JP2002035502A - Flocculation reaction tank - Google Patents

Flocculation reaction tank

Info

Publication number
JP2002035502A
JP2002035502A JP2000221573A JP2000221573A JP2002035502A JP 2002035502 A JP2002035502 A JP 2002035502A JP 2000221573 A JP2000221573 A JP 2000221573A JP 2000221573 A JP2000221573 A JP 2000221573A JP 2002035502 A JP2002035502 A JP 2002035502A
Authority
JP
Japan
Prior art keywords
reaction tank
sludge
pressure
separated liquid
discharge system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000221573A
Other languages
Japanese (ja)
Other versions
JP3877503B2 (en
Inventor
Hiroaki Takeyama
宏秋 竹山
Futoshi Toshikuni
太 利國
Shinji Oba
真治 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000221573A priority Critical patent/JP3877503B2/en
Publication of JP2002035502A publication Critical patent/JP2002035502A/en
Application granted granted Critical
Publication of JP3877503B2 publication Critical patent/JP3877503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flocculation reaction tank capable of supplying sludge to a hermetically closed sludge forcing type dehydrator without separately requiring a pump and not generating clogging. SOLUTION: The flocculation reaction tank is equipped with a reaction tank 1 forming a hermetically closed space, the impeller 4 arranged in the flocculation region 2 of the reaction tank 1, the drive device 4a arranged outside the reaction tank 1, the filter unit 5 arranged in the concentration region 3 of the reaction tank 1, the sludge charging system 6 communicating with the flocculation region 2, the sludge discharge system 7 communicating with the concentration region 3 and the separated liquid discharge system 9 communicating with a filtrate region 8. The filter unit 5 is constituted by alternately laminating fixed plates 10 and rotary plates 11 and interposing spacers 12 between the mutually opposed surfaces of the plates to form a screen 13 and the filtrate region 8 is formed between the screen 13 and the wall surface of the reaction tank 1 by the seal materials 14 provided to the upper and lower ends of the screen 13 and the fixed shaft 15 piercing the fixed plates 10 and the spacers 12 is fixed and held by the seal materials 14 and the movable shaft 16 piercing the rotary shafts 16 is connected to the drive device 4a of the impeller 4 or a separately arranged drive device in a cooperative state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凝集反応槽に関
し、下水・廃水処理などで発生する汚泥を脱水するため
に高分子凝集剤などを添加・混合して凝集させる技術に
係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flocculation reaction tank, and relates to a technique for adding and mixing a polymer flocculant or the like for dewatering sludge generated in sewage / wastewater treatment or the like and flocculating the sludge.

【0002】[0002]

【従来の技術】従来、下水・廃水処理などで発生する余
剰汚泥は、減容化のために脱水・乾燥処理しているが、
汚泥をそのままで脱水する事は非常に困難であり、凝集
剤を添加して粗大フロックを形成することが必要不可欠
である。
2. Description of the Related Art Conventionally, excess sludge generated in sewage / wastewater treatment has been dewatered and dried to reduce its volume.
It is very difficult to dewater sludge as it is, and it is essential to add a flocculant to form coarse flocs.

【0003】ところで、近年においては、汚泥に含まれ
る有機分の増加に伴う濃縮不良などにより汚泥の脱水性
が悪化している。このために、脱水機へ投入する前に汚
泥を濃縮することで、ろ過速度の増大、ケーキ含水率の
低下を目指す試みも行われている。この濃縮手段として
は、ドラムスクリーン式、攪拌槽式などがある。
[0003] In recent years, sludge dewatering properties have deteriorated due to poor concentration due to an increase in organic components contained in the sludge. For this reason, attempts have been made to increase the filtration rate and decrease the water content of the cake by concentrating the sludge before putting it into the dehydrator. Examples of the concentrating means include a drum screen type and a stirring tank type.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の濃縮手
段であるドラムスクリーン式、攪拌槽式のものは、ベル
トプレス等の開放型の脱水機を対象としており、大気圧
下で使用している。一方、近年においては臭気対策など
の課題からスクリュープレス等の密閉型・汚泥圧入式の
脱水機が使用されている。このため、従来のドラムスク
リーン式、攪拌槽式の濃縮手段で濃縮した濃縮汚泥を密
閉型・汚泥圧入式の脱水機で脱水する場合には、濃縮汚
泥を脱水機へ圧入するためのポンプを別途に増設する必
要があり、コストアップの要因となっている。また、濃
縮汚泥がポンプを通過する間に凝集フロックが破壊され
る問題があった。さらに、従来の濃縮手段においてはス
クリーンとして比較的目詰まりの少ないウェッジワイヤ
方式のものを使用しているが、可逆的な目詰まりは避け
られず、安全な運転のためには定期的、連続的な洗浄工
程が必要であった。
However, the conventional concentrating means such as a drum screen type and a stirring tank type are intended for an open type dehydrator such as a belt press and used under atmospheric pressure. . On the other hand, in recent years, a closed type / sludge press-in type dehydrator such as a screw press has been used due to problems such as odor control. For this reason, when the concentrated sludge concentrated by the conventional drum screen type or stirring tank type concentration means is dewatered by a closed type / sludge press-in type dehydrator, a pump for pressing the concentrated sludge into the dehydrator is separately provided. It is necessary to increase the number, which is a factor of cost increase. In addition, there is a problem that flocculated flocs are destroyed while the concentrated sludge passes through the pump. Furthermore, in conventional concentrating means, wedge wire type screens with relatively little clogging are used as screens, but reversible clogging is inevitable, and regular and continuous screens are required for safe operation. A washing step was required.

【0005】本発明は上記した課題を解決するものであ
り、凝集と濃縮を一体に行なって省スペース化を図り、
高圧力下の密閉空間で作動することにより別途にポンプ
を必要とせずに、密閉型・汚泥圧入式の脱水機へ供給す
ることができ、連続した運転においても目詰まることの
ない凝集反応槽を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and achieves space saving by integrally performing aggregation and concentration.
By operating in a closed space under high pressure, it can be supplied to a closed type, sludge press-in type dehydrator without the need for a separate pump, and a flocculation reaction tank that does not clog even in continuous operation The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る本発明の凝集反応槽は、内部に密閉
空間を形成する反応槽と、反応槽内の軸心方向の一方側
に形成する凝集領域に配置したインペラと、反応槽外に
配置したインペラの駆動装置と、反応槽内の軸心方向の
他方側に形成する濃縮領域に配置した筒状のろ過ユニッ
トと、凝集領域に連通し、凝集剤を伴った原汚泥を圧送
する汚泥投入系と、濃縮領域に連通する汚泥排出系と、
ろ過ユニットのろ液領域に連通する分離液排出系とを備
え、ろ過ユニットは、複数のリング状の固定板と回転板
とを交互に積層するとともに、双方の相対向する板面間
に所定のスリットを形成するスペーサを介在させてスク
リーンを構成し、スクリーンの上下端に配置するリング
状のシール材でスクリーンの外周囲に反応槽の壁面との
間で前記ろ液領域を形成し、各固定板および各スペーサ
を貫通して配置する固定軸を前記シール材で固定保持
し、各回転板を貫通して配置する可動軸をインペラの駆
動装置もしくは別途に配置する駆動装置に連動連結した
ものである。
In order to solve the above-mentioned problems, a coagulation reaction tank according to the present invention according to claim 1 has a reaction tank forming a closed space therein and one of the reaction tanks in the axial direction. An impeller disposed in a coagulation region formed on the side of the reaction vessel, a driving device for the impeller disposed outside the reaction tank, and a cylindrical filtration unit disposed in a concentration region formed on the other axial side in the reaction tank, A sludge input system that communicates with the area and feeds the raw sludge with the flocculant, and a sludge discharge system that communicates with the enrichment area.
A separation liquid discharge system that communicates with the filtrate area of the filtration unit, the filtration unit alternately stacks a plurality of ring-shaped fixed plates and rotating plates, and a predetermined distance between both opposed plate surfaces. A screen is formed with a spacer forming a slit interposed, and the filtrate region is formed between the outer periphery of the screen and the wall surface of the reaction tank with a ring-shaped sealing material arranged at the upper and lower ends of the screen, and each fixed. A fixed shaft that penetrates the plate and each spacer is fixedly held by the sealing material, and a movable shaft that penetrates each rotary plate is interlocked to a drive device of the impeller or a drive device that is separately disposed. is there.

【0007】上記した構成により、汚泥投入系から凝集
剤を伴った原汚泥を反応槽に所定圧力で圧入する。反応
槽の凝集領域では駆動装置により回転するインペラによ
って原汚泥と凝集剤を攪拌することで凝集反応を生起
し、凝集フロックを形成する。凝集領域で形成した凝集
フロックは濃縮領域へと移動し、ろ過ユニットの内部へ
流入する。
[0007] With the above-described configuration, raw sludge with a coagulant is injected into the reaction tank at a predetermined pressure from the sludge charging system. In the flocculation region of the reaction tank, the raw sludge and the flocculant are stirred by the impeller rotated by the driving device to generate a flocculation reaction and form floc. The floc formed in the flocculation region moves to the concentration region and flows into the filtration unit.

【0008】この状態でろ過ユニットの内外間には汚泥
投入系の圧力に起因した所定差圧が存在し、この差圧に
よりスクリーンの回転板と固定板との間にスペーサで形
成するスリットよりも小さな凝集フロックおよび分離液
が前記スリットを通ってろ過ユニットの内側の濃縮領域
から外側のろ液領域へ排出され、一方、前記スリットよ
りも大きい凝集フロックはろ過ユニット内において徐々
に濃縮される。
In this state, there is a predetermined pressure difference between the inside and outside of the filtration unit due to the pressure of the sludge feeding system, and the pressure difference is higher than the slit formed by the spacer between the rotating plate and the fixed plate of the screen. Small flocculated flocs and separated liquid are discharged from the concentration area inside the filtration unit to the filtrate area outside through the slit, while flocculants larger than the slit are gradually concentrated in the filtration unit.

【0009】このスクリーンのスリット幅はスペーサの
厚み、固定板および回転板の厚みを選択することで各種
汚泥に適したスリット幅に調節でき、スペーサの厚みt
1は同板厚の回転板と固定板の厚みt2より大きく、以
下の関係を満たす範囲で決定する。
The slit width of this screen can be adjusted to a slit width suitable for various types of sludge by selecting the thickness of the spacer and the thickness of the fixed plate and the rotating plate.
1 is larger than the thickness t2 of the rotating plate and the fixed plate having the same thickness, and is determined in a range satisfying the following relationship.

【0010】0<(t1−t2)/2<1mm 濃縮領域の濃縮汚泥は濃縮領域から汚泥排出系を通って
次工程の脱水機へと圧入され、ろ液領域に排出した小さ
な凝集フロックを含む分離液は分離液排出系を通って反
応槽の外部へ排出される。
0 <(t1−t2) / 2 <1 mm The concentrated sludge in the concentration area is injected into the dehydrator in the next step through the sludge discharge system from the concentration area and contains small flocculants discharged to the filtrate area. The separated liquid is discharged to the outside of the reaction tank through the separated liquid discharging system.

【0011】したがって、凝集フロックを含む濃縮汚泥
をポンプ等で再圧入することなく、汚泥投入系の圧力を
利用して次工程の脱水機へ圧入することができるので、
従来の大気開放型濃縮機では適用が困難であった汚泥圧
入式脱水機にも凝集フロックを破壊することなく濃縮汚
泥を供給することができる。
Therefore, the concentrated sludge containing flocculated floc can be injected into the dehydrator in the next step by utilizing the pressure of the sludge input system without re-injecting the concentrated sludge using a pump or the like.
Concentrated sludge can be supplied to a sludge press-in type dehydrator, which was difficult to apply in a conventional open-to-air type concentrator, without destroying flocculated flocs.

【0012】また、ろ過ユニットの内周部、回転板およ
び固定板の上下面には微細な凝集フロックおよび凝集剤
粘着層からなる可逆的な閉塞物が付着してろ材抵抗が増
加する要因となるが、回転板が固定板に対して相対的
に、かつ連続的に回転することで閉塞物はすりつぶされ
て分離液とともに排出される。このセルフクリーニング
効果によって、スクリーンの目詰まりが無くなり、定期
的な洗浄工程を必要とせずに安定した濃縮を行なうこと
ができる。
In addition, a reversible obstruction made up of fine floc and floc and a flocculant adhesive layer adheres to the inner peripheral portion of the filtration unit, and the upper and lower surfaces of the rotating plate and the fixed plate, which causes an increase in filter medium resistance. However, as the rotating plate rotates continuously and relatively to the fixed plate, the obstruction is ground and discharged together with the separated liquid. Due to this self-cleaning effect, clogging of the screen is eliminated, and stable concentration can be performed without requiring a periodic cleaning step.

【0013】請求項2に係る本発明の凝集反応槽は、汚
泥投入系に介装する流量計と、分離液排出系に介装する
設定流量を可変調整可能な定量ポンプと、流量計の出力
信号を受けて定量ポンプに設定流量を指示する演算器と
を備え、演算器は汚泥投入系から反応槽に供給する原汚
泥流量に対して分離液排出系を通して反応槽から取出す
分離液流量の割合を設定比率に制御するものである。
According to a second aspect of the present invention, there is provided an agglutination reaction tank according to the present invention, wherein a flow meter interposed in a sludge input system, a fixed amount pump interposed in a separated liquid discharge system capable of variably adjusting a set flow rate, and an output of the flow meter A calculator that receives a signal and instructs the set flow rate to the metering pump, and the calculator is a ratio of the flow rate of the separated liquid taken out of the reaction tank through the separated liquid discharge system to the flow rate of the raw sludge supplied from the sludge input system to the reaction tank. Is set to the set ratio.

【0014】上記した構成により、ろ過ユニットにおけ
る分離能力はスクリーンのスリット幅とスリット幅より
小さい凝集フロックを含む分離液を押し出すろ過圧力に
依存し、ろ過圧力はスクリーンの内外間の差圧である。
汚泥投入系における汚泥流量および圧力が一定であるこ
とから、分離液の排出が遅速でろ液領域における背圧が
大きい程に差圧が小さくなり、分離液の排出が早速でろ
液領域における背圧が小さい程に差圧が大きくなる。
With the above configuration, the separation capacity of the filtration unit depends on the slit width of the screen and the filtration pressure for extruding the separated liquid containing the flocculated floc smaller than the slit width, and the filtration pressure is a pressure difference between the inside and the outside of the screen.
Since the sludge flow rate and pressure in the sludge input system are constant, the differential pressure decreases as the separation liquid discharge speed increases and the back pressure in the filtrate region increases, and the separation liquid discharge speed increases and the back pressure in the filtrate region decreases. The smaller the pressure, the greater the differential pressure.

【0015】したがって、原汚泥流量に対する分離液流
量の割合が大きくなるにしたがって差圧が大きくなって
分離能力が高まり、原汚泥流量に対する分離液流量の割
合が小さくなるにしたがって差圧が小さくなって分離能
力が低下する。
Therefore, as the ratio of the separation liquid flow rate to the raw sludge flow rate increases, the differential pressure increases and the separation capacity increases, and as the ratio of the separation liquid flow rate to the raw sludge flow rate decreases, the differential pressure decreases. Separation ability decreases.

【0016】このため、凝集汚泥の濃縮性に応じて演算
器における設定比率を調整し、定量ポンプにおける設定
流量を調整し、ポンプの回転速度を制御して分離液排出
系を通して反応槽から取出す分離液流量を増減する。こ
の原汚泥流量f1と分離液流量f2との比は、以下の関
係を満たす範囲において決定する。
For this reason, the set ratio in the arithmetic unit is adjusted in accordance with the concentration property of the coagulated sludge, the set flow rate in the metering pump is adjusted, the rotation speed of the pump is controlled, and the separation taken out of the reaction tank through the separated liquid discharge system. Increase or decrease the liquid flow. The ratio between the raw sludge flow rate f1 and the separated liquid flow rate f2 is determined in a range satisfying the following relationship.

【0017】0.1≦(f2/f1)≦0.9 この操作により、凝集汚泥の濃縮性が低い程に原汚泥流
量に対する分離液流量の割合を大きくして分離能力を高
め、凝集汚泥の濃縮性が高い程に原汚泥流量に対する分
離液流量の割合を小さくして分離能力を抑制すること
で、固形物の回収率を良好に維持できる。
0.1 ≦ (f2 / f1) ≦ 0.9 By this operation, as the concentration of the coagulated sludge is lower, the ratio of the flow rate of the separated liquid to the flow rate of the raw sludge is increased to increase the separation capacity, and As the concentration is higher, the ratio of the flow rate of the separated liquid to the flow rate of the raw sludge is made smaller to suppress the separation capacity, so that the solid matter recovery rate can be maintained better.

【0018】請求項3に係る本発明の凝集反応槽は、反
応槽と分離液排出系との間に介装する差圧計と、分離液
排出系に介装する設定圧力を可変調整可能な圧力調整弁
と、差圧計の出力信号を受けて圧力調整弁に設定圧力を
指示する演算器とを備え、演算器は反応槽の内部圧力と
分離液排出系の内部圧力との差圧を設定差圧に制御する
ものである。
According to a third aspect of the present invention, there is provided a coagulation reaction tank according to the present invention, wherein a differential pressure gauge interposed between the reaction tank and the separated liquid discharge system, and a pressure capable of variably adjusting a set pressure interposed in the separated liquid discharge system. A pressure control valve that receives the output signal of the differential pressure gauge and indicates a set pressure to the pressure control valve. The calculator calculates a differential pressure between the internal pressure of the reaction tank and the internal pressure of the separated liquid discharge system. The pressure is controlled.

【0019】上記した構成により、ろ過ユニットにおけ
る分離能力はスクリーンのスリット幅とスリット幅より
小さい凝集フロックを含む分離液を押し出すろ過圧力に
依存し、ろ過圧力はスクリーンの内外間の差圧であり、
差圧が大きくなるにしたがって分離能力が高まり、差圧
が小さくなるにしたがって分離能力が低下する。
With the above configuration, the separation capacity of the filtration unit depends on the slit width of the screen and the filtration pressure for extruding the separated liquid containing the flocculated floc smaller than the slit width, and the filtration pressure is a differential pressure between the inside and the outside of the screen.
As the differential pressure increases, the separation capability increases, and as the differential pressure decreases, the separation capability decreases.

【0020】汚泥投入系における汚泥流量および圧力が
一定であることから、ろ液領域における背圧が大きい程
に差圧が小さくなり、ろ液領域における背圧が小さい程
に差圧が大きくなる。
Since the sludge flow rate and the pressure in the sludge feeding system are constant, the differential pressure decreases as the back pressure in the filtrate region increases, and the differential pressure increases as the back pressure in the filtrate region decreases.

【0021】このため、凝集汚泥の濃縮性に応じて演算
器における設定差圧を調整し、圧力調整弁における設定
圧力を調整し、圧力調整弁の開度制御によって分離液排
出系の内部圧力を増減する。この反応槽の内部圧力P1
と分離液排出系の内部圧力P2の差圧は、以下の関係を
満たす範囲において決定する。
For this reason, the differential pressure set in the arithmetic unit is adjusted in accordance with the concentration of the coagulated sludge, the pressure set in the pressure control valve is adjusted, and the internal pressure of the separated liquid discharge system is controlled by controlling the opening of the pressure control valve. Increase or decrease. Internal pressure P1 of this reaction tank
And the internal pressure P2 of the separated liquid discharge system are determined in a range satisfying the following relationship.

【0022】1kPa≦(P1−P2)≦50kPa この操作により、凝集汚泥の濃縮性が低い程に反応槽の
内部圧力と分離液排出系の内部圧力との差圧を大きくし
て分離能力を高め、凝集汚泥の濃縮性が高い程に反応槽
の内部圧力と分離液排出系の内部圧力との差圧を小さく
して分離能力を抑制することで、固形物の回収率を良好
に維持できる。
1 kPa ≦ (P1−P2) ≦ 50 kPa By this operation, as the concentration of the coagulated sludge becomes lower, the differential pressure between the internal pressure of the reaction tank and the internal pressure of the separated liquid discharge system is increased to increase the separation capacity. As the concentration of the coagulated sludge is higher, the differential pressure between the internal pressure of the reaction tank and the internal pressure of the separated liquid discharge system is reduced to suppress the separation ability, so that the solids recovery rate can be favorably maintained.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態におけ
る凝集反応槽を図面に基づいて説明する。図1〜図2に
おいて、反応槽1は内部に密閉空間を形成しており、密
閉空間には反応槽1の軸心方向の上方側に凝集領域2を
形成し、反応槽1の軸心方向の下方側に濃縮領域3を形
成して下部排出型をなしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an agglutination reaction tank according to an embodiment of the present invention will be described with reference to the drawings. 1 and 2, a reaction vessel 1 has a closed space formed therein. In the closed space, an agglomeration region 2 is formed on the upper side of the reaction vessel 1 in the axial direction. Is formed on the lower side of the lower portion to form a lower discharge type.

【0024】反応槽1の凝集領域2にはインペラ(攪拌
羽根)4を配置し、反応槽1の外部にインペラ4の駆動
装置4aを配置しており、反応槽1の濃縮領域3には筒
状のろ過ユニット5を配置している。凝集領域2には凝
集剤を伴った原汚泥を圧送する汚泥投入系6を接続し、
濃縮領域3には汚泥排出系7を接続し、ろ過ユニット5
の後述するろ液領域8には分離液排出系9を接続してい
る。
An impeller (stirring blade) 4 is arranged in the coagulation region 2 of the reaction tank 1, and a driving device 4 a of the impeller 4 is arranged outside the reaction tank 1. A filtration unit 5 in the shape of a circle is arranged. Connected to the flocculation region 2 is a sludge input system 6 for pumping raw sludge with a flocculant,
A sludge discharge system 7 is connected to the concentration area 3, and a filtration unit 5 is connected.
A separation liquid discharge system 9 is connected to a filtrate region 8 described later.

【0025】図2に示すように、ろ過ユニット5は、複
数のリング状の固定板10と回転板11とを交互に積層
するとともに、双方の相対向する板面間に所定のスリッ
トを形成するスペーサ12を介在させてスクリーン13
を構成しており、スクリーン13の上下端に凝集汚泥、
分離液、濃縮汚泥を互いに分画するためのリング状のシ
ール材14を配置してスクリーン13の外周囲に反応槽
1の壁面との間でろ液領域8を形成している。
As shown in FIG. 2, in the filtration unit 5, a plurality of ring-shaped fixed plates 10 and rotating plates 11 are alternately stacked, and a predetermined slit is formed between both opposed plate surfaces. Screen 13 with spacer 12 interposed
The screen 13 has upper and lower ends of coagulated sludge,
A ring-shaped sealing material 14 for separating the separated liquid and the concentrated sludge from each other is arranged to form a filtrate region 8 around the outer periphery of the screen 13 and the wall surface of the reaction tank 1.

【0026】各固定板10の外周部に形成した耳部10
aおよび各スペーサ12を貫通する固定軸15はシール
材14で固定保持しており、各回転板11の耳部11a
を貫通する可動軸16は連結板17を介してインペラ4
の攪拌軸4bに連結し、インペラ4と回転板11が一体
に回転する。この可動軸16は槽外に別途に配置する駆
動装置に連動連結することで、インペラ4の回転速度
(攪拌速度)と回転板11の回転速度を別々に制御する
こともでき、回転板11を一方向にのみ回転させること
なく、一定時間毎に回転方向を反転させることもでき
る。
Ears 10 formed on the outer periphery of each fixing plate 10
a and a fixed shaft 15 penetrating through each spacer 12 is fixedly held by a sealing material 14, and a lug 11 a of each rotating plate 11 is provided.
The movable shaft 16 penetrating through the impeller 4
, The impeller 4 and the rotating plate 11 rotate integrally. When the movable shaft 16 is connected to a driving device separately disposed outside the tank, the rotating speed of the impeller 4 (stirring speed) and the rotating speed of the rotating plate 11 can be controlled separately. Instead of rotating in only one direction, the rotating direction can be reversed at regular intervals.

【0027】図3に示すように、反応槽1は下方側に凝
集領域2を形成し、上方側に濃縮領域3を形成して上部
排出型とすることも可能であり、汚泥の性状に由来する
凝集フロックの沈降性に応じて下部排出型と上部排出型
を選択する。
As shown in FIG. 3, the reaction tank 1 can be formed as an upper discharge type by forming an agglomeration area 2 on the lower side and an enrichment area 3 on the upper side. The lower discharge type and the upper discharge type are selected according to the sedimentation of flocculated floc.

【0028】図4に示すように、汚泥投入系6は原汚泥
を圧送する汚泥ポンプ18と原汚泥流量を計測する汚泥
流量計19とを有しており、汚泥投入系6に接続する凝
集剤供給系20は薬液ポンプ21と凝集剤流量を計測す
る薬液流量計22とを有している。分離液排出系9は設
定流量を可変調整可能な定量ポンプ23を有しており、
定量ポンプ23には汚泥流量計19の出力信号を受けて
定量ポンプ23に設定流量を指示する演算器24を接続
している。演算器24は汚泥投入系6から反応槽1に供
給する原汚泥流量に対して分離液排出系9を通して反応
槽1から取出す分離液流量の割合を設定比率に制御する
ものである。汚泥排出系7は圧入式脱水機25に接続し
ている。
As shown in FIG. 4, the sludge input system 6 has a sludge pump 18 for pumping the raw sludge and a sludge flow meter 19 for measuring the flow rate of the raw sludge. The supply system 20 has a chemical solution pump 21 and a chemical solution flow meter 22 for measuring the flow rate of the flocculant. The separated liquid discharge system 9 has a fixed amount pump 23 capable of variably adjusting a set flow rate.
The metering pump 23 is connected to a calculator 24 which receives an output signal of the sludge flow meter 19 and instructs the metering pump 23 to set a flow rate. The arithmetic unit 24 controls the ratio of the flow rate of the separated liquid taken out of the reaction tank 1 through the separated liquid discharge system 9 to the flow rate of the raw sludge supplied from the sludge input system 6 to the reaction tank 1 at a set ratio. The sludge discharge system 7 is connected to a press-fit type dehydrator 25.

【0029】以下、上記した構成における作用を説明す
る。原汚泥は汚泥ポンプ18により汚泥投入系6を通し
て圧送し、その途中において凝集剤供給系20から薬液
ポンプ21で供給する凝集剤を添加し、凝集剤を伴って
反応槽1に所定圧力で圧入する。反応槽1の凝集領域2
では駆動装置4aにより回転するインペラ4によって原
汚泥と凝集剤を攪拌して凝集反応を生起し、凝集フロッ
クを形成する。凝集領域で形成した凝集フロックを伴っ
た凝集汚泥は順次に濃縮領域3へと移動し、ろ過ユニッ
ト5の内部へ流入する。
The operation of the above configuration will be described below. The raw sludge is pumped through the sludge feeding system 6 by the sludge pump 18, a coagulant supplied from the coagulant supply system 20 by the chemical liquid pump 21 is added in the middle thereof, and the sludge is pressed into the reaction tank 1 with the coagulant at a predetermined pressure. . Coagulation area 2 of reaction tank 1
In the above, the raw sludge and the flocculant are stirred by the impeller 4 rotated by the driving device 4a to cause a flocculation reaction, thereby forming flocculated flocs. The coagulated sludge with coagulated flocs formed in the coagulation region moves sequentially to the concentration region 3 and flows into the filtration unit 5.

【0030】濃縮領域3ではインペラ4と一体に回転す
る回転板11が固定板10に対して相対的に、かつ連続
的に回転する。ろ過ユニット5にはスクリーン13を境
とする濃縮領域3とろ液領域8の間に汚泥投入系6の圧
力に起因した所定差圧が存在し、この差圧がろ過圧力と
して作用することにより、スクリーン13の回転板11
と固定板10との間にスペーサ12で形成するスリット
よりも小さな凝集フロックを含む分離液がスリットを通
ってろ過ユニット5の内側の濃縮領域3から外側のろ液
領域8へ排出され、このことでろ過ユニット5の内部の
凝集汚泥が徐々に濃縮されて濃縮汚泥となる。
In the concentration region 3, the rotating plate 11 that rotates integrally with the impeller 4 rotates relatively and continuously with respect to the fixed plate 10. In the filtration unit 5, a predetermined pressure difference due to the pressure of the sludge input system 6 exists between the concentration area 3 and the filtrate area 8 bordering the screen 13. 13 rotating plates 11
Separation liquid containing coagulated floc smaller than the slit formed by the spacer 12 between the plate and the fixing plate 10 is discharged from the concentration area 3 inside the filtration unit 5 to the filtrate area 8 outside through the slit. Thus, the coagulated sludge inside the filtration unit 5 is gradually concentrated into concentrated sludge.

【0031】このスクリーン13のスリット幅はスペー
サ12の厚み、固定板10および回転板11の厚みを選
択することで各種汚泥の性状に適したスリット幅に調節
できる。スペーサの厚みt1は同板厚の回転板11と固
定板10の厚みt2よりも大きく、かつ以下の関係を満
たす範囲で決定する。
The slit width of the screen 13 can be adjusted to a slit width suitable for various sludge properties by selecting the thickness of the spacer 12 and the thickness of the fixed plate 10 and the rotating plate 11. The thickness t1 of the spacer is determined within a range that is larger than the thickness t2 of the rotating plate 11 and the fixed plate 10 having the same thickness and that satisfies the following relationship.

【0032】0<(t1−t2)/2<1mm 濃縮領域3の濃縮汚泥は汚泥排出系7を通って次工程の
圧入式脱水機25へ圧入される。したがって、凝集フロ
ックを含む濃縮汚泥は別途のポンプ等で再圧入すること
なく、汚泥投入系7の汚泥ポンプ18の吐出圧力を利用
して次工程に供給するので、従来の大気開放型濃縮機で
は適用が困難であった圧入式脱水機25にも凝集フロッ
クを破壊することなく供給することができる。
0 <(t1−t2) / 2 <1 mm The concentrated sludge in the concentration area 3 passes through the sludge discharge system 7 and is injected into the press-in type dehydrator 25 in the next step. Therefore, the concentrated sludge containing the flocculated floc is supplied to the next step using the discharge pressure of the sludge pump 18 of the sludge introduction system 7 without being re-pressed by a separate pump or the like. It can be supplied to the press-fit type dehydrator 25, which has been difficult to apply, without breaking the flocculated flocs.

【0033】ろ液領域8に排出した小さな凝集フロック
を含む分離液は分離液排出系9を通って定量ポンプ23
により反応槽1の外部へ排出される。ろ過ユニット5の
内周部、回転板11および固定板10の上下面には微細
な凝集フロックおよび凝集剤粘着層からなる可逆的な閉
塞物が付着してろ材抵抗が増加する要因となるが、回転
板11が固定板10に対して相対的に、かつ連続的に回
転することで閉塞物はすりつぶされて分離液とともにろ
液領域8に排出される。このセルフクリーニング効果に
よって、スクリーン13の目詰まりが無くなり、定期的
な洗浄工程を必要とせずに安定した濃縮を行なうことが
できる。
The separated liquid containing the small flocculated flocs discharged into the filtrate area 8 passes through the separated liquid discharge system 9 and is supplied to the metering pump 23.
Is discharged to the outside of the reaction tank 1. A reversible obstruction composed of a fine flocculent floc and a flocculant adhesive layer adheres to the inner peripheral portion of the filtration unit 5 and the upper and lower surfaces of the rotary plate 11 and the fixed plate 10, which causes an increase in filter medium resistance. As the rotary plate 11 rotates relative to the fixed plate 10 continuously, the obstruction is ground and discharged to the filtrate area 8 together with the separated liquid. Due to this self-cleaning effect, clogging of the screen 13 is eliminated, and stable concentration can be performed without requiring a periodic cleaning step.

【0034】このろ過ユニット5における分離能力はス
クリーン13のスリット幅とスリット幅より小さい凝集
フロックを含む分離液を押し出すろ過圧力に依存する。
ろ過圧力はスクリーン13の内外間の差圧であり、汚泥
投入系6における汚泥流量および圧力が一定であること
から、分離液の排出が遅速でろ液領域8における背圧が
大きい程に差圧が小さくなり、分離液の排出が早速でろ
液領域8における背圧が小さい程に差圧が大きくなる。
The separation capacity of the filtration unit 5 depends on the slit width of the screen 13 and the filtration pressure for extruding a separated liquid containing flocculated flocs smaller than the slit width.
The filtration pressure is a differential pressure between the inside and the outside of the screen 13. Since the sludge flow rate and the pressure in the sludge input system 6 are constant, the differential pressure increases as the separation liquid discharge is slow and the back pressure in the filtrate region 8 is large. The differential pressure increases as the separation liquid is discharged immediately and the back pressure in the filtrate region 8 is smaller.

【0035】したがって、原汚泥流量に対する分離液流
量の割合が大きくなるにしたがって差圧が大きくなって
分離能力が高まり、原汚泥流量に対する分離液流量の割
合が小さくなるにしたがって差圧が小さくなって分離能
力が低下する。
Therefore, as the ratio of the separation liquid flow rate to the raw sludge flow rate increases, the differential pressure increases and the separation capacity increases, and as the ratio of the separation liquid flow rate to the raw sludge flow rate decreases, the differential pressure decreases. Separation ability decreases.

【0036】このため、凝集汚泥の濃縮性に応じて演算
器24における設定比率を調整し、定量ポンプ23にお
ける設定流量を調整し、定量ポンプ23の回転速度を制
御して分離液排出系9を通して反応槽1から取出す分離
液流量を増減する。この原汚泥流量f1と分離液流量f
2との比は、以下の関係を満たす範囲において決定す
る。
For this reason, the set ratio in the calculator 24 is adjusted in accordance with the concentration of the coagulated sludge, the set flow rate in the metering pump 23 is adjusted, and the rotation speed of the metering pump 23 is controlled to pass through the separated liquid discharge system 9. The flow rate of the separated liquid taken out of the reaction tank 1 is increased or decreased. The raw sludge flow rate f1 and the separated liquid flow rate f
The ratio to 2 is determined in a range satisfying the following relationship.

【0037】0.1≦(f2/f1)≦0.9 この操作により、凝集汚泥の濃縮性が低い程に原汚泥流
量に対する分離液流量の割合を大きくして分離能力を高
め、凝集汚泥の濃縮性が高い程に原汚泥流量に対する分
離液流量の割合を小さくして分離能力を抑制すること
で、固形物の回収率を良好に維持できる。
0.1 ≦ (f2 / f1) ≦ 0.9 By this operation, as the concentration of the coagulated sludge is lower, the ratio of the flow rate of the separated liquid to the flow of the raw sludge is increased to increase the separation capacity, and As the concentration is higher, the ratio of the flow rate of the separated liquid to the flow rate of the raw sludge is made smaller to suppress the separation capacity, so that the solid matter recovery rate can be maintained better.

【0038】運転制御方法としては、図5に示すように
構成することも可能である。図5において、差圧計26
は反応槽1と分離液排出系9との間に介装し、分離液排
出系9に設定圧力を可変調整可能な圧力調整弁27を介
装しており、圧力調整弁27には差圧計26の出力信号
を受けて圧力調整弁27に設定圧力を指示する演算器2
8を接続している。演算器28は反応槽1の内部圧力と
分離液排出系9の内部圧力との差圧を設定差圧に制御す
るものである。
As an operation control method, it is also possible to configure as shown in FIG. In FIG. 5, the differential pressure gauge 26
Is interposed between the reaction tank 1 and the separated liquid discharge system 9, and the separated liquid discharge system 9 is provided with a pressure regulating valve 27 capable of variably adjusting a set pressure, and the pressure regulating valve 27 is provided with a differential pressure gauge A computing unit 2 which receives an output signal of 26 and instructs a pressure adjustment valve 27 to set pressure.
8 are connected. The arithmetic unit 28 controls a differential pressure between the internal pressure of the reaction tank 1 and the internal pressure of the separated liquid discharge system 9 to a set differential pressure.

【0039】この構成において、ろ過ユニット5におけ
る分離能力はスクリーン13のスリット幅とスリット幅
より小さい凝集フロックを含む分離液を押し出すろ過圧
力に依存し、ろ過圧力はスクリーン13の内外間の差圧
であり、差圧が大きくなるにしたがって分離能力が高ま
り、差圧が小さくなるにしたがって分離能力が低下す
る。汚泥投入系6における汚泥流量および圧力が一定で
あることから、ろ液領域8における背圧が大きい程に差
圧が小さくなり、ろ液領域8における背圧が小さい程に
差圧が大きくなる。
In this configuration, the separation capacity of the filtration unit 5 depends on the slit width of the screen 13 and the filtration pressure for extruding the separated liquid containing the flocculated floc smaller than the slit width. Yes, the separation capacity increases as the differential pressure increases, and the separation capacity decreases as the differential pressure decreases. Since the sludge flow rate and pressure in the sludge input system 6 are constant, the differential pressure decreases as the back pressure in the filtrate region 8 increases, and the differential pressure increases as the back pressure in the filtrate region 8 decreases.

【0040】このため、凝集汚泥の濃縮性に応じて演算
器28における設定差圧を調整し、圧力調整弁27にお
ける設定圧力を調整し、圧力調整弁27の開度制御によ
って分離液排出系9の内部圧力を増減する。この反応槽
1の内部圧力P1と分離液排出系9の内部圧力P2の差
圧は、以下の関係を満たす範囲において決定する。
For this reason, the set differential pressure in the calculator 28 is adjusted in accordance with the concentration of the coagulated sludge, the set pressure in the pressure adjusting valve 27 is adjusted, and the separation liquid discharge system 9 is controlled by controlling the opening of the pressure adjusting valve 27. Increase or decrease the internal pressure of. The differential pressure between the internal pressure P1 of the reaction tank 1 and the internal pressure P2 of the separated liquid discharge system 9 is determined in a range satisfying the following relationship.

【0041】1kPa≦(P1−P2)≦50kPa この操作により、凝集汚泥の濃縮性が低い程に反応槽1
の内部圧力と分離液排出系9の内部圧力との差圧を大き
くして分離能力を高め、凝集汚泥の濃縮性が高い程に反
応槽1の内部圧力と分離液排出系9の内部圧力との差圧
を小さくして分離能力を抑制することで、固形物の回収
率を良好に維持できる。
1 kPa ≦ (P1−P2) ≦ 50 kPa By this operation, the lower the concentration of coagulated sludge, the lower the reaction tank 1
The separation pressure is increased by increasing the pressure difference between the internal pressure of the reactor and the internal pressure of the separation liquid discharge system 9, and the higher the concentration of the coagulated sludge, the higher the internal pressure of the reaction tank 1 and the internal pressure of the separation liquid discharge system 9. By suppressing the separation ability by reducing the differential pressure of the solid solution, the recovery rate of solids can be favorably maintained.

【0042】[0042]

【発明の効果】以上のように本発明によれば、凝集フロ
ックを含む濃縮汚泥をポンプ等で再圧入することなく、
汚泥投入系の圧力を利用して次工程の脱水機へ圧入する
ことができるので、従来の大気開放型濃縮機では適用が
困難であった汚泥圧入式脱水機にも凝集フロックを破壊
することなく濃縮汚泥を供給することができる。また、
ろ材抵抗の増加要因となる可逆的な閉塞物を回転板が固
定板に対して相対的に、かつ連続的に回転することです
りつぶして排出することができ、このセルフクリーニン
グ効果によって、スクリーンの目詰まりが無くなり、定
期的な洗浄工程を必要とせずに安定した濃縮を行なうこ
とができる。
As described above, according to the present invention, concentrated sludge containing flocculated floc can be re-pressed with a pump or the like without re-injection.
It can be injected into the dehydrator in the next process using the pressure of the sludge input system, so it can be applied to the sludge press-in type dehydrator, which was difficult to apply with the conventional open-air concentrator, without breaking the floc. It can supply concentrated sludge. Also,
The reversible obstruction, which causes an increase in the resistance of the filter medium, can be crushed and discharged by rotating the rotating plate relatively and continuously with respect to the fixed plate. Clogging is eliminated, and stable concentration can be performed without requiring a periodic washing step.

【0043】また、凝集汚泥の濃縮性に応じて演算器に
おける設定比率を調整し、凝集汚泥の濃縮性が低い程に
原汚泥流量に対する分離液流量の割合を大きくして分離
能力を高め、凝集汚泥の濃縮性が高い程に原汚泥流量に
対する分離液流量の割合を小さくして分離能力を抑制す
ることで、固形物の回収率を良好に維持できる。
The set ratio in the arithmetic unit is adjusted in accordance with the concentration of the coagulated sludge, and the lower the concentration of the coagulated sludge, the greater the ratio of the flow rate of the separated liquid to the flow of the raw sludge to increase the separation capacity. As the concentration of the sludge is higher, the ratio of the flow rate of the separation liquid to the flow rate of the raw sludge is reduced to suppress the separation ability, so that the solid matter recovery rate can be maintained better.

【0044】また、凝集汚泥の濃縮性に応じて演算器に
おける設定差圧を調整し、凝集汚泥の濃縮性が低い程に
反応槽の内部圧力と分離液排出系の内部圧力との差圧を
大きくして分離能力を高め、凝集汚泥の濃縮性が高い程
に反応槽の内部圧力と分離液排出系の内部圧力との差圧
を小さくして分離能力を抑制することで、固形物の回収
率を良好に維持できる。
The differential pressure set in the arithmetic unit is adjusted according to the concentration of the coagulated sludge, and the lower the concentration of the coagulated sludge, the lower the pressure difference between the internal pressure of the reaction tank and the internal pressure of the separated liquid discharge system. Recovering solids by increasing the separation capacity by increasing the concentration and reducing the differential pressure between the internal pressure of the reaction tank and the internal pressure of the separation liquid discharge system as the concentration of the coagulated sludge is higher The rate can be maintained well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における凝集反応槽を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing an agglutination reaction tank according to an embodiment of the present invention.

【図2】同実施の形態におけるろ過ユニットを示す斜視
図である。
FIG. 2 is a perspective view showing a filtration unit in the embodiment.

【図3】本発明の他の実施の形態における凝集反応槽を
示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing an agglutination reaction tank according to another embodiment of the present invention.

【図4】本発明の凝集反応槽の運転制御方法を示す模式
図である。
FIG. 4 is a schematic view showing an operation control method of the agglutination reaction tank of the present invention.

【図5】本発明の凝集反応槽の他の運転制御方法を示す
模式図である。
FIG. 5 is a schematic diagram showing another operation control method of the agglutination reaction tank of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 4 インペラ(攪拌羽根) 4a 駆動装置 5 ろ過ユニット 6 汚泥投入系 7 汚泥排出系 8 ろ液領域 9 分離液排出系 10 固定板 11 回転板 12 スペーサ 13 スクリーン 14 シール材 15 固定軸 16 可動軸 19 汚泥流量計 23 定量ポンプ 24 演算器 DESCRIPTION OF SYMBOLS 1 Reaction tank 4 Impeller (stirring blade) 4a Drive device 5 Filtration unit 6 Sludge introduction system 7 Sludge discharge system 8 Filtrate area 9 Separated liquid discharge system 10 Fixed plate 11 Rotating plate 12 Spacer 13 Screen 14 Sealing material 15 Fixed shaft 16 Movable Shaft 19 Sludge flow meter 23 Metering pump 24 Computing unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 29/09 B01D 29/46 A 29/62 C 29/46 Z C02F 11/12 D B01D 29/02 G C02F 11/12 29/38 580Z (72)発明者 大庭 真治 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 Fターム(参考) 4D059 AA06 BE15 BE31 BE56 CB09 DB11 EA02 EA11 EB02 EB11──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) B01D 29/09 B01D 29/46 A 29/62 C 29/46 Z C02F 11/12 D B01D 29/02 G C02F 11/12 29/38 580Z (72) Inventor Shinji Oba 1-47, Shishitsuhigashi 1-chome, Naniwa-ku, Osaka-shi, Osaka F-term (reference) 4D059 AA06 BE15 BE31 BE56 CB09 DB11 EA02 EA11 EB02 EB11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内部に密閉空間を形成する反応槽と、反
応槽内の軸心方向の一方側に形成する凝集領域に配置し
たインペラと、反応槽外に配置したインペラの駆動装置
と、反応槽内の軸心方向の他方側に形成する濃縮領域に
配置した筒状のろ過ユニットと、凝集領域に連通する汚
泥投入系と、濃縮領域に連通する汚泥排出系と、ろ過ユ
ニットのろ液領域に連通する分離液排出系とを備え、 ろ過ユニットは、複数のリング状の固定板と回転板とを
交互に積層するとともに、双方の相対向する板面間に所
定のスリットを形成するスペーサを介在させてスクリー
ンを構成し、スクリーンの上下端に配置するリング状の
シール材でスクリーンの外周囲に反応槽の壁面との間で
前記ろ液領域を形成し、各固定板および各スペーサを貫
通して配置する固定軸を前記シール材で固定保持し、各
回転板を貫通して配置する可動軸をインペラの駆動装置
もしくは別途に配置する駆動装置に連動連結したことを
特徴とする凝集反応槽。
1. A reaction tank forming an enclosed space therein, an impeller disposed in an agglomeration region formed on one side of the reaction tank in an axial direction, a driving device of the impeller disposed outside the reaction tank, A cylindrical filtration unit disposed in the concentration area formed on the other side in the axial direction in the tank, a sludge input system communicating with the coagulation area, a sludge discharge system communicating with the concentration area, and a filtrate area of the filtration unit. The filtration unit includes a plurality of ring-shaped fixed plates and a rotating plate that are alternately stacked, and a spacer that forms a predetermined slit between both opposed plate surfaces. A screen is formed with intervening, and the filtrate area is formed between the outer periphery of the screen and the wall surface of the reaction tank with a ring-shaped sealing material disposed at the upper and lower ends of the screen, and penetrates each fixing plate and each spacer. Fixed to place Flocculation reaction tank was held at the said sealing material, characterized in that the movable axis disposed through the respective rotating plates linked connected to a driving unit for driving device or separately arranged in the impeller of.
【請求項2】 汚泥投入系に介装する流量計と、分離液
排出系に介装する設定流量を可変調整可能な定量ポンプ
と、流量計の出力信号を受けて定量ポンプに設定流量を
指示する演算器とを備え、演算器は汚泥投入系から反応
槽に供給する原汚泥流量に対して分離液排出系を通して
反応槽から取出す分離液流量の割合を設定比率に制御す
ることを特徴とする請求項1に記載の凝集反応槽。
2. A flow meter interposed in a sludge introduction system, a fixed amount pump interposed in a separated liquid discharge system capable of variably adjusting a set flow amount, and instructing a set flow amount to the fixed amount pump upon receiving an output signal of the flow meter. A computing unit for controlling the ratio of the flow rate of the separated liquid taken out from the reaction tank through the separated liquid discharge system to the set amount of the raw sludge flow supplied to the reaction tank from the sludge input system. The agglutination reaction tank according to claim 1.
【請求項3】 反応槽と分離液排出系との間に介装する
差圧計と、分離液排出系に介装する設定圧力を可変調整
可能な圧力調整弁と、差圧計の出力信号を受けて圧力調
整弁に設定圧力を指示する演算器とを備え、演算器は反
応槽の内部圧力と分離液排出系の内部圧力との差圧を設
定差圧に制御することを特徴とする請求項1に記載の凝
集反応槽。
3. A differential pressure gauge interposed between the reaction tank and the separated liquid discharge system, a pressure adjusting valve variably adjustable for a set pressure interposed in the separated liquid discharge system, and an output signal of the differential pressure gauge. An arithmetic unit for instructing a set pressure to the pressure regulating valve, wherein the arithmetic unit controls a differential pressure between an internal pressure of the reaction tank and an internal pressure of the separated liquid discharge system to a set differential pressure. 2. The agglutination reaction tank according to 1.
JP2000221573A 2000-07-24 2000-07-24 Coagulation reactor Expired - Fee Related JP3877503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000221573A JP3877503B2 (en) 2000-07-24 2000-07-24 Coagulation reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221573A JP3877503B2 (en) 2000-07-24 2000-07-24 Coagulation reactor

Publications (2)

Publication Number Publication Date
JP2002035502A true JP2002035502A (en) 2002-02-05
JP3877503B2 JP3877503B2 (en) 2007-02-07

Family

ID=18715948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221573A Expired - Fee Related JP3877503B2 (en) 2000-07-24 2000-07-24 Coagulation reactor

Country Status (1)

Country Link
JP (1) JP3877503B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263670A (en) * 2005-03-25 2006-10-05 Nishihara Environment Technology Inc Solid-liquid separator
JP2006334523A (en) * 2005-06-02 2006-12-14 Japan Science & Technology Agency Apparatus for subjecting turbid water to solid-liquid separation
EP1743702A1 (en) * 2005-07-14 2007-01-17 Ecor S.r.l. Crushing apparatus for treating solid waste
JP2007029801A (en) * 2005-07-22 2007-02-08 Nishihara Environment Technology Inc Solid-liquid separator and solid-liquid separation system
JP2007054684A (en) * 2005-08-22 2007-03-08 Amukon Kk Sludge-flocculating device and sludge treatment apparatus having the same
JP2007090264A (en) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd Sludge concentration apparatus and method
JP2007326084A (en) * 2006-06-09 2007-12-20 Nishihara Environment Technology Inc Solid/liquid separation system
JP2008086959A (en) * 2006-10-04 2008-04-17 Fuji Xerox Co Ltd Particle separator, manufacturing device for electrostatic charge image development toner, and manufacturing method for this toner
KR100831926B1 (en) 2007-02-07 2008-05-23 주식회사 한강엔지니어링 Sludge and filtrate exhaust apparatus
JP2010513012A (en) * 2006-12-19 2010-04-30 アルカル フィルトレイション システムズ シー.エス.リミテッド Backflow self-cleaning fluid filter
KR101147828B1 (en) 2010-03-22 2012-05-18 주식회사 성진기계 sludge concentrating apparatus for water-treatment
JP2013022488A (en) * 2011-07-17 2013-02-04 Techno Plan:Kk Filtering type dehydrator
JP2014069125A (en) * 2012-09-28 2014-04-21 Justec Co Ltd Flocculation reaction apparatus and solid-liquid separation system
CN104860506A (en) * 2015-06-03 2015-08-26 河海大学 Sludge dehydrating equipment and dehydrating method
CN110655226A (en) * 2018-06-29 2020-01-07 贵州大学 Sewage treatment device convenient for collecting sewage
CN113248101A (en) * 2021-06-15 2021-08-13 山东恒基农牧机械有限公司 Sludge dewatering filtration equipment
CN116813154A (en) * 2023-08-28 2023-09-29 山西世洁环境科技有限公司 Circulating water treatment device of closed heat supply pipeline and treatment method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359277B (en) * 2020-02-14 2022-05-24 宿州清荷生态环保有限公司 Selectable sewage filtering device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263670A (en) * 2005-03-25 2006-10-05 Nishihara Environment Technology Inc Solid-liquid separator
JP2006334523A (en) * 2005-06-02 2006-12-14 Japan Science & Technology Agency Apparatus for subjecting turbid water to solid-liquid separation
JP4634228B2 (en) * 2005-06-02 2011-02-16 独立行政法人科学技術振興機構 Muddy water solid-liquid separator
EP1743702A1 (en) * 2005-07-14 2007-01-17 Ecor S.r.l. Crushing apparatus for treating solid waste
JP2007029801A (en) * 2005-07-22 2007-02-08 Nishihara Environment Technology Inc Solid-liquid separator and solid-liquid separation system
JP2007054684A (en) * 2005-08-22 2007-03-08 Amukon Kk Sludge-flocculating device and sludge treatment apparatus having the same
JP4569772B2 (en) * 2005-09-29 2010-10-27 栗田工業株式会社 Sludge concentration apparatus and sludge concentration method
JP2007090264A (en) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd Sludge concentration apparatus and method
JP2007326084A (en) * 2006-06-09 2007-12-20 Nishihara Environment Technology Inc Solid/liquid separation system
JP2008086959A (en) * 2006-10-04 2008-04-17 Fuji Xerox Co Ltd Particle separator, manufacturing device for electrostatic charge image development toner, and manufacturing method for this toner
JP2010513012A (en) * 2006-12-19 2010-04-30 アルカル フィルトレイション システムズ シー.エス.リミテッド Backflow self-cleaning fluid filter
KR100831926B1 (en) 2007-02-07 2008-05-23 주식회사 한강엔지니어링 Sludge and filtrate exhaust apparatus
KR101147828B1 (en) 2010-03-22 2012-05-18 주식회사 성진기계 sludge concentrating apparatus for water-treatment
JP2013022488A (en) * 2011-07-17 2013-02-04 Techno Plan:Kk Filtering type dehydrator
JP2014069125A (en) * 2012-09-28 2014-04-21 Justec Co Ltd Flocculation reaction apparatus and solid-liquid separation system
CN104860506A (en) * 2015-06-03 2015-08-26 河海大学 Sludge dehydrating equipment and dehydrating method
CN110655226A (en) * 2018-06-29 2020-01-07 贵州大学 Sewage treatment device convenient for collecting sewage
CN113248101A (en) * 2021-06-15 2021-08-13 山东恒基农牧机械有限公司 Sludge dewatering filtration equipment
CN116813154A (en) * 2023-08-28 2023-09-29 山西世洁环境科技有限公司 Circulating water treatment device of closed heat supply pipeline and treatment method thereof
CN116813154B (en) * 2023-08-28 2023-11-07 山西世洁环境科技有限公司 Circulating water treatment device of closed heat supply pipeline and treatment method thereof

Also Published As

Publication number Publication date
JP3877503B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP2002035502A (en) Flocculation reaction tank
EP1873123B1 (en) Sludge concentration device
EP2409956B1 (en) Concentrator-integrated screw press
JP4496489B2 (en) Method for controlling raw sludge supply amount of dehydrator and its control device
JP3570293B2 (en) Sludge thickener
JP2010058039A (en) Sludge dewatering apparatus and sludge dewatering method
JP3903070B1 (en) Sludge dewatering device and sludge dewatering method using sludge dewatering device
JP2004074066A (en) Rotary pressure dehydrator having control means
JP2010057997A (en) Sludge dewatering apparatus and method
JP4702358B2 (en) Screw press with concentration mechanism
WO2015107988A1 (en) Dehydration system for organic sludge
JP3680994B2 (en) Sewage sludge treatment method
CN113402150A (en) Magnetic coagulation sludge treatment process
JP3835988B2 (en) Coagulation reactor
JP5041298B2 (en) Operation control method of screw press connected to rotary concentrator
JP2008221112A (en) Coagulation mixing tank and sludge dehydration device
JP2010247043A5 (en)
JP2010247044A5 (en)
JP2826990B2 (en) Solid-liquid separator
KR200417005Y1 (en) Cohesion mixing device having screen tank
JP5240232B2 (en) Control system and control device
JP3779236B2 (en) Screw type filter dehydrator
JP2018099658A (en) Sludge dehydration system and method
JP4868286B2 (en) Multiple flow screw press constant flow control method and constant flow control device
JP4953099B2 (en) Screw press with agglomeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees