electrolyte layer. After pressing, the positive electrode mixture filling side of the metal push bar was opened, a 10-mm diameter metal titanium mesh was put in, and dry pressing was performed at 555 MPa, and the positive electrode mixture was filled with the mesh. After pressing, remove the metal push rod on the opposite side of the positive electrode, confirm that there are no problems such as cracking and peeling of the solid electrolyte layer, and then insert a metal indium foil with a thickness of 0.3 mm and a diameter of 10 mm as shown in FIG. The sample was introduced into the electrochemical cell and further tightened from the top of the push rod to prepare a test cell.

図4に、上記試験用セルを電位範囲2.3〜3.9V、電流量0.064mA/cm2
にて、充電より充放電試験を10サイクルまで行って得られた充放電曲線を示す。初期充電容量は55mAh/g、初期放電容量は43mAh/gであり、10サイクル後の充電容量は41mAh/gで放電容量は39mAh/gであった。これら充放電特性データより、得られたマンガン酸リチウム系正極活物質は、全固体リチウム二次電池において良好な充放電特性を示すことが明らかである。
FIG. 4 shows that the test cell has a potential range of 2.3 to 3.9 V and a current amount of 0.064 mA / cm 2.
The charging / discharging curve obtained by performing a charging / discharging test to 10 cycles from charge is shown. The initial charge capacity was 55 mAh / g, the initial discharge capacity was 43 mAh / g, the charge capacity after 10 cycles was 41 mAh / g, and the discharge capacity was 39 mAh / g. From these charge / discharge characteristic data, it is clear that the obtained lithium manganate-based positive electrode active material exhibits good charge / discharge characteristics in an all-solid lithium secondary battery.

実施例2
炭酸マンガンを、大気中550℃、5時間熱処理することによって得たMn23を0.05mol(7.89g)秤量し、Li/Mn比0.60に相当する0.015molの水酸化リチウム1水和物0.629gを加え、乾式法にて十分に混合後、実施例1と同様に錠剤成形し、電気炉を用いて酸素気流中900℃、20時間焼成後、室温まで炉冷する
ことにより、目的とするマンガン酸リチウム系粉末(Li1.13Mn1.874)を得た。
Example 2
0.05 mol (7.89 g) of Mn 2 O 3 obtained by heat-treating manganese carbonate in the atmosphere at 550 ° C. for 5 hours was weighed, and 0.015 mol of lithium hydroxide corresponding to a Li / Mn ratio of 0.60 Add 0.629 g of monohydrate, mix well by dry method, and form tablets in the same manner as in Example 1. After baking in an oxygen stream at 900 ° C. for 20 hours, cool to room temperature. As a result, a target lithium manganate powder (Li 1.13 Mn 1.87 O 4 ) was obtained.

得られた試料のX線回折図形より、すべてのピークが   From the X-ray diffraction pattern of the obtained sample, all the peaks are

で表されるマンガン酸リチウムの単位胞で指数付けできた。得られたマンガン酸リチウムの格子定数は8.238Åであり、前記文献(J. Power Sources, 97-98, 423-426, (2001))に記載されているマンガン酸リチウムの格子定数8.23634(13)Åに近く、マンガン酸リチウム粉末が得られたことがわかる。 The unit cell of lithium manganate expressed by The obtained lithium manganate has a lattice constant of 8.238 、, and the lattice constant of lithium manganate described in the above literature (J. Power Sources, 97-98, 423-426, (2001)) 8.23634 (13) Close to the soot, it can be seen that lithium manganate powder was obtained.

図3(c)に、得られた粉末の粒度分布を、実施例1と同様にして測定した結果を示す。図中、縦棒が各粒径での分率、黒丸が累積分布を示す。図3(c)より、平均粒径6.6μm、サブミクロン粒子存在比6重量%のマンガン酸リチウム系正極活物質であることがわかった。   FIG. 3C shows the result of measuring the particle size distribution of the obtained powder in the same manner as in Example 1. In the figure, vertical bars indicate the fractions for each particle size, and black circles indicate the cumulative distribution. FIG. 3C shows that the lithium manganate-based positive electrode active material has an average particle size of 6.6 μm and a submicron particle abundance ratio of 6% by weight.

図4に、実施例1と同様に正極合材、全固体リチウム二次電池を作製し充放電試験を行った結果を示す。図4から明らかな通り、初期充電容量は52mAh/g、初期放電容量は42mAh/gであり、10サイクル後の充電容量は39mAh/gで放電容量は38mAh/gであった。これら充放電特性データより、得られたマンガン酸リチウム系正極活物質は全固体リチウム二次電池において良好な充放電特性を示すことが明らかである。   FIG. 4 shows the results of producing a positive electrode mixture and an all-solid lithium secondary battery and conducting a charge / discharge test in the same manner as in Example 1. As apparent from FIG. 4, the initial charge capacity was 52 mAh / g, the initial discharge capacity was 42 mAh / g, the charge capacity after 10 cycles was 39 mAh / g, and the discharge capacity was 38 mAh / g. From these charge / discharge characteristic data, it is clear that the obtained lithium manganate-based positive electrode active material exhibits good charge / discharge characteristics in an all-solid lithium secondary battery.

比較例
実施例1と同様にシュウ酸マンガン2水和物0.1mol(17.90g)を秤量し、電気炉にて大気中400℃、5時間熱分解して、0.05molのMn23微粉末を作製した。得られた粉末に対し、水酸化リチウム1水和物を、Li/Mn比0.50(0.0125mol)になる量(0.525g)加え、乾式法にて十分に混合した。混合物を500kg/cm2で錠剤成形後、電気炉に入れ、大気中850℃、10時間焼成し、目的
とするマンガン酸リチウム系粉末(Li1.00Mn2.004)を得た。
Comparative Example In the same manner as in Example 1, 0.1 mol (17.90 g) of manganese oxalate dihydrate was weighed and thermally decomposed in an electric furnace at 400 ° C. in the atmosphere for 5 hours to obtain 0.05 mol of Mn 2 O. 3 fine powders were prepared. Lithium hydroxide monohydrate was added to the obtained powder in an amount (0.525 g) to give a Li / Mn ratio of 0.50 (0.0125 mol), and mixed well by a dry method. The mixture was tableted at 500 kg / cm 2 and then placed in an electric furnace and baked in the atmosphere at 850 ° C. for 10 hours to obtain the target lithium manganate powder (Li 1.00 Mn 2.00 O 4 ).

得られた試料のX線回折図形より、すべてのピークが   From the X-ray diffraction pattern of the obtained sample, all the peaks are

で表されるマンガン酸リチウムの単位胞で指数付けできた。得られたマンガン酸リチウムの格子定数は8.243Åであり、前記文献(J. Power Sources, 97-98, 423-426, (2001))に記載されているマンガン酸リチウムの格子定数8.23634(13)Åに近く、マンガン酸リチウム粉末が得られたことがわかる。 The unit cell of lithium manganate expressed by The obtained lithium manganate has a lattice constant of 8.243 mm, and the lattice constant of lithium manganate described in the above-mentioned document (J. Power Sources, 97-98, 423-426, (2001)) is 8.23634. (13) Close to the soot, it can be seen that lithium manganate powder was obtained.

図2に、この比較例で得られた粉末のSEM写真を示す。このSEM観察により、この粉末は、実施例1に比して、粒子径3μm以上の粗大粒子が認められるものの、1μm以下のサブミクロン粒子がかなり存在していることが確認できた。   FIG. 2 shows an SEM photograph of the powder obtained in this comparative example. From this SEM observation, it was confirmed that although this particle had coarse particles having a particle diameter of 3 μm or more as compared with Example 1, submicron particles of 1 μm or less were considerably present.

図3(a)に、得られた粉末の粒度分布を、実施例1と同様にして測定した結果を示す。図中、縦棒が各粒径での分率、黒丸が累積分布を示す。図3(a)より、平均粒径1.1μm、サブミクロン粒子存在比42重量%と見積もられ、多量のサブミクロン粒子が存在していることが確認でき、正極としたときに充填性が不十分なため電解質との界面接触面積が小さくなることが予想される。   FIG. 3A shows the result of measuring the particle size distribution of the obtained powder in the same manner as in Example 1. In the figure, vertical bars indicate the fractions for each particle size, and black circles indicate the cumulative distribution. From FIG. 3 (a), it is estimated that the average particle size is 1.1 μm and the submicron particle abundance ratio is 42% by weight, and it can be confirmed that a large amount of submicron particles are present. Since it is insufficient, the interface contact area with the electrolyte is expected to be small.

図4に、実施例1と同様に正極合材、全固体リチウム二次電池を作製し充放電試験を行った結果を示す。図4から明らかな通り、初期充電容量は37mAh/g、初期放電容量は19mAh/gであり、10サイクル後の充電容量は14mAh/gで放電容量は13mAh/gであった。これは上記の実施例1及び2と比較して、正極の重量当たり挿入・脱離できるLi量が多いにもかかわらず低容量しか得られておらず、得られたマンガン酸リチウム系正極活物質は、全固体リチウム二次電池において良好な充放電特性を示していないことが明らかである。   FIG. 4 shows the results of producing a positive electrode mixture and an all-solid lithium secondary battery and conducting a charge / discharge test in the same manner as in Example 1. As is apparent from FIG. 4, the initial charge capacity was 37 mAh / g, the initial discharge capacity was 19 mAh / g, the charge capacity after 10 cycles was 14 mAh / g, and the discharge capacity was 13 mAh / g. Compared with Examples 1 and 2 above, only a low capacity was obtained despite the large amount of Li that could be inserted and removed per weight of the positive electrode, and the obtained lithium manganate positive electrode active material Is clearly not showing good charge / discharge characteristics in an all-solid lithium secondary battery.

全固体リチウム二次電池の一例の断面図である。It is sectional drawing of an example of an all-solid-state lithium secondary battery. 実施例1及び比較例で得られたマンガン酸リチウム系粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the lithium manganate powder obtained in Example 1 and a comparative example. 実施例1、2及び比較例で得られたマンガン酸リチウム系粉末の粒度分布の測定結果である。(a)は比較例の結果を、(b)は実施例1の結果を、(c)は実施例2の結果を、それぞれ示す。It is a measurement result of the particle size distribution of the lithium manganate powder obtained in Examples 1 and 2 and Comparative Example. (A) shows the result of the comparative example, (b) shows the result of Example 1, and (c) shows the result of Example 2. 実施例1、2及び比較例で得られたマンガン酸リチウム系粉末を用いて作製した全固体リチウム二次電池の充放電試験を行った結果である。It is the result of having performed the charging / discharging test of the all-solid-state lithium secondary battery produced using the lithium manganate type | system | group powder obtained by Example 1, 2 and the comparative example.

Claims (1)

立方晶スピネル型構造を有し、組成式
Li1+x(Mn2−y2−x (I)
(式中、MはAl、Mg、Cr、Mn、Fe、Co、Ni、Cu又はZnを示す。xは、MがMnである場合は、0<x<0.33の範囲の数であり、MがMn以外である場合は、0≦x<0.33の範囲の数である。yは、0≦y≦1の範囲の数である。)で表され、且つ1μm以下の粒子の存在比が40重量%以下であるマンガン酸リチウム系正極活物質を含む硫化物系無機固体電解質を用いた全固体リチウム二次電池
It has a cubic spinel structure and has the composition formula Li 1 + x (Mn 2−y M y ) 2−x O 4 (I)
(In the formula, M represents Al, Mg, Cr, Mn, Fe, Co, Ni, Cu, or Zn. When M is Mn, x is a number in the range of 0 <x <0.33. In the case where M is other than Mn, the number is in the range of 0 ≦ x <0.33. Y is the number in the range of 0 ≦ y ≦ 1, and the particle size is 1 μm or less. An all-solid lithium secondary battery using a sulfide-based inorganic solid electrolyte containing a lithium manganate-based positive electrode active material having an abundance ratio of 40% by weight or less.
JP2004089498A 2004-03-25 2004-03-25 Lithium manganate positive electrode active material and all-solid lithium secondary battery Expired - Lifetime JP4296274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089498A JP4296274B2 (en) 2004-03-25 2004-03-25 Lithium manganate positive electrode active material and all-solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089498A JP4296274B2 (en) 2004-03-25 2004-03-25 Lithium manganate positive electrode active material and all-solid lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005276680A JP2005276680A (en) 2005-10-06
JP4296274B2 true JP4296274B2 (en) 2009-07-15

Family

ID=35176106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089498A Expired - Lifetime JP4296274B2 (en) 2004-03-25 2004-03-25 Lithium manganate positive electrode active material and all-solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4296274B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890241B1 (en) * 2005-08-25 2009-05-22 Commissariat Energie Atomique HIGH SPEED SPINELLE STRUCTURE POSITIVE ELECTRODE MATERIAL BASED ON NICKEL AND MANGANESE FOR LITHIUM ACCUMULATORS
JP5224081B2 (en) * 2006-04-19 2013-07-03 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2008091328A (en) * 2006-09-04 2008-04-17 Sumitomo Electric Ind Ltd Lithium secondary cell and its manufacturing method
EP2172996A4 (en) 2007-07-19 2013-07-31 Jx Nippon Mining & Metals Corp Lithium-manganese double oxide for lithium ion batteries and process for the production of the double oxide
JP5300241B2 (en) * 2007-10-29 2013-09-25 日産自動車株式会社 Positive electrode for high-power lithium-ion battery
JP5344418B2 (en) * 2008-01-10 2013-11-20 出光興産株式会社 All-solid lithium secondary battery and method for producing the same
JP2010045019A (en) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ All-solid lithium secondary battery, and method of manufacturing the same
US20120028128A1 (en) * 2009-03-18 2012-02-02 Santoku Corporation All-solid-state lithium battery
JP5710136B2 (en) * 2009-03-18 2015-04-30 出光興産株式会社 All solid lithium battery
JP5752890B2 (en) * 2009-03-18 2015-07-22 出光興産株式会社 Positive electrode mixture and lithium battery
JPWO2011111555A1 (en) * 2010-03-09 2013-06-27 株式会社村田製作所 All-solid secondary battery and manufacturing method thereof
CN103187554A (en) * 2011-12-28 2013-07-03 上海空间电源研究所 Manganese-based composite electrode, lithium-ion battery containing manganese-based composite electrode, and preparation method
CN105186045B (en) * 2015-11-02 2017-11-07 深圳市新浦自动化设备有限公司 A kind of chemical synthesizing method of flexible packing lithium ion battery
CN113130979A (en) * 2021-04-20 2021-07-16 清华大学深圳国际研究生院 Solid electrolyte, preparation method thereof and solid battery

Also Published As

Publication number Publication date
JP2005276680A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP6108249B2 (en) Positive electrode active material, method for producing the same, and lithium secondary battery including the same
JP5617417B2 (en) Garnet-type lithium ion conductive oxide and process for producing the same
CN110521034B (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US9640794B2 (en) Lithium transition metal oxide having layered structure
JP4406744B2 (en) Cathode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
CN110800149A (en) Solid electrolyte for lithium secondary battery and sulfide-based compound for the solid electrolyte
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
US20110053000A1 (en) Ceramic material and use thereof
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
KR102016788B1 (en) Anode active material for sodium secondary battery, and manufacturing method therefor
JP2005251716A (en) Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2000277116A (en) Lithium secondary battery
JP4296274B2 (en) Lithium manganate positive electrode active material and all-solid lithium secondary battery
JP2004235144A (en) Nonaqueous electrolyte secondary battery and negative electrode active substance therefor
JP4258170B2 (en) Positive electrode for secondary battery and secondary battery using the same
JP2002279985A (en) Positive electrode active material for non-aqueous lithium secondary battery and the non-aqueous lithium secondary battery using the active material
EP4023603A1 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
TWI574451B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
KR20150030656A (en) Lithium metal complex oxide
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
CN106463720A (en) Positive electrode active substance particle powder for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
JPH09219215A (en) Lithium ion battery
JP4798962B2 (en) Lithium manganese composite oxide and method for producing the same
JP7315553B2 (en) Positive electrode active material
JP2000231919A (en) Positive electrode active material and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350