JP2002001119A - Method for manufacturing catalyst for purification of exhaust gas and catalyst for purification of exhaust gas manufactured by that method - Google Patents

Method for manufacturing catalyst for purification of exhaust gas and catalyst for purification of exhaust gas manufactured by that method

Info

Publication number
JP2002001119A
JP2002001119A JP2000181129A JP2000181129A JP2002001119A JP 2002001119 A JP2002001119 A JP 2002001119A JP 2000181129 A JP2000181129 A JP 2000181129A JP 2000181129 A JP2000181129 A JP 2000181129A JP 2002001119 A JP2002001119 A JP 2002001119A
Authority
JP
Japan
Prior art keywords
exhaust gas
carrier
catalyst
salt
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000181129A
Other languages
Japanese (ja)
Other versions
JP4346215B2 (en
Inventor
Koji Okamoto
浩治 岡本
Masayuki Saito
昌幸 齋藤
Naoto Miyoshi
直人 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Toyota Motor Corp
Original Assignee
Tanaka Kikinzoku Kogyo KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Toyota Motor Corp filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2000181129A priority Critical patent/JP4346215B2/en
Publication of JP2002001119A publication Critical patent/JP2002001119A/en
Application granted granted Critical
Publication of JP4346215B2 publication Critical patent/JP4346215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a catalyst for purification of exhaust gas such that noble metals can be quickly adsorbed and deposited even when a pellet carrier or ceramic-coated honeycomb carrier is used. SOLUTION: In the method for manufacturing a catalyst for purification exhaust gas, one or more kinds of noble metal salts are mixed with water, a mixture solvent of water and organic solvent or a solvent consisting of organic solvent, and a protecting agent, the mixture solution is refluxed to reduce the noble metal salts in the solution to prepare a colloid solution with suspension of noble metal particles, and the colloid solution is adsorbed to a carrier consisting of a porous material. In this method, the colloid solution to be adsorbed contains a quaternary ammonium salt mixed as the protecting agent. The protecting agent is preferably a quaternary ammonium salt having at least one alkyl group having 1 to 4 carbon atoms and a quaternary ammonium salt containing sulfur or chlorine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガスの浄化に
用いられる触媒、特に自動車の排気ガス浄化用触媒の製
造方法及びその製造方法により得られる触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst used for purifying exhaust gas, and more particularly to a method for producing an exhaust gas purifying catalyst for an automobile and a catalyst obtained by the method.

【0002】[0002]

【従来の技術】近年、リーンバーン自動車排ガスの浄化
用触媒として、NOx吸蔵還元型触媒が広く使用されて
いる。このNOx吸蔵還元型触媒は白金、パラジウム等
の触媒活性を有する貴金属粒子と、主にバリウム等のア
ルカリ土類金属の炭酸塩を、アルミナ、ジルコニアのセ
ラミックのペレット状又はハニカム成形体若しくはセラ
ミックをコーティングした金属ハニカムといった多孔質
体である担体上に担持されたものである。このNOx吸
蔵還元型触媒において、貴金属粒子はNOxの分解を促
進するための触媒成分として作用し、一方のアルカリ土
類金属はNOxの吸蔵剤としての役割を有するものであ
り、NOxの分解が困難な酸化雰囲気においては硝酸塩
の形態でNOxを吸蔵し、NOxの分解が容易となる還
元雰囲気に転じた際にこの吸蔵したNOxを瞬時に分解
すべく開放するようになっている。
2. Description of the Related Art In recent years, NOx storage reduction type catalysts have been widely used as catalysts for purifying lean burn automobile exhaust gas. This NOx storage reduction type catalyst is coated with noble metal particles having catalytic activity such as platinum and palladium, and carbonates of alkaline earth metals such as barium, and pellets of alumina or zirconia, or honeycomb molded bodies or ceramics. Supported on a carrier such as a metal honeycomb formed of a porous material. In this NOx storage reduction catalyst, the noble metal particles act as a catalyst component for accelerating the decomposition of NOx, while the alkaline earth metal has a role as a NOx storage agent, and it is difficult to decompose NOx. In an oxidizing atmosphere, NOx is stored in the form of nitrate, and when the atmosphere is changed to a reducing atmosphere in which NOx can be easily decomposed, the stored NOx is released so as to be immediately decomposed.

【0003】かかるNOx吸蔵型触媒は、担体に貴金属
塩の水溶液(例えば、ジニトロジアンミン硝酸塩水溶
液)を担体に吸着させて水溶液中の分子状貴金属を担体
表面に吸着させることにより従来製造されている。ま
た、バリウムなどのアルカリ土類金属については、担体
に所定濃度の酢酸塩、炭酸塩バリウム等の水溶液を吸着
させて焼成し、その後に貴金属の担持をするようにして
いる。
[0003] Such NOx storage catalysts are conventionally manufactured by adsorbing an aqueous solution of a noble metal salt (for example, an aqueous solution of dinitrodiammine nitrate) on a carrier and adsorbing the molecular noble metal in the aqueous solution on the surface of the carrier. For alkaline earth metals such as barium, a carrier is adsorbed with a predetermined concentration of an aqueous solution of acetate or barium carbonate or the like and calcined, and then the noble metal is loaded.

【0004】ところで、従来のNOx吸蔵還元型触媒
は、耐熱性に乏しく連続運転により触媒活性、NOx吸
蔵量が低下するという問題が生じていた。この触媒活性
及びNOx吸蔵量の経時的低下の要因の1つに熱劣化が
あり、排気温が高温となる運転により貴金属が酸化され
て触媒製造時の担持位置から離脱・拡散し易くなり、他
の貴金属粒子と結合し貴金属粒子の粒成長が生じるため
有効表面積が低下するところにあるものされている。そ
して、このような貴金属粒子の粒成長は、貴金属粒子の
粒径が小さければ小さいほど生じ易く、従来の原子状、
分子状貴金属を担持させた触媒には貴金属粒子径が小さ
いことから触媒活性の低下が生じるものと考えられてい
る。
[0004] The conventional NOx storage-reduction type catalyst has a problem in that the catalyst activity and the NOx storage amount decrease due to poor heat resistance and continuous operation. Thermal degradation is one of the factors that cause the catalyst activity and NOx occlusion amount to decrease over time. Precious metals are oxidized by the operation in which the exhaust gas temperature rises, and are easily separated and diffused from the loading position during catalyst production. Noble metal particles are combined with the noble metal particles to cause grain growth, so that the effective surface area is reduced. Such noble metal particle growth is more likely to occur as the size of the noble metal particle is smaller.
It is considered that the catalyst loaded with the molecular noble metal has a small noble metal particle diameter, and thus causes a decrease in catalytic activity.

【0005】そこで、本発明者らは、NOx吸蔵還元型
触媒の製造工程に関し、分子状貴金属を含む水溶液に替
えて貴金属コロイド溶液を担体に吸着させる方法を提唱
している。ここで、コロイド溶液とは、多数の貴金属原
子が凝集してなる粒径1〜数十nmの微小粒子(コロイ
ド粒子)が液体溶媒中に分散、懸濁したものをいう。コ
ロイド溶液を使用することにより原子状・分子状金属を
担持させる場合よりも大きな粒径の金属粒子を担持させ
ることができるため粒成長を抑制することができると共
に、粒子径を適当な範囲とすることで触媒活性を保持す
ることが可能となる。また、コロイド溶液を使用するメ
リットとしては、複数の貴金属の凝集するコロイド粒子
が懸濁するコロイド溶液を用いることで、容易に複数の
貴金属を複合的に担持させることができることが揚げら
れる。即ち、ロジウムのように担体であるアルミナと親
和力の大きい貴金属を白金と複合担持することで貴金属
粒子の離脱・拡散を抑制することができるのである。
Therefore, the present inventors have proposed a method of adsorbing a noble metal colloid solution onto a carrier in place of an aqueous solution containing a molecular noble metal in the production process of a NOx storage reduction catalyst. Here, the colloid solution refers to a solution in which fine particles (colloid particles) having a particle diameter of 1 to several tens of nm formed by aggregating a large number of noble metal atoms are dispersed and suspended in a liquid solvent. By using a colloidal solution, it is possible to carry metal particles having a larger particle diameter than in the case of carrying atomic and molecular metals, so that grain growth can be suppressed and the particle diameter is set to an appropriate range. This makes it possible to maintain the catalytic activity. Another advantage of using a colloidal solution is that the use of a colloidal solution in which a plurality of noble metal agglomerated colloidal particles are suspended allows a plurality of noble metals to be easily supported in a complex manner. That is, detachment and diffusion of the noble metal particles can be suppressed by carrying a noble metal having a high affinity for alumina as a carrier, such as rhodium, in combination with platinum.

【0006】そして、本発明者らはこのコロイド溶液を
用いたNOx吸蔵還元型触媒の製造において、ポリビニ
ルピロリドン(以下、PVPという。)を貴金属粒子の
保護剤としてコロイド溶液に添加してこのコロイド溶液
を担体に吸着する方法を提唱している。この保護剤と
は、コロイド溶液中でコロイド粒子の周辺に化学的又は
物理的に結合、吸着する化合物であって、コロイド粒子
同志の凝集を抑制し粒径分布を適性範囲に制御し安定化
させるものをいう。つまり、保護剤をコロイド溶液に添
加することでコロイド粒子の粒径を触媒に対して適当な
範囲(1〜5nm程度である)とし、安定した状態で担
体に吸着させることができる。
In the production of a NOx storage-reduction type catalyst using this colloid solution, the present inventors added polyvinylpyrrolidone (hereinafter referred to as PVP) to the colloid solution as a protective agent for noble metal particles. A method for adsorbing carboxylic acid on a carrier has been proposed. This protective agent is a compound that chemically or physically binds and adsorbs to the periphery of colloid particles in a colloid solution, suppresses aggregation of the colloid particles and controls and stabilizes the particle size distribution within an appropriate range. A thing. That is, by adding the protective agent to the colloid solution, the particle size of the colloid particles can be adjusted to an appropriate range (about 1 to 5 nm) for the catalyst, and the colloid particles can be stably adsorbed on the carrier.

【0007】しかしながら、本発明者らの検討の結果、
PVP混合コロイド溶液を用いて触媒を製造した場合、
特に、ペレット状担体やセラミックコーティングしたハ
ニカム担体に対する吸着速度が著しく低いことが明らか
となっている。このようにコロイド溶液の担体に対する
吸着速度が低い場合、触媒の生産性を著しく低下させる
こととなる。また、コロイド溶液の吸着速度が低い場
合、十分な時間をかけなければ所要量の貴金属を担体に
吸着させることができない。ここで貴金属の担持分布は
空間速度の高い自動車排ガス触媒にあっては、触媒自体
の活性に影響を与えるものである。
However, as a result of the study by the present inventors,
When a catalyst is produced using a PVP mixed colloid solution,
In particular, it has been clarified that the adsorption speed for pellet-shaped carriers and ceramic-coated honeycomb carriers is extremely low. When the rate of adsorption of the colloidal solution to the carrier is low, the productivity of the catalyst is significantly reduced. In addition, when the adsorption speed of the colloid solution is low, a sufficient amount of noble metal cannot be adsorbed on the carrier unless sufficient time is taken. Here, the distribution of noble metal loading affects the activity of the catalyst itself in the case of an automobile exhaust gas catalyst having a high space velocity.

【0008】[0008]

【発明が解決しようとする課題】本発明は以上のような
背景の下なされたものであり、貴金属コロイド溶液に保
護剤を添加しこれを担体に吸着させてなる排気ガス浄化
用触媒の製造方法に関して、ペレット状担体やセラミッ
クコーティングしたハニカム担体を用いた場合において
も速やかに貴金属を吸着・担持させることができる排気
ガス浄化用触媒の製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made under the above-mentioned background, and a method for producing a catalyst for purifying exhaust gas, comprising adding a protective agent to a noble metal colloid solution and adsorbing the same on a carrier. Accordingly, an object of the present invention is to provide a method for producing an exhaust gas purifying catalyst capable of rapidly adsorbing and supporting a noble metal even when a pellet-shaped carrier or a ceramic carrier coated with a honeycomb carrier is used.

【0009】[0009]

【課題を解決するための手段】本発明者らは、PVPを
保護剤としたコロイド溶液の担体に関する吸着速度の問
題点について検討したところ、その原因が保護剤を含め
た貴金属粒子の粒子径が過大である点にあるとの考察に
至った。そして、貴金属粒子径が小さくなるような保護
剤を用いた触媒の製造法について鋭意研究を行った結
果、本発明を想到するに至った。
Means for Solving the Problems The present inventors have examined the problem of the adsorption rate of a colloid solution using PVP as a protective agent on a carrier, and found that the cause was that the particle size of the noble metal particles including the protective agent was reduced. It was concluded that the point was too large. Then, as a result of diligent research on a method for producing a catalyst using a protective agent that reduces the noble metal particle diameter, the present invention has been reached.

【0010】即ち、本願請求項1記載の発明は、1種又
は2種以上の貴金属塩と水又は水と有機溶媒との混合溶
媒若しくは有機溶媒とからなる溶媒と保護剤と混合し、
この混合溶液を還流することにより溶液中の貴金属イオ
ンを還元して貴金属粒子が懸濁するコロイド溶液を製造
し、コロイド溶液を多孔質体である担体に吸着させる排
ガス浄化触媒の製造方法において、保護剤として4級ア
ンモニウム塩を混合したコロイド溶液を吸着させる排ガ
ス浄化触媒の製造方法である。
That is, the invention according to claim 1 of the present application comprises mixing one or more kinds of noble metal salts with water or a mixed solvent of water and an organic solvent or an organic solvent with a protective agent,
By refluxing the mixed solution, a noble metal ion in the solution is reduced to produce a colloidal solution in which the noble metal particles are suspended, and the colloidal solution is adsorbed on a porous carrier. This is a method for producing an exhaust gas purifying catalyst that adsorbs a colloid solution mixed with a quaternary ammonium salt as an agent.

【0011】4級アンモニウム塩はPVPに比して著し
く分子量が小さいことから、コロイド溶液中でコロイド
粒子上に配位したときの全体の粒子径はPVPを添加し
た場合よりも小さくなるものと考えられる。従って、本
願請求項1記載の発明によれば、担体の種類を問わず速
やかにコロイド溶液を担体に吸着することができ、触媒
の生産性を向上させることができる。
Since the quaternary ammonium salt has a significantly smaller molecular weight than PVP, it is considered that the overall particle size when coordinated on the colloid particles in the colloid solution is smaller than that when PVP is added. Can be Therefore, according to the first aspect of the present invention, the colloid solution can be quickly adsorbed to the carrier regardless of the type of the carrier, and the productivity of the catalyst can be improved.

【0012】また、4級アンモニウム塩はPVPと同
様、貴金属粒子に対する親和性が良好で、コロイド溶液
中で貴金属粒子表面に容易に配位することから保護剤と
しても十分な効果を有し、コロイド粒子の粗大化を抑制
すると共にコロイド粒子を均一に分散させることができ
る。従って、請求項1記載のコロイド溶液により触媒を
製造する場合、その触媒の活性を十分なものとすること
ができる。
Quaternary ammonium salts, like PVP, have good affinity for noble metal particles and easily coordinate with the surface of noble metal particles in a colloid solution, so that they have a sufficient effect as a protective agent. It is possible to suppress coarsening of the particles and to uniformly disperse the colloid particles. Therefore, when a catalyst is produced from the colloid solution according to claim 1, the activity of the catalyst can be made sufficient.

【0013】そして、コロイド溶液に添加する4級アン
モニウム塩としては、請求項2記載のように、炭素数1
〜4のアルキル基を少なくとも1つ有する4級アンモニ
ウムを添加するのが好ましい。つまり、保護剤である4
級アンモニウム塩が有する置換基の少なくとも一つを短
鎖のアルキル基とするものである。これは、保護剤を添
加した状態のコロイド溶液を親水性とするためである。
特に、自動車排ガス触媒の製造においては、従来技術に
あるように水溶性貴金属化合物を水に溶解させて製造す
るのが一般的となっていることから、本発明で新たに有
機溶媒を使用するとなれば、その引火性や作業環境を新
たに考慮する必要があり工業的に困難となるからであ
る。
[0013] The quaternary ammonium salt to be added to the colloid solution is preferably a compound having 1 carbon atom.
It is preferable to add a quaternary ammonium having at least one alkyl group. That is, the protective agent 4
At least one of the substituents of the quaternary ammonium salt is a short-chain alkyl group. This is to make the colloid solution with the protective agent added hydrophilic.
In particular, in the production of automobile exhaust gas catalysts, since it is common to dissolve a water-soluble noble metal compound in water as in the prior art, an organic solvent can be newly used in the present invention. If, for example, its flammability and work environment need to be newly considered, it becomes industrially difficult.

【0014】また、本発明で添加する4級アンモニウム
塩として更に望ましいものとしては、請求項4記載のよ
うに、硫黄及び塩素を含有しない4級アンモニウム塩と
するのが好ましい。硫黄が含有されている触媒コロイド
溶液により触媒を製造した場合、その硫黄は担体上の触
媒層内に残留することとなり触媒被毒の要因となるから
である。また、塩素の場合についても塩素が触媒層に残
留した場合、この塩素に起因して触媒反応ガス中に塩化
水素ガスが混入し触媒を搭載する装置に腐食の問題が生
じるからである。
Further, as a quaternary ammonium salt to be added in the present invention, a quaternary ammonium salt containing no sulfur and chlorine is preferable. This is because, when a catalyst is produced using a catalyst colloid solution containing sulfur, the sulfur remains in the catalyst layer on the carrier and becomes a factor of catalyst poisoning. Also, in the case of chlorine, when chlorine remains in the catalyst layer, hydrogen chloride gas is mixed into the catalytic reaction gas due to the chlorine, causing a problem of corrosion in a device on which the catalyst is mounted.

【0015】このような塩素及び硫黄を含有しないとい
う条件を具備する4級アンモニウム塩としては、短鎖で
塩素及び硫黄を含有しないアルキル基を有する4級アン
モニウム塩として、テトラメチルアンモニウム塩、テト
ラエチルアンモニウム塩、テトラ−n−プロピルアンモ
ニウム塩、テトライソプロピルアンモニウム塩、テトラ
ブチルアンモニウム塩、ベンジルトリメチルアンモニウ
ム塩が揚げられる。
The quaternary ammonium salts satisfying the condition that they do not contain chlorine and sulfur include tetramethylammonium salts and tetraethylammonium salts as quaternary ammonium salts having a short-chain alkyl group containing no chlorine and sulfur. Salts, tetra-n-propylammonium salts, tetraisopropylammonium salts, tetrabutylammonium salts, benzyltrimethylammonium salts are fried.

【0016】また、塩素及び硫黄を含有しない方が好ま
しいのは4級アンモニウム塩の陰イオン成分についても
同様である。従って、本発明で使用される4級アンモニ
ウム塩としては、陰イオン成分が硫酸イオン、塩素イオ
ンである硫酸塩、塩化物では適当ではなく、請求項5記
載のように、陰イオン成分が水酸化物イオン、酢酸イオ
ン、炭酸イオン、硝酸イオン、亜硝酸イオンである酸化
物、酢酸塩、炭酸塩、硝酸塩、亜硝酸塩の少なくとも1
種を添加するのが好ましい。、
It is preferable that chlorine and sulfur are not contained in the quaternary ammonium salt as well. Therefore, as the quaternary ammonium salt used in the present invention, sulfates and chlorides whose anion component is a sulfate ion or a chloride ion are not suitable. At least one of oxides, acetates, carbonates, nitrates, and nitrites, which are compound ions, acetate ions, carbonate ions, nitrate ions, and nitrite ions.
Preferably, a seed is added. ,

【0017】ところで、既に述べたように、本発明の対
象である排ガス浄化触媒触媒としては、貴金属粒子に加
えて、NOx分解促進の目的でバリウム等のアルカリ土
類金属が担持されたものが一般に用いられている。この
ような排ガス浄化触媒触媒を製造するために、通常、貴
金属の担持に先立ってバリウム等が担持された担体を使
用するが、このような担体に対して本発明の4級アンモ
ニウム塩を保護剤としたコロイドを吸着させる場合は、
請求項6記載のように、コロイド溶液にキレート剤を添
加し、コロイド溶液を担体に吸着させるのが好ましい。
As described above, the catalyst for purifying exhaust gas, which is the object of the present invention, is generally a catalyst carrying an alkaline earth metal such as barium in order to promote the decomposition of NOx in addition to the noble metal particles. Used. In order to manufacture such an exhaust gas purifying catalyst, a carrier on which barium or the like is supported is usually used prior to supporting the noble metal, and the quaternary ammonium salt of the present invention is used as a protective agent for such a carrier. When adsorbing colloids
As described in claim 6, it is preferable that a chelating agent is added to the colloid solution so that the colloid solution is adsorbed on the carrier.

【0018】このようにすることの理由としては、本発
明者らの本願発明に関する更なる検討の結果、アルカリ
土類金属が予め担持された担体に、本発明の触媒コロイ
ドを吸着させようとした場合、貴金属粒子の吸着速度が
通常の担体(アルカリ土類金属担持なしの担体)を用い
た場合よりも低くなるという知見によるものである。そ
して、本発明者らによれば、このような吸着速度の低下
は、4級アンモニウム塩が配位した貴金属コロイド粒子
は、コロイド中にアルカリ土類金属(イオン)が共存す
る場合、アルカリ土類金属イオンと塩析反応を生じ凝集
するために生じるものであると考えられる。
The reason for this is that as a result of further studies on the present invention by the present inventors, an attempt was made to adsorb the catalyst colloid of the present invention on a carrier on which an alkaline earth metal was previously supported. In this case, it is based on the finding that the adsorption speed of the noble metal particles is lower than that in the case of using a normal carrier (a carrier without supporting an alkaline earth metal). According to the present inventors, such a decrease in the adsorption rate is caused by the fact that the noble metal colloid particles to which the quaternary ammonium salt is coordinated, when an alkaline earth metal (ion) coexists in the colloid, It is considered that the salting out reaction occurs with the metal ions to cause aggregation.

【0019】請求項6記載の発明は、この貴金属コロイ
ド粒子とアルカリ土類金属イオンとの塩析を解決すべく
なされたものである。この請求項6記載の発明によれ
ば、キレート剤が担体から溶出するアルカリ土類金属イ
オンを捕捉することとなるため、コロイド中の貴金属粒
子はアルカリ土類金属イオンの影響を受けることなく速
やかに担体に吸着するのである。
The invention described in claim 6 has been made to solve the salting out of the noble metal colloid particles and the alkaline earth metal ions. According to the invention of claim 6, since the chelating agent captures the alkaline earth metal ion eluted from the carrier, the noble metal particles in the colloid are promptly affected by the alkaline earth metal ion. It adsorbs on the carrier.

【0020】ここでのキレート剤とは、バリウム等のア
ルカリ土類金属イオンと容易に反応してキレート化合物
を形成することができる多座配位子を有する化合物をい
う。このキレート剤としては、請求項7のように、配位
子としてカルボキシル基を2以上有する化合物が好まし
く、特に請求項8記載のエチレンジアンミン四酢酸(E
DTA)が好ましい。
The chelating agent herein means a compound having a polydentate ligand which can easily react with an alkaline earth metal ion such as barium to form a chelate compound. As the chelating agent, a compound having two or more carboxyl groups as ligands is preferable as described in claim 7, and particularly, ethylenediamminetetraacetic acid (E) described in claim 8 is preferable.
DTA) is preferred.

【0021】尚、このキレート剤の添加量については、
コロイド溶液の容積、担体に担持されているアルカリ土
類金属の量により異なるが、コロイド溶液に対して0.
01〜1.0wt%程度添加するのが好ましい。0.0
1wt%以下の添加量では溶出バリウムイオンの捕捉効
果がみられず、1.0wt%以上添加しても効果に変化
が見られず、吸着特性に変化はないからである。
The amount of the chelating agent added is as follows:
It depends on the volume of the colloidal solution and the amount of the alkaline earth metal supported on the carrier.
It is preferable to add about 01 to 1.0 wt%. 0.0
This is because the addition of 1 wt% or less has no effect of capturing the eluted barium ions, and the addition of 1.0 wt% or more shows no change in the effect and no change in the adsorption characteristics.

【0022】一方、請求項6の発明によれば、貴金属粒
子の吸着速度は問題ないいものの、折角担持したアルカ
リ土類金属が担体から溶出していることに変わりはな
い。従って、このアルカリ土類金属の溶出により触媒と
したときのアルカリ土類金属の効果が減少するものと考
えられる。そこで、本発明者らは、貴金属粒子の吸着速
度を維持しつつ、担体に担持されているアルカリ土類金
属の溶出を防止する方法として、請求項9記載の発明の
ように、コロイド溶液に更にアルカリ土類金属の塩を添
加してコロイド溶液を担体に吸着させるものとした。
On the other hand, according to the invention of claim 6, although there is no problem in the adsorption speed of the noble metal particles, the alkali earth metal carried on the carrier is still eluted from the carrier. Therefore, it is considered that the effect of the alkaline earth metal when used as a catalyst is reduced by the elution of the alkaline earth metal. Therefore, the present inventors have proposed a method for preventing the elution of alkaline earth metal supported on a carrier while maintaining the adsorption rate of noble metal particles, as in the invention according to claim 9, wherein the colloidal solution is further added to the colloidal solution. An alkaline earth metal salt was added to adsorb the colloid solution to the carrier.

【0023】請求項9記載の発明は、担体上のアルカリ
土類金属は、コロイド溶液中のアルカリ土類金属(イオ
ン)とのバランスにより溶出するとの考察に基づきなさ
れたものである。この請求項9記載の方法によれば、予
めコロイド溶液中にアルカリ土類金属塩を混合すること
で、コロイド溶液中のアルカリ土類金属イオン濃度が上
昇するので、担体からのアルカリ土類金属の溶出を抑制
することができる。
The ninth aspect of the present invention is based on the consideration that the alkaline earth metal on the carrier is eluted in balance with the alkaline earth metal (ion) in the colloid solution. According to the method of claim 9, the alkaline earth metal ion concentration in the colloid solution is increased by previously mixing the alkaline earth metal salt in the colloid solution. Elution can be suppressed.

【0024】このアルカリ土類金属塩の添加量は、担体
に予め担持されているアルカリ土類金属の量によるが、
コロイド溶液に対して50〜5000ppm程度添加す
るのが好ましい。また、コロイド溶液に添加するアルカ
リ土類金属塩としては、例えば、硝酸塩の形態で添加す
るのが好ましい。
The amount of the alkaline earth metal salt to be added depends on the amount of the alkaline earth metal previously supported on the carrier.
It is preferable to add about 50 to 5000 ppm to the colloid solution. As the alkaline earth metal salt to be added to the colloid solution, for example, it is preferable to add in the form of nitrate.

【0025】尚、以上説明した排ガス浄化触媒触媒の製
造方法においては、コロイド溶液を担体に吸着させる方
法を特に限定するものではない。従って、コロイド溶液
(場合によってはキレート剤、アルカリ土類金属塩を添
加たコロイド溶液)をスプレーにて担体に吹き付けるこ
とによっても可能であるが、コロイド溶液を収容する槽
に担体を浸漬し、コロイド溶液を担体に吸着させる方が
好ましい。浸漬法によるほうが簡易にコロイド溶液を担
体に浸透させることができ、かつ、貴金属粒子を偏差な
く吸着させることができるからである。
In the method for producing an exhaust gas purifying catalyst described above, the method for adsorbing the colloid solution on the carrier is not particularly limited. Therefore, it is also possible to spray a colloid solution (in some cases, a colloid solution containing a chelating agent or an alkaline earth metal salt) onto the carrier by spraying. It is preferred that the solution be adsorbed on the carrier. This is because the immersion method allows the colloid solution to easily penetrate the carrier and allows the noble metal particles to be adsorbed without deviation.

【0026】また、本発明で使用するコロイド溶液とし
ては、貴金属粒子として白金、金、銀、パラジウム、ル
テニウム、ロジウム、イリジウム、オスミウムが懸濁し
たものであるが、このコロイド溶液を製造するためには
ジニトロジアンミン硝酸塩等の塩を溶媒に溶解させて製
造する。
The colloid solution used in the present invention is a suspension of platinum, gold, silver, palladium, ruthenium, rhodium, iridium and osmium as noble metal particles. Is prepared by dissolving a salt such as dinitrodiammine nitrate in a solvent.

【0027】[0027]

【発明の実施の形態】以下、本発明の好適と思われる実
施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described below.

【0028】第1実施形態:2Lの水にジニトロジアン
ミン白金3.12g及び硝酸ロジウム0.25gを溶解
させ、これにテトラヒドロフラン600mLとエタノー
ル800mLとを加え、更に保護剤として15wt%の
水酸化テトラメチルアンモニウム水溶液88.36gを
添加し、これを10時間加熱還流した。
First Embodiment : 3.12 g of dinitrodiammineplatinum and 0.25 g of rhodium nitrate are dissolved in 2 L of water, 600 mL of tetrahydrofuran and 800 mL of ethanol are added thereto, and 15 wt% of tetramethyl hydroxide as a protective agent is further added. An aqueous ammonium solution (88.36 g) was added, and the mixture was heated under reflux for 10 hours.

【0029】この溶液を蒸発乾固した後、アセトン25
00mL/水500mLの混合溶媒に再溶解させ、溶液
を蒸留してアセトンを除去し、さらに白金濃度が1wt
%となるまで濃縮し、テトラメチルアンモニウム−白金
/ロジウムバイメタリックコロイドを得た。
After evaporating the solution to dryness, acetone 25
The solution was redissolved in a mixed solvent of 00 mL / 500 mL of water, and the solution was distilled to remove acetone.
% To obtain a tetramethylammonium-platinum / rhodium bimetallic colloid.

【0030】そして、50mLの水にγ−アルミナ粉末
6.00gを分散させ、上記、白金/ロジウムコロイド
10gを滴下した、30分間室温にて攪拌して白金/ロ
ジウムコロイドをγ−アルミナ上に吸着担持させた。
Then, 6.00 g of γ-alumina powder was dispersed in 50 mL of water, and 10 g of the above-mentioned platinum / rhodium colloid was added dropwise. The mixture was stirred at room temperature for 30 minutes to adsorb the platinum / rhodium colloid on γ-alumina. Supported.

【0031】その後これを濾過し、110℃で2時間乾
燥後、450℃で2時間焼成して、白金/ロジウム担持
触媒を得た。尚、この触媒のアルミナ粉末1g当たりの
白金担持量は0.0166g、ロジウム担持量は9.6
6×10−4gである。
Thereafter, this was filtered, dried at 110 ° C. for 2 hours, and calcined at 450 ° C. for 2 hours to obtain a platinum / rhodium supported catalyst. The amount of supported platinum per gram of alumina powder of this catalyst was 0.0166 g, and the amount of supported rhodium was 9.6.
6 × 10 −4 g.

【0032】比較例1:2Lの水にジニトロジアンミン
白金3.12g及び硝酸ロジウム0.25gを溶解さ
せ、これにエタノール500mLを加え、更に保護剤と
してPVPを添加し、これを8時間加熱還流した。
Comparative Example 1 : 3.12 g of dinitrodiammineplatinum and 0.25 g of rhodium nitrate were dissolved in 2 L of water, 500 mL of ethanol was added thereto, PVP was further added as a protective agent, and the mixture was heated and refluxed for 8 hours. .

【0033】この溶液を蒸留して白金濃度が4wt%と
なるまで濃縮し、PVP保護白金/ロジウムバイメタリ
ックコロイドを得た。
This solution was distilled and concentrated until the platinum concentration became 4 wt% to obtain a PVP-protected platinum / rhodium bimetallic colloid.

【0034】そして、50mLの水にγ−アルミナ粉末
6.00gを分散させ、上記、白金/ロジウムコロイド
2.5gを滴下した、30分間室温にて攪拌して白金/
ロジウムコロイドをγ−アルミナ上に吸着担持させた。
Then, 6.00 g of γ-alumina powder was dispersed in 50 mL of water, and 2.5 g of the above-mentioned platinum / rhodium colloid was added dropwise.
Rhodium colloid was adsorbed and supported on γ-alumina.

【0035】その後、第1実施形態と同様の操作を行
い、白金/ロジウム担持触媒を得た。尚、この触媒のア
ルミナ粉末1g当たりの白金担持量は0.0166g、
ロジウム担持量は9.66×10−4gである。
Thereafter, the same operation as in the first embodiment was performed to obtain a platinum / rhodium supported catalyst. The amount of platinum carried per gram of alumina powder of this catalyst was 0.0166 g,
The amount of rhodium supported is 9.66 × 10 −4 g.

【0036】比較例2:50mLの水にγ−アルミナ粉
末6.00gを分散させ、これにジニトロジアンミン白
金錯体を含む硝酸水溶液(含有白金量:0.1g)を滴
下した、30分間室温にて攪拌してジニトロジアンミン
白金をγ−アルミナ上に吸着担持させた。
Comparative Example 2 : 6.00 g of γ-alumina powder was dispersed in 50 mL of water, and an aqueous nitric acid solution (containing platinum: 0.1 g) containing a dinitrodiammine platinum complex was added dropwise thereto. With stirring, dinitrodiammine platinum was adsorbed and supported on γ-alumina.

【0037】そして、第1実施形態と同様の操作により
担持触媒を得た。尚、この触媒のアルミナ粉末1g当た
りの白金担持量は0.0166gである。
Then, a supported catalyst was obtained by the same operation as in the first embodiment. The amount of platinum carried per gram of alumina powder of this catalyst was 0.0166 g.

【0038】実験例1(耐熱試験):第1実施形態及び
比較例1、2において製造した触媒について、空気中で
800℃にて5時間加熱し、触媒上の貴金属粒子の粒径
を測定し、各触媒の貴金属粒子の粗大化の状況を検討し
た。貴金属粒子径の測定はXRD(X線回折)により得
られた回折像をデバイ−シェラー法にて求めている。こ
のようにして測定された加熱前後の触媒の貴金属粒子の
粒径の値を表1に示す。
Experimental Example 1 (Heat Resistance Test) : The catalysts produced in the first embodiment and Comparative Examples 1 and 2 were heated in air at 800 ° C. for 5 hours, and the particle size of the noble metal particles on the catalyst was measured. Then, the situation of coarsening of the noble metal particles of each catalyst was examined. In the measurement of the noble metal particle diameter, a diffraction image obtained by XRD (X-ray diffraction) is obtained by the Debye-Scherrer method. Table 1 shows the values of the particle diameters of the noble metal particles of the catalyst measured before and after heating as described above.

【0039】[0039]

【表1】 [Table 1]

【0040】表1より、第1実施形態において製造され
た触媒においては、加熱後の貴金属粒子の粒子径が、比
較例2のPVPを保護剤としたコロイド溶液から製造し
た触媒のものとほぼ同じであった。そして、これらの値
は、粒成長が生じていると推察される分子状貴金属塩溶
液(ジニトロジアンミン白金錯体溶液)を吸収させて製
造した触媒の値と比して小さい。従って、本発明に係る
4級アンモニウム塩を用いた触媒は、PVPと同様の貴
金属粒子の粒成長の抑制効果を有することが確認され
た。
According to Table 1, in the catalyst manufactured in the first embodiment, the particle size of the noble metal particles after heating was almost the same as that of the catalyst manufactured from the colloidal solution using PVP as a protective agent in Comparative Example 2. Met. These values are smaller than those of the catalyst produced by absorbing a molecular noble metal salt solution (a dinitrodiammine platinum complex solution) which is presumed to have caused grain growth. Therefore, it was confirmed that the catalyst using the quaternary ammonium salt according to the present invention has the same effect of suppressing the growth of noble metal particles as PVP.

【0041】実験例2(触媒性能の検討):実験例1に
より高温耐久性試験を行った後の第1実施形態、比較例
1及び2の各触媒について、その触媒性能を検討した。
実験は、各触媒と下記組成からなる反応ガスとを接触さ
せて、飽和するまでガス吸蔵を行わせ、NOx吸蔵量を
TG−DTA(熱質量−示差熱分析)にて測定した。表
2はその結果を示す。
Experimental Example 2 (Study on Catalyst Performance) : The catalyst performance of each catalyst of the first embodiment and Comparative Examples 1 and 2 after the high-temperature durability test was conducted in Experimental Example 1 was examined.
In the experiment, each catalyst was brought into contact with a reaction gas having the following composition to perform gas occlusion until saturation, and the NOx occlusion amount was measured by TG-DTA (thermal mass-differential thermal analysis). Table 2 shows the results.

【0042】 [0042]

【0043】[0043]

【表2】 [Table 2]

【0044】表2より、第1実施形態の触媒は、800
℃で10時間加熱した後であっても、NOx吸蔵触媒と
しての活性を有し、そのNOx吸蔵量も18.6mg/
gとPVPを使用した比較例1とほぼ同じである。一
方、比較例2においては、NOx吸蔵量が11.3mg
/gと低く、これは加熱により活性が低下したものとい
える。この活性の低下は、加熱により貴金属粒子が粒成
長したのが原因と考えられる。この結果からも、本発明
のコロイド溶液によれば、粒成長することない触媒を製
造することができることが確認された。
As shown in Table 2, the catalyst of the first embodiment is 800
Even after heating at 10 ° C. for 10 hours, it has activity as a NOx storage catalyst, and its NOx storage amount is 18.6 mg /
This is almost the same as Comparative Example 1 using g and PVP. On the other hand, in Comparative Example 2, the NOx storage amount was 11.3 mg.
/ G, which means that the activity was reduced by heating. This decrease in activity is considered to be caused by the growth of the noble metal particles by heating. From these results, it was confirmed that the colloid solution of the present invention can produce a catalyst without causing grain growth.

【0045】第3実施形態:本実施形態では、第1実施
形態で使用したテトラメチルアンモニウム−白金/ロジ
ウムコロイド溶液をセラミックコートしたハニカム担体
に吸着させて触媒を製造した。
Third Embodiment In this embodiment, a catalyst was produced by adsorbing the tetramethylammonium-platinum / rhodium colloid solution used in the first embodiment on a ceramic-coated honeycomb carrier.

【0046】第1実施形態で製造したコロイドを白金濃
度が200ppmになるまで水で希釈し、150mL採
り、これにアルミナをコートしたハニカム担体(アルミ
ナ量:2.85g)を浸漬した。
The colloid produced in the first embodiment was diluted with water until the platinum concentration became 200 ppm, and 150 mL of the colloid was diluted with an alumina-coated honeycomb carrier (alumina amount: 2.85 g).

【0047】そして、担体を溶液中から取り出し、11
0℃で2時間乾燥後、450℃で2時間焼成して、白金
/ロジウム担持触媒を得た。
Then, the carrier is taken out of the solution, and 11
After drying at 0 ° C. for 2 hours, it was calcined at 450 ° C. for 2 hours to obtain a platinum / rhodium supported catalyst.

【0048】比較例3:ここでは、比較例1で使用した
PVP−白金/ロジウムコロイド溶液を第3実施形態と
同様にセラミックコートしたハニカム担体に吸着させて
触媒を製造した。
Comparative Example 3 Here, the catalyst was produced by adsorbing the PVP-platinum / rhodium colloid solution used in Comparative Example 1 on a ceramic-coated honeycomb carrier as in the third embodiment.

【0049】比較例1で製造したコロイドを白金濃度が
200ppmになるまで水で希釈し、150mL採り、
これにアルミナをコートしたハニカム担体(アルミナ
量:2.85g)を浸漬した。
The colloid produced in Comparative Example 1 was diluted with water until the platinum concentration reached 200 ppm, and 150 mL was taken.
A honeycomb carrier coated with alumina (alumina amount: 2.85 g) was immersed in this.

【0050】そして、担体を溶液中から取り出し、11
0℃で2時間乾燥後、450℃で2時間焼成して、白金
/ロジウム担持触媒を得た。
Then, the carrier is taken out of the solution and
After drying at 0 ° C. for 2 hours, it was calcined at 450 ° C. for 2 hours to obtain a platinum / rhodium supported catalyst.

【0051】実験例3:上記第3実施形態及び比較例3
の触媒の製造過程において、コロイド溶液の吸着速度を
比較した。実験は、溶液を攪拌しつつ、一定時間毎に溶
液をサンプリングして白金濃度をICP(誘導結合プラ
ズマ発光分光分析)にて測定した。尚、比較のためジニ
トロジアンミン白金錯体を含む硝酸水溶液の担体に対す
る吸着速度も測定した。
Experimental Example 3 : The third embodiment and comparative example 3
In the production process of the catalyst of No. 1, the adsorption speed of the colloid solution was compared. In the experiment, the solution was sampled at regular intervals while stirring the solution, and the platinum concentration was measured by ICP (inductively coupled plasma emission spectroscopy). For comparison, the adsorption rate of a nitric acid aqueous solution containing a dinitrodiammine platinum complex on a carrier was also measured.

【0052】図1は、担体を浸漬したときの各溶液の白
金濃度の変化を示す。この図から、第3実施形態(保護
剤:水酸化テトラメチルアンモニウム)を吸着させたと
きの白金濃度の減少速度(即ち、白金吸着速度)は比較
例3(保護剤:PVP)のそれより著しく低くなってお
り、約4時間程度で吸着が完了した。また、この吸着速
度は、ジニトロジアンミン白金錯体水溶液のものとほぼ
同等であった。従って、本発明のコロイド溶液は担体が
ハニカム上のセラミックコーティング層であっても十分
速やかに吸着させることができることが確認された。
FIG. 1 shows the change in the platinum concentration of each solution when the carrier was immersed. From this figure, it can be seen that the rate of decrease of the platinum concentration when the third embodiment (protective agent: tetramethylammonium hydroxide) is adsorbed (that is, the platinum adsorption rate) is significantly higher than that of Comparative Example 3 (protective agent: PVP). The adsorption was completed in about 4 hours. The adsorption rate was almost the same as that of the dinitrodiammine platinum complex aqueous solution. Therefore, it was confirmed that the colloid solution of the present invention can be sufficiently quickly adsorbed even if the carrier is a ceramic coating layer on a honeycomb.

【0053】第4実施形態:本実施形態では、担体にバ
リウムが予め担持されたハニカム担体を用い、コロイド
溶液中にキレート剤としてエチレンジアンミン四酢酸を
添加して、第3実施形態と同様の方法にて触媒を製造し
た。
Fourth Embodiment : In this embodiment, a honeycomb carrier having barium previously supported on a carrier is used, and ethylenediamminetetraacetic acid is added as a chelating agent to a colloidal solution. Produced a catalyst.

【0054】第3実施形態と同じコロイド溶液(白金濃
度:200ppm)150mLにキレート剤としてエチ
レンジアンミン四酢酸0.5g(0.33wt%)を添
加し、溶解した後、これにアルミナをコートしたハニカ
ム担体(アルミナ量:2.85g)を浸漬した。
To 150 mL of the same colloidal solution (platinum concentration: 200 ppm) as in the third embodiment, 0.5 g (0.33 wt%) of ethylene diamminetetraacetic acid was added as a chelating agent, dissolved, and then dissolved in a honeycomb coated with alumina. A carrier (alumina amount: 2.85 g) was immersed.

【0055】担体へコロイド溶液を吸着させた後は、第
3実施形態と同様の処理により白金/ロジウム担持触媒
を製造した。
After the colloid solution was adsorbed on the carrier, a platinum / rhodium supported catalyst was produced by the same treatment as in the third embodiment.

【0056】実験例4:この触媒製造工程において、実
験例3と同様、一定時間毎に溶液をサンプリングして白
金濃度を測定し吸着速度を検討した。
Experimental Example 4 In this catalyst production process, as in Experimental Example 3, the solution was sampled at regular intervals, the platinum concentration was measured, and the adsorption rate was examined.

【0057】図2は、担体を浸漬した状態の各溶液の白
金濃度の変化を示す。本実験例においても、ジニトロジ
アンミン白金錯体を含む硝酸水溶液の吸着速度を測定し
比較している。この図から、本実施形態のように予めバ
リウムを担持した担体についても、コロイド溶液中にキ
レート剤を添加することで、ジニトロジアンミン白金錯
体を含む硝酸水溶液のと同等の吸着速度で貴金属粒子が
吸着することが確認された。
FIG. 2 shows the change in the platinum concentration of each solution with the carrier immersed. Also in this experimental example, the adsorption speed of the nitric acid aqueous solution containing the dinitrodiammine platinum complex was measured and compared. From this figure, it can be seen that the carrier preloaded with barium as in the present embodiment also shows that the addition of the chelating agent to the colloid solution allows the noble metal particles to be adsorbed at the same adsorption rate as the nitric acid aqueous solution containing the dinitrodiammine platinum complex. It was confirmed that.

【0058】第5実施形態:本実施形態では、第4実施
形態と同じバリウム担持担体を用い、コロイド溶液中に
キレート剤とバリウム塩を添加して、第4実施形態と同
様の方法にて触媒を製造した。
Fifth Embodiment : In this embodiment, the same barium carrier as in the fourth embodiment is used, and a chelating agent and a barium salt are added to a colloid solution, and the catalyst is produced in the same manner as in the fourth embodiment. Was manufactured.

【0059】コロイド溶液(白金濃度:200ppm)
150mLにキレート剤としてエチレンジアンミン四酢
酸0.5g(0.33wt%)を添加し、更に、バリウ
ム塩として硝酸バリウムを添加した後、これにアルミナ
をコートしたハニカム担体(アルミナ量:2.85g)
を浸漬した。この際のコロイド溶液としては、500p
pm、1000ppmと硝酸バリウムの添加量を変化さ
せて2種類調整し各コロイド溶液に対するバリウム溶出
量を検討することとした。
Colloid solution (platinum concentration: 200 ppm)
After adding 0.5 g (0.33 wt%) of ethylenediamminetetraacetic acid as a chelating agent to 150 mL, and further adding barium nitrate as a barium salt, a honeycomb carrier coated with alumina (alumina amount: 2.85 g)
Was immersed. In this case, the colloid solution is 500 p
pm, 1000 ppm, and the amount of barium nitrate added was changed to adjust two types, and the amount of barium eluted for each colloid solution was examined.

【0060】担体へコロイド溶液を吸着させた後は、第
4実施形態と同様の処理により白金/ロジウム担持触媒
を製造した。
After the colloid solution was adsorbed on the carrier, a platinum / rhodium supported catalyst was produced by the same treatment as in the fourth embodiment.

【0061】実験例5:この触媒製造工程において、一
定時間毎に溶液をサンプリングしてコロイド溶液中のバ
リウム濃度を測定したところ、図3の結果を得た。図3
から、添加したバリウム濃度にかかわらず溶液中のバリ
ウム濃度は約1500ppmで飽和していることがわか
る。従って、バリウム塩を添加することなしに担体をコ
ロイド溶液に浸漬した場合の担体からのバリウム溶出量
は1500ppmであるのに対し、コロイド溶液にバリ
ウム塩を添加することで、添加量500ppmで約10
00ppm、添加量1000ppmで約500ppmと
なり、コロイド溶液に予めバリウム塩を添加することで
担体からのバリウム溶出量を低減できるといえる。ま
た、このバリウム溶出量はバリウム塩の添加濃度が多け
れば多いほど低減できることがわかった。
Experimental Example 5 : In this catalyst manufacturing process, the barium concentration in the colloid solution was measured by sampling the solution at regular intervals, and the results shown in FIG. 3 were obtained. FIG.
From this, it can be seen that the barium concentration in the solution is saturated at about 1500 ppm regardless of the added barium concentration. Therefore, when the carrier is immersed in the colloid solution without adding the barium salt, the amount of barium eluted from the carrier is 1500 ppm, whereas by adding the barium salt to the colloid solution, about 10 ppm is obtained at the added amount of 500 ppm.
It is about 500 ppm when the amount is 00 ppm and the amount added is 1000 ppm, and it can be said that the amount of barium eluted from the carrier can be reduced by adding the barium salt to the colloid solution in advance. It was also found that the amount of barium eluted can be reduced as the concentration of the added barium salt increases.

【0062】[0062]

【発明の効果】以上説明したように本発明は、保護剤を
含有するコロイド溶液を担体に吸着させる排ガス浄化触
媒触媒において、保護剤を従来のPVPから4級アンモ
ニウム塩とするものである。本発明によれば、PVPを
添加したコロイド溶液よりも速やかにコロイド溶液を担
体に吸着させることができ、触媒の生産性を向上させる
ことができる。
As described above, the present invention relates to an exhaust gas purifying catalyst in which a colloid solution containing a protective agent is adsorbed on a carrier, wherein the protective agent is changed from conventional PVP to a quaternary ammonium salt. ADVANTAGE OF THE INVENTION According to this invention, a colloid solution can be made to adsorb | suck a support | carrier more quickly than the colloid solution to which PVP was added, and the productivity of a catalyst can be improved.

【0063】また、担体にバリウム等のアルカリ土類金
属が担持されている場合、本発明においては、コロイド
溶液にキレート剤を添加する。これにより、担体から溶
出するアルカリ土類金属の影響を受けることなく、効率
的にコロイド溶液を担体に吸着させることができる。そ
して、コロイド溶液にアルカリ土類金属塩を更に添加す
ることで、担体からのアルカリ土類金属の溶出を抑制
し、製造される触媒のNOx吸蔵特性を確保することが
できる。
When the carrier supports an alkaline earth metal such as barium, a chelating agent is added to the colloid solution in the present invention. Thereby, the colloid solution can be efficiently adsorbed on the carrier without being affected by the alkaline earth metal eluted from the carrier. Further, by further adding an alkaline earth metal salt to the colloid solution, elution of the alkaline earth metal from the carrier can be suppressed, and the NOx storage characteristics of the produced catalyst can be secured.

【0064】本発明により製造される触媒は、上記効果
により優れたNOx浄化特性を有し、かつ、PVPを用
いる場合と同様、貴金属粒子の粒成長が抑制され触媒特
性を長期間保持することができる。
The catalyst produced according to the present invention has excellent NOx purification characteristics due to the above-mentioned effects, and can suppress the growth of noble metal particles and maintain the catalyst characteristics for a long period of time, as in the case of using PVP. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第3実施形態及び比較例3の触媒製造過程にお
けるコロイド溶液中の白金濃度の変化を示す図。
FIG. 1 is a diagram showing a change in the concentration of platinum in a colloid solution during a catalyst production process according to a third embodiment and Comparative Example 3.

【図2】第4実施形態の触媒製造過程におけるコロイド
溶液中の白金濃度の変化を示す図。
FIG. 2 is a diagram showing a change in the concentration of platinum in a colloid solution during a catalyst manufacturing process according to a fourth embodiment.

【図3】第5実施形態の触媒製造過程におけるコロイド
溶液中のバリウム濃度の変化を示す図。
FIG. 3 is a diagram showing a change in barium concentration in a colloid solution during a catalyst production process according to a fifth embodiment.

フロントページの続き (72)発明者 齋藤 昌幸 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内 (72)発明者 三好 直人 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G091 AA02 AB06 BA14 BA39 GB03W GB05W GB06W GB07W 4G069 AA03 AA08 BA01B BB05A BB10A BB12A BB16A BC08A BC13A BC32A BC33A BC69A BC70A BC71A BC71B BC72A BC73A BC74A BC75A BC75B BE13A BE13B BE17A BE17B CA03 CA08 CA13 DA06 EB19 FB06 FC02 Continued on the front page (72) Inventor Masayuki Saito 2-73, Shinmachi, Hiratsuka-shi, Kanagawa Prefecture Inside the Technology Development Center, Tanaka Kikinzoku Kogyo Co., Ltd. F-term (reference) 3G091 AA02 AB06 BA14 BA39 GB03W GB05W GB06W GB07W 4G069 AA03 AA08 BA01B BB05A BB10A BB12A BB16A BC08A BC13A BC32A BC33A BC69A BC70A BC71A BC71B BC72A BC73 BE13BCA13 BC13 BE13BCA13 BC75

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】1種又は2種以上の貴金属塩と、水又は水
と有機溶媒との混合溶媒若しくは有機溶媒からなる溶媒
と、保護剤とを混合し、この混合溶液を還流し溶液中の
貴金属塩を還元することにより貴金属粒子が懸濁するコ
ロイド溶液を製造し、 前記コロイド溶液を多孔質体である担体に吸着させてな
る排ガス浄化触媒の製造方法において、 前記保護剤として4級アンモニウム塩を混合したコロイ
ド溶液を吸着させる排ガス浄化触媒の製造方法。
1. A mixture of one or more noble metal salts, water or a mixed solvent of water and an organic solvent or a solvent comprising an organic solvent, and a protective agent. A method for producing a colloidal solution in which noble metal particles are suspended by reducing a noble metal salt, and a method for producing an exhaust gas purifying catalyst comprising adsorbing the colloidal solution on a porous carrier, wherein a quaternary ammonium salt is used as the protective agent A method for producing an exhaust gas purifying catalyst for adsorbing a colloidal solution containing a mixture thereof.
【請求項2】保護剤として、炭素数1〜4のアルキル基
を少なくとも1つ有する4級アンモニウムを添加する請
求項1記載の排ガス浄化触媒の製造方法。
2. The method for producing an exhaust gas purifying catalyst according to claim 1, wherein a quaternary ammonium having at least one alkyl group having 1 to 4 carbon atoms is added as a protective agent.
【請求項3】4級アンモニウム塩として硫黄及び塩素を
含有しない4級アンモニウム塩を添加する請求項1又は
請求項2記載の排ガス浄化触媒の製造方法。
3. The method for producing an exhaust gas purifying catalyst according to claim 1, wherein a quaternary ammonium salt containing no sulfur and chlorine is added as the quaternary ammonium salt.
【請求項4】4級アンモニウム塩として、テトラメチル
アンモニウム塩、テトラエチルアンモニウム塩、テトラ
−n−プロピルアンモニウム塩、テトライソプロピルア
ンモニウム塩、テトラブチルアンモニウム塩、ベンジル
トリメチルアンモニウム塩を添加する請求項1〜請求項
3記載の排ガス浄化触媒の製造方法。
4. A quaternary ammonium salt comprising a tetramethylammonium salt, a tetraethylammonium salt, a tetra-n-propylammonium salt, a tetraisopropylammonium salt, a tetrabutylammonium salt, and a benzyltrimethylammonium salt. Item 4. The method for producing an exhaust gas purifying catalyst according to Item 3.
【請求項5】4級アンモニウム塩として、水酸化物、酢
酸塩、炭酸塩、硝酸塩、亜硝酸塩の少なくとも1種を添
加する請求項1〜請求項4記載の排ガス浄化触媒の製造
方法。
5. The method for producing an exhaust gas purifying catalyst according to claim 1, wherein at least one of a hydroxide, an acetate, a carbonate, a nitrate and a nitrite is added as the quaternary ammonium salt.
【請求項6】コロイド溶液に更にキレート剤を添加し、
前記コロイド溶液を担体に吸着させる請求項1〜請求項
5記載の排ガス浄化触媒の製造方法。
6. A collating solution further comprising a chelating agent,
The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the colloid solution is adsorbed on a carrier.
【請求項7】キレート剤として、2以上のカルボキシル
基を有する化合物を添加する請求項6記載の排ガス浄化
触媒の製造方法。
7. The method for producing an exhaust gas purifying catalyst according to claim 6, wherein a compound having two or more carboxyl groups is added as a chelating agent.
【請求項8】キレート剤として、エチレンジアンミン四
酢酸を添加する請求項6記載の排ガス浄化触媒の製造方
法。
8. The method for producing an exhaust gas purifying catalyst according to claim 6, wherein ethylenediamminetetraacetic acid is added as a chelating agent.
【請求項9】コロイド溶液に更にアルカリ土類金属の塩
を添加し、前記コロイド溶液を担体に吸着させる請求項
6〜請求項8記載の排ガス浄化触媒の製造方法。
9. The method for producing an exhaust gas purifying catalyst according to claim 6, wherein a salt of an alkaline earth metal is further added to the colloid solution, and the colloid solution is adsorbed on a carrier.
【請求項10】コロイド溶液を収容する槽に担体を浸漬
し、コロイド溶液を担体に吸着させる請求項1〜請求項
9記載の排ガス浄化触媒の製造方法。
10. The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the carrier is immersed in a tank containing the colloid solution, and the colloid solution is adsorbed on the carrier.
【請求項11】貴金属塩は、白金、金、銀、パラジウ
ム、ルテニウム、ロジウム、イリジウム、オスミウムの
塩である請求項1〜請求項10記載の排ガス浄化触媒の
製造方法。
11. The method according to claim 1, wherein the noble metal salt is a salt of platinum, gold, silver, palladium, ruthenium, rhodium, iridium, and osmium.
【請求項12】請求項1〜請求項11記載のいずれかの
方法により製造される排ガス浄化触媒。
12. An exhaust gas purifying catalyst produced by the method according to any one of claims 1 to 11.
JP2000181129A 2000-06-16 2000-06-16 Method for producing exhaust gas purification catalyst Expired - Fee Related JP4346215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000181129A JP4346215B2 (en) 2000-06-16 2000-06-16 Method for producing exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000181129A JP4346215B2 (en) 2000-06-16 2000-06-16 Method for producing exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2002001119A true JP2002001119A (en) 2002-01-08
JP4346215B2 JP4346215B2 (en) 2009-10-21

Family

ID=18682108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000181129A Expired - Fee Related JP4346215B2 (en) 2000-06-16 2000-06-16 Method for producing exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4346215B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080592A1 (en) * 2003-03-11 2004-09-23 Tanaka Kikinzoku Kogyo K.K. Catalyst produced by using multi-element metal colloid
WO2005092493A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst
JP2005314739A (en) * 2004-04-28 2005-11-10 Cataler Corp Noble metal solution, and noble metal catalyst manufacturing method
JP2006055748A (en) * 2004-08-20 2006-03-02 Tanaka Kikinzoku Kogyo Kk Manufacturing method for catalyst
JP2008503332A (en) * 2004-06-21 2008-02-07 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Metal oxide sol
WO2008038834A1 (en) * 2006-09-29 2008-04-03 Cataler Corporation Rhodium carrying chemical and rhodium catalyst prepared using the same
US7390770B2 (en) 2005-04-15 2008-06-24 Mitsubishi Heavy Industries, Ltd. Catalyst for purifying an exhaust gas and a preparation process of the catalyst
WO2010095761A2 (en) 2009-02-23 2010-08-26 Toyota Jidosha Kabushiki Kaisha Catalyst for purification of exhaust gas and method of manufacturing the same
FR2968578A1 (en) * 2010-12-14 2012-06-15 IFP Energies Nouvelles NOVEL PROCESS FOR THE PREPARATION OF PALLADIUM CATALYSTS AND THE USE OF THESE CATALYSTS IN SELECTIVE HYDROGENATION
US20120225772A1 (en) * 2005-04-06 2012-09-06 Mitsubishi Heavy Industries, Ltd. So3 reduction catalyst for purifying an exhaust gas, preparation process thereof, and exhaust gas purifying method using the catalyst
US9162213B2 (en) 2010-12-06 2015-10-20 Yamaha Hatsudoki Kabushiki Kaisha Production method for exhaust gas-purifying catalyst and motor vehicle
WO2016052746A1 (en) * 2014-10-02 2016-04-07 株式会社キャタラー Dispersion liquid of composite particles, and method for producing same
WO2016052728A1 (en) * 2014-10-02 2016-04-07 株式会社キャタラー Dispersion liquid of composite particles, and method for producing same
EP3081296A4 (en) * 2013-12-11 2017-08-09 Cataler Corporation Exhaust gas purifying catalyst

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754639B2 (en) 2003-03-11 2010-07-13 Tanaka Kikinzoku Kogyo K.K. Catalyst produced by using multi-element metal colloid
WO2004080592A1 (en) * 2003-03-11 2004-09-23 Tanaka Kikinzoku Kogyo K.K. Catalyst produced by using multi-element metal colloid
CN100435953C (en) * 2003-03-11 2008-11-26 田中贵金属工业株式会社 Catalyst produced by using multi-element metal colloid
WO2005092493A1 (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst
US7691772B2 (en) 2004-03-25 2010-04-06 Tanaka Kikinzoku Kogyo K.K. Catalyst and method for producing catalyst
JP2005314739A (en) * 2004-04-28 2005-11-10 Cataler Corp Noble metal solution, and noble metal catalyst manufacturing method
JP4651303B2 (en) * 2004-04-28 2011-03-16 株式会社キャタラー Method for producing noble metal solution and noble metal catalyst
JP2008503332A (en) * 2004-06-21 2008-02-07 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Metal oxide sol
JP2006055748A (en) * 2004-08-20 2006-03-02 Tanaka Kikinzoku Kogyo Kk Manufacturing method for catalyst
US20120225772A1 (en) * 2005-04-06 2012-09-06 Mitsubishi Heavy Industries, Ltd. So3 reduction catalyst for purifying an exhaust gas, preparation process thereof, and exhaust gas purifying method using the catalyst
US7390770B2 (en) 2005-04-15 2008-06-24 Mitsubishi Heavy Industries, Ltd. Catalyst for purifying an exhaust gas and a preparation process of the catalyst
JP5582700B2 (en) * 2006-09-29 2014-09-03 株式会社キャタラー Rhodium-supporting chemical solution and rhodium catalyst prepared using the chemical solution
US20100075841A1 (en) * 2006-09-29 2010-03-25 Akiya Chiba Rhodium-loading solution and rhodium catalyst prepared using the same
WO2008038834A1 (en) * 2006-09-29 2008-04-03 Cataler Corporation Rhodium carrying chemical and rhodium catalyst prepared using the same
US8691721B2 (en) 2006-09-29 2014-04-08 Cataler Corporation Rhodium-loading solution and rhodium catalyst prepared using the same
WO2010095761A2 (en) 2009-02-23 2010-08-26 Toyota Jidosha Kabushiki Kaisha Catalyst for purification of exhaust gas and method of manufacturing the same
US9162213B2 (en) 2010-12-06 2015-10-20 Yamaha Hatsudoki Kabushiki Kaisha Production method for exhaust gas-purifying catalyst and motor vehicle
EP2474354A1 (en) * 2010-12-14 2012-07-11 IFP Energies nouvelles Novel method for preparing palladium-based catalysts and use of said catalysts in selective hydrogenation
US8841231B2 (en) 2010-12-14 2014-09-23 IFP Energies Nouvelles Process for the preparation of palladium-based catalysts and use of said catalysts in selective hydrogenation
FR2968578A1 (en) * 2010-12-14 2012-06-15 IFP Energies Nouvelles NOVEL PROCESS FOR THE PREPARATION OF PALLADIUM CATALYSTS AND THE USE OF THESE CATALYSTS IN SELECTIVE HYDROGENATION
EP3081296A4 (en) * 2013-12-11 2017-08-09 Cataler Corporation Exhaust gas purifying catalyst
WO2016052746A1 (en) * 2014-10-02 2016-04-07 株式会社キャタラー Dispersion liquid of composite particles, and method for producing same
WO2016052728A1 (en) * 2014-10-02 2016-04-07 株式会社キャタラー Dispersion liquid of composite particles, and method for producing same
JPWO2016052728A1 (en) * 2014-10-02 2017-07-27 株式会社キャタラー Composite particle dispersion and method for producing the same

Also Published As

Publication number Publication date
JP4346215B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
US5977012A (en) Alloyed metal catalysts for the reduction of NOx in the exhaust gases from internal combustion engines containing excess oxygen
US20050065026A1 (en) Precious metal - metal oxide composite cluster
EP0222497B1 (en) Method of simultaneous oxidation of carbon monoxide and unburned fuel in methanol-fueled vehicle exhaust
US20080242533A1 (en) Catalyst and Method for Producing Catalyst
JP2002001119A (en) Method for manufacturing catalyst for purification of exhaust gas and catalyst for purification of exhaust gas manufactured by that method
JP4145166B2 (en) Method for producing one- or multi-component metal colloid and one- or multi-component metal colloid
JP4865250B2 (en) Method for producing exhaust gas treatment catalyst
JP2006055748A (en) Manufacturing method for catalyst
JP4686316B2 (en) Catalyst production method
JP4381071B2 (en) Method for producing exhaust gas treatment catalyst
US7056856B2 (en) Tin oxide exhaust catalyst supports and catalysts stable at high temperatures
WO2018123786A1 (en) Low-temperature oxidation catalyst
JP2002001095A (en) Colloidal solution and method for producing colloidal solution
JP2012245452A (en) Exhaust gas purification catalyst and production method thereof
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP5533782B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4697506B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6268601B2 (en) Method for producing exhaust gas purification catalyst
JP2013208621A (en) Carbon monoxide oxidation catalyst and method for producing the same
JPH0290947A (en) Manufacture of catalyst for exhaust gas purification
JP4822049B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP4631360B2 (en) Method for producing exhaust gas purification catalyst
CN116493007A (en) Layered catalyst structure and method for preparing same
JP2018089551A (en) Exhaust gas purification catalyst
JP2008284423A (en) Exhaust gas purification catalyst manufacturing apparatus and manufacturing method of exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080815

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees