JP2007029801A - Solid-liquid separator and solid-liquid separation system - Google Patents

Solid-liquid separator and solid-liquid separation system Download PDF

Info

Publication number
JP2007029801A
JP2007029801A JP2005213542A JP2005213542A JP2007029801A JP 2007029801 A JP2007029801 A JP 2007029801A JP 2005213542 A JP2005213542 A JP 2005213542A JP 2005213542 A JP2005213542 A JP 2005213542A JP 2007029801 A JP2007029801 A JP 2007029801A
Authority
JP
Japan
Prior art keywords
solid
liquid
liquid separation
concentrated
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213542A
Other languages
Japanese (ja)
Other versions
JP4765045B2 (en
Inventor
Yoshiyuki Sugawara
良行 菅原
Takahiro Ito
貴浩 伊藤
Noboru Shibazaki
登 柴崎
Kensaku Morikawa
謙作 森川
Shinsuke Koseki
進介 小関
Sansuke Ochi
三介 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2005213542A priority Critical patent/JP4765045B2/en
Publication of JP2007029801A publication Critical patent/JP2007029801A/en
Application granted granted Critical
Publication of JP4765045B2 publication Critical patent/JP4765045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-liquid separator which enhances the quality of a separation liquid and reduces the installation area, the installation cost, the electric power cost, and the maintenance and administration cost. <P>SOLUTION: The solid-liquid separator is provided with a water tank, a rotation tube where the raw liquid flows in, a driving means to rotate the rotation tube at a low speed, which is arranged in the water tank and has a plurality of gaps, a solid-liquid separation tank to conduct the solid-liquid separation of the raw liquid and a concentrated liquid reservoir to reserve the concentrated liquid, which is arranged next to the solid-liquid separator and communicates with the same. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、下水、産業廃水、農業集落排水、雨水などの汚濁水、生物処理槽混合液、汚濁水を処理した際に発生する汚泥(生物処理系余剰汚泥や凝集汚泥)等を固液分離する固液分離装置、およびこの固液分離装置等で生じた濃縮液や濃縮汚泥を更に固液分離する装置を備えた固液分離システムに関するものである。   The present invention provides solid-liquid separation of sewage, industrial wastewater, agricultural wastewater, sewage water such as rainwater, biological treatment tank mixed liquid, sludge (biological treatment system surplus sludge and coagulated sludge) generated when the sewage water is treated The present invention relates to a solid-liquid separation system provided with a device for further solid-liquid separation of a concentrated liquid and concentrated sludge generated in the solid-liquid separation apparatus and the like.

従来、固液分離の対象となる汚濁水は、フィルタなどを使用した一次処理において夾雑物が除去され、活性汚泥法などを利用した二次処理において下層の生物系汚泥と上層の上澄水に固液分離される。また、汚濁水を処理した際に発生する汚泥は、主に減量化を目的に濃縮汚泥と分離水に固液分離される。これらの固液分離において用いられる固液分離装置は、重力式と機械式に大別される。重力式固液分離装置は一般的なものとされ、重力濃縮槽、凝集濃縮槽、沈殿槽などの槽が使用される。このような重力式固液分離装置では、汚濁水や汚泥に凝集剤などの薬品が注入され、汚泥のフロック化が促進される。そして、槽内では汚泥フロックが重力によって沈降し、分離した上澄水や分離水が排出される。   Conventionally, polluted water that is subject to solid-liquid separation is free of contaminants in the primary treatment using a filter, etc., and solidified in the lower biological biological sludge and the upper supernatant water in the secondary treatment using the activated sludge method. Liquid separation. The sludge generated when the contaminated water is treated is solid-liquid separated into concentrated sludge and separated water mainly for the purpose of reducing the amount. Solid-liquid separation devices used in these solid-liquid separations are roughly classified into gravity type and mechanical type. Gravity type solid-liquid separators are generally used, and tanks such as gravity concentration tanks, coagulation concentration tanks, and precipitation tanks are used. In such a gravity type solid-liquid separator, chemicals such as a flocculant are injected into the polluted water or sludge, and the flocs of the sludge are promoted. And in the tank, the sludge floc settles by gravity, and the separated supernatant water and separated water are discharged.

他方、機械式固液分離装置には、遠心式、常圧浮上式、スクリーン(ベルト)式などがあるが、遠心分離法を採用している場合が多い。遠心式固液分離装置は(薬品注入は任意)、比重が1よりも大きな汚泥を回転させて分離するものである。常圧浮上式固液分離装置は、薬品や起泡剤を用いて汚泥に微細な気泡を付着させ、汚泥の見かけ上の比重を1よりも小さくして汚泥を強制的に浮上させて固液分離するものである。スクリーン式固液分離装置は、薬品を用いると共に金属フィルタや濾布を用いて固液分離するものであり、設備費や電力費が安いことから近年多用されている。   On the other hand, mechanical solid-liquid separators include a centrifugal type, a normal pressure levitation type, a screen (belt) type, etc., but the centrifugal separation method is often employed. Centrifugal solid-liquid separation devices (chemical injection is optional) are those that rotate and separate sludge having a specific gravity greater than 1. The normal pressure flotation type solid-liquid separation device attaches fine bubbles to sludge using chemicals and foaming agents, makes the apparent specific gravity of sludge smaller than 1 and forcibly raises sludge to solid-liquid. To separate. The screen-type solid-liquid separation apparatus is used frequently in recent years because it uses chemicals and performs solid-liquid separation using a metal filter or a filter cloth, and has low equipment costs and power costs.

この種のスクリーン式固液分離装置の一例として、特開2001−170403号公報に開示されたスクリーン濃縮機がある。このスクリーン濃縮機は、潜流堰と越流堰によって流入槽、混和槽、および分離槽に区画されている。流入槽には沈殿池等からの管路が導かれ、混和槽には撹拌機が配置され、分離槽にはスクリーン装置が配置されている。そして、スクリーン装置は、汚泥フロックを捕捉するバースクリーン、このバースクリーンによって捕捉された汚泥フロックを掻き揚げるレーキ部、およびこのレーキ部をバースクリーンに沿って移動させる駆動装置によって構成されている(例えば、特許文献1参照)。   As an example of this type of screen type solid-liquid separator, there is a screen concentrator disclosed in Japanese Patent Application Laid-Open No. 2001-170403. This screen concentrator is divided into an inflow tank, a mixing tank, and a separation tank by a submerged weir and an overflow weir. A pipe line from a sedimentation tank or the like is led to the inflow tank, a stirrer is disposed in the mixing tank, and a screen device is disposed in the separation tank. The screen device includes a bar screen that captures the sludge floc, a rake portion that lifts up the sludge floc captured by the bar screen, and a drive device that moves the rake portion along the bar screen (for example, , See Patent Document 1).

特開2001−170403号公報(段落0011〜0014、および図3)JP 2001-170403 A (paragraphs 0011 to 0014 and FIG. 3)

従来の重力式固液分離装置は、動力費等が安い反面、濃縮液(濃縮汚泥)濃度が低く、設置面積が大きくなってしまう。また、薬品を注入しない場合に分離液の水質が悪く、薬品を注入した場合には分離液の水質が良好になるが薬品代などランニングコストの上昇等を招く。従来の遠心式固液分離装置は、安定した分離性能(制御性)が得られる反面、設備費や動力費が高くなってしまう。また、上記同様に薬品を注入しない場合には分離液の水質が悪く、薬品を注入した場合には分離液の水質が良好になるが薬品代などランニングコストの上昇等を招く。従来の常圧浮上式固液分離装置は、分離液の水質が極めて良好である反面、設備費や維持管理費が高いばかりでなく、複数種の薬品が必要となることにより薬品費が高く負担が大きくなってしまう。そして、従来のスクリーン式固液分離装置は、設備費や動力費が安い反面、薬品費が高いうえに、分離液の水質が悪く、更にはスクリーンを洗浄するために多量の水が必要となる。   Conventional gravity solid-liquid separators have low power costs, but have a low concentration of concentrated liquid (concentrated sludge) and a large installation area. In addition, when the chemical is not injected, the water quality of the separation liquid is poor, and when the chemical is injected, the water quality of the separation liquid is improved, but the running cost such as chemical cost is increased. A conventional centrifugal solid-liquid separation device can provide stable separation performance (controllability), but increases equipment costs and power costs. Further, as described above, when the chemical is not injected, the water quality of the separation liquid is poor. When the chemical is injected, the water quality of the separation liquid is improved, but the running cost such as chemical cost is increased. Conventional atmospheric levitation solid-liquid separators have extremely good separation water quality, but they are not only high in equipment and maintenance costs, but also incur high chemical costs due to the need for multiple types of chemicals. Will become bigger. The conventional screen-type solid-liquid separation device is low in equipment cost and power cost, but has a high chemical cost, and the water quality of the separated liquid is poor. Furthermore, a large amount of water is required to wash the screen. .

この発明の目的は、上記のような課題を解決するためになされたもので、分離性能(制御性、分離液の水質、固形物の回収率など)の向上および安定化、省スペース化、イニシャルコスト(設備費など)やランニングコスト(動力費、薬品代、維持管理費など)の低減化を可能にする固液分離装置および固液分離システムを得るものである。   The object of the present invention is to solve the above-mentioned problems, and the improvement and stabilization of separation performance (controllability, water quality of separation liquid, recovery rate of solids, etc.), space saving, and initials. A solid-liquid separation apparatus and a solid-liquid separation system that can reduce costs (equipment costs, etc.) and running costs (power costs, chemical costs, maintenance costs, etc.) are obtained.

この発明に係る固液分離装置は、水槽、該水槽内に配設され、複数の間隙を有すると共に原液が流入する回転筒および該回転筒を低速で回転させる駆動手段を備え、原液を固液分離する固液分離槽と、該固液分離槽に隣接して配設されると共に連通し、濃縮液を貯留する濃縮液貯留器とからなることを特徴とするものである。   A solid-liquid separation device according to the present invention includes a water tank, a rotating cylinder that is disposed in the water tank, has a plurality of gaps, and into which the stock solution flows, and a driving unit that rotates the rotary cylinder at a low speed. It is characterized by comprising a solid-liquid separation tank to be separated and a concentrated liquid reservoir that is disposed adjacent to and communicates with the solid-liquid separation tank and stores the concentrated liquid.

この発明に係る固液分離システムは、水槽、該水槽内に配設され、複数の間隙を有すると共に原液が流入する回転筒および該回転筒を低速で回転させる駆動手段を備え、原液を固液分離する固液分離槽と、該固液分離槽に隣接して配設されると共に連通し、濃縮液を貯留する濃縮液貯留器と、該濃縮液貯留器から供給される濃縮液を固液分離する固液分離機とからなることを特徴とするものである。   A solid-liquid separation system according to the present invention includes a water tank, a rotating cylinder that is disposed in the water tank, has a plurality of gaps, and into which the stock solution flows, and a driving unit that rotates the rotary cylinder at a low speed. A solid-liquid separation tank to be separated; a concentrated liquid reservoir which is disposed adjacent to and communicates with the solid-liquid separation tank and stores the concentrated liquid; and the concentrated liquid supplied from the concentrated liquid reservoir It consists of a solid-liquid separator to separate.

この発明に係る固液分離システムは、水槽、該水槽内に配設され、複数の間隙を有すると共に原液が流入する回転筒および該回転筒を低速で回転させる駆動手段を備え、原液を固液分離する固液分離槽と、該固液分離槽に連通し、濃縮液を貯留する濃縮液貯留器と、該濃縮液貯留器から供給される濃縮液を固液分離する固液分離機とからなることを特徴とするものである。   A solid-liquid separation system according to the present invention includes a water tank, a rotating cylinder that is disposed in the water tank, has a plurality of gaps, and into which the stock solution flows, and a driving unit that rotates the rotary cylinder at a low speed. A solid-liquid separation tank that separates, a concentrate storage that communicates with the solid-liquid separation tank and stores the concentrate, and a solid-liquid separator that separates the concentrate supplied from the concentrate storage It is characterized by.

この発明に係る固液分離装置は、固液分離する原液が水槽内に配設されている回転筒に流入するように構成されることにより、この回転筒の内壁面全体が固液分離面として機能し、コンパクトな装置であるにもかかわらず分離面積を広く取ることができ、分離効率が向上し、汚泥フロックが効率よく速やかに分離すると共に、分離水の水質も安定して良好となる。さらに、駆動部が少ないため、設備費もランニングコストも低く抑えられ、かつ維持管理がし易い。   The solid-liquid separation device according to the present invention is configured such that the stock solution for solid-liquid separation flows into a rotating cylinder disposed in the water tank, so that the entire inner wall surface of the rotating cylinder serves as a solid-liquid separating surface. Although it functions and is a compact device, a large separation area can be obtained, the separation efficiency is improved, the sludge floc is separated quickly and efficiently, and the quality of the separated water is also stable and good. Furthermore, since there are few drive parts, both equipment cost and running cost are kept low, and maintenance is easy.

この発明に係る固液分離装置は、前述の如く原液を効率よく安定して濃縮でき、得られた濃縮液を固液分離槽に隣接して配置され、連通する濃縮液貯留器に貯留保持できるため、濃縮液を不要に撹乱させることなく、濃縮液を次段処理へ移行させることができる。また、濃縮液貯留器を固液分離槽に隣接して配置されているため、より省スペース化することができ、小規模な処理施設にも適合できる。   The solid-liquid separation apparatus according to the present invention can concentrate the stock solution efficiently and stably as described above, and the obtained concentrated liquid can be stored adjacent to the solid-liquid separation tank and stored in a concentrated liquid reservoir. Therefore, the concentrate can be transferred to the next stage treatment without unnecessarily disturbing the concentrate. Further, since the concentrated liquid reservoir is disposed adjacent to the solid-liquid separation tank, it is possible to save more space and adapt to a small-scale processing facility.

この発明に係る固液分離装置は、濃縮液貯留器に水面下で開口する吸気管および水面上で開口する排気管を有することにより、所謂「マリオット瓶の原理」を呈する構成となり、定圧整流装置として濃縮液貯留器内の濃縮液を撹乱(汚泥フロックの破壊等)することなく外部に移送することができ、別途定量ポンプなどの機械装置を必要とせず、建設費や設備費やランニングコストの低減化が図れる。   The solid-liquid separation device according to the present invention has a so-called “Marriott bottle principle” by having an intake pipe that opens below the water surface and an exhaust pipe that opens above the water surface in the concentrate reservoir. As a result, the concentrated liquid in the concentrated liquid reservoir can be transferred to the outside without being disturbed (sludge floc destruction, etc.), and requires no mechanical equipment such as a metering pump. Reduction can be achieved.

この発明に係る固液分離システムは、上記固液分離装置とこの固液分離装置で得られた濃縮液を濃縮または脱水する固液分離機とで構成されることにより、前述の如く原液を効率よく安定して濃縮でき、得られた濃縮液を不要に撹乱させることなく固液分離槽に隣接して配置され、連通する濃縮液貯留器に貯留保持でき、この濃縮液をスムーズに固液分離機で濃縮または脱水できるため、効率よく安定して濃縮液を更に高濃度化または脱水ケーキ化することができ、原液を大幅に減量化し、その後の処理も容易になる。また、固液分離装置と固液分離機で通常処理と同等以上の濃縮効果や脱水効果が得られるため、省スペース化、設備費やランニングコストの低減化が図れる。   The solid-liquid separation system according to the present invention comprises the solid-liquid separation device and a solid-liquid separator that concentrates or dehydrates the concentrated liquid obtained by the solid-liquid separation device. It can be concentrated well and stably, and it is placed adjacent to the solid-liquid separation tank without unnecessarily disturbing the obtained concentrated liquid, and can be stored and held in a concentrating liquid reservoir that communicates smoothly. Since the concentrate can be concentrated or dehydrated by the machine, the concentrated solution can be further concentrated or made into a dehydrated cake efficiently and stably, the stock solution can be greatly reduced, and the subsequent processing is facilitated. In addition, since the solid-liquid separator and the solid-liquid separator can provide a concentration effect and dehydration effect equivalent to or higher than those of normal processing, it is possible to save space and reduce equipment costs and running costs.

この発明に係る固液分離システムは、上記固液分離槽と固液分離槽に連通する濃縮液貯留器と濃縮液を濃縮または脱水する濃縮機とで構成されることにより、前述の如く原液を効率よく安定して濃縮でき、得られた濃縮液を不要に撹乱させることなく連通する濃縮液貯留器に貯留保持でき、この濃縮液をスムーズに固液分離機で濃縮または脱水できるため、効率よく安定して濃縮液を更に高濃度化または脱水ケーキ化することができ、原液を大幅に減量化し、その後の処理も容易になる。また、濃縮液貯留器は処理施設の既設槽(タンク)類を流用することができ、建設費や設備費やランニングコストの低減化が図れる。
この発明に係る固液分離システムは、固液分離機から排出される分離液を回転筒へ返送する分離液返送管を有することにより、SS分(汚泥フロック)が多く混入する分離液を固液分離性能が高く分離水の水質が良好な固液分離槽に移流させ固液分離することができるため、SS分(汚泥フロック)が系外に排出することを防止でき、返流水対策にも有効である。
The solid-liquid separation system according to the present invention comprises the above-described solid-liquid separation tank, a concentrated liquid reservoir communicating with the solid-liquid separation tank, and a concentrator for concentrating or dehydrating the concentrated liquid. It can be concentrated efficiently and stably, and the obtained concentrate can be stored and held in a condensate reservoir that communicates without unnecessarily disturbing, and this concentrate can be concentrated or dehydrated smoothly in a solid-liquid separator. The concentrated solution can be stably further concentrated or made into a dehydrated cake, the stock solution can be greatly reduced, and subsequent processing is facilitated. In addition, the concentrated liquid reservoir can divert existing tanks (tanks) of the processing facility, and the construction cost, equipment cost and running cost can be reduced.
The solid-liquid separation system according to the present invention has a separation liquid return pipe for returning the separation liquid discharged from the solid-liquid separator to the rotating cylinder, so that the separation liquid containing a large amount of SS (sludge floc) is mixed with the solid-liquid separation system. Since it can be transferred to a solid-liquid separation tank with high separation performance and good quality of separated water, it can be separated into solid-liquid separation, so it is possible to prevent SS (sludge floc) from being discharged out of the system, and it is also effective as a countermeasure for returning water It is.

この発明に係る固液分離システムは、固液分離槽での分離性能が優れているため、後段の固液分離機の水量負荷が大幅に減少させることができ、固液分離機の小型化や固液分離機を洗浄する洗浄水量を低減することができる。さらに、固液分離機を洗浄する洗浄水を良好な水質の固液分離槽の分離水を活用できるため、水道使用量を大幅に低減することもできる。   Since the solid-liquid separation system according to the present invention has excellent separation performance in the solid-liquid separation tank, it is possible to greatly reduce the water load of the subsequent solid-liquid separator, and to reduce the size of the solid-liquid separator. The amount of washing water for washing the solid-liquid separator can be reduced. Furthermore, since the water used for washing the solid-liquid separator can be separated water from a solid-liquid separation tank with good water quality, the amount of water used can be greatly reduced.

この発明に係る固液分離システムは、隣接して配設するか否かを問わず、濃縮液貯留器に水面下で開口する吸気管および水面上で開口する排気管を有することにより、所謂「マリオット瓶の原理」を呈する構成となり、定圧整流装置として濃縮液貯留器内の濃縮液を撹乱(汚泥フロックの破壊)させることなく固液分離機に供給することができ、固液分離機での効率的で安定した固液分離を行うことがきるばかりか、別途定量ポンプなどの機械装置を必要とせず、建設費や設備費やランニングコストの低減化が図れる。   The solid-liquid separation system according to the present invention has a so-called "" by having an intake pipe that opens below the water surface and an exhaust pipe that opens above the water surface in the concentrate reservoir, regardless of whether they are disposed adjacent to each other. As a constant-pressure rectifier, the concentrate in the concentrate reservoir can be supplied to the solid-liquid separator without disturbing (sludge floc destruction). Not only can efficient and stable solid-liquid separation be performed, but a mechanical device such as a metering pump is not required, and construction costs, equipment costs, and running costs can be reduced.

この発明に係る固液分離システムは、固液分離槽で安定かつ良好な固液分離ができるため、後段において脱水機または濃縮機で効率よく濃縮液を脱水または濃縮することができる。   Since the solid-liquid separation system according to the present invention can perform stable and good solid-liquid separation in the solid-liquid separation tank, the concentrated liquid can be efficiently dehydrated or concentrated by a dehydrator or a concentrator in the subsequent stage.

実施の形態1.
図1は、この発明を実施するための実施の形態1における固液分離装置を説明するための図である。この固液分離装置は、固液分離槽1と濃縮液貯留器2によって構成してある。固液分離槽1は、下水、産業廃水、農業集落排水、雨水などの汚濁水、生物処理槽混合液、汚濁水を処理した際に発生する汚泥等(以下、原液という)を濃縮液や濃縮汚泥と分離水とに固液分離するものとしてある。原液は初沈汚泥、生物処理系汚泥、消化汚泥、凝集汚泥などの汚泥を対象とする固液分離に好適であり、もちろん通常の下廃水などの汚濁水、生物処理槽混合液(曝気槽混合液など)、雨水や雨天時越流水のような低濃度排水など液体の固液分離にも適している。濃縮液貯留器2は、固液分離槽1で生じた濃縮液(濃縮汚泥)を撹乱したり汚泥フロック破壊したりしないようにスムーズに導いて貯留するものとしてある。固液分離槽1で生じた濃縮液(濃縮汚泥)の濃度は、限定するわけでないが、例えば2〜3%程度の中濃度とすることができる。なお、固液分離槽で分離される液体を「分離水」と表現し、後述の固液分離機で分離される液体を「分離液」と統一して使用する。
Embodiment 1 FIG.
FIG. 1 is a diagram for explaining a solid-liquid separation apparatus according to Embodiment 1 for carrying out the present invention. This solid-liquid separator is constituted by a solid-liquid separation tank 1 and a concentrated liquid reservoir 2. The solid-liquid separation tank 1 concentrates or concentrates sewage, industrial wastewater, agricultural wastewater, contaminated water such as rainwater, biological treatment tank mixed liquid, sludge generated when the contaminated water is treated (hereinafter referred to as undiluted liquid). Solid-liquid separation is performed between sludge and separated water. The undiluted solution is suitable for solid-liquid separation targeting sludge such as primary sedimentation sludge, biological treatment sludge, digested sludge, and coagulated sludge. Of course, normal sewage and other contaminated water, biological treatment tank mixture (aeration tank mixing) It is also suitable for solid-liquid separation of liquids such as low-concentration wastewater such as rainwater and rainwater overflowing water. The concentrated liquid reservoir 2 is configured to smoothly guide and store the concentrated liquid (concentrated sludge) generated in the solid-liquid separation tank 1 so as not to disturb or destroy the sludge floc. The concentration of the concentrated liquid (concentrated sludge) generated in the solid-liquid separation tank 1 is not limited, but can be a medium concentration of about 2 to 3%, for example. The liquid separated in the solid-liquid separation tank is expressed as “separated water”, and the liquid separated in the solid-liquid separator described later is used as “separated liquid”.

固液分離槽1は、平面円形で下方に向かって縮径する水槽3を備え、この水槽3には原液が流入管4を介して流入するようにしてある。水槽3は、例えば既設の汚水処理施設の最終沈殿槽とすることができるが、その形状や位置付けは限定するものでない。水槽3の内部には、原液の固液分離を促進するための回転筒5を流入管4からの原液が流入するように配置してある。また、原液には、原液中に含まれる懸濁物質や汚泥を凝集させて固液分離しやすいように凝集剤(薬品)Fを固液分離槽1に流入する前に注入するようにしてある。凝集剤Fとしては、高分子凝集剤、無機凝集剤、またはそれらの混合液とすることができ、無機凝集剤はポリ塩化鉄、PACなどとすることができる。なお、固液分離槽1に流入する原液は、フィルタなどによって夾雑物を除去(一次処理)したものとするのが好ましい。   The solid-liquid separation tank 1 is provided with a water tank 3 which is a flat circular shape and is reduced in diameter downward, and the stock solution flows into the water tank 3 through an inflow pipe 4. Although the water tank 3 can be used as the final sedimentation tank of an existing sewage treatment facility, for example, its shape and positioning are not limited. Inside the water tank 3, a rotating cylinder 5 for promoting solid-liquid separation of the stock solution is arranged so that the stock solution from the inflow pipe 4 flows. In addition, a flocculant (chemical) F is injected into the stock solution before it flows into the solid-liquid separation tank 1 so that the suspended matter and sludge contained in the stock solution can be agglomerated for easy solid-liquid separation. . The flocculant F can be a polymer flocculant, an inorganic flocculant, or a mixture thereof, and the inorganic flocculant can be polyiron chloride, PAC, or the like. In addition, it is preferable that the undiluted | mixed solution which flows in into the solid-liquid separation tank 1 removes impurities (primary process) with the filter etc.

水槽3は、好ましい構造の一つとして最上部にあって最も大径の大径ストレート部3a、この大径ストレート部3aの下端から下方に向かって縮径する大径テーパ部3b、このテーパ部の下端から下方に延びる小径ストレート部3c、および小径ストレート部3cの下端から下方に向かって縮径する小径テーパ部3dによって構成してある。上記回転筒5は大径ストレート部3aと大径テーパ部3bに配置してある。大径ストレート部3aの上部に越流堰6を設け、この越流堰6を越流した分離水は図示しない流出管に流出させるようにしてある。小径テーパ部3dの最下部には移送管7の一端を接続し、その他端を濃縮液貯留器2に接続し、移送管7には開閉弁8を配設してある。そして、濃縮液貯留器2に貯留した濃縮液は、排出弁9を備えた排出管10によって任意の箇所、例えば脱水機、濃縮機などの固液分離機に排出するようにしてある。   As one preferred structure, the water tank 3 has a large diameter straight portion 3a having the largest diameter and the largest diameter, a large diameter tapered portion 3b having a diameter decreasing downward from the lower end of the large diameter straight portion 3a, and the tapered portion. The small-diameter straight portion 3c extending downward from the lower end thereof, and the small-diameter tapered portion 3d that decreases in diameter downward from the lower end of the small-diameter straight portion 3c. The rotary cylinder 5 is disposed in the large diameter straight portion 3a and the large diameter taper portion 3b. An overflow weir 6 is provided in the upper part of the large-diameter straight portion 3a, and the separated water that has overflowed the overflow weir 6 flows out to an outflow pipe (not shown). One end of the transfer pipe 7 is connected to the lowermost portion of the small diameter taper portion 3d, the other end is connected to the concentrated liquid reservoir 2, and an open / close valve 8 is provided in the transfer pipe 7. The concentrated liquid stored in the concentrated liquid reservoir 2 is discharged to an arbitrary location, for example, a solid-liquid separator such as a dehydrator or a concentrator, by a discharge pipe 10 provided with a discharge valve 9.

回転筒5は、駆動手段によって回転し、内部に導入された原液に含まれる懸濁物質や汚泥フロックを内部に保持し、分離水が間隙から抜け出るようにしてある。この回転筒5は、軸線を鉛直方向に向けて設置した回転軸11、この回転軸11に上下の間隔を置いて取り付けた上部補強帯12と下部補強帯13、これらの上部補強帯12と下部補強帯13にスリット(間隙)14を設けてそれぞれ支持した複数枚の回転羽根15、および回転軸11を回転駆動する電動モータや減速機などの駆動手段16によって構成してある。そして、回転筒5の上部の中央には汚泥を回転筒5の中央に誘導する漏斗状の誘導器(フィードパイプ)17を設け、回転軸11の下端部には濃縮液を移送管7側に掻き寄せる掻寄機18を取り付けてある。なお、回転筒5の形状は、原液の固液分離ができ回転し易いものであれば、円柱形でも円錐形でも多角形でもかまわない。   The rotating cylinder 5 is rotated by driving means to hold suspended substances and sludge floc contained in the stock solution introduced therein so that the separated water escapes from the gap. The rotary cylinder 5 includes a rotary shaft 11 having an axis line oriented in the vertical direction, an upper reinforcing band 12 and a lower reinforcing band 13 attached to the rotary shaft 11 with a vertical interval therebetween, and the upper reinforcing band 12 and the lower part. The reinforcing band 13 is provided with a plurality of rotating blades 15 each provided with a slit (gap) 14 and a driving means 16 such as an electric motor or a speed reducer for rotating the rotating shaft 11. A funnel-shaped inductor (feed pipe) 17 that guides sludge to the center of the rotating cylinder 5 is provided at the center of the upper part of the rotating cylinder 5, and the concentrated liquid is disposed on the transfer pipe 7 side at the lower end of the rotating shaft 11. A scraper 18 for scraping is attached. The shape of the rotating cylinder 5 may be cylindrical, conical, or polygonal as long as the stock solution can be separated into solid and liquid and can be easily rotated.

各回転羽根15の形状は、回転によって汚泥フロックを内部に保持し易い形状、例えば水平断面形状が「くの字」状で短冊としてある。この回転羽根15は鉛直方向に伸びるものであり、これに伴いスリット14も鉛直方向に延在する。このようなスリット14の幅は5〜100mmとすることができるが、この実施の形態1では10mm程度としてある。なお、回転羽根15の形状やスリット14の幅は、回転羽根15の回転によって汚泥フロックを内部に保持し易く、分離水が滞りなく排出される形状であれば、限定されるものではない。また、回転羽根15の材質も限定しないが、鋼、ステンレス鋼、プラスチック、塩化ビニールなどとすることができる。   The shape of each rotary blade 15 is a shape that makes it easy to hold the sludge floc inside by rotation, for example, the horizontal cross-sectional shape is a “U” shape and is a strip. The rotary blade 15 extends in the vertical direction, and the slit 14 extends in the vertical direction accordingly. The width of such a slit 14 can be 5 to 100 mm, but in this Embodiment 1, it is about 10 mm. The shape of the rotary blade 15 and the width of the slit 14 are not limited as long as the sludge floc is easily held inside by the rotation of the rotary blade 15 and the separated water is discharged without stagnation. Moreover, although the material of the rotary blade 15 is not limited, steel, stainless steel, plastic, vinyl chloride, or the like can be used.

回転筒5の回転数は、水槽3の直径、回転筒5の直径、原液の性状、濃縮液の粘性などのバランスを考慮して決定されるものであり、この実施の形態1では例えば10rpm程度の低速としてある。なお、回転筒5の回転数は、上記要素(因子)に応じて決めることが好ましく、1〜2rpmとする場合もあるし、20〜30rpmとする場合もあり、いずれにしろ固液分離に支障を来さない低速であればかまわない。   The number of rotations of the rotating cylinder 5 is determined in consideration of the balance of the diameter of the water tank 3, the diameter of the rotating cylinder 5, the properties of the stock solution, the viscosity of the concentrated liquid, etc. In the first embodiment, for example, about 10 rpm. As a low speed. The number of rotations of the rotating cylinder 5 is preferably determined according to the above factors (factors), and may be 1 to 2 rpm or 20 to 30 rpm. It doesn't matter if the speed is low.

誘導器17は、上部に位置して原液を受ける錘状管部17aと、この錘状管部17aの最下部から鉛直下方に延びる直状管部17bによって構成し、この直状管部17bの下端を原液の流出口17cとしてある。誘導器17の軸線は回転筒5の軸線に一致させ、誘導器17の流出口17cは回転筒5の上下方向のほぼ中間に位置させて、原液は誘導器17の流出口17cから下方に向けて流出させるようにしてある。なお、誘導器17の構成や、その流出口17cの位置は、原液を回転筒にスムーズに導入できるものであれば限定されるものではない。また、原液性状によっては凝集剤(高分子凝集剤)Fを添加せず処理してもかまわない。   The inductor 17 is configured by a conical tube portion 17a that is located at the top and receives the undiluted solution, and a straight tube portion 17b that extends vertically downward from the lowest portion of the conical tube portion 17a. The lower end serves as a stock solution outlet 17c. The axis of the inductor 17 is aligned with the axis of the rotary cylinder 5, the outlet 17 c of the inductor 17 is positioned approximately in the middle of the vertical direction of the rotary cylinder 5, and the stock solution is directed downward from the outlet 17 c of the inductor 17. And let it flow out. The configuration of the inductor 17 and the position of the outlet 17c are not limited as long as the stock solution can be smoothly introduced into the rotating cylinder. Further, depending on the properties of the stock solution, it may be processed without adding the flocculant (polymer flocculant) F.

例えば、図2に示すように、誘導器21は上記誘導器17と同様な錐状管部21aと直状管部21bによって構成し、この直状管部21bの下端を閉塞させるとともに直状管部21bに多数の孔21cを形成し、原液を横方向に向けて分散流出させるように構成することができる。また、図3に示すように、誘導器22は原液が当るように上部に配置した平坦な邪魔板23と、この邪魔板23で飛散した原液を誘導するように配置した錘状体24によって構成することができる。さらに、図4に示すように、誘導器25は原液を下方に向けて拡散させるような末広がりの筒体によって構成することができる。   For example, as shown in FIG. 2, the inductor 21 is constituted by a conical tube portion 21a and a straight tube portion 21b similar to the inductor 17, and the lower end of the straight tube portion 21b is closed and the straight tube is formed. A large number of holes 21c can be formed in the portion 21b, and the stock solution can be configured to be dispersed and discharged in the lateral direction. Further, as shown in FIG. 3, the inductor 22 is constituted by a flat baffle plate 23 arranged at the upper part so that the stock solution can hit and a weight-like body 24 arranged so as to guide the stock solution scattered by the baffle plate 23. can do. Furthermore, as shown in FIG. 4, the inductor 25 can be configured by a cylindrical body that spreads toward the bottom so that the stock solution is diffused downward.

ここで、濃縮液貯留器2は、設置面積を少なくする(省スペース化、コンパクト化)ため、水槽3の外周面を隣接して囲むように配置し、上記移送管7によって水槽3と連通させてある。したがって、固液分離槽1と濃縮液貯留器2とは、平面視して二重の円を形作っている。この場合に、濃縮液貯留器2の内周面2aの上部にテーパ面2bを設け、このテーパ面2bを水槽3の大径テーパ部3bに当接させ固液分離槽と一体形成することにより、濃縮液貯留器2の外径を小さくでき、コンパクトな固液分離装置となっている。そして、この濃縮液貯留器2は、固液分離槽1から濃縮液を間欠的(例えば2〜30分毎)に流入させ、流入した濃縮液の濃度をほぼ均等にして貯留し、貯留した濃縮液を撹乱したり汚泥フロック破壊(微細フロック化)したりせず排出するように構成してある。したがって、濃縮液の移送はポンプなどの機械的な移送手段を用いることなく自然力(重力)によって行い、濃縮液は開閉弁8を開くだけで固液分離槽1から濃縮液貯留器2にスムーズに移流し、排出弁9を開くだけで濃縮液貯留器2から流出するようにしてある。   Here, in order to reduce the installation area (space saving and downsizing), the concentrated liquid reservoir 2 is arranged so as to surround the outer peripheral surface of the water tank 3 adjacently, and communicated with the water tank 3 by the transfer pipe 7. It is. Therefore, the solid-liquid separation tank 1 and the concentrated liquid reservoir 2 form a double circle in plan view. In this case, a tapered surface 2b is provided on the upper part of the inner peripheral surface 2a of the concentrate reservoir 2, and this tapered surface 2b is brought into contact with the large-diameter tapered portion 3b of the water tank 3 so as to be integrally formed with the solid-liquid separation tank. The outer diameter of the concentrate reservoir 2 can be reduced, and a compact solid-liquid separator is obtained. The concentrated liquid reservoir 2 allows the concentrated liquid to flow intermittently (for example, every 2 to 30 minutes) from the solid-liquid separation tank 1, stores the flowed concentrated liquid almost uniformly, and stores the concentrated liquid. It is configured to discharge without disturbing the liquid or destroying the sludge floc (fine floc). Therefore, the concentrated liquid is transferred by natural force (gravity) without using mechanical transfer means such as a pump, and the concentrated liquid can be smoothly transferred from the solid-liquid separation tank 1 to the concentrated liquid reservoir 2 simply by opening the on-off valve 8. It flows out of the concentrate reservoir 2 just by advancing and opening the discharge valve 9.

次に、この実施の形態1における固液分離装置の作用を図5に基づいて説明する。ここに、図5(a)は固液分離槽1の全体を示す側面図であり、図5(b)は主として回転羽根15を示す平面図である。原液は流入管4を通って誘導器17の錘状管部17aに流入し、その直状管部17bを流下して、分離水は流出口17cから矢印で示すように流出する。この間に、回転筒5は低速度で例えば図5(b)にあるように時計回り方向に回転しているので、回転筒5内に流入した原液は回転羽根15の回転に同伴して回転流動する。このとき、回転筒5内の汚泥フロックGは回転羽根15よりも遅い速度で回転羽根15と同じ方向に回転し、回転筒5の中心に集まりつつ保持される。また、スリット14から流出しようとする汚泥フロックGは、回転羽根15に当って回転筒5の中心に押し戻される。そして、スリット14を通過した分離水は、矢印で示すように上昇し、越流堰6を越流する。   Next, the operation of the solid-liquid separator in the first embodiment will be described with reference to FIG. 5A is a side view showing the entire solid-liquid separation tank 1, and FIG. 5B is a plan view mainly showing the rotary blade 15. As shown in FIG. The undiluted solution flows through the inflow tube 4 into the spindle-shaped tube portion 17a of the inductor 17, flows down the straight tube portion 17b, and the separated water flows out from the outlet port 17c as indicated by an arrow. During this time, the rotating cylinder 5 rotates at a low speed, for example, in the clockwise direction as shown in FIG. 5B, so that the undiluted solution flowing into the rotating cylinder 5 rotates with the rotation of the rotating blades 15. To do. At this time, the sludge floc G in the rotating cylinder 5 rotates in the same direction as the rotating blade 15 at a slower speed than the rotating blade 15 and is held while gathering at the center of the rotating cylinder 5. In addition, the sludge floc G that is about to flow out of the slit 14 hits the rotary blade 15 and is pushed back to the center of the rotary cylinder 5. Then, the separated water that has passed through the slit 14 rises as indicated by an arrow and overflows the overflow weir 6.

そして、汚泥フロックGは回転筒5内から小径テーパ部3dに集積しつつ濃縮され、さらにこの集積する濃縮液(濃縮汚泥)自体がろ過体の役目を果たすことから、新たに供給される原液に含まれる懸濁物質や汚泥フロックがろ過捕捉されるため、安定して良好な固液分離が行え、清澄な分離水を得ることができる。なお、回転筒5内の微細な汚泥フロックGは、スリット14を通って水槽3内に流出することがある。しかし、回転筒5の外部では分離水が回転筒5の回転に伴って緩やかに回転流動して渦巻状態になっているので、水槽3の大径テーパ部3bにおいて所謂ティーカップ現象が発生し、回転筒5から流出した微細な汚泥フロックGは、緩やかな渦巻状態となって回転筒5の下部周辺に集積する。そして、開閉弁8を開くことによって、主に小径テーパ部3dの濃縮液(濃縮汚泥)が移送管7を通って濃縮液貯留器2に流れる。この時の濃縮液(濃縮汚泥)引抜量は、概ね小径テーパ部3dの容積に匹敵する量が好ましい。なお、開閉弁8を設けず常に濃縮液(濃縮汚泥)を濃縮液貯留器2に移流させてもよいが、開閉弁8を用いて間欠で一挙に濃縮液(濃縮汚泥)を引き抜くことにより、引抜量のコントロールができ、また濃縮液(濃縮汚泥)の滞留や希薄な濃縮液(濃縮汚泥)の引抜を防止することができる。   Then, the sludge floc G is concentrated while being accumulated in the small diameter taper portion 3d from the inside of the rotary cylinder 5, and further, this accumulated concentrate (concentrated sludge) itself serves as a filter body. Since the suspended substances and sludge flocs contained are filtered and captured, stable solid-liquid separation can be performed stably and clear separated water can be obtained. The fine sludge floc G in the rotating cylinder 5 may flow out into the water tank 3 through the slit 14. However, since the separated water slowly rotates and flows in a spiral state with the rotation of the rotating cylinder 5 outside the rotating cylinder 5, a so-called tea cup phenomenon occurs in the large diameter tapered portion 3b of the water tank 3, The fine sludge floc G that has flowed out of the rotating cylinder 5 becomes a gentle spiral state and accumulates around the lower part of the rotating cylinder 5. Then, by opening the on-off valve 8, mainly the concentrated liquid (concentrated sludge) of the small diameter tapered portion 3 d flows to the concentrated liquid reservoir 2 through the transfer pipe 7. The amount of concentrated liquid (concentrated sludge) withdrawn at this time is preferably an amount approximately equal to the volume of the small diameter tapered portion 3d. The concentrated liquid (concentrated sludge) may always be transferred to the concentrated liquid reservoir 2 without providing the on-off valve 8, but by pulling out the concentrated liquid (concentrated sludge) intermittently at once using the on-off valve 8, The withdrawal amount can be controlled, and the retention of the concentrated liquid (concentrated sludge) and the withdrawal of the diluted concentrated liquid (concentrated sludge) can be prevented.

以上のように、この実施の形態1における固液分離装置は、回転筒5の回転羽根15の形状とその回転によって原液を固液分離するので、分離面積は従来の重力式固液分離装置の水平な分離面積よりも広くなる。したがって、固液分離槽1における原液の滞留時間の短縮、分離性能(制御性、分離水の水質、固形物の回収率など)の向上および安定化を得ることができる。また、濃縮液(濃縮汚泥)を間欠的に濃縮液貯留器2に移流させるため、濃縮液(濃縮汚泥)固液分離槽1底部に滞留することなく、また回転筒5に付着することを防げ、汚泥フロックGを撹乱、破壊することもなく、回転羽根15の汚損を防止できる。   As described above, the solid-liquid separation device according to the first embodiment separates the raw liquid into solid and liquid by the shape of the rotary blade 15 of the rotary cylinder 5 and the rotation thereof, so that the separation area is the same as that of the conventional gravity solid-liquid separation device. It becomes wider than the horizontal separation area. Accordingly, the residence time of the stock solution in the solid-liquid separation tank 1 can be shortened, and the separation performance (controllability, quality of separated water, solid recovery rate, etc.) can be improved and stabilized. Further, since the concentrated liquid (concentrated sludge) is intermittently transferred to the concentrated liquid reservoir 2, the concentrated liquid (concentrated sludge) is prevented from staying at the bottom of the solid-liquid separation tank 1 and from being attached to the rotating cylinder 5. Further, the sludge floc G can be prevented from being damaged without disturbing or destroying the sludge floc G.

例えば、0.6%程度の濃度の原液に注入率0.3〜0.5%で高分子凝集剤Fを注入した場合に、濃縮液濃度は4%程度となり、SS回収率が98%以上という固液分離性能(濃縮性能)を得ることができる。また、原液に凝集剤Fを注入して濃縮液濃度を1.5〜2.5%程度にする場合には、従来の重力式固液分離装置における滞留時間は1〜2時間必要であったが、この実施の形態1における固液分離装置では概ね3分程度で濃縮することができる。そして、この実施の形態1における固液分離装置は、重力式固液分離装置や機械式固液分離装置の代替として、また消化槽の汚泥高濃度化装置や脱水処理機の前濃縮装置にも利用することができる。   For example, when the polymer flocculant F is injected into a stock solution having a concentration of about 0.6% at an injection rate of 0.3 to 0.5%, the concentration of the concentrated solution is about 4%, and the SS recovery rate is 98% or more. Solid-liquid separation performance (concentration performance) can be obtained. In addition, when the concentration of the concentrated liquid is about 1.5 to 2.5% by injecting the flocculant F into the stock solution, the residence time in the conventional gravitational solid-liquid separation apparatus is 1 to 2 hours. However, in the solid-liquid separator in this Embodiment 1, it can concentrate in about 3 minutes. The solid-liquid separation device according to the first embodiment is used as an alternative to a gravity solid-liquid separation device or a mechanical solid-liquid separation device, or as a sludge concentration device for a digester or a pre-concentration device for a dehydrator. Can be used.

実施の形態2.
図6はこの発明を実施するための実施の形態2における固液分離装置を説明するための図であり、図1と同じ部分に同じ符号を付して重複説明を省略する。この実施の形態2における固液分離装置は、原液と凝集剤Fを混合するための混合タンク31を流入管4の途中に配設してある点、多数の孔32aを有するパンチングメタル32からなる回転筒5Aを備えた固液分離槽1Aとしてある点、および実施の形態1の濃縮液貯留器2とは異なった形状の濃縮液貯留器2Aとしてある点で実施の形態1の固液分離装置と異なっている。この場合に、濃縮液貯留器2Aの内周面2aを中心側に更に延在させたり、固液分離槽外壁に沿って周回する容器としたりして、濃縮液貯留器2Aの容積を増加させてある。
Embodiment 2. FIG.
FIG. 6 is a diagram for explaining the solid-liquid separation device according to Embodiment 2 for carrying out the present invention. The same parts as those in FIG. The solid-liquid separation device according to the second embodiment includes a punching metal 32 having a large number of holes 32a, in which a mixing tank 31 for mixing the stock solution and the flocculant F is disposed in the middle of the inflow pipe 4. The solid-liquid separation device of the first embodiment in that it is a solid-liquid separation tank 1A provided with a rotating cylinder 5A and that it is a concentrated liquid reservoir 2A having a shape different from the concentrated liquid reservoir 2 of the first embodiment. Is different. In this case, the volume of the concentrate reservoir 2A is increased by extending the inner peripheral surface 2a of the concentrate reservoir 2A further toward the center or by making the container circulate along the outer wall of the solid-liquid separation tank. It is.

この実施の形態2の固液分離装置では、混合タンク31において原液と凝集剤Fを予め混合することにより、回転筒5Aには原液と凝集剤Fが均等に混合した状態で流入するので、より分離性能(制御性、分離水の水質、固形物の回収率など)が向上する。また、濃縮液貯留器2Aの内周面2aを実施の形態1における場合よりも中心側に延在させたので、濃縮液貯留器2Aの容積が実施の形態1における濃縮液貯留器2の容積よりも大きくなる。また、固液分離槽1と濃縮液貯留器2Aとを別途設置できるため、処理施設の状況に応じて必要とする容積の濃縮液貯留器2Aを設置し処理することができる。その他には、実施の形態1と同様な効果が得られる。   In the solid-liquid separation device of the second embodiment, the stock solution and the flocculant F are mixed in advance in the mixing tank 31 so that the stock solution and the flocculant F flow into the rotating cylinder 5A in an evenly mixed state. Separation performance (controllability, quality of separated water, solid recovery rate, etc.) is improved. Further, since the inner peripheral surface 2a of the concentrated liquid reservoir 2A is extended to the center side in the case of the first embodiment, the volume of the concentrated liquid reservoir 2A is the volume of the concentrated liquid reservoir 2 in the first embodiment. Bigger than. In addition, since the solid-liquid separation tank 1 and the concentrated liquid reservoir 2A can be separately installed, the concentrated liquid reservoir 2A having a required volume can be installed and processed according to the situation of the processing facility. In addition, the same effects as those of the first embodiment can be obtained.

実施の形態3.
図7はこの発明を実施するための実施の形態3における固液分離装置を説明するための図であり、図1と同じ部分に同じ符号を付して重複説明を省略する。この実施の形態3における固液分離装置は、実施の形態1とは若干異なった形状の水槽3Aと上部をカバー33によって遮蔽した回転筒5Bからなる固液分離槽1Bとしてある点、濃縮液貯留器2に吸気管34、排気管35、および空気弁36を配置してある点で実施の形態1における固液分離装置と異なっている。この場合に、水槽3Aには、実施の形態1の水槽3と同様な小径テーパ部3dの下端に連なる第2の小径ストレート部3eと、この第2の小径ストレート部3eの下端を塞ぐ底部壁面3fを設けてある。そして、移送管7は水槽3Aの第2の小径ストレート部3eの底部と濃縮液貯留器2の底部とを接続するように配置してある。
Embodiment 3 FIG.
FIG. 7 is a diagram for explaining a solid-liquid separation device according to Embodiment 3 for carrying out the present invention. The same parts as those in FIG. The solid-liquid separation apparatus according to the third embodiment is a solid-liquid separation tank 1B composed of a water tank 3A having a slightly different shape from that of the first embodiment and a rotating cylinder 5B whose upper part is shielded by a cover 33. The second embodiment is different from the solid-liquid separator in the first embodiment in that an intake pipe 34, an exhaust pipe 35, and an air valve 36 are arranged in the vessel 2. In this case, the water tank 3A includes a second small-diameter straight part 3e continuous with the lower end of the small-diameter tapered part 3d similar to the water tank 3 of the first embodiment, and a bottom wall surface covering the lower end of the second small-diameter straight part 3e. 3f is provided. And the transfer pipe 7 is arrange | positioned so that the bottom part of the 2nd small diameter straight part 3e of 3 A of water tanks and the bottom part of the concentrate reservoir 2 may be connected.

ここで、濃縮液貯留器2は、所謂「マリオット瓶の原理」を呈するように構成し、定圧整流装置の役割を持たせてある。すなわち、濃縮液貯留器2は、密閉容器にしてあるうえに、吸気管34、排気管35、および空気弁36を設けてある。この場合に、吸気管34は高さ調節可能に設け、空気弁36は排気管35に配設してある。そして、開閉弁8の開閉位置、吸気管34の高さ位置、および空気弁36の開閉位置は、図示しない制御装置によって適宜に制御するようにしてある。これにより、排出管10へ流出する濃縮液の速度Vは、排出管10の中心と吸気管34の下端部との液位差hに依存し、V=(2gh)1/2となる。そして、この速度Vは濃縮液のレベルが変動しても概ね一定に保たれる。 Here, the concentrate reservoir 2 is configured to exhibit the so-called “Marriott bottle principle” and has a role of a constant pressure rectifier. That is, the concentrate reservoir 2 is a sealed container, and is provided with an intake pipe 34, an exhaust pipe 35, and an air valve 36. In this case, the intake pipe 34 is provided so that the height can be adjusted, and the air valve 36 is provided in the exhaust pipe 35. The open / close position of the open / close valve 8, the height position of the intake pipe 34, and the open / close position of the air valve 36 are appropriately controlled by a control device (not shown). Thereby, the speed V of the concentrated liquid flowing out to the discharge pipe 10 depends on the liquid level difference h between the center of the discharge pipe 10 and the lower end portion of the intake pipe 34, and becomes V = (2gh) 1/2 . The speed V is kept substantially constant even if the concentration level fluctuates.

このような固液分離装置において濃縮液を水槽3から濃縮液貯留器2に流入させる際には、排出弁9を閉じた状態で開閉弁8と空気弁36を開く。そして、濃縮液を濃縮液貯留器2から排出する際には、開閉弁8と空気弁36を閉じて排出弁9を開く。この際に、濃縮液の排出量は液位差h、すなわち吸気管34の高さを調整することによって調整し、排出量を増加させる場合には吸気管34を上方へ移動させ、排出量を減少させる場合には吸気管34を下方へ移動させる。なお、濃縮液貯留器2内における濃縮液の最高レベルまたは最低レベルを検出する電極棒などからなるレベル計を配設し、このレベル計の出力を制御装置に接続し、濃縮液貯留器2内における濃縮液のレベルに応じて開閉弁8と空気弁36の開閉位置や吸気管34の高さ位置を制御するのも好ましい。また、吸気管34の高さを調整する代りに、排出管10の口径を調整可能としてもよい。そして、吸気管34は、予め決めた適当な高さ位置に固定することもできる。   In such a solid-liquid separator, when the concentrate is allowed to flow from the water tank 3 into the concentrate reservoir 2, the on-off valve 8 and the air valve 36 are opened with the discharge valve 9 closed. When the concentrate is discharged from the concentrate reservoir 2, the on-off valve 8 and the air valve 36 are closed and the discharge valve 9 is opened. At this time, the discharge amount of the concentrate is adjusted by adjusting the liquid level difference h, that is, the height of the intake pipe 34, and when increasing the discharge amount, the intake pipe 34 is moved upward to reduce the discharge amount. When decreasing, the intake pipe 34 is moved downward. In addition, a level meter including an electrode rod for detecting the highest level or the lowest level of the concentrated liquid in the concentrated liquid reservoir 2 is arranged, and the output of this level gauge is connected to the control device, so that the concentrated liquid reservoir 2 It is also preferable to control the open / close positions of the open / close valve 8 and the air valve 36 and the height position of the intake pipe 34 in accordance with the level of the concentrate in the tank. Further, instead of adjusting the height of the intake pipe 34, the diameter of the exhaust pipe 10 may be adjustable. The intake pipe 34 can be fixed at a predetermined height position.

以上のように、この実施の形態3における固液分離装置は、「マリオット瓶の原理」に基づいて濃縮液を濃縮液貯留器2に対して流入または流出させるので、濃縮液中の汚泥フロックが破壊することはない。また、上部のスリット(間隙)をカバー33によって遮蔽した回転筒5Bとしたので、回転筒5Bの上部からの分離水に混じって流出しやすい微細な汚泥フロックの流出を防止でき、また濃縮液(濃縮汚泥)引抜により固液分離槽の水位が低下した場合に水面付近で原液が回転筒5B外へ流出するのを防止できる。その他には、実施の形態1と同様な効果が得られる。   As described above, the solid-liquid separation device according to the third embodiment causes the concentrated liquid to flow into or out of the concentrated liquid reservoir 2 based on the “Marriott bottle principle”. There is no destruction. Moreover, since the upper slit (gap) is the rotating cylinder 5B shielded by the cover 33, it is possible to prevent the outflow of fine sludge flocs that easily mix and flow out from the separated water from the upper part of the rotating cylinder 5B. Concentrated sludge) When the water level of the solid-liquid separation tank is lowered by drawing, the stock solution can be prevented from flowing out of the rotating cylinder 5B near the water surface. In addition, the same effects as those of the first embodiment can be obtained.

実施の形態4.
図8はこの発明を実施するための実施の形態4における固液分離システムを説明するための図であり、図1と同じ部分に同じ符号を付して重複説明を省略する。この実施の形態4における固液分離システムは、原液を2段階で固液分離するようにしてある点で実施の形態1における固液分離装置と大きく異なっている。すなわち、この実施の形態4における固液分離システムには、固液分離槽1Cと濃縮液貯留器2に加えて、この濃縮液貯留器2からの濃縮液を分離液と濃縮汚泥に固液分離する固液分離機41を新たに設置してある。その他に、流入管4にラインミキサー43を配設してある点、およびメッシュ44からなる回転筒5Cを備えた固液分離槽1Cとしてある点でも実施の形態1における固液分離装置と異なっている。さらには、濃縮液貯留器2に電極式のレベル計45を設置し、このレベル計45の出力を制御器46に入力させ、制御器46の出力を排出弁9の駆動モータ47に接続してある点でも、実施の形態1における固液分離装置と異なっている。
Embodiment 4 FIG.
FIG. 8 is a diagram for explaining a solid-liquid separation system according to Embodiment 4 for carrying out the present invention. The same parts as those in FIG. The solid-liquid separation system according to the fourth embodiment is greatly different from the solid-liquid separation apparatus according to the first embodiment in that the stock solution is subjected to solid-liquid separation in two stages. That is, in the solid-liquid separation system in the fourth embodiment, in addition to the solid-liquid separation tank 1C and the concentrated liquid reservoir 2, the concentrated liquid from the concentrated liquid reservoir 2 is separated into a separated liquid and concentrated sludge. A solid-liquid separator 41 is newly installed. In addition, it differs from the solid-liquid separation apparatus in the first embodiment in that the line mixer 43 is disposed in the inflow pipe 4 and the solid-liquid separation tank 1C having the rotating cylinder 5C made of the mesh 44. Yes. Furthermore, an electrode type level meter 45 is installed in the concentrate reservoir 2, and the output of the level meter 45 is input to the controller 46, and the output of the controller 46 is connected to the drive motor 47 of the discharge valve 9. In a certain point, it is different from the solid-liquid separator in the first embodiment.

この実施の形態4における固液分離システムにおいて、原液はラインミキサー43によって凝集剤Fが均一に混合されて誘導器17に流入する。固液分離槽1Cは最初に実施の形態1の固液分離槽1とほぼ同様に作用する。制御器46は所定のレベル値を記憶していて、濃縮液貯留器2内の濃縮液(濃縮汚泥)のレベルが所定値以上になった場合に排出弁9を開く。これにより、濃縮液(濃縮汚泥)が濃縮液貯留器2から固液分離機41に流入する。これにより、固液分離機41では、安定して流入する濃縮液(濃縮汚泥)を分離液と濃縮汚泥とに固液分離することができ、より高濃度の濃縮液(濃縮汚泥)が得られると共に、減量化できその後の処理処分を容易にする。   In the solid-liquid separation system according to the fourth embodiment, the stock solution is uniformly mixed with the flocculant F by the line mixer 43 and flows into the inductor 17. First, the solid-liquid separation tank 1C operates in substantially the same manner as the solid-liquid separation tank 1 of the first embodiment. The controller 46 stores a predetermined level value, and opens the discharge valve 9 when the level of the concentrated liquid (concentrated sludge) in the concentrated liquid storage device 2 exceeds a predetermined value. As a result, the concentrated liquid (concentrated sludge) flows from the concentrated liquid reservoir 2 into the solid-liquid separator 41. Thereby, in the solid-liquid separator 41, the concentrated liquid (concentrated sludge) which flows in stably can be separated into the separated liquid and the concentrated sludge, and a concentrated liquid (concentrated sludge) having a higher concentration can be obtained. At the same time, the amount can be reduced to facilitate subsequent disposal.

以上のように、この実施の形態4における固液分離システムでは、ラインミキサー43によって原液に凝集剤Fを均一化して混合させるうえに、濃縮液(濃縮汚泥)を濃縮液貯留器2から固液分離機41に汚泥フロックを破壊することなくスムーズに移流させ、安定して効率よくより高濃度の濃縮液(濃縮汚泥)が得られる。その他には、実施の形態1と同様な効果が得られる。なお、原液性状によっては凝集剤(高分子凝集剤)Fを添加せず処理してもかまわず、これによりラインミキサーなどの混合設備が不要になる。   As described above, in the solid-liquid separation system according to the fourth embodiment, the flocculant F is homogenized and mixed with the stock solution by the line mixer 43, and the concentrated liquid (concentrated sludge) is solid-liquid from the concentrated liquid reservoir 2. The separator 41 is smoothly transferred without destroying the sludge floc, and a concentrated liquid (concentrated sludge) having a higher concentration can be obtained stably and efficiently. In addition, the same effects as those of the first embodiment can be obtained. Depending on the properties of the undiluted solution, the coagulant (polymer flocculant) F may be processed without being added, thereby eliminating the need for mixing equipment such as a line mixer.

実施の形態5.
図9はこの発明を実施するための実施の形態5における固液分離システムを説明するための図であり、図8と同じ部分に同じ符号を付して重複説明を省略する。この実施の形態5における固液分離システムは、実施の形態4における固液分離機41をディスク型の固液分離機41Aとしてある点、および固液分離機41で分離した分離液を分離液返送管42によって回転筒5C内へ返送するようにしてある点で実施の形態4における固液分離システムと大きく異なっている。この固液分離機41Aはろ過、濃縮、および洗浄を1枚のディスク上で行うことにより、中濃度の濃縮液(濃縮汚泥)をより高濃度の濃縮液(濃縮汚泥)にするものである。また、この固液分離機41Aから排出される分離液は、返送管42を通り、誘導器17を介してまたは直接回転筒5B内に流入する。これにより、固液分離槽1Bでは、凝集剤Fが混合した原液と固液分離機41Aからの微細粒子を含む分離液とが回転筒5Bに流入し、原液と分離液とが回転筒5B内で固液分離される。その他に、この実施の形態5における固液分離システムは、実施の形態2と同様に流入管4に混合タンク31を配設した点、実施の形態3と同様なカバー33を備えた回転筒5Bによる固液分離槽1Bとした点、実施の形態2と同様な濃縮液貯留器2Aとした点、この濃縮液貯留器2Aに実施の形態3と同様な吸気管34、排気管35、および空気弁36を配置した点でも実施の形態4における固液分離システムと異なっている。
以上のように、この実施の形態5における固液分離システムでは、固液分離機41Aから排出される懸濁物質や汚泥フロックが混入する分離液が、返送管42を通って回転筒5B内に流入し、凝集剤Fが混合した原液とともに固液分離されるため、原液および分離液ともども濃縮液(濃縮汚泥)と清澄な分離水とに固液分離でき、系外に懸濁物質や汚泥フロックが混入する分離液を排出せずにすみ、高いSS回収率(98%以上)を達成でき、返流水対策にも有効である。
Embodiment 5. FIG.
FIG. 9 is a diagram for explaining a solid-liquid separation system according to Embodiment 5 for carrying out the present invention. The same parts as those in FIG. The solid-liquid separation system according to the fifth embodiment is characterized in that the solid-liquid separator 41 according to the fourth embodiment is a disk-type solid-liquid separator 41A, and the separated liquid separated by the solid-liquid separator 41 is returned to the separated liquid. This is greatly different from the solid-liquid separation system in the fourth embodiment in that it is returned to the rotary cylinder 5C by the tube 42. The solid-liquid separator 41A performs the filtration, concentration, and washing on a single disk, thereby converting the medium concentration concentrate (concentrated sludge) to a higher concentration concentrate (concentrated sludge). Further, the separation liquid discharged from the solid-liquid separator 41A passes through the return pipe 42 and flows into the rotary cylinder 5B via the inductor 17 or directly. As a result, in the solid-liquid separation tank 1B, the stock solution mixed with the flocculant F and the separation liquid containing fine particles from the solid-liquid separator 41A flow into the rotating cylinder 5B, and the stock solution and the separating liquid are in the rotating cylinder 5B. Solid-liquid separation. In addition, the solid-liquid separation system according to the fifth embodiment is similar to the second embodiment in that a mixing tank 31 is provided in the inflow pipe 4 and a rotating cylinder 5B provided with a cover 33 similar to the third embodiment. The solid-liquid separation tank 1B by the above, the concentrated reservoir 2A similar to the second embodiment, the intake pipe 34, the exhaust pipe 35, and the air similar to the third embodiment Also in the point which has arrange | positioned the valve 36, it differs from the solid-liquid separation system in Embodiment 4. FIG.
As described above, in the solid-liquid separation system according to the fifth embodiment, the separated liquid mixed with the suspended matter and sludge floc discharged from the solid-liquid separator 41A passes through the return pipe 42 into the rotary cylinder 5B. Inflow and solid-liquid separation with the stock solution mixed with the flocculant F, both the stock solution and the separated solution can be separated into a concentrated solution (concentrated sludge) and clear separated water, and suspended substances and sludge flocs outside the system. Therefore, it is possible to achieve a high SS recovery rate (98% or more) without draining the separated liquid, and it is also effective for returning water.

図10に示すように、固液分離機41Aであるディスク型濃縮装置は、例えば複数本の脚51a〜51cによって傾斜角度を調整可能に支持した円柱状の本体52を備えている。この本体52は、濃縮液流入口53、分離液排出口54、および濃縮汚泥排出口55を有している。濃縮液流入口53は濃縮液貯留器2からの排出管10に接続し、分離液排出口54は分離液返送管42に接続してある。本体52内には回転軸56によって支持したろ過ディスク57を回転可能に設置してあり、本体52の上部には回転軸56に連結した駆動モータ58を設けてある。そして、本体52の内部には、ろ過ディスク57上の濃縮汚泥が濃縮汚泥排出口55に向かって落下するように濃縮汚泥をろ過ディスク57から掻き落すスクレーパ59を設けてある。ろ過ディスク57は、例えば孔径0.3〜0.5mmのメッシュをもった円形のマイクロフィルタや微細目スクリーンとし、例えば0.5〜10rpmで回転駆動し、洗浄水によって連続または間欠に洗浄するようにしてある。このディスク型濃縮装置における濃縮液(濃縮汚泥)の濃縮程度は、本体52の傾斜角度とろ過ディスク57の回転速度を変化させることによって調整でき、濃縮液貯留器2から供給される濃縮液(濃縮汚泥)を安定して効率よく動力費もわずかで、より高濃度に濃縮することができる。なお、上記ディスク型濃縮装置に代えて、遠心型、ベルトプレス型、フィルタープレス型などの脱水機や濃縮機を用いることもできる。   As shown in FIG. 10, the disk-type concentrating device that is the solid-liquid separator 41 </ b> A includes a columnar main body 52 that is supported by a plurality of legs 51 a to 51 c so that the inclination angle can be adjusted. The main body 52 has a concentrated liquid inlet 53, a separation liquid outlet 54, and a concentrated sludge outlet 55. The concentrated liquid inlet 53 is connected to the discharge pipe 10 from the concentrated liquid reservoir 2, and the separated liquid discharge port 54 is connected to the separated liquid return pipe 42. A filtration disk 57 supported by a rotary shaft 56 is rotatably installed in the main body 52, and a drive motor 58 connected to the rotary shaft 56 is provided on the upper portion of the main body 52. A scraper 59 for scraping the concentrated sludge from the filtration disk 57 is provided inside the main body 52 so that the concentrated sludge on the filtration disk 57 falls toward the concentrated sludge discharge port 55. The filtration disk 57 is, for example, a circular microfilter or a fine screen having a mesh with a pore diameter of 0.3 to 0.5 mm, and is driven to rotate at, for example, 0.5 to 10 rpm and is washed continuously or intermittently with washing water. It is. The degree of concentration of the concentrated liquid (concentrated sludge) in this disk type concentrator can be adjusted by changing the inclination angle of the main body 52 and the rotational speed of the filtration disk 57, and the concentrated liquid (concentrated) supplied from the concentrated liquid reservoir 2 is concentrated. It is possible to concentrate sludge) to a higher concentration stably and efficiently with less power cost. In addition, it can replace with the said disk type concentrator, and can also use dehydrators and concentrators, such as a centrifugal type, a belt press type, and a filter press type.

[実施例1]
固液分離槽1Bの直径は約1.3m、固液分離機41Aの直径は約1mであった。固液分離槽1Bの処理量は5〜7m3/h、原液の濃度は0.6%、凝集剤Fの注入率は約0.4%であった。また、固液分離機41Aの処理量は2〜3m3/h、濃縮液の濃度は1.5〜2.0%であった。このような条件に基づいて固液分離システムを運転したところ、固液分離槽1Bでの濃縮液濃度は1.5〜2.0%となり、分離水のSS濃度は20〜50mg/Lと良好であった。また、固液分離機41Aにおける濃縮汚泥濃度は4%以上という高濃度が達成でき、分離液のSS濃度は100〜500mg/Lとなった。
[Example 1]
The diameter of the solid-liquid separation tank 1B was about 1.3 m, and the diameter of the solid-liquid separator 41A was about 1 m. The throughput of the solid-liquid separation tank 1B was 5 to 7 m 3 / h, the concentration of the stock solution was 0.6%, and the injection rate of the flocculant F was about 0.4%. Moreover, the processing amount of the solid-liquid separator 41A was 2 to 3 m 3 / h, and the concentration of the concentrated liquid was 1.5 to 2.0%. When the solid-liquid separation system was operated based on such conditions, the concentration of the concentrated liquid in the solid-liquid separation tank 1B was 1.5 to 2.0%, and the SS concentration of the separated water was good at 20 to 50 mg / L. Met. Further, the concentrated sludge concentration in the solid-liquid separator 41A can be as high as 4% or more, and the SS concentration of the separation liquid is 100 to 500 mg / L.

[実施例2]
固液分離槽1Bの直径は約2m、処理量は15〜20m3/h、凝集剤Fの注入率は0.3〜0.4%であった。また、固液分離機41Aの直径は約1m、処理量は5〜6m3/hであった。そして、凝集剤Fの注入設備を含めた固液分離システムの設置面積は、幅が2m、長さが3.2m、高さが2.5mであった。このような条件で固液分離システムを運転したところ、固液分離槽1Bでの濃縮液濃度は1.5〜2.0%となり、固液分離機41Aにおける濃縮汚泥濃度は4%以上となり、システム全体でのSS回収率は98%以上を達成できた。なお、固液分離槽1Bで生じた分離水のSS濃度はわずか数十mg/Lと良好であった。また、消費電力は1.4kW/m3程度で省エネルギーなものであった。
[Example 2]
The diameter of the solid-liquid separation tank 1B was about 2 m, the processing amount was 15 to 20 m 3 / h, and the injection rate of the flocculant F was 0.3 to 0.4%. Moreover, the diameter of the solid-liquid separator 41A was about 1 m, and the throughput was 5 to 6 m 3 / h. And the installation area of the solid-liquid separation system including the injection | pouring equipment of the coagulant | flocculant F was width 2m, length 3.2m, and height 2.5m. When the solid-liquid separation system was operated under such conditions, the concentrated liquid concentration in the solid-liquid separation tank 1B was 1.5 to 2.0%, and the concentrated sludge concentration in the solid-liquid separator 41A was 4% or more. The SS recovery rate for the entire system was 98% or more. In addition, the SS concentration of the separation water generated in the solid-liquid separation tank 1B was as good as only several tens mg / L. Further, the power consumption was about 1.4 kW / m 3 and was energy saving.

以上のように、この固液分離システムでは、固液分離槽1Bに回転筒5Bを備えたので、上記実施の形態1〜4と同様に分離性能(制御性、分離水の水質、固形物の回収率など)が向上する。また、効率よく固液分離できるため濃縮液(濃縮汚泥)を十分に減量化でき、固液分離機41Aの水量負荷を大幅に低減することができ、さらに固液分離機41Aを洗浄するために必要な洗浄水の量が削減することができる。加えて、動力費および維持管理費等を含めランニングコストを低減することができる。また、固液分離機41Aにおいて濃縮液(濃縮汚泥)がより高濃度化するので、その後の処理処分が容易になり、これに要する費用も削減できる。そして、従来の重力式濃縮槽との代替が可能となり、消化槽の汚泥高濃度化、脱水処理機の前濃縮など多方面に適用することができる。   As described above, in this solid-liquid separation system, since the solid-liquid separation tank 1B is provided with the rotating cylinder 5B, the separation performance (controllability, quality of separated water, solid matter) is the same as in the first to fourth embodiments. The recovery rate is improved. Moreover, since the solid-liquid separation can be performed efficiently, the concentrated liquid (concentrated sludge) can be sufficiently reduced, the water load on the solid-liquid separator 41A can be greatly reduced, and the solid-liquid separator 41A can be washed. The amount of cleaning water required can be reduced. In addition, running costs including power costs and maintenance costs can be reduced. Further, since the concentrated liquid (concentrated sludge) is further concentrated in the solid-liquid separator 41A, the subsequent disposal becomes easy, and the cost required for this can be reduced. And it becomes possible to replace the conventional gravity type concentration tank, and it can be applied to various fields such as increasing the concentration of sludge in the digestion tank and pre-concentration in the dehydrator.

実施の形態6.
図11はこの発明を実施するための実施の形態6における固液分離システムを説明するための図であり、図8と同じ部分に同じ符号を付して重複説明を省略する。この実施の形態6における固液分離システムは、固液分離機41を洗浄するための水を貯留する洗浄水槽61を設けてある点で実施の形態4における固液分離システムと大きく異なっている。
そして、この水槽には水道水を供給してもよいが、図11にあるように、固液分離槽1から排出されるSS濃度が低く良好な水質の分離水を供給してもよい。その他に、実施の形態1と同様な固液分離槽1とした点、実施の形態4におけるレベル計45、制御器46、駆動モータ47の代りに実施の形態5と同様な吸気管34、排気管35、空気弁35を配設した点でも実施の形態4における固液分離システムと異なっている。
Embodiment 6 FIG.
FIG. 11 is a diagram for explaining a solid-liquid separation system according to Embodiment 6 for carrying out the present invention. The same parts as those in FIG. The solid-liquid separation system in the sixth embodiment is greatly different from the solid-liquid separation system in the fourth embodiment in that a washing water tank 61 for storing water for washing the solid-liquid separator 41 is provided.
And although tap water may be supplied to this water tank, as shown in FIG. 11, it is sufficient to supply the separation water of favorable water quality with low SS density | concentration discharged | emitted from the solid-liquid separation tank 1. FIG. In addition, the solid-liquid separation tank 1 is the same as in the first embodiment, and the intake pipe 34 and the exhaust gas are the same as those in the fifth embodiment instead of the level meter 45, the controller 46, and the drive motor 47 in the fourth embodiment. The difference from the solid-liquid separation system in the fourth embodiment also in that the pipe 35 and the air valve 35 are provided.

この実施の形態6における固液分離システムでは、固液分離槽1において生じた清澄な分離水を管体62によって洗浄水槽61に導き、洗浄水槽61内の洗浄水を配管63とポンプ64によって固液分離機41に噴射する。したがって、この実施の形態6における固液分離システムでは、固液分離機41を洗浄する際に系内の分離水を利用するので、固液分離機41において安定した濃縮が可能となり、水道水を使用しないため水道料金がかからず、ランニングコストをさらに低減できる。その他には、実施の形態4および実施の形態5と同様な効果が得られる。   In the solid-liquid separation system in the sixth embodiment, the clear separated water generated in the solid-liquid separation tank 1 is guided to the washing water tank 61 by the pipe body 62, and the washing water in the washing water tank 61 is solidified by the pipe 63 and the pump 64. Injected into the liquid separator 41. Therefore, in the solid-liquid separation system according to the sixth embodiment, since the separated water in the system is used when washing the solid-liquid separator 41, the solid-liquid separator 41 can stably concentrate, and tap water can be used. Since it is not used, there is no water charge and running costs can be further reduced. In addition, the same effects as those of the fourth and fifth embodiments can be obtained.

実施の形態7.
図12はこの発明を実施するための実施の形態7における固液分離システムを説明するための図であり、図11と同じ部分に同じ符号を付して重複説明を省略する。この実施の形態7における固液分離システムは、実施の形態6における環状の濃縮液貯留器2の代りに横断面矩形の濃縮液貯留器2Bを水槽3から離して設置してある点で実施の形態7における固液分離システムと大きく異なっている。
この実施の形態7では、固液分離槽1と濃縮液貯留槽2を別途設けており、濃縮液貯留器2は処理施設の既設槽(タンク)類を流用することができ、建設費や設備費やランニングコストの低減化が図れる。また、濃縮液貯留器2は処理施設の既設槽(タンク)類を流用し、その上部や近傍に固液分離槽1や固液分離機41を設置すればより省スペース化が図れる。その以外には実施の形態6と同様な効果が得られる。
Embodiment 7 FIG.
FIG. 12 is a diagram for explaining a solid-liquid separation system according to Embodiment 7 for carrying out the present invention. The same parts as those in FIG. The solid-liquid separation system according to the seventh embodiment is implemented in that a concentrated liquid reservoir 2B having a rectangular cross section is installed separately from the water tank 3 instead of the annular concentrated liquid reservoir 2 in the sixth embodiment. This is greatly different from the solid-liquid separation system in Form 7.
In the seventh embodiment, the solid-liquid separation tank 1 and the concentrated liquid storage tank 2 are provided separately, and the concentrated liquid storage tank 2 can utilize existing tanks (tanks) of the processing facility, and the construction cost and equipment Costs and running costs can be reduced. Further, the concentrated liquid reservoir 2 can be saved in space by diverting existing tanks (tanks) of the processing facility and installing the solid-liquid separation tank 1 and the solid-liquid separator 41 in the upper part or the vicinity thereof. Other than that, the same effects as in the sixth embodiment can be obtained.

実施の形態8.
図13はこの発明を実施するための実施の形態8における固液分離システムを説明するための図であり、図8と同じ部分に同じ符号を付して重複説明を省略する。この実施の形態7における固液分離システムは、実施の形態4における環状の濃縮液貯留器2の代りに横断面矩形の濃縮液貯留器2Bを水槽3から離して設置してある点で実施の形態4における固液分離システムと大きく異なっている。その他に、実施の形態2と同様なパンチングメタル32と実施の形態3と同様なカバー33を備えた回転筒5Dによる固液分離槽1Dとしてある点でも実施の形態4における固液分離システムと異なっている。なお、濃縮液貯留器2Bには実施の形態4と同様なレベル計45、制御器46、駆動モータ47を設けてある。この実施の形態8では、濃縮液貯留器2Bを水槽3から離して設置したことについては実施の形態7と、それ以外には実施の形態4と同様な効果が得られる。
Embodiment 8 FIG.
FIG. 13 is a diagram for explaining a solid-liquid separation system according to Embodiment 8 for carrying out the present invention. The same parts as those in FIG. The solid-liquid separation system according to the seventh embodiment is implemented in that a concentrated liquid reservoir 2B having a rectangular cross section is installed separately from the water tank 3 instead of the annular concentrated liquid reservoir 2 in the fourth embodiment. This is greatly different from the solid-liquid separation system in Form 4. In addition, it is different from the solid-liquid separation system in the fourth embodiment in that it is a solid-liquid separation tank 1D by the rotating cylinder 5D provided with the punching metal 32 similar to the second embodiment and the cover 33 similar to the third embodiment. ing. The concentrate reservoir 2B is provided with a level meter 45, a controller 46, and a drive motor 47 similar to those in the fourth embodiment. In the eighth embodiment, the same effect as in the seventh embodiment is obtained with respect to the fact that the concentrated liquid reservoir 2B is installed away from the water tank 3, and the other effects are the same as in the fourth embodiment.

実施の形態9.
図14はこの発明を実施するための実施の形態8における固液分離システムを説明するための図であり、図13と同じ部分に同じ符号を付して重複説明を省略する。この実施の形態8における固液分離システムは、異なった構成の回転筒5Eを備えた固液分離槽1Eとしてある点、および実施の形態8におけるレベル計45、制御器46、駆動モータ47の代りに実施の形態5と同様な吸気管34、排気管35、空気弁35を配設した点で実施の形態8と異なっている。すなわち、回転筒5Eには実施の形態1と同様な下部補強体13を用いてある反面で、実施の形態1よりも小径な上部補強体12Aとすることにより、回転羽根15Aの間に末広がりのスリット14Aを形成してある。また、掻寄機18Aは、実施の形態1における掻寄機18に複数のピケットフェンス18aを設けたものとしてある。
Embodiment 9 FIG.
FIG. 14 is a diagram for explaining a solid-liquid separation system according to an eighth embodiment for carrying out the present invention. The same parts as those in FIG. The solid-liquid separation system in the eighth embodiment is a solid-liquid separation tank 1E having a rotating cylinder 5E having a different configuration, and instead of the level meter 45, the controller 46, and the drive motor 47 in the eighth embodiment. The difference from the eighth embodiment is that an intake pipe 34, an exhaust pipe 35, and an air valve 35 similar to those of the fifth embodiment are provided. That is, while the lower reinforcing body 13 similar to that of the first embodiment is used for the rotating cylinder 5E, the upper reinforcing body 12A having a smaller diameter than that of the first embodiment is used, so that the end of the rotary blade 5E is spread between the rotating blades 15A. A slit 14A is formed. Further, the scraper 18A is provided with a plurality of picket fences 18a in the scraper 18 in the first embodiment.

したがって、この実施の形態9における固液分離システムでは、スリット14Aと回転羽根15Aが鉛直方向に対して傾斜しているので、分離面積が実施の形態8の場合よりも広くなり、濃縮効率が向上する。また、ピケットフェンス18aを備えているので、濃縮液(濃縮汚泥)の中に「水の道」が発生することが防止し、濃縮液(濃縮汚泥)の濃度がより安定するとともに、希薄な濃縮液(濃縮汚泥)の引抜を防止することができる。また、所謂「マリオット瓶の原理」に基づく実施の形態6と同様な効果が得られ、その他には実施の形態8と同様な効果が得られる。このように、回転筒は円柱型に限らず末広がりの円錐形でも逆円錐でも多角型でもよく、原液の固液分離ができ回転し易いものであればどのような型でもかまわない。   Therefore, in the solid-liquid separation system according to the ninth embodiment, since the slit 14A and the rotary blade 15A are inclined with respect to the vertical direction, the separation area is wider than that in the eighth embodiment, and the concentration efficiency is improved. To do. In addition, since the picket fence 18a is provided, the “water path” is prevented from occurring in the concentrated liquid (concentrated sludge), the concentration of the concentrated liquid (concentrated sludge) is more stable, and the concentration is dilute. Pulling out of the liquid (concentrated sludge) can be prevented. Further, the same effects as those of the sixth embodiment based on the so-called “Marriott bottle principle” are obtained, and the same effects as those of the eighth embodiment are obtained. As described above, the rotating cylinder is not limited to the cylindrical shape, and may be any shape as long as it can be solid-liquid separated and easily rotated.

以上、実施の形態1〜9において本発明の固液分離装置および固液分離システムを説明してきたが、特許請求の範囲を逸脱しない限りにおいて、いろいろな修正や変更が可能であることは言うまでもない。例えば、濃縮液貯留器2、2A、2B、水槽3、3A、回転筒5、5A〜5E、回転羽根15、15A、誘導器17、21、22、25、掻寄機18、18Aはその他の形状、材質、形態が可能である。
また、回転筒5のスリット(間隙)は、複数の回転羽根を間隔を持って配設して形成させてもよいが、筒状体に隙間(切れ込み)を形成しスリットとしてもよく、前述したようにパンチングメタルでもよく、また細かな格子を形成する網状体でもよい。さらに、複数の回転羽根を配設する場合、各回転羽根を接線方向に向けて配置したり、若干傾斜させたりしてもよい。また、回転羽根自体は平板なものでもよく、波形や湾曲したものを用いてもよい。
As mentioned above, although the solid-liquid separation apparatus and solid-liquid separation system of this invention were demonstrated in Embodiment 1-9, it cannot be overemphasized that various corrections and changes are possible unless it deviates from a claim. . For example, concentrated liquid reservoirs 2, 2A, 2B, water tanks 3, 3A, rotating cylinders 5, 5A-5E, rotating blades 15, 15A, inductors 17, 21, 22, 25, scrapers 18, 18A are other Shape, material, and form are possible.
The slit (gap) of the rotating cylinder 5 may be formed by arranging a plurality of rotating blades at intervals. Alternatively, the slit (gap) may be formed as a slit in the cylindrical body. Thus, a punching metal or a net-like body forming a fine lattice may be used. Further, when a plurality of rotating blades are provided, each rotating blade may be arranged in the tangential direction or may be slightly inclined. Further, the rotary blade itself may be a flat plate, or a corrugated or curved one may be used.

この発明の実施の形態1における固液分離装置を説明するための側面図である。It is a side view for demonstrating the solid-liquid separation apparatus in Embodiment 1 of this invention. この発明の実施の形態1における固液分離装置の誘導器の変形例を説明するための側面図である。It is a side view for demonstrating the modification of the inductor of the solid-liquid separation apparatus in Embodiment 1 of this invention. この発明の実施の形態1における固液分離装置の誘導器の変形例を説明するための側面図である。It is a side view for demonstrating the modification of the inductor of the solid-liquid separation apparatus in Embodiment 1 of this invention. この発明の実施の形態1における固液分離装置の誘導器の変形例を説明するための側面図である。It is a side view for demonstrating the modification of the inductor of the solid-liquid separation apparatus in Embodiment 1 of this invention. (a)この発明の実施の形態1における固液分離装置の固液分離槽の作用を説明する側面図である。 (b)この発明の実施の形態1における固液分離装置の回転羽根の作用を説明する平面図である。(A) It is a side view explaining the effect | action of the solid-liquid separation tank of the solid-liquid separation apparatus in Embodiment 1 of this invention. (B) It is a top view explaining the effect | action of the rotary blade of the solid-liquid separator in Embodiment 1 of this invention. この発明の実施の形態2における固液分離装置を説明するための側面図である。It is a side view for demonstrating the solid-liquid separator in Embodiment 2 of this invention. この発明の実施の形態3における固液分離装置を説明するための側面図である。It is a side view for demonstrating the solid-liquid separator in Embodiment 3 of this invention. この発明の実施の形態4における固液分離システムを説明するための側面図である。It is a side view for demonstrating the solid-liquid separation system in Embodiment 4 of this invention. この発明の実施の形態5における固液分離システムを説明するための側面図である。It is a side view for demonstrating the solid-liquid separation system in Embodiment 5 of this invention. この発明の実施の形態5における固液分離システムのディスク型濃縮機を説明するための斜視図である。It is a perspective view for demonstrating the disk type concentrator of the solid-liquid separation system in Embodiment 5 of this invention. この発明の実施の形態6における固液分離システムを説明するための側面図である。It is a side view for demonstrating the solid-liquid separation system in Embodiment 6 of this invention. この発明の実施の形態7における固液分離システムを説明するための側面図である。It is a side view for demonstrating the solid-liquid separation system in Embodiment 7 of this invention. この発明の実施の形態8における固液分離システムを説明するための側面図である。It is a side view for demonstrating the solid-liquid separation system in Embodiment 8 of this invention. この発明の実施の形態9における固液分離システムを説明するための側面図である。It is a side view for demonstrating the solid-liquid separation system in Embodiment 9 of this invention.

符号の説明Explanation of symbols

1、1A〜1E 固液分離槽
2、2A、2B 濃縮液貯留器
3、3A 水槽
5、5A〜5E 回転筒
14、14A スリット(間隙)
15、15A 回転羽根
16 駆動手段
17、21、22、25 誘導器
18、18A 掻寄機
31 混合タンク
32 パンチングメタル
33 カバー
34 吸気管
35 排気管
36 空気弁
41、41A 固液分離機
42 分離液返送管
1, 1A-1E Solid-liquid separation tank 2, 2A, 2B Concentrated liquid reservoir 3, 3A Water tank 5, 5A-5E Rotating cylinder 14, 14A Slit (gap)
15, 15A Rotating blade 16 Driving means 17, 21, 22, 25 Inductor 18, 18A Scraper 31 Mixing tank 32 Punching metal 33 Cover 34 Intake pipe 35 Exhaust pipe 36 Air valve 41, 41A Solid-liquid separator 42 Separated liquid Return tube

Claims (7)

水槽、該水槽内に配設され、複数の間隙を有すると共に原液が流入する回転筒および該回転筒を低速で回転させる駆動手段を備え、原液を固液分離する固液分離槽と、
該固液分離槽に隣接して配設されると共に連通し、濃縮液を貯留する濃縮液貯留器と、
からなることを特徴とする固液分離装置。
A water tank, a solid-liquid separation tank that is disposed in the water tank, has a plurality of gaps and includes a rotating cylinder into which the stock solution flows, and a driving unit that rotates the rotating cylinder at a low speed;
A concentrate reservoir that is disposed adjacent to and communicates with the solid-liquid separation tank and stores the concentrate;
A solid-liquid separation device comprising:
濃縮液貯留器は、水面下で開口する吸気管および水面上で開口する排気管を有する
ことを特徴とする請求項1に記載の固液分離装置。
The solid-liquid separator according to claim 1, wherein the concentrated liquid reservoir has an intake pipe that opens below the water surface and an exhaust pipe that opens above the water surface.
水槽、該水槽内に配設され、複数の間隙を有すると共に原液が流入する回転筒および該回転筒を低速で回転させる駆動手段を備え、原液を固液分離する固液分離槽と、
該固液分離槽に隣接して配設されると共に連通し、濃縮液を貯留する濃縮液貯留器と、
該濃縮液貯留器から供給される濃縮液を固液分離する固液分離機と、
からなることを特徴とする固液分離システム。
A water tank, a solid-liquid separation tank that is disposed in the water tank, has a plurality of gaps and includes a rotating cylinder into which the stock solution flows, and a driving unit that rotates the rotating cylinder at a low speed;
A concentrate reservoir that is disposed adjacent to and communicates with the solid-liquid separation tank and stores the concentrate;
A solid-liquid separator for solid-liquid separation of the concentrate supplied from the concentrate reservoir;
A solid-liquid separation system comprising:
水槽、該水槽内に配設され、複数の間隙を有すると共に原液が流入する回転筒および該回転筒を低速で回転させる駆動手段を備え、原液を固液分離する固液分離槽と、
該固液分離槽に連通し、濃縮液を貯留する濃縮液貯留器と、
該濃縮液貯留器から供給される濃縮液を固液分離する固液分離機と、
からなることを特徴とする固液分離システム。
A water tank, a solid-liquid separation tank that is disposed in the water tank, has a plurality of gaps and includes a rotating cylinder into which the stock solution flows, and a driving unit that rotates the rotating cylinder at a low speed;
A concentrated liquid reservoir that communicates with the solid-liquid separation tank and stores the concentrated liquid;
A solid-liquid separator for solid-liquid separation of the concentrate supplied from the concentrate reservoir;
A solid-liquid separation system comprising:
前記固液分離機から排出される分離液を前記回転筒へ返送する分離液返送管を有する
ことを特徴とする請求項3または4に記載の固液分離システム。
5. The solid-liquid separation system according to claim 3, further comprising a separation liquid return pipe that returns the separation liquid discharged from the solid-liquid separator to the rotating cylinder.
濃縮液貯留器は、
水面下で開口する吸気管および水面上で開口する排気管を有する
ことを特徴とする請求項3〜5いずれかに記載の固液分離システム。
Concentrate reservoir
The solid-liquid separation system according to claim 3, further comprising an intake pipe that opens below the water surface and an exhaust pipe that opens above the water surface.
固液分離機は、
濃縮液を脱水処理する脱水機または濃縮液を再濃縮する濃縮機である
ことを特徴とする請求項3〜6いずれかに記載の固液分離システム。
Solid-liquid separator
The solid-liquid separation system according to any one of claims 3 to 6, wherein the solid-liquid separation system is a dehydrator that dehydrates the concentrated liquid or a concentrator that re-concentrates the concentrated liquid.
JP2005213542A 2005-07-22 2005-07-22 Solid-liquid separation device and solid-liquid separation system Active JP4765045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213542A JP4765045B2 (en) 2005-07-22 2005-07-22 Solid-liquid separation device and solid-liquid separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213542A JP4765045B2 (en) 2005-07-22 2005-07-22 Solid-liquid separation device and solid-liquid separation system

Publications (2)

Publication Number Publication Date
JP2007029801A true JP2007029801A (en) 2007-02-08
JP4765045B2 JP4765045B2 (en) 2011-09-07

Family

ID=37789701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213542A Active JP4765045B2 (en) 2005-07-22 2005-07-22 Solid-liquid separation device and solid-liquid separation system

Country Status (1)

Country Link
JP (1) JP4765045B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326084A (en) * 2006-06-09 2007-12-20 Nishihara Environment Technology Inc Solid/liquid separation system
JP2009297609A (en) * 2008-06-11 2009-12-24 Nishihara Environment Technology Inc Rotary separator
JP2011005375A (en) * 2009-06-24 2011-01-13 Nishihara Environment Technology Inc Solid-liquid separator
JP2013022503A (en) * 2011-07-20 2013-02-04 Nishihara Environment Co Ltd Polluted water treatment system and polluted water treatment method
JP2013512096A (en) * 2009-12-01 2013-04-11 リ、ジンミン Sludge treatment method using sludge biological treatment method, and sludge treatment apparatus and apparatus
CN104418413A (en) * 2013-08-20 2015-03-18 新疆科力新技术发展有限公司 High-dissolved-gas-content sewage treatment device
JP2016055229A (en) * 2014-09-08 2016-04-21 栗田工業株式会社 Method for concentrating sludge
JP2016202122A (en) * 2015-04-27 2016-12-08 株式会社マキタ Bush cutter
JP2018076665A (en) * 2016-11-07 2018-05-17 株式会社荏原製作所 Malodor preventing type drainage facility
JP2019126770A (en) * 2018-01-24 2019-08-01 株式会社西原環境 Solid-liquid separator
CN115779559A (en) * 2022-12-12 2023-03-14 江苏凯进生态建设有限公司 Comprehensive wastewater treatment device and treatment method

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499765A (en) * 1972-05-27 1974-01-28
JPS5147660A (en) * 1974-10-23 1976-04-23 Kawasaki Heavy Ind Ltd FUJOCHINKOGYOSHUBUTSUDOJIBUNRIHOHO OYOBI SOCHI
JPS5151571A (en) * 1974-10-29 1976-05-07 Sanyo Jido Hanbaiki Kk
JPS5259A (en) * 1975-06-22 1977-01-05 Ehime Saiseki Kk Device for purifying polluted water
JPS5617906A (en) * 1979-07-18 1981-02-20 Itt Method and device for removing sulfur from hydrogen sulfide
JPS5644009A (en) * 1979-09-14 1981-04-23 Moru Hansuujiyooji Method and device for treating water not treated
JPS5673503A (en) * 1979-11-19 1981-06-18 Hitachi Ltd Condensing method for ice crystal of refrigerating and desalting sea water
JPS61192395A (en) * 1985-02-20 1986-08-26 Kubota Ltd Treatment of organic sewage
JPH01231910A (en) * 1988-03-11 1989-09-18 Nippon Solid Co Ltd Precipitator
JPH0275141A (en) * 1988-09-09 1990-03-14 Jeol Ltd Ultra-high vacuum chamber having member with high voltage applied to its inside
JPH0283100A (en) * 1988-09-19 1990-03-23 Japan Organo Co Ltd Water purifying treatment plant
JPH03275200A (en) * 1990-03-26 1991-12-05 Kurita Water Ind Ltd Thickening and dehydrating method for organic sludge
JPH081043A (en) * 1994-06-23 1996-01-09 Hokusei Kisou Kk Solid-water separator and method therefor
JPH08206691A (en) * 1995-01-31 1996-08-13 Ishigaki Mech Ind Co Treatment of sludge
JPH09150200A (en) * 1995-11-30 1997-06-10 Ishigaki:Kk Sludge concentrating device and its washing method
JPH09187797A (en) * 1996-01-11 1997-07-22 Nkk Corp Treatment method for sludge
JPH10323506A (en) * 1997-05-22 1998-12-08 Tamatsukuri Kk Turbid water treating device
JP2000225358A (en) * 1999-02-04 2000-08-15 Nishihara Environ Sanit Res Corp Chemical injection type centrifugal filtration and thickening apparatus
JP2002018497A (en) * 2000-07-10 2002-01-22 Nkk Corp Sludge filtration and concentration apparatus
JP2002035502A (en) * 2000-07-24 2002-02-05 Kubota Corp Flocculation reaction tank
JP2003251114A (en) * 2002-03-04 2003-09-09 Jfe Engineering Kk Solid-liquid separator
WO2004089834A1 (en) * 2003-04-11 2004-10-21 Sang Hun Hong Sludge concentration system and process which have functions for automatically charging a coagulant and for automatically controlling the concentration of a sludge
JP2006263670A (en) * 2005-03-25 2006-10-05 Nishihara Environment Technology Inc Solid-liquid separator

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499765A (en) * 1972-05-27 1974-01-28
JPS5147660A (en) * 1974-10-23 1976-04-23 Kawasaki Heavy Ind Ltd FUJOCHINKOGYOSHUBUTSUDOJIBUNRIHOHO OYOBI SOCHI
JPS5151571A (en) * 1974-10-29 1976-05-07 Sanyo Jido Hanbaiki Kk
JPS5259A (en) * 1975-06-22 1977-01-05 Ehime Saiseki Kk Device for purifying polluted water
JPS5617906A (en) * 1979-07-18 1981-02-20 Itt Method and device for removing sulfur from hydrogen sulfide
JPS5644009A (en) * 1979-09-14 1981-04-23 Moru Hansuujiyooji Method and device for treating water not treated
JPS5673503A (en) * 1979-11-19 1981-06-18 Hitachi Ltd Condensing method for ice crystal of refrigerating and desalting sea water
JPS61192395A (en) * 1985-02-20 1986-08-26 Kubota Ltd Treatment of organic sewage
JPH01231910A (en) * 1988-03-11 1989-09-18 Nippon Solid Co Ltd Precipitator
JPH0275141A (en) * 1988-09-09 1990-03-14 Jeol Ltd Ultra-high vacuum chamber having member with high voltage applied to its inside
JPH0283100A (en) * 1988-09-19 1990-03-23 Japan Organo Co Ltd Water purifying treatment plant
JPH03275200A (en) * 1990-03-26 1991-12-05 Kurita Water Ind Ltd Thickening and dehydrating method for organic sludge
JPH081043A (en) * 1994-06-23 1996-01-09 Hokusei Kisou Kk Solid-water separator and method therefor
JPH08206691A (en) * 1995-01-31 1996-08-13 Ishigaki Mech Ind Co Treatment of sludge
JPH09150200A (en) * 1995-11-30 1997-06-10 Ishigaki:Kk Sludge concentrating device and its washing method
JPH09187797A (en) * 1996-01-11 1997-07-22 Nkk Corp Treatment method for sludge
JPH10323506A (en) * 1997-05-22 1998-12-08 Tamatsukuri Kk Turbid water treating device
JP2000225358A (en) * 1999-02-04 2000-08-15 Nishihara Environ Sanit Res Corp Chemical injection type centrifugal filtration and thickening apparatus
JP2002018497A (en) * 2000-07-10 2002-01-22 Nkk Corp Sludge filtration and concentration apparatus
JP2002035502A (en) * 2000-07-24 2002-02-05 Kubota Corp Flocculation reaction tank
JP2003251114A (en) * 2002-03-04 2003-09-09 Jfe Engineering Kk Solid-liquid separator
WO2004089834A1 (en) * 2003-04-11 2004-10-21 Sang Hun Hong Sludge concentration system and process which have functions for automatically charging a coagulant and for automatically controlling the concentration of a sludge
JP2006263670A (en) * 2005-03-25 2006-10-05 Nishihara Environment Technology Inc Solid-liquid separator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326084A (en) * 2006-06-09 2007-12-20 Nishihara Environment Technology Inc Solid/liquid separation system
JP2009297609A (en) * 2008-06-11 2009-12-24 Nishihara Environment Technology Inc Rotary separator
JP2011005375A (en) * 2009-06-24 2011-01-13 Nishihara Environment Technology Inc Solid-liquid separator
JP2013512096A (en) * 2009-12-01 2013-04-11 リ、ジンミン Sludge treatment method using sludge biological treatment method, and sludge treatment apparatus and apparatus
US8932466B2 (en) 2009-12-01 2015-01-13 Jinmin Li Method and apparatus for sluge treatment and use thereof in sewage biotreatment
JP2013022503A (en) * 2011-07-20 2013-02-04 Nishihara Environment Co Ltd Polluted water treatment system and polluted water treatment method
CN104418413A (en) * 2013-08-20 2015-03-18 新疆科力新技术发展有限公司 High-dissolved-gas-content sewage treatment device
CN104418413B (en) * 2013-08-20 2017-03-29 新疆科力新技术发展股份有限公司 High sewage-treatment plant containing solution gas
JP2016055229A (en) * 2014-09-08 2016-04-21 栗田工業株式会社 Method for concentrating sludge
JP2016202122A (en) * 2015-04-27 2016-12-08 株式会社マキタ Bush cutter
JP2018076665A (en) * 2016-11-07 2018-05-17 株式会社荏原製作所 Malodor preventing type drainage facility
JP2019126770A (en) * 2018-01-24 2019-08-01 株式会社西原環境 Solid-liquid separator
JP7083650B2 (en) 2018-01-24 2022-06-13 株式会社西原環境 Solid-liquid separator
CN115779559A (en) * 2022-12-12 2023-03-14 江苏凯进生态建设有限公司 Comprehensive wastewater treatment device and treatment method
CN115779559B (en) * 2022-12-12 2024-02-02 江苏凯进生态建设有限公司 Comprehensive wastewater treatment device and treatment method

Also Published As

Publication number Publication date
JP4765045B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4765045B2 (en) Solid-liquid separation device and solid-liquid separation system
CN106007209B (en) A kind of oil refinery&#39;s sewage oil removing pretreating process
JP4774491B2 (en) Solid-liquid separation system
JP4765022B2 (en) Solid-liquid separator
KR101455180B1 (en) Pressure airflotation for stream disperse
AU2009246040A1 (en) Apparatus and method for mechanical deaeration
JP5619379B2 (en) Solid-liquid separator
CN110407417A (en) A kind of Forebay of Pumping Station water quality efficient process integrated equipment
EP1155749A2 (en) A fine solids separator
JP7154925B2 (en) Screw separator and wastewater treatment system
KR101278957B1 (en) Sedimentation and floatation apparatus for waste water treatment
KR20120091553A (en) A solid-and-liquid seperating apparatus for treating effluents, a screw dehydration apparatus and a treatment using them
CN213950939U (en) Multifunctional internal water inlet efficient filter
CN210764796U (en) Domestic waste penetrant purifier
KR101991810B1 (en) Wastewater treatment system having improved removing efficiency of floating matter and scum
WO2016158673A1 (en) Water treatment apparatus and water treatment method
KR101991812B1 (en) Wastewater treatment system having multi-holes plate capable of controlling of emitting size of treated water
JP7083650B2 (en) Solid-liquid separator
KR102102920B1 (en) All-in-one apparatus and method for water purifying using micro bubble
KR101885134B1 (en) waste water continual system and method
KR200371017Y1 (en) Dissolved airfloatation system for treatment waste water
CN213950940U (en) Multifunctional external water inlet efficient filter
JP2505719B2 (en) Liquid processing apparatus and liquid processing facility using the same
KR101991816B1 (en) Wastewater treatment system using multi-holes plate having improved treated water emitting efficiency
KR101991808B1 (en) Wastewater treatment system using multi-holes plate with improved treating efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071010

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4765045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250