JP2002050758A - Compound semiconductor epitaxial wafer and transistor using the same - Google Patents

Compound semiconductor epitaxial wafer and transistor using the same

Info

Publication number
JP2002050758A
JP2002050758A JP2000240379A JP2000240379A JP2002050758A JP 2002050758 A JP2002050758 A JP 2002050758A JP 2000240379 A JP2000240379 A JP 2000240379A JP 2000240379 A JP2000240379 A JP 2000240379A JP 2002050758 A JP2002050758 A JP 2002050758A
Authority
JP
Japan
Prior art keywords
layer
epitaxial wafer
algan
gan
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000240379A
Other languages
Japanese (ja)
Inventor
Tadaitsu Tsuchiya
忠厳 土屋
Michio Kihara
倫夫 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000240379A priority Critical patent/JP2002050758A/en
Publication of JP2002050758A publication Critical patent/JP2002050758A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Abstract

PROBLEM TO BE SOLVED: To provide a compound semiconductor epitaxial wafer having hole as carrier and a transistor which uses the same. SOLUTION: By inserting a buffer layer 7 to the lower part of a channel layer 5 with a linear expansion coefficient equal to or greater than that of a carrier supply layer 6 and sufficient thickness, tensile distortion which occurs on the carrier supply layer 6 is relaxed, and the induction of electrons to a hetero-interface is suppressed, so that a two-dimensional hole gas can be generated. As a result, a P-type FET with holes as carrier can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体エピ
タキシャルウェハ及びそれを用いたトランジスタに関す
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a compound semiconductor epitaxial wafer and a transistor using the same.

【0002】[0002]

【従来の技術】窒化ガリウム系の電界効果トランジスタ
(以下「FET」という。)としては、従来、n型Ga
Nをチャンネル層とするFET及びn型AlGaN/G
aN選択ドープ構造を有するFETの研究開発が進めら
れている。
2. Description of the Related Art As a gallium nitride-based field effect transistor (hereinafter, referred to as "FET"), an n-type Ga
FET with N as channel layer and n-type AlGaN / G
Research and development of FETs having an aN selective doping structure are in progress.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述した従
来技術のFETは全てデバイス動作に関わる主たるキャ
リアが電子のn型FETである。ここで、正孔をキャリ
アとするp型FETがあれば、C−MOSトランジスタ
のように相補型のFETが実現でき、負電源が不要にな
る。
By the way, all of the above-mentioned conventional FETs are n-type FETs whose main carriers involved in device operation are electrons. Here, if there is a p-type FET using holes as carriers, a complementary FET like a C-MOS transistor can be realized, and a negative power supply is not required.

【0004】しかしながら正孔をキャリアとするFET
は実用化が困難である。特に、p型AlGaN/GaN
選択ドープ構造では、ピエゾ効果のために界面に電子が
誘起され、所望の正孔を発生させることができないとい
う問題があった。
However, FETs using holes as carriers
Is difficult to put into practical use. In particular, p-type AlGaN / GaN
The selective doping structure has a problem in that electrons are induced at the interface due to the piezo effect, so that desired holes cannot be generated.

【0005】そこで、本発明の目的は、上記課題を解決
し、正孔をキャリアとする化合物半導体エピタキシャル
ウェハ及びそれを用いたトランジスタを提供することに
ある。
Accordingly, an object of the present invention is to solve the above problems and to provide a compound semiconductor epitaxial wafer using holes as carriers and a transistor using the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の化合物半導体エピタキシャルウェハは、サフ
ァイア基板上に、GaN、AlGaN及びAlNのうち
少なくともAlGaNを有するバッファ層を形成し、バ
ッファ層の上にGaN及びp型AlGaNのヘテロ接合
を形成し、バッファ層のAlGaN層の膜厚をエピタキ
シャルウェハ全体におけるGaN層の膜厚より厚くした
ものである。
In order to achieve the above object, a compound semiconductor epitaxial wafer of the present invention forms a buffer layer having at least AlGaN among GaN, AlGaN and AlN on a sapphire substrate, A heterojunction of GaN and p-type AlGaN is formed thereon, and the thickness of the AlGaN layer of the buffer layer is larger than the thickness of the GaN layer in the entire epitaxial wafer.

【0007】上記構成に加え本発明の化合物半導体エピ
タキシャルウェハは、バッファ層のAlGaNのAlN
の組成比がp型AlGaNのAlN組成比より高いのが
好ましい。
In addition to the above structure, the compound semiconductor epitaxial wafer of the present invention provides
Is preferably higher than the AlN composition ratio of p-type AlGaN.

【0008】本発明のトランジスタは上記構成のエピタ
キシャルウェハを用いたものである。
[0008] The transistor of the present invention uses the epitaxial wafer having the above structure.

【0009】本発明によれば、p型AlGaN/GaN
選択ドープ構造で、界面に電子が誘起される原因は、キ
ャリア供給層であるAlGaNがチャネル層であるGa
Nより線膨張係数が大きいため、AlGaNキャリア供
給層に成膜後の冷却中に弾性応力によって生じる引っ張
り歪である。AlGaNキャリア供給層のピエゾ効果が
大きいため、この引っ張り歪に応じて界面にキャリアが
誘起される。GaN系の材料のエピタキシャル成長用の
基板には、通常サファイアもしくはSiCの単結晶が用
いられる。この基板の上にGaNをc軸配向して成長さ
せる場合、Ga面が上になるように成長(Ga面成長)
させる方法が安定であることが知られている。このGa
面成長はピエゾ分極の方向が必ず界面に電子を誘起する
方向となり、正孔を界面に形成する阻害要因となる。界
面に正孔を誘起するためには、Ga面とは反対のN面が
上になる成長(N面成長)が必要となるが、このN面成
長は不安定な成長となり、良い結晶が得られない。
According to the present invention, a p-type AlGaN / GaN
In the selective doping structure, electrons are induced at the interface because the carrier supply layer AlGaN is formed by the channel layer Ga
Since the coefficient of linear expansion is larger than that of N, the tensile strain is generated by elastic stress during cooling after film formation on the AlGaN carrier supply layer. Since the piezo effect of the AlGaN carrier supply layer is large, carriers are induced at the interface according to the tensile strain. A sapphire or SiC single crystal is usually used for a substrate for epitaxial growth of a GaN-based material. When GaN is grown on this substrate with c-axis orientation, the GaN is grown so that the Ga surface faces upward (Ga surface growth)
It is known that the method for causing the above is stable. This Ga
In the plane growth, the direction of piezo polarization always becomes a direction in which electrons are induced at the interface, which is a hindrance factor for forming holes at the interface. In order to induce holes at the interface, it is necessary to grow the N-plane opposite to the Ga-plane (N-plane growth). However, this N-plane growth is unstable growth, and a good crystal is obtained. I can't.

【0010】本発明ではチャネル層となるGaN層の下
部に、AlGaNキャリア供給層と線膨張係数が等しい
か大きいバッファ層を十分な厚さで挿入することによ
り、AlGaNキャリア供給層に生じる引っ張り歪を緩
和し、ヘテロ界面への電子の誘起を押さえて2次元正孔
ガスを発生させることができ、この結果、正孔をキャリ
アとするp型FETを実現することができる。
In the present invention, the tensile strain generated in the AlGaN carrier supply layer can be reduced by inserting a buffer layer having a linear expansion coefficient equal to or larger than that of the AlGaN carrier supply layer at a sufficient thickness below the GaN layer serving as the channel layer. The two-dimensional hole gas can be generated by alleviating the relaxation and suppressing the induction of electrons at the hetero interface, and as a result, a p-type FET using holes as carriers can be realized.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】図1は本発明の化合物半導体エピタキシャ
ルウェハの一実施の形態を示す構造図である。
FIG. 1 is a structural view showing one embodiment of the compound semiconductor epitaxial wafer of the present invention.

【0013】同図に示すエピタキシャルウェハ1は、サ
ファイア基板2上に、厚さ20nmのi−GaN層3、
厚さ5μmのi−Al0.3 Ga0.7 N層4、厚さ1μm
のチャネル層としてのi−GaN層5及び厚さ20nm
のキャリア供給層としてのp−Al0.2 Ga0.8 N層6
を順次形成したものである。
An epitaxial wafer 1 shown in FIG. 1 has an i-GaN layer 3 having a thickness of 20 nm on a sapphire substrate 2.
I-Al 0.3 Ga 0.7 N layer 4 having a thickness of 5 μm and a thickness of 1 μm
I-GaN layer 5 as a channel layer and a thickness of 20 nm
P-Al 0.2 Ga 0.8 N layer 6 as a carrier supply layer
Are sequentially formed.

【0014】i−Al0.3 Ga0.7 N層4及びi−Ga
N層5でバッファ層7を形成し、p−Al0.2 Ga0.8
N層4及びi−GaN層5でヘテロ接合を形成してい
る。
The i-Al 0.3 Ga 0.7 N layer 4 and the i-Ga
A buffer layer 7 is formed from the N layer 5 and p-Al 0.2 Ga 0.8
A heterojunction is formed by the N layer 4 and the i-GaN layer 5.

【0015】このエピタキシャルウェハ1のエピタキシ
ャル成長には有機金属気相成長法を用いた。ガリウム原
料にはTMG(トリメチルガリウム)を用い、アルミニ
ウム原料にはTMA(トリメチルアルミニウム)を用
い、窒素原料にはアンモニアガスを用い、p型ドーパン
トとしては、ビスシクロペンタマグネシウムを用いた。
シリコン原料にはモノシランを用いた。エピタキシャル
成長はフェイスアップの高周波誘導加熱横型減圧炉(図
示せず。)を用いて炉内圧力17955Pa(135T
orr)で行った。基板2にはA面及びC面のサファイ
ア単結晶基板を用いた。エピタキシャル成長時の基板温
度は1050℃である。
For the epitaxial growth of the epitaxial wafer 1, a metal organic chemical vapor deposition method was used. TMG (trimethylgallium) was used as a gallium raw material, TMA (trimethylaluminum) was used as an aluminum raw material, ammonia gas was used as a nitrogen raw material, and biscyclopentamagnesium was used as a p-type dopant.
Monosilane was used as a silicon raw material. The epitaxial growth is performed using a face-up high-frequency induction heating horizontal vacuum furnace (not shown) with a furnace pressure of 17955 Pa (135 T).
orr). A sapphire single crystal substrate having A-plane and C-plane was used as the substrate 2. The substrate temperature during epitaxial growth is 1050 ° C.

【0016】このようにして成長させたエピタキシャル
ウェハ1のC−V測定で求めたキャリア濃度プロファイ
ルを図2に示す。
FIG. 2 shows a carrier concentration profile obtained by CV measurement of the epitaxial wafer 1 thus grown.

【0017】図2は図1に示したエピタキシャルウェハ
のキャリア濃度と深さとの関係を示す図であり、横軸が
深さ軸を示し、縦軸がキャリア濃度軸を示す。
FIG. 2 is a diagram showing the relationship between the carrier concentration and the depth of the epitaxial wafer shown in FIG. 1. The horizontal axis shows the depth axis, and the vertical axis shows the carrier concentration axis.

【0018】同図よりピークは界面に2次元正孔ガスが
生じていることを示しており、従来の問題点は解決でき
ることが分った。このピークからシート正孔濃度を求
め、バッファ層7に用いられているAlGaNの組成、
膜厚との関係を示したのが表1である。
FIG. 1 shows that a two-dimensional hole gas is generated at the interface, which proves that the conventional problems can be solved. From this peak, the sheet hole concentration was determined, and the composition of AlGaN used in the buffer layer 7 was determined.
Table 1 shows the relationship with the film thickness.

【0019】[0019]

【表1】 [Table 1]

【0020】同表より、AlGaNのAlN組成比を供
給層の組成比より下げたり、あるいは膜厚をGaNの総
膜厚より薄くした場合に、2次元正孔ガスの濃度が低下
する傾向があることが分る。これは、前述のようにバッ
ファ層7のAlGaNバッファ層4の効果が薄れてGa
N層3の影響が相対的に高まったためと見られる。
According to the table, when the AlN composition ratio of AlGaN is made lower than the composition ratio of the supply layer or the film thickness is made thinner than the total film thickness of GaN, the two-dimensional hole gas concentration tends to decrease. I understand. This is because the effect of the AlGaN buffer layer 4 of the buffer layer 7 is weakened as described above.
It is considered that the influence of the N layer 3 was relatively increased.

【0021】図3は図1に示したエピタキシャルウェハ
を用いたトランジスタの構造図である。なお、数値につ
いては限定されるものではない。
FIG. 3 is a structural diagram of a transistor using the epitaxial wafer shown in FIG. The numerical values are not limited.

【0022】図3に示すトランジスタ10は、サファイ
ア基板2上に、厚さ20nmのi−GaN層3、厚さ5
μmのi−Al0.3 Ga0.7 N層4、厚さ1μmのチャ
ネル層としてのi−GaN層5及び厚さ20nmのキャ
リア供給層としてのp−Al0.2 Ga0.8 N層6を順次
形成し、このp−Al0.2 Ga0.8 N層6の上にソース
電極11、ゲート電極(ゲート長さLg=1μm)12
及びドレイン電極13を形成したものである。
The transistor 10 shown in FIG. 3 has an i-GaN layer 3 having a thickness of 20 nm and a thickness of 5 on a sapphire substrate 2.
An i-Al 0.3 Ga 0.7 N layer 4 having a thickness of 1 μm, an i-GaN layer 5 serving as a channel layer having a thickness of 1 μm, and a p-Al 0.2 Ga 0.8 N layer 6 serving as a carrier supply layer having a thickness of 20 nm are sequentially formed. A source electrode 11 and a gate electrode (gate length Lg = 1 μm) 12 on the p-Al 0.2 Ga 0.8 N layer 6
And a drain electrode 13 are formed.

【0023】図4は図3に示したトランジスタの静特性
を示す図であり、横軸がドレイン電圧Vd軸を示し、縦
軸がドレイン電流Id軸を示す。
FIG. 4 is a diagram showing the static characteristics of the transistor shown in FIG. 3. The horizontal axis shows the drain voltage Vd axis, and the vertical axis shows the drain current Id axis.

【0024】同図より、p型FETが通常のn型FET
と同様の静特性を有することが分る。
As shown in the figure, the p-type FET is a normal n-type FET.
It can be seen that it has the same static characteristic as

【0025】ここで、バッファ層7としては、(Ga
N、AlGaN)、(AlN、AlGaN)、(Al
N、GaN、AlGaN)、(GaN、AlGaN、G
aN、AlGaN)、(AlN、AlGaN、GaN、
AlGaN)、(GaN、Al0.3 Ga0.1 N、Al
0.1 Ga0.9 N、Al0.3 Ga0.7 N)の組み合わせが
挙げられる。但し、()内の左側が基板側、右側が電極
側になる。
Here, as the buffer layer 7, (Ga
N, AlGaN), (AlN, AlGaN), (Al
N, GaN, AlGaN), (GaN, AlGaN, G
aN, AlGaN), (AlN, AlGaN, GaN,
AlGaN), (GaN, Al 0.3 Ga 0.1 N, Al
0.1 Ga 0.9 N, Al 0.3 Ga 0.7 N). However, the left side in () is the substrate side, and the right side is the electrode side.

【0026】このように構成したことで、チャネル層5
の下部に、キャリア供給層6と線膨張係数が等しいか大
きなAlGaNバッファ層4を挿入する場合、チャネル
層5とAlGaNバッファ層4との間の格子定数の違い
に起因する臨界膜厚が存在する。この臨界膜厚を超える
厚さで挿入すると、結晶性欠陥が生じてデバイス特性の
劣化を招くおそれがある。この劣化を防止するために
は、サファイア基板2上にもしGaNバッファ層3を成
長させたい場合でも、このGaNバッファ層3を500
℃付近で成長させる、いわゆる低温成長バッファのみと
し、その他のバッファ層はAlGaN層とすることによ
って、積層構造全体としての線膨張係数をキャリア供給
層6に近付け、それによってAlGaNバッファ層4の
弾性歪を低減する方法が有効である。この場合はGaN
バッファ層3が圧縮応力を受けるが、本発明ではGaN
バッファ層3として必要な厚さが薄いため、問題が生じ
ない。
With this configuration, the channel layer 5
When an AlGaN buffer layer 4 having the same or larger linear expansion coefficient as that of the carrier supply layer 6 is inserted below the carrier supply layer 6, there is a critical thickness caused by a difference in lattice constant between the channel layer 5 and the AlGaN buffer layer 4. . Insertion with a thickness exceeding this critical thickness may cause a crystalline defect to cause deterioration of device characteristics. In order to prevent this deterioration, even if it is desired to grow the GaN buffer layer 3 on the sapphire
By forming only a so-called low-temperature growth buffer grown at around 0 ° C. and using an AlGaN layer as the other buffer layer, the linear expansion coefficient of the entire laminated structure is made closer to the carrier supply layer 6, whereby the elastic strain of the AlGaN buffer layer 4 is reduced. Is effective. In this case GaN
Although the buffer layer 3 receives a compressive stress, in the present invention, GaN
Since the thickness required for the buffer layer 3 is small, no problem occurs.

【0027】以上において本発明の化合物半導体エピタ
キシャルウェハを用いたトランジスタによるp型FET
を、n型FETと組み合わせることで相補型のトランジ
スタを構成することができ、負電源が不要になり、回路
構成が簡単になり、小形化、低コスト化が図れる。
In the above, a p-type FET using a transistor using the compound semiconductor epitaxial wafer of the present invention
Can be combined with an n-type FET to form a complementary transistor, which eliminates the need for a negative power supply, simplifies the circuit configuration, and enables downsizing and cost reduction.

【0028】[0028]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0029】正孔をキャリアとする化合物半導体エピタ
キシャルウェハ及びそれを用いたトランジスタの提供を
実現することができる。
It is possible to provide a compound semiconductor epitaxial wafer using holes as carriers and a transistor using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の化合物半導体エピタキシャルウェハの
一実施の形態を示す構造図である。
FIG. 1 is a structural diagram showing one embodiment of a compound semiconductor epitaxial wafer of the present invention.

【図2】図1に示したエピタキシャルウェハのキャリア
濃度と深さとの関係を示す図である。
FIG. 2 is a diagram showing a relationship between a carrier concentration and a depth of the epitaxial wafer shown in FIG.

【図3】図1に示したエピタキシャルウェハを用いたト
ランジスタの構造図である。
FIG. 3 is a structural diagram of a transistor using the epitaxial wafer shown in FIG.

【図4】図3に示したトランジスタの静特性を示す図で
ある。
FIG. 4 is a diagram showing static characteristics of the transistor shown in FIG.

【符号の説明】[Explanation of symbols]

2 サファイア基板 3 GaN層(GaNバッファ層) 4 AlGaN層(AlGaNバッファ層) 5 GaN層(チャネル層) 6 AlGaN層(キャリア供給層) 7 バッファ層 2 Sapphire substrate 3 GaN layer (GaN buffer layer) 4 AlGaN layer (AlGaN buffer layer) 5 GaN layer (channel layer) 6 AlGaN layer (carrier supply layer) 7 Buffer layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA03 BE11 BE13 BE15 DB01 ED06 EF03 5F045 AB14 AB17 AD14 AE25 AF09 CA06 DA53 DP02 DQ06 EH11 5F102 GB01 GC01 GD01 GJ10 GK04 GL04 GM04 GQ03 GQ09 HC01 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G077 AA03 BE11 BE13 BE15 DB01 ED06 EF03 5F045 AB14 AB17 AD14 AE25 AF09 CA06 DA53 DP02 DQ06 EH11 5F102 GB01 GC01 GD01 GJ10 GK04 GL04 GM04 GQ03 GQ09 HC01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 サファイア基板上に、GaN、AlGa
N及びAlNのうち少なくともAlGaNを有するバッ
ファ層を形成し、該バッファ層の上にGaN及びp型A
lGaNのヘテロ接合を形成し、上記バッファ層のAl
GaN層の膜厚をエピタキシャルウェハ全体におけるG
aN層の膜厚より厚くしたことを特徴とする化合物半導
体エピタキシャルウェハ。
1. A sapphire substrate on which GaN, AlGa
Forming a buffer layer having at least AlGaN of N and AlN, and forming GaN and p-type A on the buffer layer;
A heterojunction of lGaN is formed, and the buffer layer Al
The thickness of the GaN layer is set to G
A compound semiconductor epitaxial wafer having a thickness greater than the thickness of the aN layer.
【請求項2】 請求項1において、上記バッファ層のA
lGaNのAlNの組成比がp型AlGaNのAlN組
成比より高い化合物半導体エピタキシャルウェハ。
2. The buffer layer according to claim 1, wherein
A compound semiconductor epitaxial wafer wherein the composition ratio of AlN in 1GaN is higher than the composition ratio of AlN in p-type AlGaN.
【請求項3】 請求項1または2に記載のエピタキシャ
ルウェハを用いた化合物半導体エピタキシャルウェハを
用いたトランジスタ。
3. A transistor using a compound semiconductor epitaxial wafer using the epitaxial wafer according to claim 1 or 2.
JP2000240379A 2000-08-03 2000-08-03 Compound semiconductor epitaxial wafer and transistor using the same Pending JP2002050758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240379A JP2002050758A (en) 2000-08-03 2000-08-03 Compound semiconductor epitaxial wafer and transistor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240379A JP2002050758A (en) 2000-08-03 2000-08-03 Compound semiconductor epitaxial wafer and transistor using the same

Publications (1)

Publication Number Publication Date
JP2002050758A true JP2002050758A (en) 2002-02-15

Family

ID=18731749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240379A Pending JP2002050758A (en) 2000-08-03 2000-08-03 Compound semiconductor epitaxial wafer and transistor using the same

Country Status (1)

Country Link
JP (1) JP2002050758A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158889A (en) * 2003-11-21 2005-06-16 Sanken Electric Co Ltd Plate-shaped substrate for forming semiconductor element, its manufacturing method, and semiconductor element using it
WO2007122800A1 (en) * 2006-03-29 2007-11-01 Nec Corporation Field effect transistor
US7329908B2 (en) * 2003-09-05 2008-02-12 The Furukawa Electric Co., Ltd. Nitride-based compound semiconductor electron device including a buffer layer structure
JP2008135575A (en) * 2006-11-28 2008-06-12 Furukawa Electric Co Ltd:The Semiconductor electronic device
JP2009289826A (en) * 2008-05-27 2009-12-10 Toyota Central R&D Labs Inc Semiconductor device having heterojunction and manufacturing method thereof
JP2009289827A (en) * 2008-05-27 2009-12-10 Toyota Central R&D Labs Inc Semiconductor device having heterojunction and manufacturing method thereof
JP2012069662A (en) * 2010-09-22 2012-04-05 National Institute Of Advanced Industrial & Technology Field effect transistor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329908B2 (en) * 2003-09-05 2008-02-12 The Furukawa Electric Co., Ltd. Nitride-based compound semiconductor electron device including a buffer layer structure
JP2005158889A (en) * 2003-11-21 2005-06-16 Sanken Electric Co Ltd Plate-shaped substrate for forming semiconductor element, its manufacturing method, and semiconductor element using it
JP4525894B2 (en) * 2003-11-21 2010-08-18 サンケン電気株式会社 Semiconductor device forming plate-like substrate, manufacturing method thereof, and semiconductor device using the same
WO2007122800A1 (en) * 2006-03-29 2007-11-01 Nec Corporation Field effect transistor
US8198652B2 (en) 2006-03-29 2012-06-12 Nec Corporation Field effect transistor with reduced gate leakage current
US8466495B2 (en) 2006-03-29 2013-06-18 Nec Corporation Field effect transistor with reduced gate leakage current
JP5223670B2 (en) * 2006-03-29 2013-06-26 日本電気株式会社 Field effect transistor
JP2008135575A (en) * 2006-11-28 2008-06-12 Furukawa Electric Co Ltd:The Semiconductor electronic device
JP2009289826A (en) * 2008-05-27 2009-12-10 Toyota Central R&D Labs Inc Semiconductor device having heterojunction and manufacturing method thereof
JP2009289827A (en) * 2008-05-27 2009-12-10 Toyota Central R&D Labs Inc Semiconductor device having heterojunction and manufacturing method thereof
JP2012069662A (en) * 2010-09-22 2012-04-05 National Institute Of Advanced Industrial & Technology Field effect transistor

Similar Documents

Publication Publication Date Title
JP6304899B2 (en) III-N semiconductor device grown on a silicon substrate with a rare earth oxide gate dielectric
JP4577460B2 (en) Semiconductor device and manufacturing method thereof
US8350292B2 (en) Gallium nitride epitaxial crystal, method for production thereof, and field effect transistor
JP2003059948A (en) Semiconductor device and production method therefor
JP2009246292A (en) Field effect transistor
JP2005167275A (en) Semiconductor device
JP2012231003A (en) Semiconductor device
US8546813B2 (en) Semiconductor substrate and semiconductor device
JP2007095858A (en) Substrate for compound semiconductor device, and compound semiconductor device using it
US9401402B2 (en) Nitride semiconductor device and nitride semiconductor substrate
US20150084163A1 (en) Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
US8994032B2 (en) III-N material grown on ErAIN buffer on Si substrate
JP2009111204A (en) Field effect transistor and its manufacturing method
JP3753068B2 (en) Method for manufacturing epitaxial wafer for field effect transistor
US8283700B2 (en) Field effect transistor and manufacturing method thereof
JP2006114652A (en) Semiconductor epitaxial wafer and field effect transistor
JP7069584B2 (en) Manufacturing method for board products
JP2002050758A (en) Compound semiconductor epitaxial wafer and transistor using the same
WO2018098952A1 (en) Gan-based epitaxial structure, semiconductor device and formation method therefor
JP4904726B2 (en) Semiconductor epitaxial wafer and method for manufacturing semiconductor epitaxial wafer for HEMT
JP2006114655A (en) Semiconductor epitaxial wafer and field effect transistor
WO2012020565A1 (en) Semiconductor substrate, semiconductor device and method for producing semiconductor substrate
JP2014090065A (en) Nitride-based semiconductor epitaxial wafer and nitride-based field-effect transistor
JP2017005248A (en) Semiconductor device
Kim et al. Performance enhancement of GaN SB-MOSFET on Si substrate using two-step growth method