JP2002097008A - Method for perforating monolayered carbon nanotube - Google Patents

Method for perforating monolayered carbon nanotube

Info

Publication number
JP2002097008A
JP2002097008A JP2000286095A JP2000286095A JP2002097008A JP 2002097008 A JP2002097008 A JP 2002097008A JP 2000286095 A JP2000286095 A JP 2000286095A JP 2000286095 A JP2000286095 A JP 2000286095A JP 2002097008 A JP2002097008 A JP 2002097008A
Authority
JP
Japan
Prior art keywords
swnt
carbon nanotube
walled carbon
opening
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000286095A
Other languages
Japanese (ja)
Inventor
Sumio Iijima
澄男 飯島
Toshiharu Bando
俊治 坂東
Kazutomo Suenaga
和知 末永
Yoshiori Hirahara
佳織 平原
Toshiya Okazaki
俊也 岡崎
Hisanori Shinohara
久典 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Japan Science and Technology Agency
NEC Corp
Original Assignee
Nagoya University NUC
NEC Corp
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, NEC Corp, Japan Science and Technology Corp filed Critical Nagoya University NUC
Priority to JP2000286095A priority Critical patent/JP2002097008A/en
Priority to PCT/JP2001/008195 priority patent/WO2002024573A1/en
Publication of JP2002097008A publication Critical patent/JP2002097008A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Abstract

PROBLEM TO BE SOLVED: To provide a new method for simply perforating a monolayered carbon nanotube, which is useful for developing a high performance material, a device material and the like, by using the monolayered carbon nanotube, and can perforate even on the wall of the tube. SOLUTION: The perforations of 1-2 nm in diameter are made in the monolayered carbon nanotube by keeping the carbon nanotube in a dry reactive gas at 200-600 degree C for 1 minute and more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、単層カー
ボンナノチューブの開孔方法に関するものである。さら
に詳しくは、この出願の発明は、デバイス材料等の高機
能材料の開発および製造に有用で、管壁にも開孔でき
る、簡便で新しい単層カーボンナノチューブの開孔方法
に関するものである。
The present invention relates to a method for opening single-walled carbon nanotubes. More specifically, the invention of this application relates to a simple and new method for perforating single-walled carbon nanotubes, which is useful for the development and production of high-performance materials such as device materials, and can also perforate a tube wall.

【0002】[0002]

【従来の技術とその課題】カーボンナノチューブは、エ
ネルギー分野を始め、情報通信、航空・宇宙、生体・医
療等の幅広い分野で、次世代の高機能材料として注目さ
れている物質であり、近年になって、新しい素子あるい
は材料等の研究および開発がさらに活発に行われてい
る。このカーボンナノチューブには、チューブを形成す
るグラファイトシートが一層である、いわゆる単層カー
ボンナノチューブ(SWNT:Single- walled carbon
nanotube)と、グラファイトシートの円筒が多数入れ子
状に重なった多層カーボンナノチューブ(MWNT:Mu
lti - walled carbon nanotube)とがある。カーボンナ
ノチューブの持つ電子放出機能、水素吸蔵機能、磁気機
能等を効率よく応用するための研究および開発において
は、カーボンナノチューブの構造の単純化が必要である
ため、主にSWNTが用いられている。
2. Description of the Related Art Carbon nanotubes have attracted attention as next-generation high-performance materials in a wide range of fields, including the energy field, information and communication, aviation and space, and biological and medical fields. As a result, research and development of new devices or materials are being actively conducted. This carbon nanotube has a single layer of graphite sheet forming a tube, a so-called single-walled carbon nanotube (SWNT).
nanotubes) and multi-walled carbon nanotubes (MWNT: Mu) in which a number of graphite sheet cylinders are nested.
lti-walled carbon nanotube). In research and development for efficiently applying the electron emission function, the hydrogen storage function, the magnetic function, and the like of the carbon nanotube, SWNT is mainly used because the structure of the carbon nanotube needs to be simplified.

【0003】SWNTは、その生成機構に関連して、チ
ューブの終端がキャップと呼ばれるフラーレンの半球で
閉じた状態で生成されている。したがって、SWNTの
中の中空に何らかの物質を内包させる場合には、このキ
ャップを取る必要が生じる。また、SWNT同士や、S
WNTと他の分子とを繋ぐ等の加工を施す場合には、S
WNTのキャップあるいは管壁を開孔する必要がある。
[0003] In relation to its production mechanism, SWNT is produced with the end of the tube closed with a fullerene hemisphere called a cap. Therefore, it is necessary to take off this cap when enclosing any substance in the hollow of the SWNT. In addition, SWNTs, S
When processing such as connecting WNT to other molecules, S
It is necessary to open the WNT cap or tube wall.

【0004】SWNTの終端のキャップを取る方法とし
ては、従来より、酸素雰囲気条件を注意深く制御する方
法や、エタノール中に分散させて超音波をかけること
で、キャップ部分の5員環の弱い結合を切る方法が知ら
れている。しかし、この方法では開孔条件が確立されて
おらず、またSWNTの管壁に開孔することはできなか
った。
[0004] Conventionally, as a method of removing the end cap of SWNT, a method of carefully controlling the oxygen atmosphere condition or a method of dispersing in ethanol and applying ultrasonic waves to weaken the five-membered ring of the cap portion. A method of cutting is known. However, in this method, the opening conditions have not been established, and it has not been possible to open the SWNT tube wall.

【0005】また、SWNTの管壁を開孔する方法とし
ては、適当な質量とエネルギーのイオンをSWNTに照
射する方法が提案されている。しかしながら、この方法
は、大掛かりな装置と細かな作業を必要とし、大量のS
WNTの管壁を開孔することは困難であった。
[0005] As a method of opening the SWNT tube wall, a method of irradiating SWNTs with ions having an appropriate mass and energy has been proposed. However, this method requires extensive equipment and detailed work, and requires a large amount of S
It was difficult to open the WNT tube wall.

【0006】そこで、この出願の発明は、以上の通りの
事情に鑑みてなされたものであり、従来技術の問題点を
解消し、単層カーボンナノチューブを用いたデバイス材
料等の高機能材料の開発に有用で、その管壁にも開孔で
きる、簡便で新しい単層カーボンナノチューブの開孔方
法を提供することを課題としている。
Accordingly, the invention of this application has been made in view of the above circumstances, and solves the problems of the prior art, and develops high-performance materials such as device materials using single-walled carbon nanotubes. It is an object of the present invention to provide a simple and new method for opening single-walled carbon nanotubes, which is useful for forming a single-walled carbon nanotube.

【0007】[0007]

【課題を解決するための手段】そこで、この出願の発明
は、上記の課題を解決するものとして、以下の通りの発
明を提供する。
Accordingly, the invention of this application provides the following invention to solve the above problems.

【0008】すなわち、まず第1には、この出願の発明
は、単層カーボンナノチューブを200〜600℃の温
度範囲の乾燥反応性ガス中に1分以上保持することで、
単層カーボンナノチューブに直径1〜2nmの孔を開孔
することを特徴とする単層カーボンナノチューブの開孔
方法を提供する。
That is, first of all, the invention of this application is to hold single-walled carbon nanotubes in a dry reactive gas in a temperature range of 200 to 600 ° C. for 1 minute or more.
Provided is a method for forming a single-walled carbon nanotube, characterized in that a hole having a diameter of 1 to 2 nm is formed in the single-walled carbon nanotube.

【0009】そして第2には、この出願の発明は、上記
第1の発明において、保持温度を、300〜450℃の
温度範囲とすることを特徴とする単層カーボンナノチュ
ーブの開孔方法を、第3には、開孔部が、単層カーボン
ナノチューブの端部あるいは管壁であることを特徴とす
る単層カーボンナノチューブの開孔方法を提供する。
Secondly, the invention of this application is directed to a method for opening single-walled carbon nanotubes according to the first invention, wherein the holding temperature is in a temperature range of 300 to 450 ° C. Thirdly, the present invention provides a method for opening a single-walled carbon nanotube, wherein the opening is an end portion or a tube wall of the single-walled carbon nanotube.

【0010】[0010]

【発明の実施の形態】この出願の発明は、上記の通りの
特徴を持つものであるが、以下にその実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below.

【0011】まず、この出願の発明が提供する単層カー
ボンナノチューブ(SWNT)の開孔方法は、SWNT
を200〜600℃の温度範囲の乾燥反応性ガス中に1
分以上保持することで、SWNTに直径1〜2nmの孔
を開孔することを特徴としている。
First, the method of opening single-walled carbon nanotubes (SWNT) provided by the invention of this application is based on the SWNT
In a dry reactive gas in a temperature range of 200 to 600 ° C.
By holding for at least a minute, a hole having a diameter of 1 to 2 nm is formed in the SWNT.

【0012】SWNTは、一般に知られている各種の方
法で作製されたものを対象とすることができる。例え
ば、アーク放電法や、高温レーザ蒸発法、さらにはCV
D(化学蒸着法)による合成方法等が例示される。SW
NTは、精製されたものを用いてもよいし、未精製のも
のを用いてもよい。精製法としては、例えば、SWNT
を硝酸等の酸化性強酸中に入れ、100〜200℃で数
時間処理した後水洗する方法等がある。
[0012] The SWNTs can be those manufactured by various generally known methods. For example, arc discharge method, high-temperature laser evaporation method, and CV
A synthesis method by D (chemical vapor deposition) is exemplified. SW
As the NT, a purified one or an unpurified one may be used. As a purification method, for example, SWNT
Is placed in a strong oxidizing acid such as nitric acid, treated at 100 to 200 ° C. for several hours, and then washed with water.

【0013】このSWNTを、200〜600℃の温度
範囲の乾燥反応性ガス中に1分以上保持する。この様な
熱処理における保持温度は、200〜600℃の温度範
囲とすることができ、より好ましくは、300〜450
℃の温度範囲とすることが示される。
The SWNT is kept in a dry reactive gas at a temperature in the range of 200 to 600 ° C. for one minute or more. The holding temperature in such a heat treatment can be in a temperature range of 200 to 600 ° C, more preferably 300 to 450 ° C.
The temperature range is shown in ° C.

【0014】熱処理の際の雰囲気は、乾燥反応性ガスと
する。反応性ガス中に水分が含まれている場合には、高
温での化学反応性が高められ、湿度の変化によりSWN
T開孔時の熱処理温度を大きく変化させてしまうため好
ましくない。乾燥反応性ガスとしては、乾燥空気、乾燥
酸素ガスあるいは酸素を20%程度含んだ乾燥窒素ガス
(不活性ガス)等を使用することができ、なかでも乾燥
空気を用いることが好ましい。乾燥反応性ガスは、空気
等の反応性ガス中の水分を取り除いたものであり、たと
えば、一般に各種の高純度ガスとして入手できるもの等
を使用することができる。
The atmosphere during the heat treatment is a dry reactive gas. When moisture is contained in the reactive gas, the chemical reactivity at high temperature is increased, and the change in humidity causes the SWN to change.
It is not preferable because the heat treatment temperature at the time of opening T is greatly changed. As the dry reactive gas, dry air, dry oxygen gas, dry nitrogen gas (inert gas) containing about 20% of oxygen, or the like can be used, and among them, dry air is preferably used. The dry reactive gas is a gas obtained by removing moisture in a reactive gas such as air, and for example, those generally available as various high-purity gases can be used.

【0015】この様な条件下でのSWNTの保持時間を
調整することで、SWNTの開孔数を制御することがで
きる。保持時間は、SWNTの量や、保持温度および雰
囲気条件により異るが、1分以上、より具体的には、1
分〜数時間程度とすることができる。
The number of SWNT holes can be controlled by adjusting the holding time of the SWNT under such conditions. The holding time varies depending on the amount of SWNT, the holding temperature, and the atmospheric conditions, but is 1 minute or more, more specifically, 1 minute.
It can be from minutes to several hours.

【0016】なお、以上の熱処理は、上記温度範囲内の
一定の温度で保持する一段階処理であってもよいし、上
記温度範囲内の複数の温度で保持する多段階処理であっ
てもよいし、さらには、上記温度範囲内で処理温度を随
時変化させる処理方法等も考慮することができる。
The above heat treatment may be a one-step treatment in which the temperature is maintained at a constant temperature within the above-mentioned temperature range, or a multi-step treatment in which the heat treatment is maintained at a plurality of temperatures within the above-mentioned temperature range. Further, a processing method or the like in which the processing temperature is changed as needed within the above temperature range can be considered.

【0017】これによって、通常SWNTの端部に形成
されているキャップをとるか、あるいは、管壁のカーボ
ン結合を切断することで、チューブ径と同じで直径1〜
2nmの孔をSWNTに開けることができる。
Thus, by taking the cap usually formed at the end of the SWNT, or by cutting the carbon bond of the tube wall, the diameter of the tube is reduced to 1 to 1 mm.
A 2 nm hole can be drilled in the SWNT.

【0018】以上のような、この出願の発明のSWNT
の開孔方法では、SWNTの端部だけでなく、管壁にも
開孔することができる。そのため、この発明によって得
られたSWNTは、より多彩なSWNTの加工を可能と
し、単層カーボンナノチューブを用いたデバイス材料等
の高機能材料の開発に有用である。
As described above, the SWNT of the invention of the present application
In the opening method described above, not only the end of the SWNT but also the tube wall can be opened. Therefore, the SWNTs obtained according to the present invention enable more versatile processing of SWNTs and are useful for the development of high-functional materials such as device materials using single-walled carbon nanotubes.

【0019】また、この出願の発明のSWNTの開孔方
法では、レーザー等の大掛かりな装置や細かな作業を必
要とせず、簡便に多量のSWNTを開孔できるため、経
済的にも優れている。
In addition, the method for opening SWNTs of the present invention does not require a large-scale device such as a laser or the like, and can easily open a large amount of SWNTs, which is economically excellent. .

【0020】以下、添付した図面に沿って実施例を示
し、この発明の実施の形態についてさらに詳しく説明す
る。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

【0021】[0021]

【実施例】(実施例1)レーザー蒸発法によって、すす
状生成物質としてのSWNTを得た。得られたSWNT
を硝酸等の酸化性強酸中に入れ、100〜200℃で数
時間処理した後水洗して精製することで、主として長さ
1〜10μm,チューブ径1〜2nmで、チューブの両
端がキャップで閉じた構造のSWNTを得た。
EXAMPLES (Example 1) SWNT as a soot-like substance was obtained by a laser evaporation method. Obtained SWNT
Is placed in a strong oxidizing acid such as nitric acid, treated at 100-200 ° C. for several hours, washed with water and purified, mainly with a length of 1-10 μm, a tube diameter of 1-2 nm, and both ends of the tube are closed with caps. SWNT having the above structure was obtained.

【0022】このSWNTを、乾燥空気を導入した容器
に入れ、450℃で30時間保持した。処理後のSWN
Tを電子顕微鏡で観察した結果、ほぼすべてのSWNT
の端部あるいは管壁に、直径1〜2nmの孔が開孔して
いるのが確認された。 (実施例2)実施例1と同様の方法で得たすす状物質の
SWNTを、精製せずに、乾燥空気を導入した容器に入
れ、400℃で1時間保持した。その結果、実施例1の
場合と同様に、ほぼすべてのSWNTの端部あるいは管
壁に、直径1〜2nmの孔が開孔しているのが確認され
た。 (実施例3)実施例1で得られた開孔を有するSWNT
内に、C60分子を導入した際のSWNTを電子顕微鏡で
観察した。図1に、SWNTの電子顕微鏡像を示した。
This SWNT was placed in a container into which dry air had been introduced, and kept at 450 ° C. for 30 hours. SWN after processing
As a result of observing T with an electron microscope, almost all SWNTs
It was confirmed that a hole having a diameter of 1 to 2 nm was formed in the end portion or the tube wall. (Example 2) SWNT as a soot-like substance obtained in the same manner as in Example 1 was put in a container into which dry air was introduced without purification, and kept at 400 ° C for 1 hour. As a result, as in the case of Example 1, it was confirmed that holes having a diameter of 1 to 2 nm were formed in almost all the ends or the tube walls of the SWNTs. (Example 3) SWNT having an opening obtained in Example 1
Within, and the SWNT when introducing the C 60 molecule was observed with an electron microscope. FIG. 1 shows an electron microscope image of SWNT.

【0023】図中の▼で示した部分のSWNT端部ある
いは管壁に、開孔が確認された。
An opening was confirmed at the end of the SWNT or the tube wall at the portion indicated by ▼ in the figure.

【0024】もちろん、この発明は以上の例に限定され
るものではなく、細部については様々な態様が可能であ
ることは言うまでもない。
Of course, the present invention is not limited to the above-described example, and it goes without saying that various aspects are possible in detail.

【0025】[0025]

【発明の効果】以上詳しく説明した通り、この発明によ
って、単層カーボンナノチューブを用いたデバイス材料
等の高機能材料の開発に有用で、その管壁にも開孔でき
る、簡便で新しい単層カーボンナノチューブの開孔方法
が提供される。
As described in detail above, the present invention is useful for the development of high-performance materials such as device materials using single-walled carbon nanotubes, and is simple and new single-walled carbon which can be opened in the tube wall. A method for opening nanotubes is provided.

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【0027】[0027]

【図1】実施例において、チューブ内にC60分子を導入
したSWNTの電子顕微鏡像を例示した図である。
[1] In the embodiment, a diagram illustrating an electron microscope image of SWNT was introduced C 60 molecules in the tube.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂東 俊治 愛知県日進市赤池5−1305 アクトピア赤 池II−201 (72)発明者 末永 和知 愛知県名古屋市天白区中平1−603 アム ール中平601 (72)発明者 平原 佳織 愛知県日進市梅森台1−45 コーポ梅五 203 (72)発明者 岡崎 俊也 愛知県名古屋市昭和区神村町1−31−1 ユーハウスドーム四ツ谷1004 (72)発明者 篠原 久典 愛知県名古屋市天白区植田本町3−917 Fターム(参考) 4G046 CB01 CC03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shunji Bando 5-1305 Akaike, Nisshin City, Aichi Prefecture Actopia Akaike II-201 (72) Inventor Kazuchi Suenaga 1-603 Nakadaira, Tenpaku-ku, Nagoya City, Aichi Prefecture Nakadaira 601 (72) Inventor Kaori Hirahara 1-45 Umemoridai, Nisshin-shi, Aichi Prefecture Corp. Umego 203 (72) Inventor Toshiya Okazaki 1-31-1 Kamimuracho, Showa-ku, Nagoya-shi, Aichi U-House Dome Yotsuya 1004 (72) Inventor Hisanori Shinohara 3-917 Uedahonmachi, Tenpaku-ku, Nagoya-shi, Aichi F-term (reference) 4G046 CB01 CC03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単層カーボンナノチューブを200〜6
00℃の温度範囲の乾燥反応性ガス中に1分以上保持す
ることで、単層カーボンナノチューブに直径1〜2nm
の孔を開孔することを特徴とする単層カーボンナノチュ
ーブの開孔方法。
1. A method for preparing single-walled carbon nanotubes from 200 to 6
By holding in a dry reactive gas within a temperature range of 00 ° C. for 1 minute or more, the single-walled carbon nanotubes have a diameter of 1-2 nm.
A method for opening single-walled carbon nanotubes, comprising the steps of:
【請求項2】 保持温度を、300〜450℃の温度範
囲とすることを特徴とする単層カーボンナノチューブの
開孔方法。
2. A method for opening single-walled carbon nanotubes, wherein the holding temperature is in a temperature range of 300 to 450 ° C.
【請求項3】 開孔部が、単層カーボンナノチューブの
端部あるいは管壁であることを特徴とする請求項1記載
の単層カーボンナノチューブの開孔方法。
3. The method for opening single-walled carbon nanotubes according to claim 1, wherein the opening is an end portion or a tube wall of the single-walled carbon nanotube.
JP2000286095A 2000-09-20 2000-09-20 Method for perforating monolayered carbon nanotube Pending JP2002097008A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000286095A JP2002097008A (en) 2000-09-20 2000-09-20 Method for perforating monolayered carbon nanotube
PCT/JP2001/008195 WO2002024573A1 (en) 2000-09-20 2001-09-20 Method of making holes in single-wall carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286095A JP2002097008A (en) 2000-09-20 2000-09-20 Method for perforating monolayered carbon nanotube

Publications (1)

Publication Number Publication Date
JP2002097008A true JP2002097008A (en) 2002-04-02

Family

ID=18770065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286095A Pending JP2002097008A (en) 2000-09-20 2000-09-20 Method for perforating monolayered carbon nanotube

Country Status (2)

Country Link
JP (1) JP2002097008A (en)
WO (1) WO2002024573A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041716A (en) * 2003-07-23 2005-02-17 Japan Science & Technology Agency Nano-extraction method and nano-condensation method for incorporation of guest molecule into single-wall carbon nanotube
JP2005535550A (en) * 2002-08-08 2005-11-24 サーントゥル ナシオナル ドゥ ラ ルシェルシュ シャーンティフィク Carbon nanotube tip opening method and application
JP2006082993A (en) * 2004-09-14 2006-03-30 Fujitsu Ltd Method for controlling structure of carbon nanotube
JP2008535760A (en) * 2005-04-06 2008-09-04 ドレクセル ユニバーシティー Functional nanoparticle-filled carbon nanotubes and methods for their production
JP2011082485A (en) * 2009-09-11 2011-04-21 Dowa Holdings Co Ltd Electric double-layer capacitor and manufacturing method of the same
JP2011084466A (en) * 2010-12-02 2011-04-28 Fujitsu Ltd Method for controlling structure of carbon nanotube
WO2016002509A1 (en) * 2014-06-30 2016-01-07 国立大学法人信州大学 Method for perforating carbon nanomaterial, and method for producing filter molded article
WO2016024506A1 (en) * 2014-08-11 2016-02-18 国立大学法人信州大学 Method for producing molded filter body
WO2016088560A1 (en) * 2014-12-04 2016-06-09 国立大学法人信州大学 Method for manufacturing molded filter body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2482701A (en) 1999-07-26 2001-02-13 Trustees Of The University Of Pennsylvania, The Single-walled nanotubes having filled lumens and methods for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227806A (en) * 1992-12-22 1994-08-16 Nec Corp Carbon nanotube enclosing foreign substance and its production
US5346683A (en) * 1993-03-26 1994-09-13 Gas Research Institute Uncapped and thinned carbon nanotubes and process
JPH0748110A (en) * 1993-06-03 1995-02-21 Nec Corp Purification of carbon-nanotube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227806A (en) * 1992-12-22 1994-08-16 Nec Corp Carbon nanotube enclosing foreign substance and its production
US5346683A (en) * 1993-03-26 1994-09-13 Gas Research Institute Uncapped and thinned carbon nanotubes and process
JPH0748110A (en) * 1993-06-03 1995-02-21 Nec Corp Purification of carbon-nanotube

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535550A (en) * 2002-08-08 2005-11-24 サーントゥル ナシオナル ドゥ ラ ルシェルシュ シャーンティフィク Carbon nanotube tip opening method and application
JP2005041716A (en) * 2003-07-23 2005-02-17 Japan Science & Technology Agency Nano-extraction method and nano-condensation method for incorporation of guest molecule into single-wall carbon nanotube
JP2006082993A (en) * 2004-09-14 2006-03-30 Fujitsu Ltd Method for controlling structure of carbon nanotube
JP2008535760A (en) * 2005-04-06 2008-09-04 ドレクセル ユニバーシティー Functional nanoparticle-filled carbon nanotubes and methods for their production
JP2011082485A (en) * 2009-09-11 2011-04-21 Dowa Holdings Co Ltd Electric double-layer capacitor and manufacturing method of the same
JP2011084466A (en) * 2010-12-02 2011-04-28 Fujitsu Ltd Method for controlling structure of carbon nanotube
US20170128890A1 (en) * 2014-06-30 2017-05-11 Shinshu University Method for perforating carbon nanomaterial and method for producing filter molded article
EP3263210A1 (en) * 2014-06-30 2018-01-03 Shinshu University Method for perforating carbon nanomaterial, and method for producing filter molded article
TWI664143B (en) * 2014-06-30 2019-07-01 國立大學法人信州大學 Method for producing filter compact
CN106457162A (en) * 2014-06-30 2017-02-22 国立大学法人信州大学 Method for perforating carbon nanomaterial, and method for producing filter molded article
WO2016002509A1 (en) * 2014-06-30 2016-01-07 国立大学法人信州大学 Method for perforating carbon nanomaterial, and method for producing filter molded article
JPWO2016002509A1 (en) * 2014-06-30 2017-06-22 国立大学法人信州大学 Method for perforating carbon nanomaterial and method for producing filter molded body
CN109908768A (en) * 2014-06-30 2019-06-21 国立大学法人信州大学 The method for punching of carbon nanomaterial and the manufacturing method of filter formed body
US9968890B2 (en) * 2014-08-11 2018-05-15 Shinshu University Method for producing filter molded article
US20170232397A1 (en) * 2014-08-11 2017-08-17 Shinshu University Method for producing filter molded article
WO2016024506A1 (en) * 2014-08-11 2016-02-18 国立大学法人信州大学 Method for producing molded filter body
JPWO2016024506A1 (en) * 2014-08-11 2017-06-22 国立大学法人信州大学 Method for producing filter molded body
JP2019162635A (en) * 2014-08-11 2019-09-26 国立大学法人信州大学 Manufacturing method of filter molded body
CN111249921A (en) * 2014-08-11 2020-06-09 国立大学法人信州大学 Method for manufacturing filter formed body
CN111249921B (en) * 2014-08-11 2022-01-18 国立大学法人信州大学 Method for manufacturing filter formed body
WO2016088560A1 (en) * 2014-12-04 2016-06-09 国立大学法人信州大学 Method for manufacturing molded filter body
US10464025B2 (en) 2014-12-04 2019-11-05 Shinshu University Method for producing molded filter body
TWI682897B (en) * 2014-12-04 2020-01-21 國立大學法人信州大學 Method for producing filter compact

Also Published As

Publication number Publication date
WO2002024573A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
Dujardin et al. Purification of single‐shell nanotubes
Harris Carbon nanotube science: synthesis, properties and applications
Joselevich et al. Carbon nanotube synthesis and organization
US6967013B2 (en) Process for producing aligned carbon nanotube films
US7625544B2 (en) Method for manufacturing carbon nanotubes
JP2006188393A (en) Method of processing carbon material
Ma et al. Size-controlled short nanobells: Growth and formation mechanism
Rümmeli et al. Carbon nanotubes and related structures: production and formation
Huang et al. The release of free standing vertically-aligned carbon nanotube arrays from a substrate using CO2 oxidation
JP2003159699A (en) Hollow graphene sheet structure, electrode structure, method of manufacturing the same, and device
US20030059364A1 (en) Method for poduction of nanostructures
JP2005005266A (en) Manufacturing method of field emission array including nano-structure body
WO2010001791A1 (en) Nanotube-nanohorn composite and process for production thereof
Tan et al. Growth of carbon nanotubes over non-metallic based catalysts: A review on the recent developments
JP4450602B2 (en) Gas separation material using carbon nanotube and method for producing the same
Gangele et al. Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: a review
JP2002097008A (en) Method for perforating monolayered carbon nanotube
JP2002097010A (en) Method for making hybrid monolayered carbon nanotube
Huang et al. Preparation of novel carbon-based nanomaterial of graphene and its applications electrochemistry
US20120171106A1 (en) Carbon nanotube growth via chemical vapor deposition using a catalytic transmembrane to separate feedstock and growth chambers
JP2002263496A (en) Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber
Liu et al. Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition
Hussain et al. Growth and plasma functionalization of carbon nanotubes
US6740224B1 (en) Method of manufacturing carbon nanotubes
JP2006124266A (en) C60 fullerene tube and its manufacturing method