JP2002043685A - Frequency variable light source - Google Patents

Frequency variable light source

Info

Publication number
JP2002043685A
JP2002043685A JP2000219316A JP2000219316A JP2002043685A JP 2002043685 A JP2002043685 A JP 2002043685A JP 2000219316 A JP2000219316 A JP 2000219316A JP 2000219316 A JP2000219316 A JP 2000219316A JP 2002043685 A JP2002043685 A JP 2002043685A
Authority
JP
Japan
Prior art keywords
frequency
light source
light
variable
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000219316A
Other languages
Japanese (ja)
Other versions
JP4612938B2 (en
Inventor
Takanori Saito
崇記 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2000219316A priority Critical patent/JP4612938B2/en
Publication of JP2002043685A publication Critical patent/JP2002043685A/en
Application granted granted Critical
Publication of JP4612938B2 publication Critical patent/JP4612938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a frequency variable light source which is inexpensive and capable of very accurately controlling the frequency of its emission light through a wide frequency band. SOLUTION: Frequency stabilizing laser rays projected from a frequency stabilizing light source 1 and frequency-variable laser rays projected from a frequency-variable light source 2 are compounded by a multiplexer 4 and made to impinge on an optical resonator 3. The optical resonator 3 is made to sweep at a resonant peak frequency by sweep signals, and a transmitted light is projected when the oscillation frequency of incident light from the multiplexer 4 matches with the resonance peak frequency. The transmitted light projected from the resonator 3 is received by a photodetector 5. An analyzer 6 analyzes the sweep signals and detection signals outputted from the photodetector, and frequency difference signals depending on the frequency difference between the frequency stabilizing laser rays and the frequency variable laser rays are fed back to the frequency-variable light source 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光通信、光計測の分
野で利用される光源に係り、特に発振周波数を高確度に
制御させた光源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source used in the fields of optical communication and optical measurement, and more particularly to a light source device whose oscillation frequency is controlled with high accuracy.

【0002】[0002]

【従来の技術】光通信において、周波数の異なる複数の
信号光を重畳させ、1本の光ファイバーに伝送させる波
長多重通信(WDM:Wavelength Division Multiplexing)
が開発されている。それぞれのチャネルのキャリア周波
数は(ITU:International Telecommunication Unit)か
ら勧告されており、それらは193.1THzを基準周波数とし
て、そこから100GHzの整数倍離れた位置に配置されてい
る。また、キャリア周波数の周波数確度は1GHz以下が要
求されている。WDM通信用光源は、上記の条件を満た
すように設定されているが、光源の劣化、環境変化等に
より、設定値からずれる恐れがあり、従って、全てのキ
ャリア周波数を常に監視する必要がある。しかしなが
ら、キャリア周波数を測定する波長計や光スペクトラム
アナライザは非常に高価であり、全てのチャネルにこれ
らの装置を設置することは経済的に見て極めて困難であ
る。
2. Description of the Related Art In optical communication, wavelength division multiplexing (WDM) in which a plurality of signal lights having different frequencies are superimposed and transmitted through one optical fiber.
Is being developed. The carrier frequency of each channel is recommended by (ITU: International Telecommunication Unit), and they are arranged at a position that is an integer multiple of 100 GHz from 193.1 THz as a reference frequency. Further, the frequency accuracy of the carrier frequency is required to be 1 GHz or less. The light source for WDM communication is set so as to satisfy the above conditions. However, the light source may deviate from the set value due to deterioration of the light source, environmental change, and the like. Therefore, it is necessary to constantly monitor all carrier frequencies. However, a wavelength meter or an optical spectrum analyzer for measuring a carrier frequency is very expensive, and it is extremely difficult to install these devices on all channels from an economic viewpoint.

【0003】そこで、光周波数コム発生器(特願平05-2
03441 )を利用したレーザ光源装置(特願平7-217941)
が発明された。光周波数コム発生器とは位相変調器と光
共振器を組み合わせることにより、入力光の発振周波数
を中心に位相変調周波数の間隔毎に櫛状に多数の側帯波
群を発生させるものである。この櫛状に発生した側帯波
群の側帯波間隔は、高確度に安定であることから、周波
数軸上の目印となる光周波数グリッドとして利用するこ
とができる。光周波数コム発生器の出力を光周波数グリ
ッドとして利用し、任意の周波数で発振周波数を安定化
させた光源が前述の特願平7-217941に記述されたレーザ
光源装置である。このレーザ光源装置を多数並べれば、
WDM用の光源と成り得る。
Therefore, an optical frequency comb generator (Japanese Patent Application No. Hei 05-2)
03441) Laser light source device (Japanese Patent Application No. 7-217941)
Was invented. The optical frequency comb generator combines a phase modulator and an optical resonator to generate a large number of sidebands in a comb-like manner at intervals of the phase modulation frequency centering on the oscillation frequency of the input light. Since the sideband interval of the sidebands generated in a comb shape is stable with high accuracy, it can be used as an optical frequency grid serving as a mark on the frequency axis. The light source that uses the output of the optical frequency comb generator as an optical frequency grid and stabilizes the oscillation frequency at an arbitrary frequency is the laser light source device described in Japanese Patent Application No. 7-217941 described above. If many laser light source devices are arranged,
It can be a light source for WDM.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、光周波
数コム発生器は、高価なマイクロ波シンセサイザーやマ
イクロ波アンプが必要であった。また、側帯波強度は次
数に対して指数関数的に低下しまい、その発生範囲は通
常1〜2THz 程度であったことから、レーザ光源装置の
発振周波数域も1〜2THz 程度に制限された。本発明の
目的は、上述の如き従来の問題点に鑑み、低価格で、広
い光周波数帯域にわたって高確度にレーザー光の周波数
制御を施した光源を提供することにある。
However, the optical frequency comb generator requires an expensive microwave synthesizer or microwave amplifier. Further, since the sideband wave intensity decreases exponentially with respect to the order and its generation range is usually about 1 to 2 THz, the oscillation frequency range of the laser light source device is also limited to about 1 to 2 THz. SUMMARY OF THE INVENTION An object of the present invention is to provide a light source that is low-cost and that performs high-accuracy laser light frequency control over a wide optical frequency band in view of the above-described conventional problems.

【0005】[0005]

【課題を解決するための手段】上述の課題を解決するた
めに、本発明の周波数可変光源は、フリースペクトルレ
ンジごとに周期的な透過プロファイルを有する光共振器
を掃引、この光共振器にレーザー光を入射した際、レー
ザー光の周波数と光共振器の共振ピーク周波数が一致し
たときに光共振器からレーザー光が出射されることを利
用して、レーザー光の周波数を検出し、検出された値を
光源に帰還することにより、光源のレーザー光の周波数
を制御することを特徴とするものである。
In order to solve the above-mentioned problems, a frequency variable light source according to the present invention sweeps an optical resonator having a periodic transmission profile for each free spectral range, and a laser is applied to the optical resonator. When light is incident, utilizing the fact that the laser light is emitted from the optical resonator when the frequency of the laser light matches the resonance peak frequency of the optical resonator, the frequency of the laser light is detected and detected. The frequency of the laser light of the light source is controlled by feeding back the value to the light source.

【0006】すなわち、本発明の周波数可変光源は、発
振周波数を安定化させた周波数安定化光源と、発振周波
数を外部信号により制御できる周波数可変光源と、前記
周波数安定化光源から出射された周波数安定化レーザー
光と前記周波数可変光源から出射された周波数可変レー
ザー光とを合波する合波器と、掃引信号により共振ピー
ク周波数を掃引させて前記合波器からの入射光の発振周
波数と共振ピーク周波数が一致したときに透過光を出射
する光共振器と、前記光共振器から出射された透過光を
受光する受光器と、前記掃引信号と前記受光器から出力
された受光信号とを解析し前記周波数安定化レーザー光
と前記周波数可変レーザー光との周波数差に依存した周
波数差信号を前記周波数可変光源に帰還させる解析器と
を備えている。本発明の周波数可変光源では、安価にレ
ーザー光の周波数を検出し、検出された周波数に対応し
た信号を光源に帰還することにより、光源のレーザー光
の周波数を制御することができる。
That is, the variable frequency light source of the present invention comprises a frequency stabilized light source having a stabilized oscillation frequency, a frequency variable light source capable of controlling the oscillation frequency by an external signal, and a frequency stabilized light source emitted from the frequency stabilized light source. A multiplexer for multiplexing the laser beam and the frequency-variable laser light emitted from the frequency-variable light source, and oscillating the resonance frequency and the resonance peak of the incident light from the multiplexer by sweeping the resonance peak frequency by a sweep signal. Analyze the optical resonator that emits the transmitted light when the frequencies match, the light receiver that receives the transmitted light emitted from the optical resonator, and the sweep signal and the light reception signal that is output from the light receiver. An analyzer for feeding back a frequency difference signal dependent on a frequency difference between the frequency stabilized laser light and the frequency variable laser light to the frequency variable light source. The frequency variable light source of the present invention can control the frequency of the laser light of the light source by detecting the frequency of the laser light at low cost and feeding back a signal corresponding to the detected frequency to the light source.

【0007】[0007]

【発明の実施の形態】以下に、本発明の周波数可変光源
の実施の形態について、図面を参照しながら詳細に説明
する。本発明の周波数可変光源の周波数変動検出の原理
を以下に示す。光共振器の透過スペクトルは、鋭いLore
ntzianの透過域が等間隔に並んだ形状をしており、透過
のピーク周波数(共振周波数)と間隔(FSR :フリース
ペクトルレンジ)は共振器長と共振器内部の屈折率で決
定される。レーザー光を光共振器に入射し、その透過光
量を観測する場合、共振周波数をFSR 以上の範囲で掃引
すれば、共振周波数とレーザー光周波数が一致したとき
に出射光が観測される。複数の光源からのレーザー光を
多重化して入射した場合は、それぞれのレーザー光周波
数に依存したときに出射光が観測される。従って、それ
ぞれの出射光とそのときの共振周波数とからそれぞれの
光源間の差周波数を精度良く見積もることができる。以
下に2つの光源間の差周波数を見積もる方法を示した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the variable frequency light source according to the present invention will be described below in detail with reference to the drawings. The principle of detecting the frequency fluctuation of the variable frequency light source according to the present invention will be described below. The transmission spectrum of the optical resonator is sharp Lore
The transmission range of the ntzian is arranged at equal intervals, and the peak frequency (resonance frequency) and interval (FSR: free spectral range) of transmission are determined by the resonator length and the refractive index inside the resonator. When laser light is incident on the optical resonator and the amount of transmitted light is observed, if the resonance frequency is swept over the range of FSR or more, emitted light is observed when the resonance frequency matches the laser light frequency. When laser light from a plurality of light sources is multiplexed and incident, emitted light is observed depending on the frequency of each laser light. Therefore, the difference frequency between the respective light sources can be accurately estimated from the respective emitted lights and the resonance frequency at that time. A method for estimating the difference frequency between two light sources is described below.

【0008】図2に示した様に、2つのレーザー光源
A,Bからのレーザー光を合波後に、共振周波数を鋸歯
状に掃引させた光共振器に入射したとする。掃引範囲は
光共振器のFSR よりも十分広いとする。この状態で光共
振器の透過光量を受光器(PD)で観測する。光共振器
の共振周波数(Ri )と光源A、Bの発振周波数(νA
、νB )の関係が、図3に示した状態にあり共振周波
数が低周波側に掃引されているとする。この場合、掃引
により、R0 、R1 がνA と一致するときに光共振器か
らパルス光が出射される。同様に、Rn 、Rn+1 がνB
と一致するときにもパルス光が出射される。光共振器の
共振周波数が信号発生器の電圧に比例して制御できると
すれば、信号発生器の出力電圧を横軸に、光共振器の透
過光量を縦軸にとると、図4に示したように、周期的な
パルスを観測することができる。PAiは、光源Aからの
レーザー光からの信号である。共振周波数の掃引幅がフ
リースペクトルレンジ(FSR )よりも十分に広いため、
1掃引内において複数のパルスが出射される。同様に、
Biは、光源Bからのレーザー光からの信号である。P
A1、PA2、PB1のパルスが出射された時刻での信号発生
器の出力電圧をVA1、VA2、VB1とすれば、νA 、νB
の関係は、 νB −νA =〔n+(VB1−VA1)/(VA2−VA1)〕・FSR (1) で表わすことができる。従って、νA とνB の間にある
共振周波数の数nが既知であれば、VA1、VA2、VB1
測定することにより、簡単に光源A,B間の差周波数を
測定することが可能である。また、これらの信号を制御
信号として光源に帰還すれば両光源間の差周波数を制御
することもできる。
As shown in FIG. 2, it is assumed that the laser light from the two laser light sources A and B is multiplexed and then enters an optical resonator whose resonance frequency is swept in a sawtooth shape. It is assumed that the sweep range is sufficiently wider than the FSR of the optical resonator. In this state, the amount of light transmitted through the optical resonator is observed by the photo detector (PD). The resonance frequency (R i ) of the optical resonator and the oscillation frequency of the light sources A and B (νA
, ΝB) are in the state shown in FIG. 3 and the resonance frequency is swept to the lower frequency side. In this case, by sweeping, when R 0 and R 1 coincide with νA, pulse light is emitted from the optical resonator. Similarly, R n and R n + 1 are νB
Also, when coincident with the pulse light, the pulse light is emitted. Assuming that the resonance frequency of the optical resonator can be controlled in proportion to the voltage of the signal generator, the output voltage of the signal generator is plotted on the horizontal axis, and the amount of transmitted light of the optical resonator is plotted on the vertical axis, as shown in FIG. As described above, a periodic pulse can be observed. P Ai is a signal from a laser beam from the light source A. Because the sweep width of the resonance frequency is sufficiently wider than the free spectral range (FSR),
A plurality of pulses are emitted within one sweep. Similarly,
P Bi is a signal from a laser beam from the light source B. P
A1, if the output voltage of the signal generator at P A2, time pulse P B1 is emitted and V A1, V A2, V B1 , νA, νB
The relationship can be expressed by νB -νA = [n + (V B1 -V A1) / (V A2 -V A1) ] · FSR (1). Therefore, if known number n of the resonance frequency that is between νA and νB, V A1, V A2, by measuring V B1, can be easily measured light source A, the difference frequency between the B It is. If these signals are fed back to the light sources as control signals, the difference frequency between the two light sources can be controlled.

【0009】図1は本発明の周波数可変光源の構成を模
式的に示したものである。周波数安定化光源1は、154
5.1754nm にあるアセチレンガスの吸収線を周波数基準
としている。駆動電流に100kHzの変調信号を重畳させて
位相検波を行うことによって得られた周波数弁別信号を
誤差信号とし、これを半導体レーザ(LD)の駆動電流に
負帰還させることにより、発振周波数の安定化が施され
ている。直接変調であるため、発振周波数は振幅400MHz
で変調されている。周波数安定度はアラン分散の平方根
評価でσ=10-9(τ=1 秒)であった。
FIG. 1 schematically shows the structure of a variable frequency light source according to the present invention. The frequency stabilized light source 1 has 154
The acetylene gas absorption line at 5.1754 nm is used as the frequency reference. The frequency discrimination signal obtained by superimposing a 100 kHz modulation signal on the drive current and performing phase detection is used as an error signal, and this is negatively fed back to the drive current of the semiconductor laser (LD) to stabilize the oscillation frequency. Is given. Oscillation frequency is 400MHz because of direct modulation
Is modulated. The frequency stability was σ = 10 −9 (τ = 1 second) in the square root evaluation of Allan variance.

【0010】周波数可変光源2は、LD、グレーティン
グ、ミラーをリットマン型に配置した外部共振器構造LD
光源である。ミラーの角度をモーターで粗調、PZT で微
調することにより発振周波数を可変している。±0.6GHz
の確度で周波数を制御可能である。
The frequency variable light source 2 has an external resonator structure LD in which LDs, gratings, and mirrors are arranged in a Littman type.
Light source. The oscillation frequency is varied by coarsely adjusting the angle of the mirror with a motor and finely adjusting it with PZT. ± 0.6GHz
The frequency can be controlled with a certain accuracy.

【0011】光共振器3は、FSR =1.49928GHz、フィネ
ス150 のコンフォーカルエタロンを用いた。共振周波数
での透過率は20%であった。内蔵のPZT に電圧を印加す
ることにより3FSR 程度の共振周波数の掃引が可能であ
る。光共振器3のFSR が1.5GHzであるのに対して周波数
可変光源2の周波数設定確度が0.6GHzであることから、
設定値から式(1)のnを、ミスカウント無しに計算す
ることができる。
As the optical resonator 3, a confocal etalon having a FSR of 1.49928 GHz and a finesse of 150 is used. The transmittance at the resonance frequency was 20%. By applying a voltage to the built-in PZT, a resonance frequency of about 3FSR can be swept. Since the FSR of the optical resonator 3 is 1.5 GHz and the frequency setting accuracy of the frequency variable light source 2 is 0.6 GHz,
From the set value, n in equation (1) can be calculated without a miss count.

【0012】周波数安定化光源1と周波数可変光源2か
らのレーザー光を合波器4で合波して光共振器3に入射
した。光共振器3は、光共振器内蔵PZT に電圧を印加し
て共振周波数を掃引した。光共振器3から出射されたレ
ーザー光は受光器5で受光され電気信号に変換された。
電気信号の電圧を図5に示した。図中のT1,T2,T
3が周波数可変光源2の、R1,R2,R3が周波数基
準光源1からの信号である。周波数基準光源1は安定化
を行わず、無変調の状態で、光共振器3に入射した。ピ
ーク間隔がFSR に対応することから、横軸を周波数に換
算した。
The laser light from the frequency stabilizing light source 1 and the frequency variable light source 2 were multiplexed by the multiplexer 4 and entered the optical resonator 3. The optical resonator 3 applied a voltage to the optical resonator built-in PZT to sweep the resonance frequency. The laser light emitted from the optical resonator 3 was received by the light receiver 5 and converted into an electric signal.
The voltage of the electric signal is shown in FIG. T1, T2, T in the figure
3 is a signal from the frequency variable light source 2, and R1, R2, and R3 are signals from the frequency reference light source 1. The frequency reference light source 1 was not stabilized, and was incident on the optical resonator 3 in a non-modulated state. Since the peak interval corresponds to FSR, the horizontal axis was converted to frequency.

【0013】ピーク位置検出はコンピューターによって
自動的に行われるが、周波数基準光源1の信号と周波数
可変光源2の信号が重なってしまった場合、ピーク位置
検出が不能となり差周波数を見積もることができなくな
る。そこで周波数基準光源1の駆動電流へ変調信号を重
畳させ、発振周波数を直接変調させた(この直接変調は
周波数安定化のために位相検波を行うためにも必要であ
る)。発振周波数が変調されることにより、受光器5で
観測される信号は王冠状に広がる。従って、両光源1,
2からの信号が重なったとしても、常にそれぞれの光源
のピーク位置が検出できる。図6に、変調中に受光器で
観測された信号を示した。変調振幅は約400MHz であ
った。
Although the peak position detection is automatically performed by the computer, if the signal of the frequency reference light source 1 and the signal of the frequency variable light source 2 overlap, the peak position cannot be detected and the difference frequency cannot be estimated. . Therefore, a modulation signal was superimposed on the drive current of the frequency reference light source 1 to directly modulate the oscillation frequency (this direct modulation is also necessary to perform phase detection for frequency stabilization). By modulating the oscillation frequency, the signal observed by the light receiver 5 spreads in a crown shape. Therefore, both light sources 1
Even if the signals from 2 overlap, the peak position of each light source can always be detected. FIG. 6 shows a signal observed by the light receiver during the modulation. The modulation amplitude was about 400MHz.

【0014】解析器6における周波数可変光源の発振周
波数測定の手順を図7に示した。まず、図6の信号を読
み取った後、ピークサーチにより、周波数可変光源2の
信号位置を検出する。ピーク位置での信号値を0として
周波数可変光源2の信号を除去する。変調振幅400MHzと
して計算された王冠状信号との相関を計算する。相関信
号のピーク位置を検出し、その位置を周波数基準光源1
の信号位置とする。最後に、信号位置、周波数安定化光
源2の発振周波数、周波数可変光源2の設定周波数と周
波数安定化光源1の発振周波数から計算されたnを式
(1)に代入して周波数可変光源2の発振周波数を見積
もる。
FIG. 7 shows a procedure for measuring the oscillation frequency of the variable frequency light source in the analyzer 6. First, after reading the signal of FIG. 6, the signal position of the frequency variable light source 2 is detected by a peak search. The signal value at the peak position is set to 0, and the signal of the frequency variable light source 2 is removed. The correlation with the crown signal calculated as the modulation amplitude of 400 MHz is calculated. The peak position of the correlation signal is detected, and the position is determined as the frequency reference light source 1
Signal position. Finally, the signal position, the oscillation frequency of the frequency-stabilized light source 2, the set frequency of the frequency-variable light source 2, and n calculated from the oscillation frequency of the frequency-stabilized light source 1 are substituted into equation (1) to obtain Estimate the oscillation frequency.

【0015】図8に変調時の周波数基準光源1の信号と
王冠状信号との相関の計算結果を示した。相関がピーク
となる周波数が図6の周波数基準光源1の信号の変調中
心周波数と一致していることが分かる。見積もられた発
振周波数と設定周波数との差を基に、D/A コンバーター
を通して周波数可変光源2のPZT を制御して周波数可変
光源2の周波数安定化を行った。光共振器3の掃引か
ら、差周波数検出、周波数可変光源2の制御までに要す
る時間は約1秒であった。従って、1Hz以下の帯域の
周波数変動を抑圧することができる。
FIG. 8 shows the calculation result of the correlation between the signal of the frequency reference light source 1 and the crown signal at the time of modulation. It can be seen that the frequency at which the correlation has a peak coincides with the modulation center frequency of the signal of the frequency reference light source 1 in FIG. Based on the difference between the estimated oscillation frequency and the set frequency, the PZT of the variable frequency light source 2 was controlled through a D / A converter to stabilize the frequency of the variable frequency light source 2. The time required from the sweep of the optical resonator 3 to the detection of the difference frequency and the control of the frequency variable light source 2 was about 1 second. Therefore, frequency fluctuation in a band of 1 Hz or less can be suppressed.

【0016】図9に、周波数可変光源2の設定波長を15
00.000nmとして周波数安定化を行った場合の周波数安定
度を示した。縦軸は、1500.000nmからのずれを示してい
る。ほぼ±100MHzの範囲で安定化されていることが分か
る。高精度波長計(分解能10MHz )の測定値を基準とし
て周波数確度の波長依存性を測定した結果を図10に示
した。今回使用した周波数可変光源2の発振可能な波長
範囲が1480-1555nm であったため、この波長域内でのみ
の測定となった。図から、周波数安定化光源2から65nm
離れた波長域においても±0.6GHzの精度で波長設定が可
能であることが分かる。1GHz以上に周波数確度が劣化し
ているものが観測されているが、これは周波数可変光源
2が多モード発振してしまったためである。
FIG. 9 shows that the set wavelength of the frequency variable light source 2 is 15
The frequency stability when the frequency stabilization is performed with the wavelength set to 00.000 nm is shown. The vertical axis indicates a deviation from 1500.000 nm. It can be seen that it is stabilized in a range of approximately ± 100 MHz. FIG. 10 shows the result of measuring the wavelength dependence of the frequency accuracy based on the measurement value of a high-precision wavelength meter (resolution: 10 MHz). Since the oscillating wavelength range of the frequency variable light source 2 used this time was 1480-1555 nm, the measurement was performed only within this wavelength range. From the figure, it is 65 nm from the frequency stabilized light source 2
It can be seen that the wavelength can be set with an accuracy of ± 0.6 GHz even in a distant wavelength range. It is observed that the frequency accuracy is degraded to 1 GHz or more, because the frequency variable light source 2 has oscillated in multiple modes.

【0017】[0017]

【発明の効果】本発明の周波数可変光源は、共振周波数
を掃引させた光共振器に、周波数安定化光源と周波数可
変光源からのレーザー光を入射し、光共振器からレーザ
ー光が出射されるときから両レーザー光間の差周波数を
検出し、この差周波数に依存した信号を周波数可変レー
ザー光源に帰還すことにより、周波数可変光源のレーザ
ー周波数の確度と安定度を周波数安定化光源のそれらと
同等にしている。本発明の周波数可変光源は、上記のよ
うな構成としたために、低価格化を実現できた。従っ
て、本発明の周波数可変光源をWDM 用光源に用いること
により、周波数が安定なWDM系を簡便で、安価に、構
築することができる。
According to the frequency variable light source of the present invention, laser light from the frequency stabilizing light source and the frequency variable light source enters the optical resonator whose resonant frequency is swept, and the laser light is emitted from the optical resonator. From time to time, the difference frequency between the two laser beams is detected, and a signal dependent on this difference frequency is fed back to the frequency variable laser light source, so that the accuracy and stability of the laser frequency of the frequency variable light source are compared with those of the frequency stabilized light source. Equal. Since the variable frequency light source of the present invention has the above-described configuration, the cost can be reduced. Therefore, by using the variable frequency light source of the present invention as a light source for WDM, a WDM system with stable frequency can be constructed simply and inexpensively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の周波数可変光源の構成を模式的に示す
図である。
FIG. 1 is a diagram schematically showing a configuration of a variable frequency light source according to the present invention.

【図2】差周波数の測定を説明するための図である。FIG. 2 is a diagram for explaining measurement of a difference frequency.

【図3】光源の発振周波数と光共振器の共振周波数の関
係を示す図である。
FIG. 3 is a diagram illustrating a relationship between an oscillation frequency of a light source and a resonance frequency of an optical resonator.

【図4】光共振器の透過光量と掃引との関係を示す図で
ある。
FIG. 4 is a diagram showing the relationship between the amount of light transmitted through an optical resonator and sweeping.

【図5】周波数安定化光源が無変調時の受光器出力を示
す図である。
FIG. 5 is a diagram illustrating an output of a light receiver when a frequency stabilizing light source is not modulated.

【図6】周波数安定化光源が変調時の受光器出力を示す
図である。
FIG. 6 is a diagram illustrating an output of a light receiver when a frequency stabilized light source is modulated.

【図7】周波数測定の手順を示す図である。FIG. 7 is a diagram showing a procedure of frequency measurement.

【図8】王冠状信号との相関を示した図である。FIG. 8 is a diagram showing a correlation with a crown signal.

【図9】本発明の周波数可変光源の周波数安定度を示す
図である。
FIG. 9 is a diagram showing the frequency stability of the frequency variable light source of the present invention.

【図10】本発明の周波数可変光源の周波数確度を示す
図である。
FIG. 10 is a diagram showing the frequency accuracy of the frequency variable light source of the present invention.

【符号の説明】[Explanation of symbols]

1 周波数安定化光源(周波数基準光源) 2 周波数可変光源 3 光共振器 4 合波器 5 受光器 6 解析器 7 分波器 Reference Signs List 1 frequency stabilized light source (frequency reference light source) 2 variable frequency light source 3 optical resonator 4 multiplexer 5 light receiver 6 analyzer 7 duplexer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発振周波数を安定化させた周波数安定化光
源(1)と、発振周波数を外部信号により制御できる周
波数可変光源(2)と、前記周波数安定化光源から出射
された周波数安定化レーザー光と前記周波数可変光源か
ら出射された周波数可変レーザー光とを合波する合波器
(4)と、掃引信号により共振ピーク周波数を掃引させ
て前記合波器からの入射光の発振周波数と共振ピーク周
波数が一致したときに透過光を出射する光共振器(3)
と、前記光共振器から出射された透過光を受光する受光
器(5)と、前記掃引信号と前記受光器から出力された
受光信号とを解析し前記周波数安定化レーザー光と前記
周波数可変レーザー光との周波数差に依存した周波数差
信号を前記周波数可変光源に帰還させる解析器(6)と
を備えた周波数可変光源。
1. A frequency stabilized light source (1) whose oscillation frequency is stabilized, a frequency variable light source (2) whose oscillation frequency can be controlled by an external signal, and a frequency stabilized laser emitted from the frequency stabilized light source A multiplexer (4) for multiplexing the light with the frequency-variable laser light emitted from the frequency-variable light source, and a resonance peak frequency swept by a sweep signal to resonate with the oscillation frequency of the incident light from the multiplexer. An optical resonator that emits transmitted light when the peak frequencies match (3)
A light receiver (5) for receiving transmitted light emitted from the optical resonator; analyzing the sweep signal and a light reception signal output from the light receiver to analyze the frequency-stabilized laser light and the frequency-variable laser; An analyzer (6) for feeding back a frequency difference signal dependent on a frequency difference with light to the frequency variable light source.
JP2000219316A 2000-07-19 2000-07-19 Frequency variable light source Expired - Lifetime JP4612938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000219316A JP4612938B2 (en) 2000-07-19 2000-07-19 Frequency variable light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219316A JP4612938B2 (en) 2000-07-19 2000-07-19 Frequency variable light source

Publications (2)

Publication Number Publication Date
JP2002043685A true JP2002043685A (en) 2002-02-08
JP4612938B2 JP4612938B2 (en) 2011-01-12

Family

ID=18714120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219316A Expired - Lifetime JP4612938B2 (en) 2000-07-19 2000-07-19 Frequency variable light source

Country Status (1)

Country Link
JP (1) JP4612938B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237354A (en) * 2005-02-25 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Wavelength variation measuring apparatus
WO2021010128A1 (en) * 2019-07-18 2021-01-21 浜松ホトニクス株式会社 Laser device and method for generating laser light
JP2021118258A (en) * 2020-01-27 2021-08-10 国立研究開発法人産業技術総合研究所 Optical frequency sweep laser light source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252369U (en) * 1988-09-30 1990-04-16
JPH04100286A (en) * 1990-08-20 1992-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical frequency stabilized light source
JPH0964486A (en) * 1995-08-25 1997-03-07 Kanagawa Kagaku Gijutsu Akad Laser light source device
JP2000199730A (en) * 1999-01-06 2000-07-18 Advantest Corp Method for measuring optical transfer characteristic and apparatus for carrying out the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252369U (en) * 1988-09-30 1990-04-16
JPH04100286A (en) * 1990-08-20 1992-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical frequency stabilized light source
JPH0964486A (en) * 1995-08-25 1997-03-07 Kanagawa Kagaku Gijutsu Akad Laser light source device
JP2000199730A (en) * 1999-01-06 2000-07-18 Advantest Corp Method for measuring optical transfer characteristic and apparatus for carrying out the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237354A (en) * 2005-02-25 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Wavelength variation measuring apparatus
WO2021010128A1 (en) * 2019-07-18 2021-01-21 浜松ホトニクス株式会社 Laser device and method for generating laser light
JP2021019054A (en) * 2019-07-18 2021-02-15 浜松ホトニクス株式会社 Laser device and laser light generation method
CN114175422A (en) * 2019-07-18 2022-03-11 浜松光子学株式会社 Laser device and laser generation method
JP7368129B2 (en) 2019-07-18 2023-10-24 浜松ホトニクス株式会社 Laser device and laser beam generation method
JP2021118258A (en) * 2020-01-27 2021-08-10 国立研究開発法人産業技術総合研究所 Optical frequency sweep laser light source
JP7376917B2 (en) 2020-01-27 2023-11-09 国立研究開発法人産業技術総合研究所 Optical frequency swept laser light source

Also Published As

Publication number Publication date
JP4612938B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US5015099A (en) Differential absorption laser radar gas detection apparatus having tunable wavelength single mode semiconductor laser source
US4856899A (en) Optical frequency analyzer using a local oscillator heterodyne detection of incident light
AU2007302314B2 (en) Method and device for generating a synthetic wavelength
US6078394A (en) Wavelength manager
US20080212974A1 (en) Electromagnetic Transmission/Reception System
US20090303486A1 (en) Light source and gas measuring device
JP4793675B2 (en) Distance measuring device
JP2005124192A (en) Method and system for synchronizing operation characteristic of variable wavelength device to wavelength of local oscillator signal
US20060088068A1 (en) Low noise swept wavelength laser system and method
JPH0831648B2 (en) Frequency stability monitoring method and device and frequency locking method and device
US5390017A (en) Optical network analyzer for measuring the amplitude characteristics and group delay time dispersion characteristics of an optical circuit device
JP2011523787A (en) Atomic frequency acquisition device based on self-mixing interference
JP2006337833A (en) Wavelength variable optical frequency comb generator
JP2000275107A (en) Method for measuring laser frequency, method for controlling laser frequency and laser beam generator
JP4612938B2 (en) Frequency variable light source
EP4332667A1 (en) Optical frequency comb generator control device
JP3969666B2 (en) Tunable laser device
JP3989470B2 (en) Optical frequency measurement system
JPH10206919A (en) Method and device for continuously varying wide wavelength range of light frequency
JP4442946B2 (en) Optical frequency grid generator
JPH08166610A (en) Multiplex optical frequency com generator
JP2007328044A (en) Optical frequency measuring system, and method for determining frequency component of optical frequency comb
US20240219802A1 (en) Optical Frequency Comb Generator Control Device
JP2750460B2 (en) Triangular-wave modulated semiconductor laser device with linearized frequency change of output light
JP4256055B2 (en) Frequency measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4612938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term