JP2002080629A - Polyamide porous spherical particle and process for preparing it - Google Patents

Polyamide porous spherical particle and process for preparing it

Info

Publication number
JP2002080629A
JP2002080629A JP2001016570A JP2001016570A JP2002080629A JP 2002080629 A JP2002080629 A JP 2002080629A JP 2001016570 A JP2001016570 A JP 2001016570A JP 2001016570 A JP2001016570 A JP 2001016570A JP 2002080629 A JP2002080629 A JP 2002080629A
Authority
JP
Japan
Prior art keywords
polyamide
spherical particles
solution
porous
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001016570A
Other languages
Japanese (ja)
Inventor
Kimio Nakayama
喜美男 中山
Takehisa Tsunoda
剛久 角田
Shigeru Yao
滋 八尾
Yukihiko Asano
之彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001016570A priority Critical patent/JP2002080629A/en
Publication of JP2002080629A publication Critical patent/JP2002080629A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide polyamide porous spherical particles having a specified particle diameter and a specified pore diameter and also a narrow particle diameter distribution, a large specific surface area and a high degree of crystallization and to provide a preparing process therefore. SOLUTION: The polyamide porous spherical particles have a number-average particle diameter of 1-30 μm and a BET specific surface area of 100-80,000 m2/kg, and the spherical particles are obtained in such that the mixing of (A) a solution of the polyamide and a solvent, (B) a non-solvent for the polyamide and (C) water results in the formation of a temporary homogeneous solution which is made to deposit a polymer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の粒子径と細
孔径を有し、狭い粒子径分布をもち、比表面積の大きく
結晶化度の高いポリアミド多孔質球状粒子とその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous polyamide spherical particle having a specific particle size and pore size, a narrow particle size distribution, a large specific surface area and a high degree of crystallinity, and a method for producing the same. is there.

【0002】[0002]

【従来の技術】従来ポリアミドの粉末の製造方法として
は、化学的粉末化、機械的粉砕法、直接重合法とが知ら
れている。そのうち、化学的粉末化法は、ポリアミドの
溶媒と非溶媒を選択することによって、比較的均一な品
質の粉末ができることから、機能性を有するポリアミド
粒子には、最もこの方法が適していると考えられた。
2. Description of the Related Art Conventionally, as a method for producing a polyamide powder, chemical pulverization, mechanical pulverization, and direct polymerization are known. Among them, the chemical pulverization method is considered to be most suitable for polyamide particles having functionality, because relatively uniform quality powder can be obtained by selecting a solvent and a non-solvent of the polyamide. Was done.

【0003】例えば、Wei-Hsin Hou,Thomas B.Lloyd,J.
Applied Polymer Sci.,45,1783,(1992)には、ギ酸溶液
からポリアミド非溶媒の水から析出させて、粒径分布の
狭い粒子からなるポリアミド粒子の作製に関する技術が
開示されている。そこにはポリアミド種により、粒子の
表面の凹凸が異なることが観測されているが、それ以上
の詳しい粒子の構造に関しては述べられていない。
For example, Wei-Hsin Hou, Thomas B. Lloyd, J.
Applied Polymer Sci., 45, 1783, (1992) discloses a technique for producing polyamide particles composed of particles having a narrow particle size distribution by precipitating from a formic acid solution from water of a polyamide non-solvent. It is observed that the surface irregularities of the particles differ depending on the type of polyamide, but no further detailed structure of the particles is described.

【0004】また、特開昭52−43860号公報,特
開昭52−14668号公報,特開昭52−11076
5号公報には、ポリフェノールなどの吸着材に適した多
孔質ポリアミドの製法が開示されている。しかし、そこ
においては多孔質粒子というほかにそれ以上の知見の記
述はない。
Further, Japanese Patent Application Laid-Open Nos. Sho 52-43860, Sho 52-14668, and Sho 52-11076
No. 5 discloses a method for producing a porous polyamide suitable for an adsorbent such as polyphenol. However, there is no further description of the findings other than the porous particles.

【0005】ポリアミド粒子の製造については、この他
に、溶液から製造方法がいくつか開示されている。例え
ば、 特開平5−70598号公報に、ナイロン11ま
たは12のメタクレゾール溶液を溶融状態で噴霧し、冷
却することによって、粒径20μm以下の粉体とする化
粧品用ポリアミド粉体の製造方法が開示されている。
[0005] Regarding the production of polyamide particles, several other production methods from solutions have been disclosed. For example, JP-A-5-70598 discloses a method for producing a cosmetic polyamide powder having a particle size of 20 μm or less by spraying a solution of nylon 11 or 12 in a molten state and cooling the solution. Have been.

【0006】また、多孔質ポリマー粒子の製造方法とし
ては、特開平1−278541号公報に、曇点を有しう
るポリマー溶液を、一定の流速で一定の周期的な乱れを
加えながら、均一な大きさの液滴として、液体状態で開
口部から気相中に噴出させ、同符号の電荷を帯電させた
後、該液滴を曇点以下の温度にしてから、該液滴に自然
に濡れるほどの表面張力を有する該液滴の凝固液中に侵
入させ、凝固させることを特徴とする方法が開示されて
いる。この方法では、微小なポリマーくずが発生しない
で、多孔質な球状粒子を得ることができるが、やはり、
液滴を噴出させたり、電極での振動を加えたりして凝固
溶媒に侵入させるという煩雑な操作を必要としなければ
ならなかった。
[0006] As a method for producing porous polymer particles, Japanese Patent Application Laid-Open No. 1-278541 discloses a method in which a polymer solution having a cloud point is uniformly mixed at a constant flow rate with a constant periodic disturbance. As a droplet of a size, the droplet is ejected into the gas phase from the opening in a liquid state and charged with the same sign, the droplet is cooled to a temperature equal to or lower than the cloud point, and then spontaneously wets the droplet. A method is disclosed in which the liquid droplets having a moderate surface tension are caused to penetrate into a coagulating liquid and solidified. In this method, porous spherical particles can be obtained without generating fine polymer scraps.
A complicated operation of injecting the droplet into the coagulating solvent by ejecting the droplet or applying vibration at the electrode had to be required.

【0007】また、特開平3−26729号公報には、
結晶性ポリマーが水素結合指数が異なる2種の溶媒、非
溶媒によって結晶化を起こさせ、乾燥して多孔質ポリマ
ー微小球を得る製造方法を開示されている。しかし、こ
の方法では、機械的せん断力を作用させる、もしくは超
音波分散力を作用させることにより粒子を微細化するこ
とを含んでいて、再現性がなかった。これは、機械的な
分散力に頼っていたため、粒子が凝集したり、粗大粒子
となってくることがあった。
Further, Japanese Patent Application Laid-Open No. 3-26729 discloses that
A production method is disclosed in which a crystalline polymer is crystallized by two kinds of solvents and non-solvents having different hydrogen bond indices and dried to obtain porous polymer microspheres. However, this method does not have reproducibility since it involves making the particles finer by applying a mechanical shearing force or applying an ultrasonic dispersing force. Since this relies on mechanical dispersing force, the particles may aggregate or become coarse particles.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、均一
な粒子径のポリアミド多孔質球状粒子に関するもので、
特定の範囲の粒径、比較的粒子径分布、細孔径、比表面
積を持ち、該粒子は高結晶性である多孔質粒子であるこ
とを目的とする。
An object of the present invention is to provide polyamide porous spherical particles having a uniform particle size.
It is intended to be a highly crystalline porous particle having a specific range of particle size, relatively particle size distribution, pore size, and specific surface area.

【0009】[0009]

【課題を解決するための手段】本発明は、数平均粒子径
1〜30μm、BET比表面積100〜80000m
/kg、であるポリアミド多孔質球状粒子である。
According to the present invention, a number average particle size is provided.
1-30 μm, BET specific surface area 100-80000 m 2
/ Kg, is a porous polyamide spherical particle.

【0010】本発明の多孔質球状粒子は、平均細孔径が
0.01〜0.2μmであることが好ましい。
[0010] The porous spherical particles of the present invention preferably have an average pore diameter of 0.01 to 0.2 µm.

【0011】本発明の多孔質球状粒子は、多孔度指数
(RI)が5〜100であることが好ましい。
The porous spherical particles of the present invention preferably have a porosity index (RI) of 5 to 100.

【0012】本発明の多孔質球状粒子は、結晶性で,D
SCで測定された結晶化度が40%より高いことが好ま
しい。
The porous spherical particles of the present invention are crystalline,
Preferably, the crystallinity measured by SC is higher than 40%.

【0013】本発明の多孔質球状粒子は、数平均粒子径
に対する体積平均粒子径の比(PDI)が1〜1.5で
あることが好ましい。
The porous spherical particles of the present invention preferably have a ratio of the volume average particle diameter to the number average particle diameter (PDI) of 1 to 1.5.

【0014】また、本発明は、ポリアミドとその良溶媒
とからなる溶液(A)と、ポリアミドの非溶媒(B)、
および水(C)を混合することにより、一時的に均一な
溶液を形成した後、ポリマーを析出して、球状粒子を得
ることを特徴とするポリアミド多孔質粒子の製造方法に
関するものである。
Further, the present invention provides a solution (A) comprising a polyamide and a good solvent thereof, a non-solvent (B) of the polyamide,
The present invention relates to a method for producing porous polyamide particles, wherein a uniform solution is temporarily formed by mixing water and water (C) to precipitate a polymer to obtain spherical particles.

【0015】また本発明は、ポリアミドの溶液(A)の
溶媒が芳香族アルコールであることを特徴とするポリア
ミド多孔質球状粒子の製造方法に関する。
The present invention also relates to a method for producing porous polyamide spherical particles, wherein the solvent of the polyamide solution (A) is an aromatic alcohol.

【0016】本発明は、ポリアミドの溶液(A)の溶媒
がギ酸であることを特徴とするポリアミド多孔質球状粒
子の製造方法に関する。
The present invention relates to a method for producing porous polyamide spherical particles, wherein the solvent of the polyamide solution (A) is formic acid.

【0017】本発明は、ポリアミドの芳香族アルコール
系溶液(A)が、ポリアミド0.1〜30重量%と芳香
族アルコール系溶媒99.9〜70重量%からなること
を特徴とするポリアミド多孔質粒子の製造方法に関す
る。
The present invention is characterized in that the polyamide aromatic alcohol solution (A) comprises 0.1 to 30% by weight of a polyamide and 99.9 to 70% by weight of an aromatic alcohol solvent. The present invention relates to a method for producing particles.

【0018】本発明は、ポリアミドの非溶媒(B)と水
(C)の合計重量割合が、ポリアミドの芳香族アルコー
ル系溶液(A)の重量割合より大きいことを特徴とする
ポリアミド多孔質粒子の製造方法に関する。
According to the present invention, there is provided a polyamide porous particle characterized in that the total weight ratio of the polyamide non-solvent (B) and water (C) is larger than the weight ratio of the polyamide aromatic alcohol solution (A). It relates to a manufacturing method.

【0019】本発明は、水(C)の割合が、ポリアミド
の非溶媒(B)と水(C)の合計に対して、2〜90重
量%であることを特徴とするポリアミド多孔質粒子の製
造方法に関する。
According to the present invention, there is provided a polyamide porous particle characterized in that the proportion of water (C) is 2 to 90% by weight based on the sum of the non-solvent (B) and water (C) of the polyamide. It relates to a manufacturing method.

【0020】本発明は、ポリアミドの非溶媒(B)が沸
点100℃以下の脂肪族アルコールであることを特徴と
するポリアミド多孔質粒子の製造方法に関する。
The present invention relates to a method for producing polyamide porous particles, wherein the non-solvent (B) of the polyamide is an aliphatic alcohol having a boiling point of 100 ° C. or lower.

【0021】本発明は、ポリアミド溶液の温度が10℃
より低い温度であることを特徴とするポリアミド多孔質
粒子の製造方法に関する。
In the present invention, the temperature of the polyamide solution is 10 ° C.
The present invention relates to a method for producing polyamide porous particles, which is characterized by a lower temperature.

【0022】[0022]

【発明の実施の形態】本発明は、特定の粒子径と細孔径
を有し、狭い粒子径分布をもち、比表面積の大きく結晶
化度の高いポリアミド多孔質球状粒子とその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porous polyamide spherical particle having a specific particle size and pore size, a narrow particle size distribution, a large specific surface area and a high degree of crystallinity, and a method for producing the same. is there.

【0023】本発明に用いるポリアミドとしては、公知
の種々のものを挙げることができる。例えば、環状アミ
ドの開環重合、あるいはジカルボン酸とジアミンの重縮
合で得られる。モノマーとしては、ε−カプロラクタ
ム、ω−ラウロラクタム等の環状アミドを開環重合して
得られる結晶性ポリアミド、ε−アミノカプロン酸、ω
−アミノドデカン酸、ω−アミノウンデカン酸などのア
ミノ酸の重縮合、または蓚酸、アジピン酸、セバシン
酸、テレフタル酸、イソフタル酸、1,4−シクロヘキ
シルジカルボン酸などのジカルボン酸および誘導体とエ
チレンジアミン、ヘキサメチレンジアミン、1,4−シ
クロヘキシルジアミン、m−キシリレンジアミン、ペン
タメチレンジアミン、デカメチレンジアミンなどのジア
ミンを重縮合して得られるものなどである。
As the polyamide used in the present invention, various known polyamides can be mentioned. For example, it can be obtained by ring-opening polymerization of a cyclic amide or polycondensation of a dicarboxylic acid and a diamine. Examples of the monomer include a crystalline polyamide obtained by ring-opening polymerization of a cyclic amide such as ε-caprolactam and ω-laurolactam, ε-aminocaproic acid, ω
-Aminododecanoic acid, polycondensation of amino acids such as ω-aminoundecanoic acid, or dicarboxylic acids and derivatives such as oxalic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexyldicarboxylic acid and ethylenediamine, hexamethylene Examples thereof include those obtained by polycondensing diamines such as diamine, 1,4-cyclohexyldiamine, m-xylylenediamine, pentamethylenediamine, and decamethylenediamine.

【0024】本発明の結晶性ポリアミドは、単独重合体
及びこれらの共重合体からなる結晶性ポリアミドまたは
その誘導体である。具体的には、ポリアミド6、ポリア
ミド66、ポリアミド11,ポリアミド12,ポリアミ
ド610、ポリアミド66/6T(Tはテレフタル酸成
分を表す)などである。また上記ポリアミドの混合物で
あってもよい。特に好ましくは, ポリアミド6、ポリア
ミド66が好ましい。
The crystalline polyamide of the present invention is a crystalline polyamide comprising a homopolymer or a copolymer thereof or a derivative thereof. Specifically, examples thereof include polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, and polyamide 66 / 6T (T represents a terephthalic acid component). It may be a mixture of the above polyamides. Particularly preferably, polyamide 6 and polyamide 66 are preferred.

【0025】本発明のポリアミドの分子量は、2,00
0〜100,000である。好ましくは5,000〜4
0,000である。
The polyamide of the present invention has a molecular weight of 2,000
0 to 100,000. Preferably 5,000 to 4
It is 0000.

【0026】本発明のポリアミド多孔質粒子は球状粒子
である。好ましくは多孔質粒子のうち少なくとも90重
量%は球状粒子である。さらに好ましくは少なくとも9
8重量%球状粒子である。球状粒子が90重量%より少
ないと、粉体材料としての流動性が劣るなど好ましくな
いことがある。
The porous polyamide particles of the present invention are spherical particles. Preferably, at least 90% by weight of the porous particles are spherical particles. More preferably at least 9
8% by weight spherical particles. If the content of the spherical particles is less than 90% by weight, the fluidity of the powder material may be unfavorably low.

【0027】本発明のポリアミド多孔質球状粒子は、数
粒子径1〜30μm、BET比表面積100〜8000
0m/kgであるポリアミド多孔質球状粒子である。
好ましくは数平均粒子径が1〜25μmである。数平均
粒子径が1μmより小さいと取り扱い操作が悪くなる。
また数平均粒子径が30μmより大きいと触媒担持体な
どに用いるには不適当である。
The porous polyamide spherical particles of the present invention have a number particle diameter of 1 to 30 μm and a BET specific surface area of 100 to 8000.
It is a polyamide porous spherical particle of 0 m 2 / kg.
Preferably, the number average particle size is 1 to 25 μm. When the number average particle diameter is smaller than 1 μm, handling operation becomes worse.
If the number average particle diameter is larger than 30 μm, it is not suitable for use as a catalyst carrier.

【0028】本発明のポリアミド多孔質球状粒子のBE
T比表面積は100〜80000m /kgである。好
ましくは、1000〜60000m/kg、さらに好
ましくは、3000〜40000m/kgである。比
表面積が100m/kgより小さいと触媒などの担持
能力が低下するから好ましくない。また比表面積が80
000m/kgであると取り扱いにくい。
BE of porous polyamide spherical particles of the present invention
T specific surface area is 100 ~ 80000m 2/ Kg. Good
Preferably 1000 to 60000m2/ Kg, even better
Preferably, 3000-40000m2/ Kg. ratio
100m surface area2Less than / kg supports catalyst
It is not preferable because the ability is reduced. The specific surface area is 80
000m2/ Kg is difficult to handle.

【0029】本発明の多孔質球状粒子の平均細孔径は、
0.01〜0.2μmであることが好ましい。さらに好
ましくは0.02〜0.1μmである。平均細孔径が
0.01μmより小さければ、触媒を担持しにくくな
る。平均細孔径が0.2μmより大きければ、触媒の担
持力が低くなるから触媒の担持体としては上記範囲の平
均細孔径が好ましい。
The average pore diameter of the porous spherical particles of the present invention is as follows:
Preferably it is 0.01 to 0.2 μm. More preferably, it is 0.02 to 0.1 μm. When the average pore diameter is smaller than 0.01 μm, it becomes difficult to support the catalyst. If the average pore diameter is larger than 0.2 μm, the catalyst carrying power will be low, so that the catalyst carrier preferably has an average pore diameter in the above range.

【0030】本発明のポリアミド多孔質球状粒子の多孔
度指数(RI)は、5〜100が好ましい。さらに好ま
しくは、多孔度指数が5〜70である。ここで多孔度指
数(RI)とは、同じ直径の平滑な球状粒子の比表面積
に対し、多孔質の球状粒子の比表面積の比で表示したも
のと定義する。次式で表せる。多孔度指数が5より小さ
ければ、多孔質の程度が低すぎて触媒などの担持体とし
ての効果がすくない。多孔度が100より大きければ形
状が不安定となるから、触媒担持体などには上記の範囲
が好ましい。
The polyamide porous spherical particles of the present invention preferably have a porosity index (RI) of 5 to 100. More preferably, the porosity index is from 5 to 70. Here, the porosity index (RI) is defined as the ratio of the specific surface area of porous spherical particles to the specific surface area of smooth spherical particles having the same diameter. It can be expressed by the following equation. If the porosity index is less than 5, the degree of porosity is too low, and the effect as a carrier such as a catalyst is small. If the porosity is larger than 100, the shape becomes unstable. Therefore, the above range is preferable for the catalyst carrier and the like.

【0031】[0031]

【数1】 ここで、RI;多孔度指数、S;多孔粒子の比表面積
[m/kg]、S;同一粒子径の円滑な球状粒子の比表
面積[m/kg]である。Sは、次式に従って求めるこ
とができる。すなわち、観測された数平均球状粒子径d
obs[m]、ポリアミドの密度ρ[kg/m3]とすると、円
滑な球の比表面積Sは次式で表すことができる。
(Equation 1) Here, RI: porosity index, S: specific surface area of porous particles
[m 2 / kg], S 0 ; Specific surface area [m 2 / kg] of smooth spherical particles having the same particle diameter. S 0 can be obtained according to the following equation. That is, the observed number average spherical particle diameter d
Assuming obs [m] and the density ρ [kg / m 3 ] of the polyamide, the specific surface area S 0 of the smooth sphere can be expressed by the following equation.

【数2】 ここでは、ポリアミド6ならびにポリアミド66の密度
を結晶相1230kg/m、非晶相1100kg/m
とした。
(Equation 2) Here, the densities of the polyamide 6 and the polyamide 66 were determined to be 1230 kg / m 3 for the crystalline phase and 1100 kg / m 3 for the amorphous phase.
It was set to 3 .

【0032】また本発明は、ポリアミドが結晶性である
ポリアミド多孔質球状粒子に関するものである。本発明
の多孔質ポリアミドは結晶性であって、融点が110〜
320℃である。好ましくは、140〜280℃であ
る。融点が110℃より低くなると、熱安定性が低くな
る。また融点が320℃より高くなると担持能力が低下
するから好ましくない。
The present invention also relates to porous polyamide spherical particles in which the polyamide is crystalline. The porous polyamide of the present invention is crystalline and has a melting point of 110 to 110.
320 ° C. Preferably it is 140-280 degreeC. When the melting point is lower than 110 ° C., the thermal stability decreases. On the other hand, when the melting point is higher than 320 ° C., the carrying capacity is undesirably reduced.

【0033】さらに、本発明は、DSCで測定された結
晶化度が40%以上であるポリアミド多孔質球状粒子が
好ましい。ポリアミドの結晶化度は、X線解析より求め
る方法、DSC測定法により求める方法、密度から求め
る方法があるが、DSC測定法により求める方法が好適
がである。結晶化度が40%以上であることが好まし
い。特に結晶化度が50%より高いのが特に好ましい。
普通溶融物から結晶化させたポリアミドの結晶化度は高
いものでせいぜい30%程度である。本発明のポリアミ
ドは結晶化度が40%より高いことが好ましい。特に好
ましくは、結晶化度45%より高いことが好ましい。結
晶化度が40%より低いと、多孔質粒子が熱的に形状的
に不安定になるから好ましくない。
In the present invention, porous polyamide spherical particles having a crystallinity of at least 40% as measured by DSC are preferred. The degree of crystallinity of the polyamide can be determined by X-ray analysis, determined by DSC measurement, or determined by density, but a method determined by DSC measurement is preferred. The crystallinity is preferably 40% or more. Particularly preferably, the degree of crystallinity is higher than 50%.
Usually, the crystallinity of polyamide crystallized from the melt is as high as about 30% at most. The polyamide of the present invention preferably has a crystallinity higher than 40%. Particularly preferably, the degree of crystallinity is higher than 45%. If the crystallinity is lower than 40%, the porous particles become thermally unstable in shape, which is not preferable.

【0034】ポリアミドの結晶化度は、 R.View
egら、kunststoffeIV polyamid
e、218頁、Carl Hanger Verla
g、1966年の記載により、ポリアミド6、ポリアミ
ド66の融解熱はそれぞれ45cal/gとして算出し
た。結晶化度は次の式から算出される。
The crystallinity of polyamide is determined by View
eg et al., kunststoff IV polyamid
e, p. 218, Carl Hanger Verla
g, 1966, the heat of fusion of polyamide 6 and polyamide 66 were calculated as 45 cal / g, respectively. The crystallinity is calculated from the following equation.

【数3】 χ ;結晶化度(%) ΔHobs;サンプルの融解熱 (cal/g) ΔH;ポリアミドの融解熱 (cal/g)(Equation 3) ;; crystallinity (%) ΔH obs ; heat of fusion of sample (cal / g) ΔH m ; heat of fusion of polyamide (cal / g)

【0035】本発明のポリアミド多孔質粒子は、数平均
粒子径に対する体積平均粒子径の比が1〜1.5である
ポリアミド多孔質球状粒子に関する。本発明の多孔質ポ
リアミドの粒子径分布において、数平均粒子径(または
数基準平均粒子径)に対する体積平均粒子径(または体
積基準平均粒子径)の比が1〜1.5である。好ましく
は数平均粒子径と体積平均粒子径の比が1〜1.3であ
る。数平均粒子径に対する体積平均粒子径の比(粒度分
布指数PDI)が1.5より大きいと粒子径分布が広く
なって、均一な粒子径の粒子が得られない。均一な粒子
径は、機能性粒子に適用する場合、予期した以上の物理
的化学的性質が発現することがあり好ましい。
The polyamide porous particles of the present invention relate to polyamide spherical spherical particles having a volume average particle diameter to number average particle diameter ratio of 1 to 1.5. In the particle diameter distribution of the porous polyamide of the present invention, the ratio of the volume average particle diameter (or volume average particle diameter) to the number average particle diameter (or number average particle diameter) is 1 to 1.5. Preferably, the ratio of the number average particle diameter to the volume average particle diameter is from 1 to 1.3. If the ratio of the volume average particle size to the number average particle size (particle size distribution index PDI) is more than 1.5, the particle size distribution becomes wide, and particles having a uniform particle size cannot be obtained. When applied to functional particles, a uniform particle size is preferable because physical and chemical properties higher than expected may be exhibited.

【0036】粒子径分布指数は次式で表される。 数平均粒子径 :The particle size distribution index is represented by the following equation. Number average particle size:

【数4】 体積平均粒子径:(Equation 4) Volume average particle size:

【数5】 粒子径分布指数:(Equation 5) Particle size distribution index:

【数6】 ここで、Xi;個々の粒子径、nは測定数である。(Equation 6) Here, Xi; individual particle diameter, n is the number of measurements.

【0037】本発明の製造方法は、ポリアミドの溶液
に、ポリアミドに特定の非溶媒を混合して、均一な溶液
を形成させた後、析出させる方法である。
The production method of the present invention is a method in which a specific non-solvent is mixed with a polyamide solution to form a uniform solution, followed by precipitation.

【0038】本発明は、ポリアミドとのその良溶媒から
なる溶液(A)に、ポリアミドの非溶媒(B)である脂
肪族アルコールと水(C)を添加して、一時的に均一な
溶液を形成させた後、その後、時間をおいて析出させ、
均一な粒径の多孔質ポリアミド球状粒子を得る製造方法
に関する。
According to the present invention, an aliphatic alcohol which is a non-solvent (B) of polyamide and water (C) are added to a solution (A) comprising a polyamide and its good solvent to form a temporarily uniform solution. After being formed, then, after a while,
The present invention relates to a method for producing porous polyamide spherical particles having a uniform particle size.

【0039】本発明における溶媒としては、芳香族アル
コール系溶液または蟻酸が好ましい。(A)の溶媒とし
て、具体的には、0−クレゾール、m−クレゾール、p
−クレゾール、クロロフェノール等または蟻酸が好まし
い。これらは水(C)と少なくとも部分的に相溶するか
ら好ましい。
As the solvent in the present invention, an aromatic alcohol solution or formic acid is preferred. As the solvent of (A), specifically, 0-cresol, m-cresol, p
-Cresol, chlorophenol or the like or formic acid is preferred. These are preferred because they are at least partially compatible with water (C).

【0040】本発明のポリアミド溶液(A)は、ポリア
ミドが0.1〜30重量%、好ましくは、0.2〜25
重量%、ポリアミドの溶媒が99.9〜70重量%、好
ましくは、99.8〜75重量%の範囲であることが好
ましい。ポリアミド溶液中でポリアミドの割合が30重
量%を越えると、溶解しにくくなったり、均一な溶液に
ならないことがある。また、溶解しても溶液の粘度が高
くなり、扱いにくくなるので好ましくない。ポリアミド
の割合が0.1重量%より低くなると、ポリマー濃度が
低く、製品の生産性が低くなるので好ましくない。
The polyamide solution (A) of the present invention contains 0.1 to 30% by weight of polyamide, preferably 0.2 to 25% by weight.
% By weight, and the solvent content of the polyamide is preferably 99.9 to 70% by weight, and more preferably 99.8 to 75% by weight. If the proportion of the polyamide in the polyamide solution exceeds 30% by weight, it may be difficult to dissolve or a uniform solution may not be obtained. Further, even if dissolved, the viscosity of the solution increases, which makes it difficult to handle, which is not preferable. When the proportion of the polyamide is lower than 0.1% by weight, the polymer concentration is low, and the productivity of the product is low.

【0041】本発明のポリアミドの非溶媒(B)は、ポ
リアミドの溶液(A)と、水(C)が少なくとも部分的
に相容するものが好ましい。また、水とは相容すること
が重要である。例えば、沸点100℃以下の脂肪族アル
コール、ケトンなどが好ましい。具体的には、メタノー
ル、エタノール、プロパノール、アセトンまたはそれら
の混合物などが好ましい。
The non-solvent (B) for the polyamide of the present invention is preferably one in which the solution (A) of the polyamide and the water (C) are at least partially compatible. It is important to be compatible with water. For example, aliphatic alcohols and ketones having a boiling point of 100 ° C. or less are preferable. Specifically, methanol, ethanol, propanol, acetone or a mixture thereof is preferred.

【0042】本発明においては、ポリアミドの非溶媒
(B)と水(C)の合計重量割合が、ポリアミド溶液
(A)の重量割合より多いことが好ましい。ポリアミド
の非溶媒(B)と水(C)の合計重量割合が、ポリアミ
ド溶液(A)の重量割合より少ないと、ポリマーが十分
析出しないことがあるので好ましくない。また極端に多
すぎる時は、仕上げ工程の溶媒量が増えすぎて経済的で
ない。
In the present invention, the total weight ratio of the polyamide non-solvent (B) and water (C) is preferably larger than the weight ratio of the polyamide solution (A). If the total weight ratio of the polyamide non-solvent (B) and water (C) is less than the weight ratio of the polyamide solution (A), the polymer may not be sufficiently precipitated, which is not preferable. On the other hand, when the amount is extremely large, the amount of the solvent in the finishing step is too large, which is not economical.

【0043】本発明のポリアミドの非溶媒(B)と水
(C)の合計に対する水(C)の割合は、2〜90重量
%、好ましくは、5〜85重量%である。水の割合が2
重量%より少ない場合は、粒子にならない。90重量%
より大きい場合は、水層が相分離するので好ましくな
い。
The ratio of water (C) to the sum of the non-solvent (B) and water (C) of the polyamide of the present invention is 2 to 90% by weight, preferably 5 to 85% by weight. Water ratio is 2
If it is less than% by weight, it does not become particles. 90% by weight
If it is larger, the aqueous layer is phase separated, which is not preferable.

【0044】本発明における溶液の添加順序は、溶液の
均一性が保たれれば、特に制限はないが、ポリアミド非
溶媒(B)と水(C)を混合した後、ポリアミド溶液
(A)を加えるのが好ましい。また、(A)に、(B)
を添加し、次に(C)を加えてもよい。または、(A)
に(C)を混合した後で(B)を加えてもよい。
The order of addition of the solution in the present invention is not particularly limited as long as the uniformity of the solution is maintained. After mixing the polyamide non-solvent (B) and water (C), the polyamide solution (A) is added. It is preferred to add. (A), (B)
And then (C). Or (A)
(B) may be added after mixing (C).

【0045】本発明においては、ポリアミドの溶液
(A)と非溶媒(B)と水(C)の3者が肉眼で観察し
て均一相容系になることが重要であり、(A),
(B),(C)のそれぞれの割合は、均一溶液となる溶
媒組成を選ぶ必要がある。これにより、均一な溶液を形
成させて、時間的な経過を経て、相分離を利用して、均
一な粒子径の多孔質粒子を析出させるものである。
In the present invention, it is important that the polyamide solution (A), the non-solvent (B) and the water (C) are observed with the naked eye to form a homogeneous compatible system.
For each ratio of (B) and (C), it is necessary to select a solvent composition that results in a uniform solution. Thus, a uniform solution is formed, and after a lapse of time, porous particles having a uniform particle diameter are deposited by utilizing phase separation.

【0046】均一な溶液を形成する時間は、たとえば、
0.1秒〜240分程度の時間である。好ましくは1秒
〜120分間が適当である。一時的にも、均一な溶液を
形成することが重要である。必要ならば、適当な撹拌を
加えるほうが好ましい。
The time for forming a uniform solution is, for example,
The time is about 0.1 second to 240 minutes. Preferably, 1 second to 120 minutes is appropriate. It is important to form a homogeneous solution, even temporarily. If necessary, it is preferable to add appropriate stirring.

【0047】本発明において、均一な溶液になるまでの
溶液において均一になるまでの撹拌方法は、混合溶液が
迅速に均一になるような方法がよい。思いがけなく、撹
拌の方法に依存して得られる多孔性球状粒子の大きさが
変わることが見られる。例えば、マグネチックスターラ
ーのような回転式撹拌機の場合、粒径が5〜15μmの
多孔質球状粒子が生成する。
In the present invention, the stirring method until the solution becomes uniform until the solution becomes uniform is preferably such that the mixed solution quickly becomes uniform. Unexpectedly, it can be seen that the size of the resulting porous spherical particles varies depending on the method of stirring. For example, in the case of a rotary stirrer such as a magnetic stirrer, porous spherical particles having a particle size of 5 to 15 μm are generated.

【0048】また、本発明において、均一な溶液を形成
するまでの間に、位置の変換が比較的よい撹拌の場合、
さらに大きな粒径が生成する。例えばVブレンダー、手
振動、バイブレータなどの振動式撹拌の場合15〜25
μmの多孔質粒子が生成する。その機構についてはよく
わかっていないが、器壁に結晶核が一時的に生成して
も、また再溶解し、溶媒が均一になるところまで核が発
生しないから、核が少なくなり、その結果、大粒子に成
長すると思われる。
Further, in the present invention, in the case where stirring is performed with a relatively good change of position before forming a uniform solution,
Larger particle sizes are produced. For example, in the case of a vibratory stirring such as a V blender, a hand vibration, a vibrator, etc.
μm porous particles are produced. Although the mechanism is not well understood, even if crystal nuclei are temporarily generated on the vessel wall, they are re-dissolved and nuclei are not generated until the solvent becomes uniform, so the number of nuclei decreases, and as a result, It seems to grow into large particles.

【0049】この撹拌方法の異なるものでも、均一な粒
径分布は均一であって、PDIは1〜1.5である。
溶液が均一になるまでの期間の撹拌方法の違いで多孔質
球状粒子の大きさに依存するものであって、肉眼で見
て、析出が始まった以降は撹拌の方法には依存しない。
Even with the different stirring methods, the uniform particle size distribution is uniform, and the PDI is 1 to 1.5.
The difference in the stirring method during the period until the solution becomes uniform depends on the size of the porous spherical particles, and does not depend on the stirring method after precipitation has started with the naked eye.

【0050】本発明において、均一な溶液を形成したな
らば、撹拌の必要はなく、ポリアミド粒子が析出し始め
る時以降は、静置しておくことが好ましい。撹拌しても
よいがポリアミド粒子の形状、大きさには影響がないと
思われる。
In the present invention, if a uniform solution is formed, stirring is not necessary, and it is preferable that the polyamide particles are allowed to stand still after the precipitation starts. Although stirring may be performed, it seems that the shape and size of the polyamide particles are not affected.

【0051】前記の均一な溶液からポリマー粒子を析出
させる温度は、5〜60℃が好ましい。温度によって
は、溶液が均一になる組成範囲が広くなることがある。
温度が50℃より低いと、均一になる領域が狭くなる溶
媒組成の範囲が場合がある。温度が60℃より高いと、
溶媒の蒸気圧が高くなり好ましくない。
The temperature at which the polymer particles are precipitated from the uniform solution is preferably 5 to 60 ° C. Depending on the temperature, the composition range in which the solution is uniform may be widened.
If the temperature is lower than 50 ° C., the range of the solvent composition in which the region to be homogenized becomes narrow may be limited. If the temperature is higher than 60 ° C,
The vapor pressure of the solvent is undesirably high.

【0052】本発明において、ポリアミド溶液の混合物
が5〜10℃であることが特に好ましい。この温度で
は、粒子径が2〜10μmの多孔質球形粒子ができる。
この現象は低温のため核生成が早くなり、その結果核の
数が多くなり、小さな粒子になると思われる。
In the present invention, it is particularly preferable that the mixture of the polyamide solution is at 5 to 10 ° C. At this temperature, porous spherical particles having a particle size of 2 to 10 μm are formed.
This phenomenon is thought to result in faster nucleation due to the lower temperature, resulting in more nuclei and smaller particles.

【0053】析出したポリアミド粒子は、溶液から遠心
分離、濾過、デカンテイションなどの通常の方法で単離
することができる。例えば、縣濁した溶液を、メタノー
ルで希釈して、遠心分離に掛けてもよい。数回メタノー
ルで洗浄して遠心分離に掛けてもよい。次に熱風乾燥、
真空乾燥に供してもよい。
The precipitated polyamide particles can be isolated from the solution by a usual method such as centrifugation, filtration, decantation and the like. For example, the suspended solution may be diluted with methanol and centrifuged. It may be washed several times with methanol and centrifuged. Then hot air drying,
It may be subjected to vacuum drying.

【0054】このようにして製造されたポリマー粒子
は、均一な粒径の多孔質球状ポリアミド粒子となる。ポ
リアミド粒子の粒子径は、1〜30μm、好ましくは1
〜25μmで、かさ密度は、0.1〜0.4g/cm3であ
る。また、BET比表面積は1000〜80000m2/
kg、好ましくは1000〜60000m2/kg、さらに
好ましくは3000〜40000m2/kgである。粒子径
が1μmより小さすぎると、粉体として取り扱いにくく
なる。30μmより大きすぎると、触媒担持体やトナー
担持体としての効果が劣る。
The polymer particles produced in this manner become porous spherical polyamide particles having a uniform particle size. The particle size of the polyamide particles is 1 to 30 μm, preferably 1 to 30 μm.
〜25 μm, the bulk density is 0.1-0.4 g / cm 3 . The BET specific surface area is 1000 to 80000 m 2 /
kg, preferably 1000 to 60000 m 2 / kg, more preferably 3000 to 40000 m 2 / kg. If the particle size is smaller than 1 μm, it becomes difficult to handle as a powder. If it is too large, the effect as a catalyst carrier or toner carrier will be poor.

【0055】このようにして製造されたポリマー粒子
は、均一な粒径の多孔質ポリアミド粒子となる。かさ密
度は、0.1〜0.4g/cm3、好ましくは0.2〜0.
3g/cm3である。また、粒子径分布(PDI)は1.0
〜1.5で、多孔度指数(RI)は5〜70の多孔質で
ある。
The polymer particles produced in this manner become porous polyamide particles having a uniform particle size. The bulk density is 0.1 to 0.4 g / cm 3 , preferably 0.2 to 0.
3 g / cm 3 . The particle size distribution (PDI) is 1.0
At 1.51.5, the porosity index (RI) is 5-70 porosity.

【0056】このようにして製造されたポリマー粒子
は、また、ポリアミドの結晶化度は、DSC測定より4
0%以上であり、平均細孔径は0.01〜0.2μmで
ある。
The polymer particles thus produced showed a polyamide crystallinity of 4 as measured by DSC.
0% or more, and the average pore diameter is 0.01 to 0.2 μm.

【0057】本発明の多孔質球状粒子は触媒担持体、粉
体塗料、電子写真のトナーの他エレクトロニクス用、医
療用、食品工業分野用の機能性粒子として供給できる。
The porous spherical particles of the present invention can be supplied as functional particles for use in electronics, medical and food industries, in addition to catalyst carriers, powder coatings, and toners for electrophotography.

【0058】[0058]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。また、粒子径、比表面積、平均細孔径、結晶化度な
どの測定は次のように行った。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. The measurement of the particle diameter, the specific surface area, the average pore diameter, the crystallinity, etc. was performed as follows.

【0059】(平均粒子径、粒度分布指数)走査型電子
顕微鏡で観察して、粒子形状と大きさとを観察した。球
形粒子は粒径を読みとった。ダンベル状粒子は粒子の投
影面積から相当円の直径を読みとった。いずれも100
個の数平均粒子径と体積平均粒子径、粒度分布指数(P
DI)はを前出の式を用いて算出した。
(Average Particle Diameter, Particle Size Distribution Index) Observation with a scanning electron microscope was conducted to observe the particle shape and size. For spherical particles, the particle size was read. For the dumbbell-shaped particles, the diameter of the equivalent circle was read from the projected area of the particles. All are 100
Number average particle diameter, volume average particle diameter, particle size distribution index (P
DI) was calculated using the above equation.

【0060】(細孔径分布)水銀ポロシメーターで測定
した。測定範囲は0.0034〜400μmで測定し
た。平均細孔径を求めた。
(Pore Size Distribution) Measured with a mercury porosimeter. The measurement range was 0.0034 to 400 μm. The average pore size was determined.

【0061】(比表面積・多孔度指数)ポリアミド粒子
の比表面積は、窒素吸着によるBET法で3点測定でお
こなった。この値から、前に述べた式に従って多孔度指
数を求めた。
(Specific surface area / porosity index) The specific surface area of the polyamide particles was measured at three points by the BET method using nitrogen adsorption. From this value, the porosity index was determined according to the previously described equation.

【0062】(結晶化度)ポリアミドの結晶化度は、D
SC(示差走査熱量計)で測定した。前に述べた方法で
行った。
(Crystallinity) The crystallinity of polyamide is D
It measured with SC (differential scanning calorimeter). Performed in the manner previously described.

【0063】実施例1 ポリアミド6(分子量13,000)を、濃度1.0重
量%m−クレゾール溶液10.5重量%とし、メタノー
ル78.9重量%と水10.5重量%を混合し、ポリア
ミド溶液に、マグネチックスターラーで撹拌しながら添
加した。1分攪拌後、溶液は均一になった。温度は室温
で行った。撹拌を止め、静置して30分後に、ポリマー
が析出してきた。さらに24時間静置して、析出終了さ
せた。その後遠心分離でポリマーを単離した。
Example 1 Polyamide 6 (molecular weight: 13,000) was adjusted to a concentration of 1.0% by weight of m-cresol solution at 10.5% by weight, and 78.9% by weight of methanol and 10.5% by weight of water were mixed. It was added to the polyamide solution while stirring with a magnetic stirrer. After stirring for 1 minute, the solution became homogeneous. The temperature was performed at room temperature. The stirring was stopped, and the polymer was deposited 30 minutes after standing still. The precipitation was completed by leaving still for 24 hours. Thereafter, the polymer was isolated by centrifugation.

【0064】得られた粒子を走査型電子顕微鏡で観察し
たところ、数平均粒子径9.21μm、体積平均粒子径
9.76μmの比較的均一な球形粒子であった。PDI
は1.06であった。比表面積9800m/kgであ
り、多孔度指数RIは17.2であった。ポリマー粒子
のかさ密度は、0.22g/cm3、結晶化度は58%であ
った。結果をまとめて表2に示す。
When the obtained particles were observed with a scanning electron microscope, they were relatively uniform spherical particles having a number average particle diameter of 9.21 μm and a volume average particle diameter of 9.76 μm. PDI
Was 1.06. The specific surface area was 9,800 m 2 / kg, and the porosity index RI was 17.2. The bulk density of the polymer particles was 0.22 g / cm 3 , and the crystallinity was 58%. Table 2 summarizes the results.

【0065】実施例2 実施例1のポリアミド1.0重量%m−クレゾール溶液
を15.0重量%とし、メタノール75.0重量%と水
10.0重量%をスターラーで混合した以外は、実施例
1と同様にした。1分攪拌後、溶液は均一になった。静
置し40分後に、ポリマーが析出してきた。24時間静
置して、析出終了させた。その後遠心分離でポリマーを
単離した。結果を表2に示す。
Example 2 The procedure of Example 1 was repeated except that the polyamide 1.0% by weight m-cresol solution was 15.0% by weight, and 75.0% by weight of methanol and 10.0% by weight of water were mixed with a stirrer. Same as Example 1. After stirring for 1 minute, the solution became homogeneous. After 40 minutes of standing, the polymer had precipitated. This was left standing for 24 hours to complete the precipitation. Thereafter, the polymer was isolated by centrifugation. Table 2 shows the results.

【0066】実施例3 実施例1と同じポリアミド濃度5.0重量%のm−クレ
ゾール溶液14.3重量%とし、メタノール71.4重
量%と水14.3重量%をマグネチックスターラーで撹
拌混合した以外は、実施例1と同様にした。1分攪拌
後、溶液は均一になった。撹拌下2分後に、ポリマーが
析出してきた。24時間静置して、析出終了させた。そ
の後遠心分離でポリマーを単離した。結果を表2に示
す。電子顕微鏡写真を図1に示す。
Example 3 The same m-cresol solution as in Example 1 having a polyamide concentration of 5.0% by weight was prepared as 14.3% by weight, and 71.4% by weight of methanol and 14.3% by weight of water were stirred and mixed with a magnetic stirrer. Except having performed, it carried out similarly to Example 1. After stirring for 1 minute, the solution became homogeneous. After 2 minutes with stirring, a polymer had precipitated. This was left standing for 24 hours to complete the precipitation. Thereafter, the polymer was isolated by centrifugation. Table 2 shows the results. An electron micrograph is shown in FIG.

【0067】粒子径分布を図3〜4に示す。粒子径分布
は単分散に近いものであった(PDI 1.06)。ポ
リマー粒子のかさ密度は、0.22g/cm3、比表面積9
800m/kgであり、多孔質粒子であった。多孔度
指数(RI)は16.0であった。平均細孔径は0.0
4μmであった。結晶化度は56%の高結晶化度であっ
た。
The particle size distribution is shown in FIGS. The particle size distribution was close to monodisperse (PDI 1.06). The bulk density of the polymer particles is 0.22 g / cm 3 and the specific surface area is 9
800 m 2 / kg, and the particles were porous. The porosity index (RI) was 16.0. The average pore size is 0.0
It was 4 μm. The crystallinity was as high as 56%.

【0068】実施例4 実施例1と同じポリアミド濃度2.0重量%の温度50
℃のm−クレゾール溶液、14.3重量%とし、メタノ
ール71.4重量%と水14.3重量%をマグネチック
スターラーで混合した以外は、実施例1と同様にした。
スターラーで1分攪拌後、溶液は均一になった。撹拌下
2分後に、ポリマーが析出してきた。10時間静置し
て、析出終了させた。その後遠心分離でポリマーを単離
した。結果を表2に示す。
Example 4 The same temperature as in Example 1 with a polyamide concentration of 2.0% by weight and a temperature of 50
The procedure of Example 1 was repeated except that the m-cresol solution at 14.degree. C. was 14.3% by weight, and 71.4% by weight of methanol and 14.3% by weight of water were mixed with a magnetic stirrer.
After stirring for 1 minute with a stirrer, the solution became homogeneous. After 2 minutes with stirring, a polymer had precipitated. This was left standing for 10 hours to complete the precipitation. Thereafter, the polymer was isolated by centrifugation. Table 2 shows the results.

【0069】実施例5 ポリアミド66(分子量11,000)を、濃度1.0
重量%、m−クレゾール溶液29.4重量%とし、メタ
ノール41.2重量%と水29.4重量%を混合し、ポ
リアミド溶液にスターラーで撹拌しながら添加した。1
0秒間撹拌後溶液は均一になった。その後ポリマーが析
出してきた。24時間静置して析出を完了させた。その
後、遠心分離でポリマーを単離した。走査型電子顕微鏡
で観察したところ、数平均径3.70μm、体積平均径
4.20μm、PDI1.14の比較的狭い球状粒子で
あった。比表面積12、100m/kg、RIは8.
8であった。結晶化度は59%であった。
Example 5 Polyamide 66 (molecular weight: 11,000) was prepared at a concentration of 1.0
% By weight, 29.4% by weight of an m-cresol solution, 41.2% by weight of methanol and 29.4% by weight of water were mixed, and added to the polyamide solution while stirring with a stirrer. 1
After stirring for 0 seconds, the solution became homogeneous. Thereafter, the polymer was precipitated. The precipitation was completed by standing for 24 hours. Thereafter, the polymer was isolated by centrifugation. Observation with a scanning electron microscope revealed that the particles were relatively narrow spherical particles having a number average diameter of 3.70 μm, a volume average diameter of 4.20 μm, and PDI of 1.14. Specific surface area: 12, 100 m 2 / kg, RI: 8.
It was 8. The crystallinity was 59%.

【0070】比較例1 実施例1と同じポリアミド6を、濃度1.0重量%m−
クレゾール溶液30重量%とし、メタノール70重量%
と、水を添加しなかった。マグネチックスターラーで撹
拌した。直ちにポリマーが析出してきた。2時間静置し
て、析出終了させた。その後遠心分離でポリマーを単離
した。走査型電子顕微鏡で観察したところ、粒子状では
なく、フィルム状であった。
Comparative Example 1 The same polyamide 6 as in Example 1 was used at a concentration of 1.0% by weight m-
Cresol solution 30% by weight, methanol 70% by weight
And no water was added. The mixture was stirred with a magnetic stirrer. The polymer immediately precipitated. The precipitation was completed by allowing to stand for 2 hours. Thereafter, the polymer was isolated by centrifugation. Observation with a scanning electron microscope revealed that the film was not a particle but a film.

【0071】比較例2 実施例1と同じポリアミド6を、濃度1.0重量%m−
クレゾール溶液50重量%とし、水50重量%とし、マ
グネチックスターラーで撹拌した。メタノールを添加し
なかった。溶液は相分離して混じり合わずポリマーは析
出しなかった。
Comparative Example 2 The same polyamide 6 as in Example 1 was used at a concentration of 1.0% by weight m-
The cresol solution was made 50% by weight, water was made 50% by weight, and the mixture was stirred with a magnetic stirrer. No methanol was added. The solution was phase separated and did not mix, and no polymer precipitated.

【0072】比較例3 溶液の組成を、ポリアミドの溶液をm−クレゾール溶液
60.0重量%とし、メタノール20.0重量%と水2
0.0重量%とした。ポリマーは析出しなかった。
Comparative Example 3 The composition of the solution was such that the polyamide solution was 60.0% by weight of m-cresol solution, 20.0% by weight of methanol and 2% by weight of water.
0.0% by weight. No polymer precipitated.

【0073】比較例4 溶液の組成を濃度1.0重量%ポリアミドのm−クレゾ
ール溶液22.0重量%とし、メタノール55.6重量
%と水22.2重量%とした。2分間撹拌し、20分後
に析出した。24時間静置してポリマーを析出終了させ
た。その後遠心分離でポリマーを単離した。走査型電子
顕微鏡で観察したところ、鼓状(ダンベル状)粒子を呈
していて、完全な球状粒子ではなかった。
Comparative Example 4 The composition of the solution was 1.0% by weight of a polyamide m-cresol solution of 22.0% by weight, 55.6% by weight of methanol and 22.2% by weight of water. The mixture was stirred for 2 minutes and precipitated after 20 minutes. The polymer was left standing for 24 hours to complete the precipitation. Thereafter, the polymer was isolated by centrifugation. Observation with a scanning electron microscope revealed that the particles were drum-shaped (dumbbell-shaped) and not perfectly spherical.

【0074】実施例6 ポリアミド溶液の溶媒をm−クレゾールからギ酸に変え
たほかは、実施例3と同じようにしてポリアミド粒子を
製造した。結果を表2に示す。
Example 6 Polyamide particles were produced in the same manner as in Example 3, except that the solvent in the polyamide solution was changed from m-cresol to formic acid. Table 2 shows the results.

【0075】実施例7 ポリアミド溶液の温度、非溶媒の温度、水の温度を5℃
に保持したほかは、実施例3と同様にしてポリアミド粒
子を製造した。比較的小さな多孔球状粒子が得られた。
結果を表2に示す。
Example 7 The temperature of the polyamide solution, the temperature of the non-solvent, and the temperature of water were 5 ° C.
The polyamide particles were produced in the same manner as in Example 3 except that the particles were kept as described above. Relatively small porous spherical particles were obtained.
Table 2 shows the results.

【0076】実施例8 均一な溶液が形成されるまでの期間、撹拌方法を、Vブ
レンダーによる方法に換えたほかは実施例3と同様にし
てポリアミド粒子を製造した。比較的大きな多孔質球状
粒子が得られた。電子顕微鏡写真を図2に示す。結果を
表2に示す。
Example 8 Polyamide particles were produced in the same manner as in Example 3 except that the stirring method was changed to a method using a V blender until a uniform solution was formed. Relatively large porous spherical particles were obtained. An electron micrograph is shown in FIG. Table 2 shows the results.

【0077】[0077]

【表1】 [Table 1]

【0078】[0078]

【表2】 [Table 2]

【0079】[0079]

【発明の効果】本発明のポリアミド多孔質球状粒子は、
同じ粒径の球状粒子よりも表面積が大きく、特定の平均
細孔径、粒子径分布、多孔度を有している。また、内部
構造は高結晶化度のポリアミドから成り立っており、熱
的安定性にも優れており、各種触媒の担持体、電子写真
のトナー、表示機器などの電子材料、クロマトグラフィ
ー、吸着材など食品工業、医療分野などの機能性粒子と
して供給できる。
The porous polyamide spherical particles of the present invention are:
It has a larger surface area than spherical particles of the same particle size, and has a specific average pore size, particle size distribution, and porosity. In addition, the internal structure is made of polyamide with high crystallinity, and has excellent thermal stability. Carriers for various catalysts, toner for electrophotography, electronic materials such as display devices, chromatography, adsorbents, etc. It can be supplied as functional particles in the food industry, medical field, etc.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施例3で得られたポリアミ
ド多孔質粒子の粒子形状を示す図面に代える電子顕微鏡
写真である。
FIG. 1 is an electron microscope photograph instead of a drawing showing the particle shape of the polyamide porous particles obtained in Example 3 of the present invention.

【図2】図2は、本発明の実施例8で得られたポリアミ
ド多孔質粒子の粒子形状を示す図面に代える電子顕微鏡
写真である。
FIG. 2 is an electron micrograph instead of a drawing showing the particle shape of the polyamide porous particles obtained in Example 8 of the present invention.

【図3】図3は、本発明の実施例3で得られたポリアミ
ド多孔質粒子の数粒子径分布を示す図である。
FIG. 3 is a diagram showing a number particle size distribution of polyamide porous particles obtained in Example 3 of the present invention.

【図4】図4は、本発明の実施例3で得られたポリアミ
ド多孔質粒子の体積粒子径分布を示す図である。
FIG. 4 is a diagram showing a volume particle size distribution of polyamide porous particles obtained in Example 3 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 之彦 千葉県市原市五井南海岸8番の1 宇部興 産株式会社高分子研究所内 Fターム(参考) 4F074 AA71 AC16 AD04 AD09 CB31 CB33 CB34 CB44 CB45 DA03 DA24 DA59  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yukihiko Asano 8-1 Goi-minamikaigan, Ichihara-shi, Chiba F-term in the Polymer Research Laboratory Ube Industries, Ltd. 4F074 AA71 AC16 AD04 AD09 CB31 CB33 CB34 CB44 CB45 DA03 DA24 DA59

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】数平均粒子径1〜30μm、BET比表面
積100〜80000m /kgであるポリアミド多孔
質球状粒子。
1. A BET specific surface having a number average particle size of 1 to 30 μm.
100-100,000m 2/ Kg of porous polyamide
Spherical particles.
【請求項2】平均細孔径が0.01〜0.2μmである
請求項1記載の多孔質球状粒子。
2. The porous spherical particles according to claim 1, having an average pore diameter of 0.01 to 0.2 μm.
【請求項3】多孔度指数が5〜100である請求項1〜
2記載のポリアミド多孔質球状粒子。
3. A porosity index of from 5 to 100.
2. Polyamide porous spherical particles according to 2.
【請求項4】DSCで測定された結晶化度が40%以上
である請求項1〜3記載のポリアミド多孔質球状粒子。
4. The polyamide spherical spherical particles according to claim 1, wherein the degree of crystallinity measured by DSC is 40% or more.
【請求項5】数平均粒子径に対する体積平均粒子径の比
が1〜1.5である請求項1〜4記載のポリアミド多孔
質球状粒子。
5. The polyamide porous spherical particles according to claim 1, wherein the ratio of the volume average particle diameter to the number average particle diameter is 1 to 1.5.
【請求項6】数平均粒子径が1〜15μmである請求項
1〜5記載のポリアミド多孔質球状粒子。
6. The polyamide spherical spherical particles according to claim 1, wherein the number average particle diameter is 1 to 15 μm.
【請求項7】数平均粒子径が15〜25μmである請求
項1〜5記載のポリアミド多孔質球状粒子。
7. The polyamide porous spherical particles according to claim 1, wherein the number average particle diameter is 15 to 25 μm.
【請求項8】ポリアミドとその溶媒とからなる溶液
(A)と、ポリアミドの非溶媒(B)、および水(C)
を混合することにより、一時的に均一な溶液を形成した
後、ポリマーを析出して、球状粒子を得ることを特徴と
するポリアミド多孔質球状粒子の製造方法。
8. A solution (A) comprising a polyamide and a solvent thereof, a non-solvent (B) of the polyamide, and water (C).
The method for producing porous spherical spherical particles of polyamide, characterized in that, after mixing, a uniform solution is temporarily formed, and then the polymer is precipitated to obtain spherical particles.
【請求項9】ポリアミドの溶液(A)の溶媒が芳香族ア
ルコールである請求項8記載のポリアミド多孔質球状粒
子の製造方法。
9. The method for producing porous polyamide spherical particles according to claim 8, wherein the solvent of the polyamide solution (A) is an aromatic alcohol.
【請求項10】ポリアミドの溶液(A)の溶媒がギ酸で
ある請求項8記載のポリアミド多孔質球状粒子の製造方
法。
10. The process for producing porous polyamide spherical particles according to claim 8, wherein the solvent of the polyamide solution (A) is formic acid.
【請求項11】ポリアミドの溶液(A)が、ポリアミド
0.1〜30重量%と溶媒99.9〜70重量%からな
る請求項8および9記載のポリアミド多孔質球状粒子の
製造方法。
11. The method for producing porous polyamide spherical particles according to claim 8, wherein the polyamide solution (A) comprises 0.1 to 30% by weight of a polyamide and 99.9 to 70% by weight of a solvent.
【請求項12】ポリアミドの非溶媒(B)と水(C)の
合計重量割合が、ポリアミド溶液(A)の重量割合より
大きいことを特徴とする請求項8〜9記載のポリアミド
多孔質球状粒子の製造方法。
12. The polyamide porous spherical particles according to claim 8, wherein the total weight ratio of the polyamide non-solvent (B) and water (C) is larger than the weight ratio of the polyamide solution (A). Manufacturing method.
【請求項13】水(C)の割合が、ポリアミドの非溶媒
(B)と水(C)の合計に対して、2〜90重量%であ
る請求項8、9、11および12記載のポリアミド多孔
質球状粒子の製造方法。
13. The polyamide according to claim 8, wherein the proportion of water (C) is 2 to 90% by weight based on the total of the non-solvent (B) and water (C) of the polyamide. A method for producing porous spherical particles.
【請求項14】ポリアミドの非溶媒(B)が沸点100
℃以下の脂肪族アルコールである請求項8〜13記載の
ポリアミド多孔質球状粒子の製造方法。
14. A polyamide non-solvent (B) having a boiling point of 100
The method for producing porous polyamide spherical particles according to any one of claims 8 to 13, wherein the aliphatic alcohol is an aliphatic alcohol having a temperature of not higher than 0C.
【請求項15】ポリアミド溶液の温度が10℃より低い
温度である請求項8記載のポリアミド多孔質球状粒子の
製造方法。
15. The method for producing porous polyamide spherical particles according to claim 8, wherein the temperature of the polyamide solution is lower than 10 ° C.
JP2001016570A 2000-06-14 2001-01-25 Polyamide porous spherical particle and process for preparing it Pending JP2002080629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001016570A JP2002080629A (en) 2000-06-14 2001-01-25 Polyamide porous spherical particle and process for preparing it

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000178043 2000-06-14
JP2000194155 2000-06-28
JP2000-194155 2000-06-28
JP2000-178043 2000-06-28
JP2001016570A JP2002080629A (en) 2000-06-14 2001-01-25 Polyamide porous spherical particle and process for preparing it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007133869A Division JP4692513B2 (en) 2000-06-14 2007-05-21 Method for producing polyamide porous particles

Publications (1)

Publication Number Publication Date
JP2002080629A true JP2002080629A (en) 2002-03-19

Family

ID=27343720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001016570A Pending JP2002080629A (en) 2000-06-14 2001-01-25 Polyamide porous spherical particle and process for preparing it

Country Status (1)

Country Link
JP (1) JP2002080629A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043411A1 (en) * 2002-11-14 2004-05-27 Ube Industries, Ltd. Cosmetic composition
WO2006112028A1 (en) * 2005-04-15 2006-10-26 Ube Industries, Ltd. Method for purifying porous polyamide fine powder
JP2006348281A (en) * 2005-05-17 2006-12-28 Ube Ind Ltd Spherical polyamide porous powder and polyamide porous particle
WO2007037211A1 (en) * 2005-09-27 2007-04-05 Ube Industries, Ltd. Polyamide porous spherical particle
WO2007043545A1 (en) 2005-10-05 2007-04-19 Teijin Engineering Ltd. Molded article and method of producing the same
WO2007069694A1 (en) * 2005-12-14 2007-06-21 Ube Industries, Ltd. Powder composed of inorganic compound-loaded polyamide porous particle
JP2007219183A (en) * 2006-02-17 2007-08-30 Ube Ind Ltd Light scattering material
EP1847559A1 (en) * 2005-02-02 2007-10-24 Ube Industries, Ltd. Process for producing porous spherical polyamide particle
JP2008038037A (en) * 2006-08-07 2008-02-21 Ube Ind Ltd Method for producing porous polyamide powder
JP2008046421A (en) * 2006-08-17 2008-02-28 Ube Ind Ltd Optical screen and projection-type image display system
WO2008038532A1 (en) * 2006-09-26 2008-04-03 Sumika Enviro-Science Company, Limited Method for production of spherical polyamide particle having improved melting property
JP2008081524A (en) * 2006-09-26 2008-04-10 Sumika Enviro-Science Co Ltd Method for producing spherical polyamide particle
JP2009514998A (en) * 2005-11-04 2009-04-09 エボニック デグサ ゲーエムベーハー Method for producing polyamide-based ultrafine powder, ultrafine polyamide powder and use thereof
DE102008008754A1 (en) 2008-02-12 2009-08-13 Henkel Ag & Co. Kgaa Hair and body cleanser with prolonged scent effect
DE102008008780A1 (en) 2008-02-12 2009-08-13 Henkel Ag & Co. Kgaa Deodorants and / or antiperspirants with improved fragrance and odor absorption
DE102008009456A1 (en) 2008-02-15 2009-08-20 Henkel Ag & Co. Kgaa Textile aftertreatment agent, useful e.g. in rinse cycle of a textile conditioning method, comprises surfactant/builder, perfume and spherical, porous polyamide particle having e.g. specific particle diameter and oil absorption capacity
DE102008009462A1 (en) 2008-02-15 2009-08-20 Henkel Ag & Co. Kgaa Detergent, useful for cleaning hard surfaces, comprises surfactant and/or builder, where builder has phosphate, perfume(s) and spherical, porous polyamide particle having e.g. specific particle diameter and oil absorption capacity
DE102008009457A1 (en) 2008-02-15 2009-08-20 Henkel Ag & Co. Kgaa Agent, useful in textile washing method at specific temperature, comprises surfactant and/or builder, perfume and spherical, porous polyamide particle having e.g. specific particle diameter, oil absorption capacity and crystallinity
DE102008019443A1 (en) 2008-04-17 2009-10-29 Henkel Ag & Co. Kgaa Color protecting detergent or cleaner
WO2010044340A1 (en) 2008-10-16 2010-04-22 宇部興産株式会社 Method and apparatus for producing polymer particles
WO2010078979A1 (en) * 2009-01-09 2010-07-15 Henkel Ag & Co. Kgaa Color-protecting dishwasher detergent
EP2240565A1 (en) * 2008-02-15 2010-10-20 Henkel AG & Co. KGaA Detergents and cleaning agents comprising porous polyamide particles
JP2010281986A (en) * 2009-06-04 2010-12-16 Ube Ind Ltd Light diffusion film
US20110052649A1 (en) * 2008-02-15 2011-03-03 Karine Loyen Fine powder of polyamide from renewable materials and method for making such a powder
JP2011218330A (en) * 2010-04-14 2011-11-04 Ube Industries Ltd Adsorbing material
DE102010038345A1 (en) 2010-07-23 2012-01-26 Henkel Ag & Co. Kgaa Prevention of textile damage during washing
JP2014503681A (en) * 2011-01-27 2014-02-13 ピービーアイ・パフォーマンス・プロダクツ・インコーポレーテッド Porous polybenzimidazole resin and method for producing the same
CN104109250A (en) * 2008-05-21 2014-10-22 东丽株式会社 Method For Producing Polymer Fine Particle
WO2017191760A1 (en) * 2016-05-06 2017-11-09 コニカミノルタ株式会社 Method for manufacturing nylon-6 particles and method for manufacturing three-dimensional molded article
WO2018207728A1 (en) 2017-05-12 2018-11-15 東レ株式会社 Method for producing polyamide fine particles, and polyamide fine particles
KR20210030221A (en) * 2019-09-09 2021-03-17 제록스 코포레이션 Polyamides with pendent optical absorbers and related methods
CN114591531A (en) * 2022-01-28 2022-06-07 苏州大学 Method for preparing porous microspheres from waste nylon 6 fabric
US11572441B2 (en) 2019-09-09 2023-02-07 Xerox Corporation Polyamides with pendent pigments and related methods
US11643566B2 (en) 2019-09-09 2023-05-09 Xerox Corporation Particulate compositions comprising a metal precursor for additive manufacturing and methods associated therewith
US11667788B2 (en) 2019-09-09 2023-06-06 Xerox Corporation Nanoparticle-coated elastomeric particulates and surfactant-promoted methods for production and use thereof
US11787937B2 (en) 2019-09-09 2023-10-17 Xerox Corporation Particles comprising polyamides with pendent optical absorbers and related methods
US11787944B2 (en) 2020-11-25 2023-10-17 Xerox Corporation Pigmented polymer particles and methods of production and uses thereof
US11801617B2 (en) 2019-09-09 2023-10-31 Xerox Corporation Optical absorbing thermoplastic polymer particles and methods of production and uses thereof
US11802206B2 (en) 2019-09-09 2023-10-31 Xerox Corporation Particles comprising polyamides with pendent pigments and related methods
US11814494B2 (en) 2019-09-09 2023-11-14 Xerox Corporation Thermoplastic polyester particles and methods of production and uses thereof
US11859051B2 (en) 2019-09-09 2024-01-02 Xerox Corporation Polyamides with in-backbone optical absorbers and related methods
US11866552B2 (en) 2019-09-09 2024-01-09 Xerox Corporation Polyamide particles and methods of production and uses thereof
US11866581B2 (en) 2019-09-09 2024-01-09 Xerox Corporation Particles comprising polyamides with in-backbone optical absorbers and related methods
US11866562B2 (en) 2019-09-09 2024-01-09 Xerox Corporation Nanoparticle-coated elastomeric particulates and methods for production and use thereof

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457079C (en) * 2002-11-14 2009-02-04 宇部兴产株式会社 Cosmetic composition
KR101050988B1 (en) * 2002-11-14 2011-07-22 우베 고산 가부시키가이샤 Cosmetic composition
WO2004043411A1 (en) * 2002-11-14 2004-05-27 Ube Industries, Ltd. Cosmetic composition
EP1847559A4 (en) * 2005-02-02 2012-01-18 Ube Industries Process for producing porous spherical polyamide particle
US7745504B2 (en) * 2005-02-02 2010-06-29 Ube Industries, Ltd. Process for producing porous spherical polyamide particle
EP1847559A1 (en) * 2005-02-02 2007-10-24 Ube Industries, Ltd. Process for producing porous spherical polyamide particle
KR101175969B1 (en) 2005-02-02 2012-08-22 우베 고산 가부시키가이샤 Process for producing porous spherical polyamide particle
WO2006112028A1 (en) * 2005-04-15 2006-10-26 Ube Industries, Ltd. Method for purifying porous polyamide fine powder
JP2006348281A (en) * 2005-05-17 2006-12-28 Ube Ind Ltd Spherical polyamide porous powder and polyamide porous particle
WO2007037211A1 (en) * 2005-09-27 2007-04-05 Ube Industries, Ltd. Polyamide porous spherical particle
US7943177B2 (en) 2005-09-27 2011-05-17 Ube Industries, Ltd. Polyamide porous spherical particle
KR101290510B1 (en) 2005-09-27 2013-07-26 우베 고산 가부시키가이샤 Polyamide porous spherical particle
JP5110429B2 (en) * 2005-09-27 2012-12-26 宇部興産株式会社 Polyamide porous spherical particles
WO2007043545A1 (en) 2005-10-05 2007-04-19 Teijin Engineering Ltd. Molded article and method of producing the same
US8629194B2 (en) 2005-10-05 2014-01-14 Teijin Engineering Ltd. Formed article and process for the production thereof
JP2009514998A (en) * 2005-11-04 2009-04-09 エボニック デグサ ゲーエムベーハー Method for producing polyamide-based ultrafine powder, ultrafine polyamide powder and use thereof
WO2007069694A1 (en) * 2005-12-14 2007-06-21 Ube Industries, Ltd. Powder composed of inorganic compound-loaded polyamide porous particle
JP5262112B2 (en) * 2005-12-14 2013-08-14 宇部興産株式会社 Cosmetic composition in which powder comprising inorganic compound-supported polyamide porous particles is dispersed
JP2007219183A (en) * 2006-02-17 2007-08-30 Ube Ind Ltd Light scattering material
JP2008038037A (en) * 2006-08-07 2008-02-21 Ube Ind Ltd Method for producing porous polyamide powder
JP2008046421A (en) * 2006-08-17 2008-02-28 Ube Ind Ltd Optical screen and projection-type image display system
WO2008038532A1 (en) * 2006-09-26 2008-04-03 Sumika Enviro-Science Company, Limited Method for production of spherical polyamide particle having improved melting property
JP2008081524A (en) * 2006-09-26 2008-04-10 Sumika Enviro-Science Co Ltd Method for producing spherical polyamide particle
DE102008008780A1 (en) 2008-02-12 2009-08-13 Henkel Ag & Co. Kgaa Deodorants and / or antiperspirants with improved fragrance and odor absorption
DE102008008754A1 (en) 2008-02-12 2009-08-13 Henkel Ag & Co. Kgaa Hair and body cleanser with prolonged scent effect
US9552614B2 (en) * 2008-02-15 2017-01-24 Arkema France Fine powder of polyamide from renewable materials and method for making such a powder
US20110052649A1 (en) * 2008-02-15 2011-03-03 Karine Loyen Fine powder of polyamide from renewable materials and method for making such a powder
DE102008009457A1 (en) 2008-02-15 2009-08-20 Henkel Ag & Co. Kgaa Agent, useful in textile washing method at specific temperature, comprises surfactant and/or builder, perfume and spherical, porous polyamide particle having e.g. specific particle diameter, oil absorption capacity and crystallinity
DE102008009462A1 (en) 2008-02-15 2009-08-20 Henkel Ag & Co. Kgaa Detergent, useful for cleaning hard surfaces, comprises surfactant and/or builder, where builder has phosphate, perfume(s) and spherical, porous polyamide particle having e.g. specific particle diameter and oil absorption capacity
DE102008009456A1 (en) 2008-02-15 2009-08-20 Henkel Ag & Co. Kgaa Textile aftertreatment agent, useful e.g. in rinse cycle of a textile conditioning method, comprises surfactant/builder, perfume and spherical, porous polyamide particle having e.g. specific particle diameter and oil absorption capacity
US10118997B2 (en) 2008-02-15 2018-11-06 Arkema France Fine powder of polyamide from renewable materials and method for making such a powder
EP2240565A1 (en) * 2008-02-15 2010-10-20 Henkel AG & Co. KGaA Detergents and cleaning agents comprising porous polyamide particles
DE102008019443A1 (en) 2008-04-17 2009-10-29 Henkel Ag & Co. Kgaa Color protecting detergent or cleaner
CN104109250A (en) * 2008-05-21 2014-10-22 东丽株式会社 Method For Producing Polymer Fine Particle
WO2010044340A1 (en) 2008-10-16 2010-04-22 宇部興産株式会社 Method and apparatus for producing polymer particles
DE102009004524A1 (en) 2009-01-09 2010-07-15 Henkel Ag & Co. Kgaa Color protective machine dishwashing detergent
WO2010078979A1 (en) * 2009-01-09 2010-07-15 Henkel Ag & Co. Kgaa Color-protecting dishwasher detergent
JP2010281986A (en) * 2009-06-04 2010-12-16 Ube Ind Ltd Light diffusion film
JP2011218330A (en) * 2010-04-14 2011-11-04 Ube Industries Ltd Adsorbing material
DE102010038345A1 (en) 2010-07-23 2012-01-26 Henkel Ag & Co. Kgaa Prevention of textile damage during washing
WO2012010531A1 (en) 2010-07-23 2012-01-26 Henkel Ag & Co. Kgaa Prevention of damage to textiles during washing
JP2014503681A (en) * 2011-01-27 2014-02-13 ピービーアイ・パフォーマンス・プロダクツ・インコーポレーテッド Porous polybenzimidazole resin and method for producing the same
WO2017191760A1 (en) * 2016-05-06 2017-11-09 コニカミノルタ株式会社 Method for manufacturing nylon-6 particles and method for manufacturing three-dimensional molded article
JPWO2017191760A1 (en) * 2016-05-06 2019-03-07 コニカミノルタ株式会社 Nylon 6 particle manufacturing method and three-dimensional model manufacturing method
US11485822B2 (en) 2017-05-12 2022-11-01 Toray Industries, Inc. Method of producing polyamide fine particles, and polyamide fine particles
WO2018207728A1 (en) 2017-05-12 2018-11-15 東レ株式会社 Method for producing polyamide fine particles, and polyamide fine particles
KR20190141664A (en) 2017-05-12 2019-12-24 도레이 카부시키가이샤 Method for producing polyamide fine particles and polyamide fine particles
US11807717B2 (en) 2017-05-12 2023-11-07 Toray Industries, Inc. Method of producing polyamide fine particles, and polyamide fine particles
US11753505B2 (en) 2019-09-09 2023-09-12 Xerox Corporation Polyamides with pendent optical absorbers and related methods
US11814494B2 (en) 2019-09-09 2023-11-14 Xerox Corporation Thermoplastic polyester particles and methods of production and uses thereof
US11643566B2 (en) 2019-09-09 2023-05-09 Xerox Corporation Particulate compositions comprising a metal precursor for additive manufacturing and methods associated therewith
US11667788B2 (en) 2019-09-09 2023-06-06 Xerox Corporation Nanoparticle-coated elastomeric particulates and surfactant-promoted methods for production and use thereof
KR102644019B1 (en) 2019-09-09 2024-03-07 제록스 코포레이션 Polyamides with pendent optical absorbers and related methods
US11787937B2 (en) 2019-09-09 2023-10-17 Xerox Corporation Particles comprising polyamides with pendent optical absorbers and related methods
US11866562B2 (en) 2019-09-09 2024-01-09 Xerox Corporation Nanoparticle-coated elastomeric particulates and methods for production and use thereof
US11801617B2 (en) 2019-09-09 2023-10-31 Xerox Corporation Optical absorbing thermoplastic polymer particles and methods of production and uses thereof
US11802206B2 (en) 2019-09-09 2023-10-31 Xerox Corporation Particles comprising polyamides with pendent pigments and related methods
KR20210030221A (en) * 2019-09-09 2021-03-17 제록스 코포레이션 Polyamides with pendent optical absorbers and related methods
US11572441B2 (en) 2019-09-09 2023-02-07 Xerox Corporation Polyamides with pendent pigments and related methods
US11859051B2 (en) 2019-09-09 2024-01-02 Xerox Corporation Polyamides with in-backbone optical absorbers and related methods
US11866552B2 (en) 2019-09-09 2024-01-09 Xerox Corporation Polyamide particles and methods of production and uses thereof
US11866581B2 (en) 2019-09-09 2024-01-09 Xerox Corporation Particles comprising polyamides with in-backbone optical absorbers and related methods
US11787944B2 (en) 2020-11-25 2023-10-17 Xerox Corporation Pigmented polymer particles and methods of production and uses thereof
CN114591531A (en) * 2022-01-28 2022-06-07 苏州大学 Method for preparing porous microspheres from waste nylon 6 fabric

Similar Documents

Publication Publication Date Title
JP2002080629A (en) Polyamide porous spherical particle and process for preparing it
JP4692513B2 (en) Method for producing polyamide porous particles
KR100442164B1 (en) Manufacturing method of precipitated polyamide powder with narrow particle size distribution and low porosity
CN107108906B (en) Polyamide microparticles
JP4332552B2 (en) Method for producing spherical particles made of polyamide
KR100849875B1 (en) Method for production of particles made from thermoplastic polymers and powder obtained thus
EP1280011B1 (en) Chemically prepared toners of controlled particle shape
EP2345687B1 (en) Method and apparatus for producing polymer particles
CN102604335A (en) Resin particle and method for producing the same
JP3619579B2 (en) Method for producing oligomeric granular material for polycarbonate solid phase polymerization
JP4093142B2 (en) Method for producing polyamide porous particles
JP4528482B2 (en) Polyamide particles and method for producing the same
JP4284451B2 (en) Polyimide fine particles and method for producing the same
JPH0730247B2 (en) Aromatic polyamic acid solution composition
Kim Nano/micro spherical poly (Methyl methacrylate) particle formation by cooling from polymer solution
JP4320960B2 (en) Method for producing polyamide fibrous particles
JP2013209617A (en) Method for producing polymer fine particle
JP2006143918A (en) Method and apparatus for serially producing porus spherical polyamide particle
JP4470335B2 (en) Liquid crystal display spacer
WO2004055096A1 (en) Process for producing fine porous polyimide particle
JP7337832B2 (en) A method for producing a population of particles of polyethylene terephthalate or polybutylene terephthalate or of a copolymer comprising PET and/or PBT.
JP2021519369A (en) A method for producing particles of vinylidene polydifluoroethylene or a population of copolymer particles containing vinylidene polydifluoroethylene.
JPS5854605B2 (en) powder flocculant
JP2014227471A (en) Method for manufacturing polyamide fine particle
WO2023284585A1 (en) Polyamide microparticle and preparation method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Effective date: 20070521

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A02 Decision of refusal

Effective date: 20080115

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20080305

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080327

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080418