JP4651303B2 - Method for producing noble metal solution and noble metal catalyst - Google Patents

Method for producing noble metal solution and noble metal catalyst Download PDF

Info

Publication number
JP4651303B2
JP4651303B2 JP2004133360A JP2004133360A JP4651303B2 JP 4651303 B2 JP4651303 B2 JP 4651303B2 JP 2004133360 A JP2004133360 A JP 2004133360A JP 2004133360 A JP2004133360 A JP 2004133360A JP 4651303 B2 JP4651303 B2 JP 4651303B2
Authority
JP
Japan
Prior art keywords
noble metal
metal solution
solution
carrier
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004133360A
Other languages
Japanese (ja)
Other versions
JP2005314739A (en
Inventor
功 内藤
鋭幸 名波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2004133360A priority Critical patent/JP4651303B2/en
Publication of JP2005314739A publication Critical patent/JP2005314739A/en
Application granted granted Critical
Publication of JP4651303B2 publication Critical patent/JP4651303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アンモニウム塩及び/又はアミンと貴金属とを含む貴金属溶液、並びに当該貴金属溶液を用いた貴金属触媒の製造方法に関する。   The present invention relates to a noble metal solution containing an ammonium salt and / or an amine and a noble metal, and a method for producing a noble metal catalyst using the noble metal solution.

内燃機関から排出される有害ガス成分、HC、CO、NOxを効率よく浄化することを目的として、一般的に貴金属(Pt、Pd、Rh)触媒が使用されている。その調製において、貴金属元素は重要な役割を担っており、用途に応じて各種貴金属化合物が選択されている。   In general, noble metal (Pt, Pd, Rh) catalysts are used for the purpose of efficiently purifying harmful gas components, HC, CO, and NOx discharged from an internal combustion engine. In the preparation, noble metal elements play an important role, and various noble metal compounds are selected depending on the application.

従来、アルミナなどの触媒材料やハニカム担体に対し貴金属を担持するには、アルミナコート品を貴金属溶液中、特に硝酸系の貴金属溶液中に浸漬することにより行われてきた(特許文献1参照)。   Conventionally, a noble metal is supported on a catalyst material such as alumina or a honeycomb carrier by immersing an alumina-coated product in a noble metal solution, particularly in a nitric acid-based noble metal solution (see Patent Document 1).

特開平8−143317号公報JP-A-8-143317

しかし、従来使用されてきた貴金属溶液は、担体に対する担持効率が低いという問題を有しており、近年の排ガス規制強化に対応して必要とされる多量の貴金属量を触媒等の担体に一回の浸漬処理で担持するのが困難であった。   However, the noble metal solution that has been used conventionally has a problem that the supporting efficiency to the carrier is low, and a large amount of noble metal required for the recent exhaust gas regulation strengthening is once applied to the carrier such as a catalyst. It was difficult to carry by the immersion treatment.

本発明者が鋭意検討を重ねた結果、従来触媒の製造に使用されていた貴金属溶液に対し、有機塩機、例えばアンモニウム塩及び/又はアミンをアルカリ性になるまで添加することによって、高効率で担体に担持する貴金属溶液が得られることを発見した。   As a result of extensive studies by the present inventors, an organic salt machine, such as an ammonium salt and / or an amine, is added to a noble metal solution that has been conventionally used in the production of a catalyst until it becomes alkaline, thereby supporting the carrier with high efficiency. It has been found that a noble metal solution supported on the silica can be obtained.

上記の発見に基づき、本発明は、アンモニウム塩及び/又はアミンと貴金属を含み、且つpHが7以上であることを特徴とする貴金属溶液及び当該貴金属溶液中で担体を浸漬して貴金属を担体上に担持することを特徴とする貴金属触媒の製造方法を提供する。   Based on the above discovery, the present invention includes a noble metal solution characterized by containing an ammonium salt and / or an amine and a noble metal and having a pH of 7 or more, and the carrier is immersed in the noble metal solution to place the noble metal on the carrier. A method for producing a noble metal catalyst is provided.

本発明の貴金属溶液は、従来使用されていた硝酸系の貴金属溶液では担持効率の低かった担体、特にアルミナ系コート材への担持において、高い担持効率を示す。その結果、そのような担体への高効率での貴金属担持に従来必要とされていた複数回の担持工程を減らすことが可能となり、更に本発明の溶液の調製及び当該溶液を用いた浸漬担持方法自体が比較的安価なことから、本発明の溶液を用いることによって、従来のものと比較してより簡便で実用的な貴金属触媒の製法を提供することができる。尚、当該製法よって得られる貴金属触媒は、従来の貴金属溶液を繰り返し浸漬担持することによって調製される触媒と同様の触媒性能を維持している。   The noble metal solution of the present invention exhibits a high loading efficiency when it is loaded on a carrier, particularly an alumina-based coating material, which has a low loading efficiency with a conventionally used nitric acid-based noble metal solution. As a result, it is possible to reduce a plurality of loading steps conventionally required for loading a noble metal with high efficiency on such a carrier, and further, the preparation of the solution of the present invention and the immersion loading method using the solution Since the solution itself is relatively inexpensive, it is possible to provide a simpler and more practical method for producing a noble metal catalyst than the conventional one by using the solution of the present invention. In addition, the noble metal catalyst obtained by the said manufacturing method is maintaining the catalyst performance similar to the catalyst prepared by carrying out immersion support of the conventional noble metal solution repeatedly.

本発明の貴金属溶液が高い担持効率を有する理由として、一般的に溶液中で貴金属は錯体を形成しているが、(1)アンモニウム塩及び/又はアミンの添加によって貴金属の錯体形が変化したこと、及び(2)当該錯体形の変化により、添加前の貴金属溶液に含まれていた、担持時に競争反応を示す塩基等が不活化したこと、などが考えられる。   The reason why the noble metal solution of the present invention has a high loading efficiency is that the noble metal generally forms a complex in the solution. (1) The complex form of the noble metal is changed by adding an ammonium salt and / or an amine. And (2) Due to the change in the complex form, it is considered that the base or the like which was included in the noble metal solution before the addition and showed a competitive reaction at the time of loading was inactivated.

第一の側面として、本発明は、アンモニウム塩及び/又はアミンと貴金属とを含み、且つpHが7以上であることを特徴とする貴金属溶液を提供する。   As a first aspect, the present invention provides a noble metal solution comprising an ammonium salt and / or an amine and a noble metal and having a pH of 7 or more.

本発明の貴金属溶液におけるアンモニウム塩は、一般式R1R2R3R4N+OH-で表される。ここで、式中R1〜R4はそれぞれ独立して水素、アルキル基又はヒドロキシアルキル基を表す。R1〜R4のうち3つ以上がアルキル基であることが好ましい。この場合、各アルキル基の炭素数は1〜4が好ましく、更に好ましくは、当該アルキル基の炭素数は1である。また、別の態様として、R1〜R4のうち少なくとも1つがヒドロキシアルキル基である上記アンモニウム塩も好ましい。限定しないが、上記アンモニウム塩には、水酸化テトラメチルアンモニウム(TMAH)、水酸化2−ヒドロキシエチルトリメチルアンモニウム(コリン)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウムなどが含まれ、特にTMAHが価格、入手容易性等の観点から好ましい。 The ammonium salt in the noble metal solution of the present invention is represented by the general formula R 1 R 2 R 3 R 4 N + OH . Here, R < 1 > -R < 4 > represents hydrogen, an alkyl group, or a hydroxyalkyl group each independently. It is preferable that three or more of R 1 to R 4 are alkyl groups. In this case, the number of carbon atoms of each alkyl group is preferably 1 to 4, and more preferably the number of carbon atoms of the alkyl group is 1. As another embodiment, the above ammonium salt in which at least one of R 1 to R 4 is a hydroxyalkyl group is also preferable. Although not limited, the ammonium salt includes tetramethylammonium hydroxide (TMAH), 2-hydroxyethyltrimethylammonium hydroxide (choline), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and the like. In particular, TMAH is preferable from the viewpoints of price and availability.

本発明の貴金属溶液におけるアミンは、一般式R'2R"Nで表され、ここで、式中R'はそれぞれ独立して水素、アルキル基、又はヒドロキシアルキル基を表し、R"はヒドロキシアルキル基を表す。R'がアルキル基である場合、当該アルキル基の炭素数は1〜4であることが好ましい。更に好ましくは、当該炭素数は1である。限定しないが、上記アミンには、2−メチルアミノエタノールアミン、ジメタノールアミンなどが含まれる。 The amine in the noble metal solution of the present invention is represented by the general formula R ′ 2 R ″ N, wherein R ′ independently represents hydrogen, an alkyl group, or a hydroxyalkyl group, and R ″ represents a hydroxyalkyl. Represents a group. When R ′ is an alkyl group, the alkyl group preferably has 1 to 4 carbon atoms. More preferably, the carbon number is 1. Although not limited, the amine includes 2-methylaminoethanolamine, dimethanolamine, and the like.

本発明の貴金属溶液は、上述したアンモニウム塩及び/又はアミンをそれぞれ単独で含んでもよく、あるいは1又は複数の種類のものを組み合わせて含んでいてもよい。   The noble metal solution of the present invention may contain the above-mentioned ammonium salt and / or amine alone, or may contain one or more kinds in combination.

本発明の貴金属溶液に含まれる貴金属は、限定しないが、白金、ロジウム、パラジウム等が含まれる。尚、本発明の貴金属溶液中の貴金属は、貴金属塩、例えば硝酸塩、塩化物、アンミン等を出発物質とすることができる。   The noble metal contained in the noble metal solution of the present invention includes, but is not limited to, platinum, rhodium, palladium and the like. The noble metal in the noble metal solution of the present invention can start from a noble metal salt such as nitrate, chloride, ammine and the like.

本発明の貴金属溶液は、上記貴金属塩の溶液に対し、上記アンモニウム塩及び/又はアミンをpH5以上になるまで添加することによって調製される。但し、当該pHはその後の熱処理等により変化する場合もある。ここで、上記pHが5未満である場合、沈殿の形成、担持効率の低下等が生じ、本発明の効果を得にくい。同様の理由により、当該pHは7〜13であることが好ましい。尚、上記調製において沈殿物が形成した場合、必要に応じて室温以上に加温しつつ更に添加攪拌することにより当該沈殿物は溶解する。   The noble metal solution of the present invention is prepared by adding the ammonium salt and / or amine to the pH of 5 or more to the noble metal salt solution. However, the pH may change due to subsequent heat treatment or the like. Here, when the pH is less than 5, precipitation is formed, the supporting efficiency is lowered, and the effect of the present invention is hardly obtained. For the same reason, the pH is preferably 7 to 13. In addition, when the deposit forms in the said preparation, the said precipitate melt | dissolves by further adding and stirring, heating up to room temperature or more as needed.

第二の側面として、本発明は、上記貴金属溶液中に担体又は基材上に担体をコーティングしたものを浸漬して貴金属を担体上に担持することを特徴とする触媒の製造方法を提供する。   As a second aspect, the present invention provides a method for producing a catalyst characterized in that a noble metal is supported on a support by immersing the support or a substrate coated with a support in the noble metal solution.

本発明の貴金属溶液中に浸漬担持される担体は、例えば、アルミナ、ジルコニア、セリア、及びその複合酸化物等であり、その他にもシリカ、チタニア、ゼオライトが挙げられる。本発明の貴金属溶液との担持効率についての相性の観点から、アルミナが好ましい。また、上記複合酸化物は、第三、第四成分として他の希土類元素を含有することもある。   Examples of the carrier that is dipped and supported in the noble metal solution of the present invention include alumina, zirconia, ceria, and complex oxides thereof, and other examples include silica, titania, and zeolite. Alumina is preferable from the viewpoint of compatibility with the noble metal solution of the present invention. The composite oxide may contain other rare earth elements as the third and fourth components.

上記担体の代わりに、基材上に担体をコーティングしたものが使用されることもある。当該基材としては、ハニカム、フィルター等が挙げられる。   Instead of the above carrier, a substrate coated with a carrier may be used. Examples of the substrate include honeycombs and filters.

本発明における浸漬担持方法は、触媒の製造において一般的な方法によって行うことが可能であり、具体的には上記担体を貴金属溶液中に浸し、貴金属成分を担体表面に吸着させ、乾燥、焼成、還元することによって行うことができる。   The immersion support method in the present invention can be performed by a general method in the production of a catalyst. Specifically, the support is immersed in a noble metal solution, the noble metal component is adsorbed on the surface of the support, dried, calcined, This can be done by reducing.

上記浸漬担持方法の担持効率は、原子吸光分光法(AA)によって担持前の貴金属溶液中の貴金属濃度から担持後の貴金属溶液中の貴金属濃度を差し引くことによって算出される。   The carrying efficiency of the immersion carrying method is calculated by subtracting the noble metal concentration in the noble metal solution after loading from the noble metal concentration in the noble metal solution before carrying by atomic absorption spectroscopy (AA).

尚、本発明の貴金属溶液は、排ガス浄化用の触媒に限定されず、貴金属を高効率で担持されることが必要とされるあらゆる触媒に適用可能であり、更に、触媒の分野以外でも貴金属めっき等の分野での利用が予想され得る。実際、本発明の貴金属溶液は、固体表面に適用した場合にめっき層を形成することが確認されている。   Note that the noble metal solution of the present invention is not limited to a catalyst for exhaust gas purification, but can be applied to any catalyst that is required to support the noble metal with high efficiency. Use in such fields can be expected. In fact, it has been confirmed that the noble metal solution of the present invention forms a plating layer when applied to a solid surface.

以下の実施例を用いて、本発明の発明を更に具体的に説明し、本発明の貴金属溶液の担体に対する担持効率を実証する。尚、本発明はこれらの実施例に限定されるものではない。   The following examples are used to further illustrate the invention of the present invention and to demonstrate the loading efficiency of the noble metal solution of the present invention on the carrier. The present invention is not limited to these examples.

(実施例1)
水酸化テトラメチルアンモニウム−硝酸パラジウムを含む貴金属溶液
1.水酸化テトラメチルアンモニウムを添加したパラジウム溶液の調製
パラジウム5gを含む硝酸パラジウム溶液を秤量し、水酸化テトラメチルアンモニウム水溶液をpH7になるまで添加し、湯浴上で均一になるように攪拌した後濃縮した。その後、パラジウムの濃度が100g/Lとなるよう純水を添加して本実施例の貴金属溶液を調製した(実施例1)。また、比較例として、実施例1の貴金属溶液と同濃度のパラジウムを含む硝酸パラジウム溶液を用意した(比較例1)。
Example 1
1. Noble metal solution containing tetramethylammonium hydroxide-palladium nitrate Preparation of palladium solution added with tetramethylammonium hydroxide Weigh a palladium nitrate solution containing 5 g of palladium, add an aqueous solution of tetramethylammonium hydroxide to pH 7, stir it uniformly on a hot water bath, and concentrate. did. Thereafter, pure water was added so that the concentration of palladium was 100 g / L to prepare a noble metal solution of this example (Example 1). Further, as a comparative example, a palladium nitrate solution containing palladium having the same concentration as the noble metal solution of Example 1 was prepared (Comparative Example 1).

2.アルミナに対する担持試験
本発明の貴金属溶液の担体に対する担持効率を検討するために、実施例1及び比較例1の貴金属溶液を用いて、アルミナに対する担持試験を行った。
2. Loading test on alumina In order to examine the loading efficiency of the noble metal solution of the present invention on the carrier, a loading test on alumina was performed using the noble metal solutions of Example 1 and Comparative Example 1.

最初に、各貴金属溶液をパラジウムの濃度が2g/Lとなるように水で希釈し、その希釈溶液1L中にアルミナ粉末を100g投入して1時間攪拌した。その後、溶液中のパラジウム残存量を原子吸光分析法(AA)を使用して測定し、以下の計算式:
[(担持前の溶液中のパラジウム濃度(a))−(担持後の溶液中のパラジウム濃度(b))]÷ a ×100
により、アルミナ粉末へのパラジウムの担持効率を算出した。アルミナ粉末へのパラジウムの担持効率は実施例1が100%、比較例1が58%であった。結果を図1に記す。
First, each noble metal solution was diluted with water so that the concentration of palladium was 2 g / L, and 100 g of alumina powder was added to 1 L of the diluted solution, followed by stirring for 1 hour. Thereafter, the amount of palladium remaining in the solution was measured using atomic absorption spectrometry (AA), and the following calculation formula:
[(Palladium concentration in solution before loading (a)) − (Palladium concentration in solution after loading (b))] ÷ a × 100
Thus, the efficiency of supporting palladium on the alumina powder was calculated. The efficiency of supporting palladium on alumina powder was 100% in Example 1 and 58% in Comparative Example 1. The results are shown in FIG.

3.ハニカム担体に塗布されたアルミナコート材に対する担持試験
上記のアルミナに対する試験と同様に、ハニカム担体に塗布されたアルミナコート材に対する上記溶液の担持試験を行った。
3. Support test for alumina coating material applied to honeycomb carrier In the same manner as the test for alumina described above, a support test of the above solution to the alumina coating material applied to the honeycomb support was performed.

最初に、アルミナ100gと水300gを混合し、アルミナスラリーを調製した。このスラリーをコージェライト製のハニカム担体(400セル/inch2、体積1L)に塗布し、アルミナ100g/Lの触媒を調製した。続いて、各貴金属溶液をパラジウムの濃度が2g/Lとなるように水で希釈し、その希釈溶液2L中で上記触媒を浸漬し、そして引き上げる操作を1時間繰り返すことによってパラジウムを担持させた。 First, 100 g of alumina and 300 g of water were mixed to prepare an alumina slurry. This slurry was applied to a cordierite honeycomb carrier (400 cells / inch 2 , volume 1 L) to prepare an alumina 100 g / L catalyst. Subsequently, each noble metal solution was diluted with water so that the concentration of palladium was 2 g / L, the catalyst was immersed in 2 L of the diluted solution, and the operation of pulling up was repeated for 1 hour to support palladium.

前述の方法と同様に、ハニカム担体に塗布されたアルミナコート材に対する担持効率を測定した。アルミナコート材へのパラジウムの担持効率は実施例1が100%、比較例1が72%であった。結果を図2に記す。実施例1の溶液は、比較例1のものと比較して非常に高い担持効率を示した。   In the same manner as described above, the supporting efficiency for the alumina coating material applied to the honeycomb carrier was measured. The efficiency of supporting palladium on the alumina coating material was 100% in Example 1 and 72% in Comparative Example 1. The results are shown in FIG. The solution of Example 1 showed very high loading efficiency compared to that of Comparative Example 1.

(実施例2)
水酸化テトラメチルアンモニウム−ヘキサヒドロキソ白金を含む貴金属溶液
1.水酸化テトラメチルアンモニウムを添加した白金溶液の調製
ヘキサヒドロキソ白金(IV)結晶に、水酸化テトラメチルアンモニウム水溶液をpH7になるまで添加し、湯浴上で均一になるように攪拌した後濃縮した。その後、白金の濃度が100g/Lとなるよう純水を添加して本実施例の貴金属溶液を調製した(実施例2)。また、比較例として、白金の濃度が50g/Lのジニトロアンミン白金の硝酸溶液を利用した。これはジニトロジアンミン白金に硝酸、純水を添加し、90℃以上で20時間加熱することによって調製した(比較例2)。
(Example 2)
1. Noble metal solution containing tetramethylammonium hydroxide-hexahydroxoplatinum Preparation of a platinum solution to which tetramethylammonium hydroxide was added An aqueous tetramethylammonium hydroxide solution was added to hexahydroxoplatinum (IV) crystals until pH 7, and the mixture was stirred uniformly on a hot water bath and concentrated. Thereafter, pure water was added so that the concentration of platinum was 100 g / L to prepare a noble metal solution of this example (Example 2). Further, as a comparative example, a nitric acid solution of dinitroammine platinum having a platinum concentration of 50 g / L was used. This was prepared by adding nitric acid and pure water to dinitrodiammine platinum and heating at 90 ° C. or higher for 20 hours (Comparative Example 2).

2.ハニカム担体に塗布されたアルミナコート材に対する担持試験
実施例1の担持試験と同様に、実施例2及び比較例2の溶液を用い、ハニカム担体に塗布されたアルミナコート材に対する担持効率を測定した。白金の担持効率は実施例2が98%、比較例2が38%であった。結果を図3に記す。実施例2の溶液は、比較例2のものと比較して非常に高い担持効率を示した。
2. Support Test for Alumina Coating Material Applied to Honeycomb Support Similar to the support test of Example 1, using the solutions of Example 2 and Comparative Example 2, the support efficiency for the alumina coating material applied to the honeycomb support was measured. The supporting efficiency of platinum was 98% in Example 2 and 38% in Comparative Example 2. The results are shown in FIG. The solution of Example 2 showed very high loading efficiency compared to that of Comparative Example 2.

(実施例3)
水酸化2−ヒドロキシエチルトリメチルアンモニウム−硝酸パラジウムを含む貴金属溶液
1.水酸化2−ヒドロキシエチルトリメチルアンモニウムを添加したパラジウム溶液の調製
パラジウム5gを含む硝酸パラジウム溶液を秤量し、水酸化2−ヒドロキシエチルトリメチルアンモニウム水溶液をpH7になるまで添加し、湯浴上で均一になるように攪拌した後濃縮した。その後、パラジウムの濃度が100g/Lとなるよう純水を添加して本実施例の貴金属溶液を調製した(実施例3)。また、比較例として、本実施例の貴金属溶液と同濃度のパラジウムを含む硝酸パラジウム溶液を用意した(比較例3)。
(Example 3)
1. Noble metal solution containing 2-hydroxyethyltrimethylammonium hydroxide-palladium nitrate Preparation of palladium solution with addition of 2-hydroxyethyltrimethylammonium hydroxide Weigh a palladium nitrate solution containing 5 g of palladium and add aqueous 2-hydroxyethyltrimethylammonium hydroxide solution to pH 7 and homogenize on a hot water bath. The mixture was stirred and concentrated. Thereafter, pure water was added so that the concentration of palladium was 100 g / L to prepare a noble metal solution of this example (Example 3). As a comparative example, a palladium nitrate solution containing palladium having the same concentration as the noble metal solution of this example was prepared (Comparative Example 3).

2.ハニカム担体に塗布されたアルミナコート材に対する担持試験
上記実施例における担持試験と同様に、実施例3及び比較例3の溶液を用い、ハニカム担体に塗布されたアルミナコート材に対する担持効率を測定した。パラジウムの担持効率は実施例3が100%、比較例3が50%であった。結果を図4に記す。実施例3の溶液は、比較例3のものと比較して非常に高い担持効率を示した。
2. Support Test for Alumina Coat Material Applied to Honeycomb Carrier Similar to the support test in the above Examples, the support efficiency for the alumina coat material applied to the honeycomb carrier was measured using the solutions of Example 3 and Comparative Example 3. The palladium loading efficiency was 100% in Example 3 and 50% in Comparative Example 3. The results are shown in FIG. The solution of Example 3 showed very high loading efficiency compared to that of Comparative Example 3.

(実施例4)
2−メチルアミノエタノール又はジメタノールアミン−硝酸パラジウムを含む貴金属溶液
それぞれ、上記実施例と同様の方法で硝酸パラジウム溶液に添加することにより調製した。
Example 4
A noble metal solution containing 2-methylaminoethanol or dimethanolamine-palladium nitrate was prepared by adding each to a palladium nitrate solution in the same manner as in the above examples.

2−メチルアミノエタノール、ジメタノールアミンによるパラジウム溶液に関しても上述した実施例と同様に担持試験を行った結果、非常に高い担持効率を示した。   As for the palladium solution with 2-methylaminoethanol and dimethanolamine, a loading test was performed in the same manner as in the above-described example, and as a result, a very high loading efficiency was shown.

モデルガス、実排ガスを用いた浄化特性の比較を行った結果、本発明の貴金属溶液を用いて1回で浸漬担持された触媒は、従来使用されていた貴金属溶液を繰り返し浸漬担持して得られた触媒と同様の触媒性能を示した。   As a result of comparison of purification characteristics using model gas and actual exhaust gas, a catalyst that is immersed and supported at once using the noble metal solution of the present invention is obtained by repeatedly immersing and supporting a noble metal solution that has been conventionally used. The catalyst performance was similar to that of the other catalyst.

図1は、アルミナ粉末に対する、実施例1及び比較例1の溶液中に存在するパラジウムの担持効率を示す。FIG. 1 shows the loading efficiency of palladium present in the solutions of Example 1 and Comparative Example 1 on alumina powder. 図2は、ハニカム担体に塗布したアルミナコート材に対する、実施例1及び比較例1の溶液中に存在するパラジウムの担持効率を示す。FIG. 2 shows the loading efficiency of palladium present in the solutions of Example 1 and Comparative Example 1 with respect to the alumina coating material applied to the honeycomb carrier. 図3は、ハニカム担体に塗布されたアルミナコート材に対する、実施例2及び比較例2の溶液中に存在する白金の担持効率を示す。FIG. 3 shows the loading efficiency of platinum present in the solutions of Example 2 and Comparative Example 2 with respect to the alumina coating material applied to the honeycomb carrier. 図4は、ハニカム担体に塗布されたアルミナコート材に対する、実施例3及び比較例3の溶液中に存在するパラジウムの担持効率。FIG. 4 shows the loading efficiency of palladium present in the solutions of Example 3 and Comparative Example 3 with respect to the alumina coating material applied to the honeycomb carrier.

Claims (10)

一般式R1R2R3R4N+OH-(式中R1〜R4はそれぞれ独立して水素、アルキル基又はヒドロキシアルキル基を表す)で表される1又は複数のアンモニウム塩及び/又は一般式R'2R"N(式中R'はそれぞれ独立して水素、アルキル基又はヒドロキシアルキル基を表し、R"はヒドロキシアルキル基を表す)で表される1又は複数のアミンと貴金属とを含むことを特徴とする、排ガス浄化触媒を製造するための貴金属溶液。 One or more ammonium salts represented by the general formula R 1 R 2 R 3 R 4 N + OH (wherein R 1 to R 4 each independently represents hydrogen, an alkyl group or a hydroxyalkyl group) and / or Or one or more amines represented by the general formula R ′ 2 R ″ N (wherein R ′ independently represents hydrogen, an alkyl group or a hydroxyalkyl group, and R ″ represents a hydroxyalkyl group) and a noble metal And a noble metal solution for producing an exhaust gas purification catalyst . R1〜R4のうち3つ以上がアルキル基である、請求項1に記載の貴金属溶液。 The noble metal solution according to claim 1, wherein three or more of R 1 to R 4 are alkyl groups. R1〜R4のうち少なくとも1つがヒドロキシアルキル基である、請求項1に記載の貴金属溶液。 The noble metal solution according to claim 1, wherein at least one of R 1 to R 4 is a hydroxyalkyl group. アンモニウム塩が水酸化テトラメチルアンモニウム及び/又は水酸化2−ヒドロキシエチルトリメチルアンモニウムである、請求項1〜3のいずれか1項に記載の貴金属溶液。   The noble metal solution according to any one of claims 1 to 3, wherein the ammonium salt is tetramethylammonium hydroxide and / or 2-hydroxyethyltrimethylammonium hydroxide. アミンが2−メチルアミノエタノールアミン及び/又はジメタノールアミンである、請求項1〜4のいずれか1項に記載の貴金属溶液。   The noble metal solution according to any one of claims 1 to 4, wherein the amine is 2-methylaminoethanolamine and / or dimethanolamine. 貴金属が白金、ロジウム、又はパラジウムである、請求項1〜5のいずれか1項に記載の貴金属溶液。   The noble metal solution according to any one of claims 1 to 5, wherein the noble metal is platinum, rhodium, or palladium. pHが5以上であることを特徴とする、請求項1〜6のいずれか1項に記載の貴金属溶液。   The noble metal solution according to any one of claims 1 to 6, wherein the pH is 5 or more. 請求項1〜7のいずれか1項に記載の貴金属溶液中に担体又は基材上に担体をコーティングしたものを浸漬して貴金属を担体上に担持することを特徴とする、貴金属触媒の製造方法。   A method for producing a noble metal catalyst, wherein the noble metal solution according to any one of claims 1 to 7 is supported by immersing the carrier or a substrate coated with a carrier on the carrier, and supporting the noble metal on the carrier. . 担体がアルミナ、ジルコニア、セリア、シリカ、チタニア、ゼオライト及びそれらの複合酸化物から成る群から選択される、請求項8に記載の貴金属触媒の製造方法。   The method for producing a noble metal catalyst according to claim 8, wherein the support is selected from the group consisting of alumina, zirconia, ceria, silica, titania, zeolite, and composite oxides thereof. 基材がハニカム及びフィルターから成る群から選択される、請求項8又は9に記載の貴金属触媒の製造方法。   The method for producing a noble metal catalyst according to claim 8 or 9, wherein the substrate is selected from the group consisting of a honeycomb and a filter.
JP2004133360A 2004-04-28 2004-04-28 Method for producing noble metal solution and noble metal catalyst Active JP4651303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133360A JP4651303B2 (en) 2004-04-28 2004-04-28 Method for producing noble metal solution and noble metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133360A JP4651303B2 (en) 2004-04-28 2004-04-28 Method for producing noble metal solution and noble metal catalyst

Publications (2)

Publication Number Publication Date
JP2005314739A JP2005314739A (en) 2005-11-10
JP4651303B2 true JP4651303B2 (en) 2011-03-16

Family

ID=35442467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133360A Active JP4651303B2 (en) 2004-04-28 2004-04-28 Method for producing noble metal solution and noble metal catalyst

Country Status (1)

Country Link
JP (1) JP4651303B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454077B (en) * 2006-09-29 2014-02-26 株式会社科特拉 Rhodium carrying solution and rhodium catalyst prepared using the same
FR2968578B1 (en) * 2010-12-14 2013-06-28 IFP Energies Nouvelles NOVEL PROCESS FOR THE PREPARATION OF PALLADIUM CATALYSTS AND THE USE OF THESE CATALYSTS IN SELECTIVE HYDROGENATION
EP3210989B1 (en) 2016-02-26 2018-09-26 Umicore AG & Co. KG Noble metal compounds for supported catalysts

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780311A (en) * 1993-06-30 1995-03-28 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
JPH07291614A (en) * 1994-04-15 1995-11-07 Tokyo Ohka Kogyo Co Ltd Production of high-purity colloidal silica
JPH10118499A (en) * 1996-10-17 1998-05-12 Unitika Ltd Metal-carrying metal oxide catalyst and its manufacturing method
JPH11284315A (en) * 1998-03-30 1999-10-15 Fujifilm Olin Co Ltd Formation of metallic image and electric wiring board
JP2000012605A (en) * 1998-06-18 2000-01-14 World Metal:Kk Method for producing electrode part of semiconductor chip
JP2002001095A (en) * 2000-06-16 2002-01-08 Tanaka Kikinzoku Kogyo Kk Colloidal solution and method for producing colloidal solution
JP2002001119A (en) * 2000-06-16 2002-01-08 Tanaka Kikinzoku Kogyo Kk Method for manufacturing catalyst for purification of exhaust gas and catalyst for purification of exhaust gas manufactured by that method
JP2002154822A (en) * 2000-11-16 2002-05-28 Rikogaku Shinkokai Method for manufacturing zeolite film coated base body and method for manufacturing zeolite-containing base body
JP2002317274A (en) * 2000-10-24 2002-10-31 Shipley Co Llc Plating catalyst
JP2002317201A (en) * 2001-02-15 2002-10-31 Mitsui Mining & Smelting Co Ltd Water based nickel slurry, production method therefor and electrically coductive paste
JP2003175317A (en) * 2001-09-28 2003-06-24 Nippon Shokubai Co Ltd Exhaust gas treatment catalyst and exhaust gas treatment method
JP2003225575A (en) * 2002-02-06 2003-08-12 Toyota Motor Corp Filter type catalyst for purifying exhaust gas from diesel engine
JP2004115824A (en) * 2002-09-24 2004-04-15 Canon Inc Method for forming metal or metallic compound pattern, electron emitter and electron source using the same, and production method for image forming apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780311A (en) * 1993-06-30 1995-03-28 Daihatsu Motor Co Ltd Catalyst for purification of exhaust gas
JPH07291614A (en) * 1994-04-15 1995-11-07 Tokyo Ohka Kogyo Co Ltd Production of high-purity colloidal silica
JPH10118499A (en) * 1996-10-17 1998-05-12 Unitika Ltd Metal-carrying metal oxide catalyst and its manufacturing method
JPH11284315A (en) * 1998-03-30 1999-10-15 Fujifilm Olin Co Ltd Formation of metallic image and electric wiring board
JP2000012605A (en) * 1998-06-18 2000-01-14 World Metal:Kk Method for producing electrode part of semiconductor chip
JP2002001119A (en) * 2000-06-16 2002-01-08 Tanaka Kikinzoku Kogyo Kk Method for manufacturing catalyst for purification of exhaust gas and catalyst for purification of exhaust gas manufactured by that method
JP2002001095A (en) * 2000-06-16 2002-01-08 Tanaka Kikinzoku Kogyo Kk Colloidal solution and method for producing colloidal solution
JP2002317274A (en) * 2000-10-24 2002-10-31 Shipley Co Llc Plating catalyst
JP2002154822A (en) * 2000-11-16 2002-05-28 Rikogaku Shinkokai Method for manufacturing zeolite film coated base body and method for manufacturing zeolite-containing base body
JP2002317201A (en) * 2001-02-15 2002-10-31 Mitsui Mining & Smelting Co Ltd Water based nickel slurry, production method therefor and electrically coductive paste
JP2003175317A (en) * 2001-09-28 2003-06-24 Nippon Shokubai Co Ltd Exhaust gas treatment catalyst and exhaust gas treatment method
JP2003225575A (en) * 2002-02-06 2003-08-12 Toyota Motor Corp Filter type catalyst for purifying exhaust gas from diesel engine
JP2004115824A (en) * 2002-09-24 2004-04-15 Canon Inc Method for forming metal or metallic compound pattern, electron emitter and electron source using the same, and production method for image forming apparatus

Also Published As

Publication number Publication date
JP2005314739A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US20240091751A1 (en) Copper cha zeolite catalysts
JP5373255B2 (en) NOx reduction catalyst, NOx reduction catalyst system, and NOx reduction method
KR101974704B1 (en) Bifunctional catalysts for selective ammonia oxidation
JP2773428B2 (en) Exhaust gas purification method
JP2006175386A (en) Filter catalyst for exhaust gas cleaning of diesel engine and its production method
JP2024511688A (en) Preparation of supported metal nanoparticles using polyamines for three-way catalyst applications
JP2014200771A (en) Exhaust gas purification catalyst and exhaust gas cleaning method
JPH11504258A (en) Method for reducing NOx amount and production of catalyst material therefor
JP2003080033A (en) Method for denitrifying exhaust gas and system therefor
WO1994019103A1 (en) Exhaust gas cleaning catalyst
WO2010073956A1 (en) Catalyst and method of cleaning exhaust gas
CN101678276A (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP4651303B2 (en) Method for producing noble metal solution and noble metal catalyst
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP2009226327A (en) CATALYST FOR SELECTIVELY REDUCING NOx
JP5582700B2 (en) Rhodium-supporting chemical solution and rhodium catalyst prepared using the chemical solution
JP4852595B2 (en) Exhaust gas purification catalyst
JP2000300989A (en) Exhaust gas cleaning catalyst
KR20130058987A (en) Copper-zeolite catalyst for simultaneous removal of carbon monooxide and nitrogen oxide and method for preparing thereof
JPH11107744A (en) Exhaust emission control catalyst device
JP3916197B2 (en) Method for producing exhaust gas purification catalyst
JP2002113331A (en) Method of denitration from exhaust gas and its system
JP4822374B2 (en) Method for producing exhaust gas purification catalyst
JP2002224573A (en) Exhaust emission control catalyst and its manufacturing method
JP2000042415A (en) Catalyst for exhaust gas purification using hydrocarbon reforming material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

R150 Certificate of patent or registration of utility model

Ref document number: 4651303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250