JP2001355036A - High strength steel tube excellent in formability and its production method - Google Patents

High strength steel tube excellent in formability and its production method

Info

Publication number
JP2001355036A
JP2001355036A JP2000174370A JP2000174370A JP2001355036A JP 2001355036 A JP2001355036 A JP 2001355036A JP 2000174370 A JP2000174370 A JP 2000174370A JP 2000174370 A JP2000174370 A JP 2000174370A JP 2001355036 A JP2001355036 A JP 2001355036A
Authority
JP
Japan
Prior art keywords
less
steel pipe
formability
strength steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000174370A
Other languages
Japanese (ja)
Other versions
JP4336027B2 (en
Inventor
Manabu Takahashi
学 高橋
Naoki Yoshinaga
直樹 吉永
Nobuhiro Fujita
展弘 藤田
Yasuhiro Shinohara
康浩 篠原
Toru Yoshida
亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000174370A priority Critical patent/JP4336027B2/en
Publication of JP2001355036A publication Critical patent/JP2001355036A/en
Application granted granted Critical
Publication of JP4336027B2 publication Critical patent/JP4336027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel tube having excellent formability suitable for hydroforming and to provide its production method. SOLUTION: This high strength steel tube excellent in formability has a composite structure consisting of ferrite of >=50% by volume fractional ratio and a second phase containing residual austenite of >=3% by volume fractional ratio, in which the average of the X-ray intensity ratios in the orientation groups of 110}<110> to 332}<110> in the sheet face at a sheet thickness of 1/2 in the steel sheet is >=2.0 and/or the X-ray random intensity ratio in 110}<110> in the sheet face at a sheet thickness of 1/2 in the steel sheet is >=3.0, and its production method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車の足
廻り、メンバーなどに用いられる鋼材で特にハイドロフ
ォーム等に用いられる成形性に優れた高強度鋼管および
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel pipe excellent in formability and used for, for example, hydroforming and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】自動車の軽量化ニーズに伴い、鋼板の高
強度化が望まれている。高強度化することで板厚減少に
よる軽量化や衝突時の安全性向上が可能となる。また、
最近では、複雑な形状の部位について、高強度鋼の素鋼
板または鋼管からハイドロフォーム法を用いて成形加工
する試みが行われている。これは、自動車の軽量化や低
コスト化のニーズに伴い、部品数の減少や溶接フランジ
箇所の削減などを狙ったものである。
2. Description of the Related Art With the need to reduce the weight of automobiles, it is desired to increase the strength of steel sheets. By increasing the strength, it is possible to reduce the weight by reducing the plate thickness and to improve the safety in the event of a collision. Also,
Recently, attempts have been made to form a complex-shaped portion from a high-strength steel plate or a steel pipe by a hydroforming method. This is aimed at reducing the number of parts and reducing the number of welding flanges in response to the need for lighter and lower cost automobiles.

【0003】このように、ハイドロフォーム(特開平1
0−175026号公報参照)などの新しい成形加工方
法が実際に採用されれば、コストの削減や設計の自由度
が拡大されるなどの大きなメリットが期待される。この
ようなハイドロフォーム成形のメリットを充分に生かす
ためには、これらの新しい成形法に適した材料が必要と
なる。例えば、第50回塑性加工連合講演大会(199
9、447頁)にあるようにハイドロフォーム成形に及
ぼすr値の影響が示されている。しかしここでは、シユ
レーションによる解析が主で、実際の材料と1対1対応
するものではない。
[0003] As described above, a hydroform (Japanese Patent Laid-Open No.
If a new molding method such as that described in Japanese Patent Application Laid-Open No. 0-175026) is actually adopted, great merits such as reduction in cost and expansion of design flexibility are expected. In order to fully utilize the merits of such hydroform molding, materials suitable for these new molding methods are required. For example, the 50th Lecture Meeting on Plastic Working (199
9, p. 447), the effect of the r value on hydroform molding is shown. However, in this case, analysis by simulation is mainly performed, and does not correspond one-to-one with actual materials.

【0004】[0004]

【発明が解決しようとする課題】以上のように、ハイド
ロフォーム成形に適した材料開発は実用レベルではほと
んど行われておらず、既存の高r値鋼板や高延性鋼板が
ハイドロフォーム成形に使用されつつある状況と言え
る。本発明では、このようなハイドロフォーム成形に適
した優れた成形性を有する鋼管およびその製造方法を提
供するものである。
As described above, the development of materials suitable for hydroform forming has hardly been carried out on a practical level, and existing high r-value steel sheets and high ductility steel sheets have been used for hydroform forming. It can be said that the situation is rising. The present invention provides a steel pipe having excellent formability suitable for such hydroform molding and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明では、鋼材の集合
組織とミクロ組織を制御することでハイドロフォーム成
形性に優れた材料を提供するものである。即ち、本発明
の要旨とするところは、 (1)ミクロ組織が体積分率で50%以上のフェライト
と、体積分率で3%以上の残留オーステナイトを含む第
2相との複合組織であり、鋼板1/2板厚での板面の
{110}<110>〜{332}<110>の方位群
のX線ランダム強度比の平均が2.0以上、あるいは鋼
板1/2板厚での板面の{110}<110>のX線ラ
ンダム強度比が3.0以上の何れかまたは双方であるこ
とを特徴とする成形性に優れた高強度鋼管。
SUMMARY OF THE INVENTION The present invention provides a material having excellent hydroform formability by controlling the texture and microstructure of a steel material. That is, the gist of the present invention is as follows: (1) A microstructure having a volume fraction of 50% or more of ferrite and a second phase having a volume fraction of 3% or more of retained austenite, The average of the X-ray random intensity ratio of the orientation group of {110} <110> to {332} <110> of the sheet surface at the steel sheet 1/2 thickness is 2.0 or more, or at the steel sheet 1/2 sheet thickness. A high-strength steel pipe excellent in formability, characterized in that the X-ray random intensity ratio of {110} <110> on the plate surface is any one or both of 3.0 or more.

【0006】(2)質量%にて、さらにCを0.04%
以上0.3%以下含みむことを特徴とする前記(1)記
載の成形性に優れた高強度鋼管。
(2) Further, C is 0.04% by mass%.
The high-strength steel pipe excellent in formability according to the above (1), wherein the high-strength steel pipe contains not less than 0.3% or less.

【0007】(3)質量%で、さらに Mn:3%以下、 Ni:3%以下、 Cr:3%以下、 Cu:2%以下、 Mo:2%以下、 W :2%以下、 Co:3%以下、 Sn:0.5%以下 の中の1種または2種以上を合計で0.5%以上3.5
%以下含むことを特徴とする前記(2)記載の成形性に
優れた高強度鋼管。
(3) In mass%, Mn: 3% or less, Ni: 3% or less, Cr: 3% or less, Cu: 2% or less, Mo: 2% or less, W: 2% or less, Co: 3 % Or less, Sn: 0.5% or less A total of one or more of 0.5% or more and 3.5% or less.
% Or less, the high-strength steel pipe excellent in formability according to the above (2).

【0008】(4)質量%で、さらにSi:0.003
〜3%、 Al:3%以下の一方または双方を合計で
0.5%以上3%以下含むことを特徴とする前記(2)
または(3)記載の成形性に優れた高強度鋼管。
(4) By mass%, Si: 0.003
(2) wherein one or both of Al and 3% or less are contained in a total amount of 0.5% or more and 3% or less.
Or a high-strength steel pipe excellent in formability according to (3).

【0009】(5)質量%で、さらにP :0.001
〜0.2%、B :0.0002〜0.001%、の一
方または双方を含むことを特徴とする前記(2)〜
(4)の何れか1項に記載の成形性に優れた高強度鋼
管。
(5) By mass%, P: 0.001
(2) to (2), wherein one or both of B: 0.0002 to 0.001% are contained.
(4) A high-strength steel pipe excellent in formability according to any one of (4).

【0010】(6)質量%で、さらに Ti:0.3%以下、 Nb:0.3%以下、 V :0.3%以下 の中の1種または2種以上を合計で0.005%以上
0.3%以下含むことを特徴とする前記(2)〜(5)
の何れか1項に記載の成形性に優れた高強度鋼管。
(6) In mass%, one or more of Ti: 0.3% or less, Nb: 0.3% or less, V: 0.3% or less is 0.005% in total. (2) to (5), wherein the content is not less than 0.3% or less.
The high-strength steel pipe excellent in formability according to any one of the above.

【0011】(7)質量%で、さらにCa:0.000
5〜0.005%、Rem:0.001〜0.02%の
一方または双方を含むことを特徴とする前記(2)〜
(6)の何れか1項に記載の成形性に優れた高強度鋼
管。
(7) By mass%, Ca: 0.000
(2) to (5), wherein one or both of Rem: 0.001 to 0.02% are contained.
(6) A high-strength steel pipe excellent in formability according to any one of (6).

【0012】(8)前記(1)〜(7)の何れか1項に
記載の鋼管を製造するにあたり、前記(2)〜(7)の
何れか1項に記載の成分を有する鋳造スラブを、鋳造ま
まもしくは一旦冷却した後に1000℃〜1300℃の
範囲に再度加熱し、熱間圧延して冷却後巻取った熱延鋼
板を造管し、鋼材の化学成分で決まる(2×Ac1 変態
温度+Ac3 変態温度)/3以上1050℃以下に加熱
した後縮径加工を行い、その後、空冷もしくは150℃
/秒以下の冷却速度で300℃以上600℃以下まで冷
却し、その後15℃/秒以下の冷却速度で室温まで冷却
することを特徴とする成形性に優れた高強度鋼管の製造
方法。但し、 Ac1(℃) =723-10.7×Mn%-16.9×Ni%+29.1×Si%+16.9×
Cr% Ac3(℃) =910-203×(C%)1/2-15.2×Ni%+44.7×Si%+31.
5×Mo%+13.1×W%-30×Mn%-11×Cr%-20×Cu%+70×P%+40
×Al%
(8) In producing the steel pipe according to any one of (1) to (7), a cast slab having the component according to any one of (2) to (7) is used. As-cast or once cooled, it is heated again in the range of 1000 ° C. to 1300 ° C., hot-rolled, cooled and rolled into a hot-rolled steel sheet, which is determined by the chemical composition of the steel material (2 × Ac1 transformation temperature) + Ac3 transformation temperature) / 3 or more and 1050 ° C or less and then diameter reduction processing, and then air cooling or 150 ° C
A method for producing a high-strength steel pipe excellent in formability, comprising cooling at a cooling rate of 300 ° C./sec or less to 600 ° C. or less, and then cooling to a room temperature at a cooling rate of 15 ° C./sec or less. However, Ac1 (℃) = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 ×
Cr% Ac3 (℃) = 910-203 × (C%) 1 / 2-15.2 × Ni% + 44.7 × Si% + 31.
5 × Mo% + 13.1 × W% -30 × Mn% -11 × Cr% -20 × Cu% + 70 × P% + 40
× Al%

【0013】(9)前記(1)〜(7)の何れか1項に
記載の鋼管を製造するにあたり、前記(2)〜(7)の
何れか1項に記載の成分を有する熱延鋼板を酸洗し冷延
した後に焼鈍した鋼板を造管し、鋼材の化学成分で決ま
る(2×Ac1 変態温度+Ac3 変態温度)/3以上1
050℃以下に加熱した後縮径加工を行い、その後、空
冷もしくは150℃/秒以下の冷却速度で300℃以上
500℃以下まで冷却し、その後15℃/秒以下の冷却
速度で室温まで冷却することを特徴とする成形性に優れ
た高強度鋼管の製造方法。但し、 Ac1(℃) =723-10.7×Mn%-16.9×Ni%+29.1×Si%+16.9×
Cr% Ac3(℃) =910-203×(C%)1/2-15.2×Ni%+44.7×Si%+31.
5×Mo%+13.1×W%-30×Mn%-11×Cr%-20×Cu%+70×P%+40
×Al%
(9) In producing the steel pipe according to any one of the above (1) to (7), a hot-rolled steel sheet containing the component according to any one of the above (2) to (7) Is pickled, cold rolled, annealed, and then annealed to form a tube. Determined by the chemical composition of the steel (2 x Ac1 transformation temperature + Ac3 transformation temperature) / 3 or more 1
After heating to 050 ° C or lower, diameter reduction processing is performed, and then cooling to 300 ° C or higher and 500 ° C or lower at a cooling rate of 150 ° C / second or less, and then cooling to room temperature at a cooling rate of 15 ° C / second or lower. A method for producing a high-strength steel pipe excellent in formability, characterized by the following. However, Ac1 (℃) = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 ×
Cr% Ac3 (℃) = 910-203 × (C%) 1 / 2-15.2 × Ni% + 44.7 × Si% + 31.
5 × Mo% + 13.1 × W% -30 × Mn% -11 × Cr% -20 × Cu% + 70 × P% + 40
× Al%

【0014】(10)縮径加工後時の縮径率が25%以上
であることを特徴とする前記(8)もしくは(9)記載
の成形性に優れた高強度鋼管の製造方法。にある。
(10) The method for producing a high-strength steel pipe excellent in formability according to the above (8) or (9), wherein the diameter reduction ratio after the diameter reduction processing is 25% or more. It is in.

【0015】[0015]

【発明の実施の形態】以下、本発明の成形性に優れた高
強度鋼管おその製造方法について詳細に述べる。ハイド
ロフォーム成形では鋼管を素材とした成形加工が行われ
る。この際、鋼管の軸方向への押し込み量と内圧の関係
を適正に設定することが重要である。内圧のみを増加さ
せた通常の液圧成形と異なり、ハイドロフォーム成形で
は軸押しによる強制的な材料供給によってより厳しい成
形にも耐えることができる。本発明者らは、種々の材料
を用いたハイドロフォーム成形試験を元に、鋼材の結晶
集合組織の制御と適正なミクロ組織形成によって初めて
非常に高いハイドロフォーム成形性が確保できることを
見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The high-strength steel pipe excellent in formability according to the present invention and a method for producing the same will be described in detail below. In the hydroform molding, a molding process using a steel pipe as a raw material is performed. At this time, it is important to appropriately set the relationship between the amount of steel pipe pushed in the axial direction and the internal pressure. Unlike ordinary hydroforming in which only the internal pressure is increased, hydroform molding can withstand more severe molding by forcible material supply by axial pressing. The present inventors have found that based on hydroform forming tests using various materials, it is possible to secure extremely high hydroform formability for the first time by controlling the crystal texture of steel and forming an appropriate microstructure.

【0016】即ち、鋼板1/2板厚での板面の{11
0}<110>〜{332}<110>の方位群および
/または{110}<110>のX線ランダム強度比が
ハイドロフォーム成形等を行う上で最も質量な特性値で
ある。板厚中心位置での板面のX線回折を行い、ランダ
ム結晶に対する各方位の強度比を求めたときの、{11
0}<110>〜{332}<110>の方位群での平
均が2.0以上とした。この方位群に含まれる主な方位
は{110}<110>、{661}<110>、{4
41}<110>、{331}<110>、{221}
<110>、{332}<110>、{443}<11
0>、{554}<110>および{111}<110
>である。これらの各方位のX線ランダム強度比は{1
10}極点図よりベクトル法により計算した3次元集合
組織や{110},{100},{211},{31
0}極点図のうち、複数の極点図を基に級数展開法で計
算した3次元集合組織から求めればよい。例えば、後者
の方法から各結晶方位のX線ランダム強度比を求めるに
は、3次元集合組織のΦ2=45゜断面における(11
0)[1−10]、(661)[1−10]、(44
1)[1−10]、(331)[1−10]、(22
1)[1−10]、(332)[1−10]、(44
3)[1−10]、(554)[1−10]、(11
1)[1−10]の強度で代表させられる。
That is, {11} of the sheet surface at the steel sheet 1/2 sheet thickness
The orientation group of 0 ° <110> to {332} <110> and / or the X-ray random intensity ratio of {110} <110> are the most characteristic values in performing hydroform molding or the like. When the X-ray diffraction of the plate surface at the plate thickness center position was performed and the intensity ratio of each direction with respect to the random crystal was determined, the value of {11
The average in the orientation group of 0 <110> to {332} <110> was set to 2.0 or more. The main orientations included in this orientation group are {110} <110>, {661} <110>, and {4}.
41} <110>, {331} <110>, {221}
<110>, {332} <110>, {443} <11
0>, {554} <110> and {111} <110
>. The X-ray random intensity ratio in each of these directions is {1
A three-dimensional texture calculated by the vector method from the 10 pole figure, {110}, {100}, {211}, {31
What is necessary is just to obtain | require from the three-dimensional texture calculated by the series expansion method based on several pole figures among 0 degree pole figures. For example, to obtain the X-ray random intensity ratio of each crystal orientation from the latter method, the (11)
0) [1-10], (661) [1-10], (44
1) [1-10], (331) [1-10], (22)
1) [1-10], (332) [1-10], (44)
3) [1-10], (554) [1-10], (11)
1) It is represented by the intensity of [1-10].

【0017】{110}<110>〜{332}<11
0>方位群の平均X線ランダム強度比とは、上記の各方
位の相加平均である。上記方位のすべての強度が得られ
ない場合には{110}<110>、{441}<11
0>、{221}<110>の方位の相加平均で代替し
ても良い。中でも、{110}<110>は重要であ
り、この方位のX線ランダム強度比が3.0以上、好ま
しくは3.5以上であることが特に望ましい。{11
0}<110>〜{332}<110>方位群の平均強
度比が2.0以上でかつ{110}<110>の強度比
が3.0以上であれば特にハイドロフォーム用鋼管とし
てはさらに好適であることは言うまでもない。また、成
形困難な場合には上記方位群の平均強度比が3.5以上
であること、{110}<110>の強度比が5.0以
上であることのうち少なくとも1つを満たすことが望ま
しい。
{110} <110> to {332} <11
The average X-ray random intensity ratio of the group of 0> azimuths is an arithmetic mean of the above-mentioned respective directions. If all the intensities in the above directions cannot be obtained, {110} <110>, {441} <11
0> and {221} <110> may be substituted by the arithmetic mean. Among them, {110} <110> is important, and it is particularly desirable that the X-ray random intensity ratio in this direction is 3.0 or more, preferably 3.5 or more. $ 11
If the average intensity ratio of the {0} <110> to {332} <110> orientation group is 2.0 or more and the intensity ratio of {110} <110> is 3.0 or more, particularly as a steel pipe for hydroform, It goes without saying that it is suitable. When molding is difficult, at least one of the above-described orientation group having an average intensity ratio of 3.5 or more and the intensity ratio of {110} <110> being 5.0 or more is satisfied. desirable.

【0018】なお、本発明の集合組織は通常の場合、φ
2=45°断面において上記の方位群の範囲内に最高強
度を有し、この方位群から離れるにしたがって徐々に強
度レベルが低下するが、X線の測定精度の問題や鋼管製
造時の軸周りのねじれの問題、X線試料作製の精度の問
題などを考慮すると、最高強度を示す方位がこれらの方
位群から±5°ないし10°程度ずれる場合も有りう
る。
Incidentally, the texture of the present invention usually has φ
2 = 45 ° cross section has the highest intensity within the range of the above orientation group, and the intensity level gradually decreases as the distance from this orientation group increases. Taking into account the problem of torsion and the problem of the accuracy of preparing an X-ray sample, the orientation showing the highest intensity may deviate from these orientation groups by about ± 5 ° to 10 °.

【0019】鋼管のX線回折を行う場合には、鋼管より
弧状試験片を切り出し、これをプレスして平板としX線
解析を行う。また、弧状試験片から平板とするときは、
試験片加工による結晶回転の影響を避けるため極力低歪
みで行うものとし、加えられる歪み量の上限を10%以
下で行うこととした。このようにして得られた板状の試
料について機械研磨によって所定の板厚まで減厚した
後、化学研磨などによって板厚中心付近まで研磨し、バ
フ研磨によって鏡面に仕上げた後、電解研磨や化学研磨
によって歪みを除去すると同時に板厚中心層が側定面と
なるように調整する。なお、鋼板の板厚中心層に偏析帯
が認められる場合には、板厚の3/8〜5/8の範囲で
偏析帯のない場所について測定すればよく、またこの範
囲外でも前述の条件を満たしていることは何ら鋼管の成
形性を落とすものではない。
When performing X-ray diffraction on a steel pipe, an arc-shaped test piece is cut out from the steel pipe and pressed to form a flat plate for X-ray analysis. Also, when making a flat plate from an arc-shaped test piece,
In order to avoid the influence of crystal rotation due to the processing of the test piece, the strain was performed as low as possible, and the upper limit of the applied strain was set to 10% or less. The plate-like sample obtained in this way is reduced to a predetermined thickness by mechanical polishing, polished to near the center of the plate thickness by chemical polishing, etc., finished to a mirror surface by buff polishing, and then subjected to electrolytic polishing or chemical polishing. At the same time, adjustment is performed so that the center layer of the sheet thickness becomes a fixed side surface while removing distortion by polishing. If a segregation zone is observed in the thickness center layer of the steel sheet, the measurement may be performed at a place where the segregation zone does not exist within the range of 3/8 to 5/8 of the sheet thickness. Satisfying the above does not impair the formability of the steel pipe at all.

【0020】なお、{hkl}<uvw>とは上述の方
法でX線用試料を採取したとき、板面に垂直な結晶方位
が<hkl>で鋼管の長手方向が<uvw>であること
を意味する。
Note that {hkl} <uvw> means that the crystal orientation perpendicular to the plate surface is <hkl> and the longitudinal direction of the steel pipe is <uvw> when an X-ray sample is collected by the above method. means.

【0021】本発明の集合組織に関する特徴は、通常の
逆極点図や正極点図だけでは表すことができないが、例
えば鋼管の半径方向の方位を表す逆極点図を板厚の中心
付近に関して測定した場合、各方位のX線ランダム強度
比は以下のようになることが好ましい。<100>:2
以下、<411>:2以下、<211>:4以下、<1
11>:15以下、<332>:15以下、<221
>:20.0以下、<110>:30.0以下。また、
軸方向を表す逆極点図においては、<110>:10以
上で、<100>、<411>、<211>、<111
>、<332>、<221>の全ての方位:3以下。
Although the features relating to the texture of the present invention cannot be represented only by a normal reverse pole figure or positive pole figure, for example, a reverse pole figure representing the radial direction of a steel pipe was measured in the vicinity of the center of the sheet thickness. In this case, the X-ray random intensity ratio in each direction is preferably as follows. <100>: 2
Hereinafter, <411>: 2 or less, <211>: 4 or less, <1
11>: 15 or less, <332>: 15 or less, <221
>: 20.0 or less, <110>: 30.0 or less. Also,
In the inverse pole figure showing the axial direction, <110>: 10 or more, <100>, <411>, <211>, <111>
>, <332>, <221>: 3 or less.

【0022】ハイドロフォーム成形では非常に厳しい加
工まで成形可能となることから、一旦鋼管のある位置に
くびれが生じると、その場所での変形が加速的に進み、
破断(バースト)に至る。従って、極力このような歪み
の集中に起因するくびれを発生させないことも非常に重
要となる。歪みの集中を回避する方法としては鋼材の加
工硬化指数(n値)を高めることが効果的であり、本発
明者らは、特に鋼材中に残留させたオーステナイトの加
工誘起マルテンサイト変態(TRIP効果)を利用する
ことが最も効果的に歪みの分散を達成できることを見出
した。但し、この残留オーステナイト量が3%未満の場
合にはその効果は非常に小さいのでこれを残留オーステ
ナイト体積分率の最小値とした。
[0022] Since hydroforming can be performed up to extremely severe processing, once constriction occurs at a certain position of the steel pipe, deformation at that position accelerates.
This leads to breakage (burst). Therefore, it is also very important not to cause constriction due to such concentration of distortion as much as possible. As a method of avoiding the concentration of strain, it is effective to increase the work hardening index (n value) of a steel material, and the present inventors particularly studied the work-induced martensitic transformation (TRIP effect) of austenite left in the steel material. ) Was found to achieve the most effective dispersion of strain. However, when the amount of retained austenite is less than 3%, the effect is very small, so this was taken as the minimum value of the retained austenite volume fraction.

【0023】フェライト体積分率が50%未満の場合に
は上述の結晶集合組織を得ることができないためフェラ
イト体積分率の最小値を50%と限定した。残留オース
テナイト体積分率は多いほどその効果が大きいが、残留
オーステナイトを確保するためにはベイナイトの生成が
必須となり、一般的には得られるオーステナイト体積分
率は高々ベイナイト体積分率と同程度であるため、残留
オーステナイト体積分率は25%以下であることが望ま
しい。歪み分散への残留オーステナイトの寄与はオース
テナイトの安定性に依存し、オーステナイトが安定なほ
どその効果が大きい。
If the ferrite volume fraction is less than 50%, the above-mentioned crystal texture cannot be obtained, so the minimum value of the ferrite volume fraction was limited to 50%. The effect is larger as the retained austenite volume fraction is larger, but the generation of bainite is indispensable to secure the retained austenite, and the obtained austenite volume fraction is generally at most as high as the bainite volume fraction. Therefore, the retained austenite volume fraction is desirably 25% or less. The contribution of retained austenite to strain dispersion depends on the stability of austenite, and the more stable the austenite, the greater its effect.

【0024】残留オーステナイトの安定性は、鋼に添加
された合金元素とオーステナイトに濃化したC濃度によ
って決まることから、最終的に得られるオーステナイト
体積分率は鋼材のC質量%の100倍以下であることが
望ましい。
Since the stability of the retained austenite is determined by the alloying element added to the steel and the C concentration concentrated in the austenite, the finally obtained austenite volume fraction is 100 times or less of the C mass% of the steel material. Desirably.

【0025】また、第2相には、上述のベイナイトと残
留オーステナイト以外に、マルテンサイトおよび一部パ
ーライトを含んでいても何ら最終的な鋼管の成形性を劣
化させるものではない。
[0025] Further, even if the second phase contains martensite and partially pearlite in addition to the above-mentioned bainite and retained austenite, it does not deteriorate the formability of the final steel pipe at all.

【0026】n値は一般的に鋼材の強度と共に低下す
る。良好なハイドロフォーム成形性を得るためには鋼材
の最大強度TSと加工硬化指数nの積TS×nが45M
Pa以上であることが望ましい。
The n value generally decreases with the strength of the steel material. In order to obtain good hydroform moldability, the product TS × n of the maximum strength TS of the steel material and the work hardening index n is 45M.
Desirably, it is Pa or more.

【0027】鋼管の強度およびn値は鋼管の管状引張り
試験(JIS11号)または軸方向に切り出した弧状引
張り試験(JIS12号B)等で得ることができ、強度
は最大強度TS、n値は5%〜10%もしくは3%〜8
%の歪み範囲での加工硬化率として定義する。
The strength and n value of the steel pipe can be obtained by a tubular tensile test (JIS No. 11) or an arc-shaped tensile test cut out in the axial direction (JIS No. B) of the steel pipe. % To 10% or 3% to 8
It is defined as the percentage of work hardening in the% strain range.

【0028】次に化学成分の限定理由について述べる。
C:Cはオーステナイトを室温で安定化させて残留させ
るために必要なオーステナイトの安定化に貢献する最も
安価な元素であるために、本発明において最も重要な元
素といえる。鋼材の平均C量は、室温で確保できる残留
オーステナイト体積分率に影響を及ぼすのみならず、製
造の加工熱処理中に未変態オーステナイト中に濃化する
ことで、残留オーステナイトの加工に対する安定性を向
上させることができる。しかしながら、この添加量が
0.04質量%未満の場合には、最終的に得られる残留
オーステナイト体積分率が3%以上を確保することがで
きないので0.04%を下限とした。一方、鋼材の平均
C量が増加するに従って確保可能な残留オーステナイト
体積分率は増加し、残留オーステナイト体積率を確保し
つつ残留オーステナイトの安定性を確保することが可能
となる。しかしながら、鋼材のC添加量が過大になる
と、必要以上に鋼材の強度を上昇させ、最終的に得られ
る鋼管の成形性をするのみならず、成形後の組立工程に
おいて重要となる溶接性を大きく劣化させる。従って鋼
材のC質量%の上限を0.3%とした。
Next, the reasons for limiting the chemical components will be described.
C: C is the most important element in the present invention because it is the cheapest element that contributes to the stabilization of austenite, which is necessary for stabilizing austenite at room temperature to remain. The average C content of the steel material not only affects the retained austenite volume fraction that can be secured at room temperature, but also increases the stability of the retained austenite to processing by enriching in untransformed austenite during the thermomechanical heat treatment during production. Can be done. However, if the addition amount is less than 0.04% by mass, the finally obtained residual austenite volume fraction cannot be 3% or more, so the lower limit was made 0.04%. On the other hand, the retained austenite volume fraction that can be secured increases as the average C content of the steel material increases, and it becomes possible to secure the stability of retained austenite while securing the retained austenite volume fraction. However, when the amount of C added to the steel material is excessive, the strength of the steel material is increased more than necessary, and not only the formability of the finally obtained steel pipe is increased, but also the weldability, which is important in the assembly process after forming, is greatly increased. Deteriorate. Therefore, the upper limit of the C mass% of the steel material is set to 0.3%.

【0029】Mn,Ni,Cr,Cu,Mo,W,C
o,Sn:Mn,Ni,Cr,Cu,Mo,W,Co,
Snは全て変態挙動を制御するためには有効な元素であ
る。特に、溶接性の観点からCの添加量が制限される場
合には、このような元素を適量添加することによって効
果的にオーステナイトを残留させることが可能となる。
また、これらの元素はAlやSi程ではないがセメンタ
イトの生成を抑制する効果があり、オーステナイトへの
Cの濃化を助ける働きもする。さらに、これらの元素は
Al,Siと共にマトリックスであるフェライトやベイ
ナイトを固溶強化させることによって、鋼材の強度を高
める働きも持つ。しかしながら、これらの元素の1種も
しくは2種以上の添加の合計が0.5質量%未満の場合
には、必要な残留オーステナイトの確保ができなくなる
とともに、鋼材の強度が低くなり、有効な車体軽量化が
達成できなくなることから、下限を0.5質量%とし
た。一方、これらの合計が3.5質量%を超える場合に
は、母相であるフェライトもしくはベイナイトの硬質化
を招き、最終的に得られる鋼管の成形性の低下、靭性の
低下、さらには鋼材コストの上昇を招くために、上限を
3.5質量%とした。
Mn, Ni, Cr, Cu, Mo, W, C
o, Sn: Mn, Ni, Cr, Cu, Mo, W, Co,
Sn is an effective element for controlling the transformation behavior. In particular, when the addition amount of C is restricted from the viewpoint of weldability, it is possible to effectively retain austenite by adding an appropriate amount of such an element.
In addition, these elements are not as effective as Al and Si, but have the effect of suppressing the generation of cementite, and also work to assist the enrichment of C in austenite. Further, these elements have the function of increasing the strength of the steel material by solid-solution strengthening the matrix ferrite and bainite together with Al and Si. However, when the addition of one or more of these elements is less than 0.5% by mass, it is not possible to secure the necessary retained austenite, the strength of the steel material is reduced, and the effective body weight is reduced. Therefore, the lower limit was set to 0.5% by mass. On the other hand, if the sum of them exceeds 3.5% by mass, the ferrite or bainite which is the parent phase is hardened, resulting in a decrease in formability and toughness of the finally obtained steel pipe, and further, a cost of steel material. , The upper limit was set to 3.5% by mass.

【0030】Al,Si:AlとSiは共にフェライト
の安定化元素であり、フェライト体積率を増加させるこ
とによって鋼材の加工性を向上させる働きがある。ま
た、Al,Si共にセメンタイトの生成を抑制すること
から、効果的にオーステナイト中へのCを濃化させるこ
とを可能とすることから、室温で適当な体積分率のオー
ステナイトを残留させるためには不可避的な添加元素で
ある。このような機能を持つ添加元素としては、Al,
Si以外に、PやCu,Cr,Mo等があげられ、この
ような元素を適当に添加することも同様な効果が期待さ
れる。しかしながら、AlとSiの一種もしくは双方の
合計が0.5質量%未満の場合には、セメンタイト生成
抑制の効果が十分でなく、オーステナイトの安定化に最
も効果的な添加されたCの多くが炭化物の形で浪費さ
れ、本発明に必要な残留オーステナイト体積率を確保す
ることができないかもしくは残留オーステナイトの確保
に必要な製造条件が大量生産工程の条件に適しない。従
って下限を0.5質量%とした。また、AlとSiの一
種もしくは双方の合計が3%を超える場合には、母相で
あるフェライトもしくはベイナイトの硬質化や脆化を招
き、最終的に得られる鋼管の成形性の低下、靭性の低
下、さらには鋼材コストの上昇を招き、また化成処理性
等の表面処理特性が著しく劣化するために、3質量%を
上限値とした。
Al, Si: Al and Si are both ferrite stabilizing elements, and work to improve the workability of steel by increasing the volume fraction of ferrite. In addition, since both Al and Si suppress the generation of cementite, it is possible to effectively enrich C in austenite. Therefore, it is necessary to leave austenite having an appropriate volume fraction at room temperature. It is an inevitable additional element. Additive elements having such a function include Al,
In addition to Si, P, Cu, Cr, Mo and the like can be mentioned, and a similar effect can be expected by appropriately adding such an element. However, when one or both of Al and Si are less than 0.5% by mass, the effect of suppressing the formation of cementite is not sufficient, and most of the added C most effective for stabilizing austenite is carbide. Therefore, the volume ratio of retained austenite required for the present invention cannot be secured, or the manufacturing conditions required for securing the retained austenite are not suitable for the conditions of the mass production process. Therefore, the lower limit was set to 0.5% by mass. If the sum of one or both of Al and Si exceeds 3%, hardening or embrittlement of the ferrite or bainite as the parent phase is caused, the formability of the finally obtained steel pipe is reduced, and the toughness is reduced. The upper limit was set to 3% by mass because the lowering of the cost and the increase in the cost of the steel material were caused, and the surface treatment properties such as chemical conversion property were remarkably deteriorated.

【0031】P:さらに、必要に応じて添加するPは、
鋼材の高強度化や前述のように残留オーステナイトの確
保に有効ではあるが、0.2質量%を超えて添加された
場合には体積分率最大の相であるフェライトの変形抵抗
を必要以上に高め、最終的に得られる鋼管の成形性の低
下、靭性の低下、さらには鋼材コストの上昇を招く。さ
らに、耐置き割れ性の劣化や疲労特性、靭性の劣化を招
くことから、0.2質量%をその上限とした。但し、P
の添加の効果を得るためには、0.005質量%以上含
有することが好ましい。
P: Further, if necessary, P to be added is
It is effective in increasing the strength of steel and securing retained austenite as described above. However, when added in excess of 0.2% by mass, the deformation resistance of ferrite, the phase with the largest volume fraction, becomes unnecessarily large. It increases the formability and toughness of the finally obtained steel pipe, and further increases the cost of steel material. Further, the upper limit is set to 0.2% by mass, since deterioration of storage crack resistance and deterioration of fatigue characteristics and toughness are caused. Where P
In order to obtain the effect of the addition, it is preferable to contain 0.005% by mass or more.

【0032】B:また、必要に応じて添加するBは、粒
界の強化や鋼材の高強度化に有効ではあるが、その添加
量が0.01質量%を超えるとその効果が飽和するばか
りでなく、必要以上に鋼材強度を上昇させ、最終的に得
られる鋼管の成形性の低下を招くことから、上限を0.
01質量%とした。但し、Bの添加効果を得るために
は、0.0002質量%以上含有することが好ましい。
B: B, which is added as required, is effective for strengthening grain boundaries and increasing the strength of steel materials. However, if the amount exceeds 0.01% by mass, the effect is only saturated. Instead, the steel material strength is unnecessarily increased, and the formability of the finally obtained steel pipe is reduced.
01 mass%. However, in order to obtain the effect of adding B, the content is preferably 0.0002% by mass or more.

【0033】Nb,Ti,V:また、必要に応じて添加
するNb,Ti,Vは、炭化物、窒化物もしくは炭窒化
物を形成することによって鋼材を高強度化することがで
きるが、その合計が0.3%を超えた場合には母相であ
るフェライトやベイナイト粒内もしくは粒界に多量の炭
化物、窒化物もしくは炭窒化物として析出し、最終的に
得られる鋼管の成形性の低下、靭性の低下、さらには鋼
材コストの上昇を招く。また、炭化物の生成は、本発明
にとって最も重要な残留オーステナイト中へのCの濃化
を阻害し、Cを浪費することから上限を0.3質量%と
した。但し、これらの元素の添加によって高強度化する
ためには、Nb,Ti,Vの合計で0.005質量%以
上添加することが好ましい。
Nb, Ti, V: Nb, Ti, V added as necessary can increase the strength of steel by forming carbide, nitride or carbonitride. Exceeds 0.3%, a large amount of carbides, nitrides or carbonitrides precipitates in the ferrite or bainite grains or in the grain boundaries as the parent phase, and the formability of the finally obtained steel pipe deteriorates. This leads to a decrease in toughness and an increase in steel material cost. Further, since the formation of carbides inhibits the concentration of C in retained austenite, which is the most important for the present invention, and wastes C, the upper limit is set to 0.3% by mass. However, in order to increase the strength by adding these elements, it is preferable to add 0.005% by mass or more in total of Nb, Ti, and V.

【0034】Ca,希土類元素(Rem):介在物制御
に有効な元素で、Caは0.0005質量%以上、Re
mは0.001%以上の添加により熱間加工性を向上さ
せるが、Caは0.005%超、Remは0.02%超
の添加は逆に熱間脆化を助長させるため、上記の範囲と
した。ここで、希土類元素とは、Y,Scおよびランタ
ノイド系の元素を指し、工業的には、これらの混合物で
あるミッシュメタルとして添加することがコスト的に有
利である。
Ca, rare earth element (Rem): an element effective for controlling inclusions, Ca is 0.0005% by mass or more,
Although m improves the hot workability by adding 0.001% or more, the addition of Ca exceeds 0.005% and Rem exceeds 0.02% conversely promotes hot embrittlement. Range. Here, the rare earth elements refer to Y, Sc and lanthanoid elements, and it is industrially advantageous to add them as misch metal, which is a mixture of these elements.

【0035】鋼板中のNはCと同様にオーステナイトを
安定化することができるが、同時に鋼材の靭性や延性を
劣化させる傾向があるために0.01質量%以下とする
ことが望ましい。
N in the steel sheet can stabilize austenite like C, but it tends to degrade the toughness and ductility of the steel material.

【0036】またOは酸化物を形成し、介在物として鋼
材の加工性、特に伸びフランジ成形性に代表されるよう
な極限変形能や鋼材の疲労強度、靭性を劣化させること
から、0.01質量%以下に制御することが望ましい。
O forms oxides and, as inclusions, degrades the workability of the steel material, particularly the ultimate deformability typified by stretch flangeability and the fatigue strength and toughness of the steel material. It is desirable to control it to not more than mass%.

【0037】以下に本発明の製造方法について述べる。 (スラブ再加熱温度)所定の成分に調整された鋼は、鋳
造後直接もしくは一旦Ar3 変態温度以下まで冷却され
た後に再加熱された後に熱間圧延される。この時の再加
熱温度が1000℃未満の場合には、熱間圧延を完了す
るまでに、何らかの加熱装置必要となるためにこれを下
限とした。また再加熱温度が1300℃を超える場合に
は、加熱時のスケール生成による歩留まり劣化を招くと
同時に、製造コストの上昇も招くことから、これを再加
熱温度の上限値とした。
Hereinafter, the production method of the present invention will be described. (Slab reheating temperature) The steel adjusted to a predetermined composition is hot-rolled directly after casting, or once cooled to a temperature below the Ar3 transformation temperature and then reheated. If the reheating temperature at this time is lower than 1000 ° C., some kind of heating device is required until hot rolling is completed, so this was set as the lower limit. If the reheating temperature is higher than 1300 ° C., the yield is degraded due to the formation of scale during heating, and at the same time, the production cost is increased. Therefore, this is set as the upper limit of the reheating temperature.

【0038】(熱延条件)熱延は通常の方法にて行われ
れば良く、熱延終了温度が鋼のAr3 変態温度以下とな
っていても良い。但し、最終的に得られる鋼管の集合組
織を好ましいものとするためには、熱延鋼板での集合組
織発達を回避することが有効であり、このためにAr3
変態温度+50℃以上で熱延を完了することが望まし
い。一方、スケール生成に起因する表面特性の劣化を抑
制するためには、仕上げ温度を980℃以下とすること
が好ましい。
(Hot Rolling Conditions) Hot rolling may be performed by a usual method, and the hot rolling end temperature may be lower than the Ar3 transformation temperature of steel. However, in order to make the texture of the finally obtained steel pipe favorable, it is effective to avoid the development of texture in the hot-rolled steel sheet.
It is desirable to complete hot rolling at a transformation temperature of + 50 ° C. or higher. On the other hand, in order to suppress the deterioration of the surface characteristics due to the scale formation, the finishing temperature is preferably set to 980 ° C. or lower.

【0039】(冷延−焼鈍条件)熱延完了した鋼板をそ
のまま造管し縮径加工を行っても良いが、必要に応じて
酸洗後冷延し、焼鈍後に造管し縮径加工を行っても良
い。この時の冷延−焼鈍条件は特に規定しない。
(Cold-rolling-annealing conditions) The steel sheet which has been hot-rolled may be directly formed into a tube and subjected to diameter reduction processing. You may go. The cold rolling-annealing conditions at this time are not particularly defined.

【0040】(造 管)造管はコイル状の鋼板を連続的
に巻きながら、もしくは前もって所定のサイズに切断さ
れた鋼板を巻いた後に溶接もしくは固相拡散接合等の方
法によって行われる。
(Pipe-forming) Pipe-forming is performed by a method such as welding or solid phase diffusion bonding while continuously winding a coiled steel sheet, or after winding a steel sheet cut in advance to a predetermined size.

【0041】(縮径加工)以上のような方法によって製
造された鋼管を縮径加工によって所定のサイズに調整す
る際に、縮径加工開始前の加熱温度が鋼材の化学成分に
よって決まる(2×Ac1 変態温度+Ac3 変態温度)
/3未満の場合には、最終的に得られる残留オーステナ
イト体積分率が3%未満となり、鋼管の成形性を劣化さ
せることから、これを加熱温度の下限値とした。一方、
この加熱温度が1050℃超となった場合には、最終的
に得られる鋼管において{110}<110>〜{33
2}<110>の方位群が発達せず、結果として鋼管の
成形性が劣化するために、これを加熱温度の上限値とし
た。
(Diameter Reduction) When the steel pipe manufactured by the above method is adjusted to a predetermined size by the diameter reduction, the heating temperature before the start of the diameter reduction is determined by the chemical composition of the steel material (2 × Ac1 transformation temperature + Ac3 transformation temperature)
If it is less than / 3, the finally obtained residual austenite volume fraction is less than 3%, which degrades the formability of the steel pipe. Therefore, this was set as the lower limit of the heating temperature. on the other hand,
When the heating temperature exceeds 1050 ° C., {110} <110> to {33} in the finally obtained steel pipe.
Since the orientation group of 2 > <110> did not develop, and as a result, the formability of the steel pipe deteriorated, this was set as the upper limit of the heating temperature.

【0042】縮径は上記の加熱温度に規定することによ
り、縮径の温度範囲を特に定めることなく本発明の効果
を得ることができるが、最終的なミクロ組織中にマルテ
ンサイトを得るために、縮径の仕上げ温度は鋼の成分で
決まるAr3 変態温度−100℃以上とすることが、ま
た、2相分離を十分に進めるためにはAr3 変態温度+
150℃以下とすることが好ましい。但し、 Ar3=901−325×C%+33×Si%+287
×P%+40×Al%−92×(Mn%+Mo%+Cu
%)−46×(Cr%+Ni%) とする。
By defining the diameter reduction at the above-mentioned heating temperature, the effect of the present invention can be obtained without particularly defining the temperature range of the diameter reduction, but it is necessary to obtain martensite in the final microstructure. In addition, the finishing temperature of the diameter reduction should be not less than the Ar3 transformation temperature -100 ° C. determined by the composition of the steel, and the Ar3 transformation temperature +
The temperature is preferably set to 150 ° C. or lower. However, Ar3 = 901-325 * C% + 33 * Si% + 287
× P% + 40 × Al% −92 × (Mn% + Mo% + Cu
%) − 46 × (Cr% + Ni%).

【0043】縮径加工によって、鋼管の長さ、鋼管外周
径、板厚を変化させることができるが、これらを全て独
立に変化させることができないために、この中の1つに
着目して制御することで縮径加工時に導入された全歪み
量を評価することができる。ここではその代表値として
鋼管の外径の変化に着目する。この縮径の程度は縮径率
(={縮径加工前の鋼管の外径−縮径加工後の鋼管の外
径}/縮径加工前の鋼管の外径×100%)で表現さ
れ、この縮径率が25%未満の場合には鋼材に導入され
る歪み量が十分でないために集合組織の発達が不十分と
なり鋼管の成形性を劣化させる。従ってこれを縮径率の
最小値とした。この縮径率は大きければ大きいほど良
く、望ましくは45%以上、さらに非常に高い加工性が
要求される場合には70%以上とすることが望ましい。
Although the length of the steel pipe, the outer diameter of the steel pipe, and the thickness of the steel pipe can be changed by reducing the diameter, it is not possible to change all of them independently. By doing so, it is possible to evaluate the total strain introduced during the diameter reduction processing. Here, we focus on the change in the outer diameter of the steel pipe as a representative value. The degree of the diameter reduction is expressed by a diameter reduction rate (= {the outer diameter of the steel pipe before diameter reduction-the outer diameter of the steel pipe after diameter reduction} / the outer diameter of the steel pipe before diameter reduction × 100%), If the diameter reduction ratio is less than 25%, the amount of strain introduced into the steel material is not sufficient, so that the development of the texture is insufficient and the formability of the steel pipe is deteriorated. Therefore, this was set as the minimum value of the diameter reduction rate. The larger the diameter reduction ratio, the better, preferably 45% or more, and more preferably 70% or more when extremely high workability is required.

【0044】縮径加工後の冷却によって鋼材のミクロ組
織が制御される。この時の冷却は空冷でも良いが、ブロ
ワーや気水冷却、水冷等の設備を配して加速冷却しても
良い。但しこの時に、冷却速度を150℃/秒超とする
ためには過大の設備投資を必要とするためにこれを冷却
速度の上限とした。空冷される場合には、冷却は室温ま
で連続的に行われても良いが、加速冷却される場合に
は、冷却完了温度が300℃未満になると、鋼材中の残
留オーステナイトが非常に不安定となり、最終的に得ら
れる鋼管の成形性を劣化させるためにこれを冷却停止温
度の下限値とした。また、冷却停止温度が500℃超の
場合には、加速冷却する効果は全くなくなるために、こ
れを冷却停止温度の上限とした。縮径加工後に加速冷却
される場合に、300℃〜500℃で冷却が停止され後
にさらに鋼管は室温まで冷却される。この時の冷却速度
が15℃/秒超の場合には鋼材中の残留オーステナイト
の安定性が低くなり、最終的に得られる鋼管の成形性を
劣化させるためにこれを冷却速度の上限値とした。ここ
での冷却速度は遅いほど有効であるが、冷却速度を0.
5℃/秒未満にするためには付加的な設備を必要とする
ために、300℃〜500℃からの冷却速度は0.5℃
/秒以上が好ましい。
The microstructure of the steel material is controlled by cooling after diameter reduction. The cooling at this time may be air cooling, or may be accelerated cooling by providing equipment such as a blower, air / water cooling, or water cooling. However, at this time, in order to increase the cooling rate to more than 150 ° C./sec, an excessive capital investment was required, so this was set as the upper limit of the cooling rate. In the case of air cooling, the cooling may be continuously performed to room temperature. However, in the case of accelerated cooling, when the cooling completion temperature is less than 300 ° C., the retained austenite in the steel material becomes very unstable. In order to deteriorate the formability of the finally obtained steel pipe, this was set as the lower limit of the cooling stop temperature. If the cooling stop temperature is higher than 500 ° C., the effect of accelerated cooling is completely lost, so this was set as the upper limit of the cooling stop temperature. When accelerated cooling is performed after the diameter reduction processing, the cooling is stopped at 300 ° C to 500 ° C, and then the steel pipe is further cooled to room temperature. If the cooling rate at this time is higher than 15 ° C./sec, the stability of the retained austenite in the steel material decreases, and the formability of the finally obtained steel pipe is deteriorated. . The lower the cooling rate is, the more effective the cooling rate is.
The cooling rate from 300 ° C. to 500 ° C. is 0.5 ° C., since additional equipment is required to bring the temperature to less than 5 ° C./sec.
/ Sec or more is preferred.

【0045】このようにして製造された鋼管をハイドロ
フォーム成形する前に、表面の摩擦抵抗を小さくする目
的で、油脂や固体潤滑剤等を塗布しても良い。また、防
錆効果のために、これらの鋼管にZn等の表面処理を施
しても良い。
Before hydroforming the steel pipe manufactured in this way, oil or fat, a solid lubricant or the like may be applied for the purpose of reducing the frictional resistance of the surface. Further, these steel pipes may be subjected to a surface treatment such as Zn for rust prevention effect.

【0046】[0046]

【実施例】表1に示す化学成分の鋼を溶解し、鋳造後一
旦室温まで冷却した後に再度1200℃に加熱し900
℃以上で熱延を完了した後冷却し、電縫溶接した。この
ようにして製造した母管を所定の温度に加熱し縮径加工
を行った。
EXAMPLE Steel having the chemical composition shown in Table 1 was melted, cooled to room temperature after casting, and then heated again to 1200 ° C.
After completion of hot rolling at a temperature of not less than ℃, the resultant was cooled and subjected to electric resistance welding. The mother pipe manufactured in this manner was heated to a predetermined temperature to reduce the diameter.

【0047】最終的に得られた鋼管の加工性の評価は以
下の方法で行った。前もって鋼管に10mmΦのスクライ
ブドサークルを転写し、内圧と軸押し量を制御して、円
周方向への張り出し成形を行った。バースト直前での最
大拡管率を示す部位(拡管率=成形後の最大周長/母管
の周長)の軸方向の歪みεΦと円周方向の歪みεθを測
定した。この2つの歪みの比ρ=εΦ/εθと最大拡管
率をプロットし、ρ=−0.5となる拡管率Re(0.
5)をもってハイドロフォーム成形性の指標とした。
The workability of the finally obtained steel pipe was evaluated by the following method. A scribed circle having a diameter of 10 mm was transferred to a steel pipe in advance, and the inner pressure and the amount of axial pressing were controlled to form a stretch in the circumferential direction. The strain εΦ in the axial direction and the strain εθ in the circumferential direction of the portion showing the maximum expansion rate immediately before the burst (expansion rate = maximum perimeter after molding / perimeter of the mother pipe) were measured. The ratio ρ = εΦ / εθ of the two strains and the maximum expansion ratio are plotted, and the expansion ratio Re (0.
5) was used as an index for hydroform moldability.

【0048】集合組織の測定はX線解析によって、鋼管
から弧状試験片を切り出し、プレスして平板としたサン
プルの1/2部に対して行った。また、X線の相対強度
はランダム結晶と対比することで求めた。
The texture was measured by X-ray analysis on a half part of a flat plate obtained by cutting out an arc-shaped test piece from a steel pipe and pressing it. Further, the relative intensity of X-rays was determined by comparing with a random crystal.

【0049】残留オーステナイトの体積分率はMoのK
α線を用いたX線解析により、フェライトの(200)
面、(211)面およびオーステナイトの(200)
面、(220)面、(311)面の積分反射強度を測定
して、Journal of The Iron and Steel Institute, 206
(1968) p60 に示された方法にて算出した。
The volume fraction of retained austenite is Mo's K
By X-ray analysis using α-ray, (200)
Plane, (211) plane and austenitic (200)
Surface, the (220) surface, and the (311) surface were measured for the integrated reflection intensity, and found in the Journal of The Iron and Steel Institute, 206
(1968) Calculated by the method shown in p60.

【0050】フェライト体積分率は、鋼管の軸方向断面
の1/4厚部において500倍の写真を撮影し、ポイン
トカウント法によって求めた。
The ferrite volume fraction was determined by a point count method by taking a 500-fold photograph of a 1/4 thick portion of the axial section of the steel pipe.

【0051】表2には、表1の鋼P2を表中のに示した
縮径加工条件で加工し、得られた鋼管のハイドロフォー
ム成形性とミクロ組織、集合組織を調査した結果を示し
た。例1は縮径加工前の加熱温度が鋼材の化学成分で決
まるAc1=742℃、Ac3 =851℃で規定される
(2×Ac1 +Ac3 )/3=778℃未満であるため
に、最終的に得られる鋼管中にオーステナイトを残留さ
せることができないため、結果として鋼管の成形性が低
い。また例2は縮径率が25%未満であるために集合組
織の発達が十分でなく鋼管の成形性が低い。また、例6
は縮径加工後の加速冷却停止温度が300℃未満となっ
ているために、残留オーステナイト体積分率は確保でき
ているものの、残留オーステナイトの安定性が低いため
に鋼管の成形性は低い。その他の例は本発明の範囲内に
あり、良好な成形性を示すことがわかる。
Table 2 shows the results of investigating the hydroform formability, microstructure and texture of the steel pipe obtained by processing the steel P2 of Table 1 under the conditions of diameter reduction shown in the table. . In Example 1, since the heating temperature before diameter reduction processing is less than (2 × Ac1 + Ac3) / 3 = 778 ° C. defined by Ac1 = 742 ° C. and Ac3 = 851 ° C. determined by the chemical composition of the steel material, Since austenite cannot remain in the obtained steel pipe, the formability of the steel pipe is low as a result. In Example 2, since the diameter reduction ratio was less than 25%, the texture was not sufficiently developed, and the formability of the steel pipe was low. Example 6
Although the accelerated cooling stop temperature after the diameter reduction processing is less than 300 ° C., the retained austenite volume fraction can be secured, but the formability of the steel pipe is low because the stability of the retained austenite is low. Other examples are within the scope of the present invention and show good moldability.

【0052】表3には、表1に示した全ての鋼に対し
て、表中に示した本発明の範囲内であ縮径加工を行った
鋼管の成形性評価結果を示した。縮径率はすべて55
%、縮径加工後の冷却は全て空冷とした。本発明の範囲
の化学成分であるP1〜P16の例は全て{110}<
110>〜{332}<110>の方位群のX線ランダ
ム強度比の平均が2.0以上および/または鋼板1/2
板厚での板面の{110}<110>のX線ランダム強
度比が3.0以上であり、かつ鋼材中の残留オーステナ
イト体積分率が3%以上となっており、その結果として
化学成分の中のどれかが本発明範囲からはずれているC
1〜C6の例に比較して良好なハイドロフォーム成形性
を示すことがわかる。
Table 3 shows the results of the evaluation of the formability of steel pipes obtained by reducing the diameter of all the steels shown in Table 1 within the range of the present invention shown in the table. The diameter reduction rate is 55
%, And cooling after diameter reduction was all air-cooled. Examples of the chemical components P1 to P16 within the scope of the present invention are all {110} <
The average of the X-ray random intensity ratio of the orientation group of 110> to {332} <110> is 2.0 or more and / or steel sheet 1/2
The X-ray random intensity ratio of {110} <110> on the plate surface at the plate thickness is 3.0 or more, and the retained austenite volume fraction in the steel material is 3% or more, and as a result, the chemical components Is out of the scope of the present invention.
It can be seen that it shows better hydroform moldability than the examples of Nos. 1 to C6.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【発明の効果】鋼管の集合組織とミクロ組織を制御する
ことで、鋼管のハイドロフォーム成形性が著しく向上す
ることを以上に詳述した。本発明によって、複雑な形状
の部品へのハイドロフォーム加工が可能となり、自動車
車体の軽量化をより一層推進することができる。従っ
て、本発明は、工業的に極めて高い価値のある発明であ
る。
As described above, the control of the texture and microstructure of the steel pipe significantly improves the hydroformability of the steel pipe. ADVANTAGE OF THE INVENTION By this invention, the hydroform process to a part of a complicated shape is attained, and the weight reduction of an automobile body can be promoted further. Therefore, the present invention is an industrially extremely valuable invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 展弘 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 篠原 康浩 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 吉田 亨 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K032 AA00 AA01 AA02 AA04 AA05 AA08 AA09 AA10 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA22 AA23 AA24 AA27 AA31 AA32 AA35 AA36 AA37 AA40 BA03 CA02 CA03 CC03 CC04 CF03 CH05 CH06 CJ02 CJ03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuhiro Fujita 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Yasuhiro Shinohara 20-1 Shintomi, Futtsu-shi, Chiba Made in New Japan (72) Inventor Toru Yoshida 20-1 Shintomi, Futtsu-shi, Chiba F-term (reference) 4N03 Nippon Steel Corporation Technology Development Headquarters AA16 AA17 AA19 AA20 AA22 AA23 AA24 AA27 AA31 AA32 AA35 AA36 AA37 AA40 BA03 CA02 CA03 CC03 CC04 CF03 CH05 CH06 CJ02 CJ03

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ミクロ組織が体積分率で50%以上のフ
ェライトと、体積分率で3%以上の残留オーステナイト
を含む第2相との複合組織であり、鋼板1/2板厚での
板面の{110}<110>〜{332}<110>の
方位群のX線ランダム強度比の平均が2.0以上、ある
いは鋼板1/2板厚での板面の{110}<110>の
X線ランダム強度比が3.0以上の何れかまたは双方で
あることを特徴とする成形性に優れた高強度鋼管。
A microstructure having a composite structure of ferrite having a volume fraction of 50% or more and a second phase containing retained austenite having a volume fraction of 3% or more, and having a steel plate thickness of 1/2. The average of the X-ray random intensity ratio of the {110} <110> to {332} <110> orientation groups of the surface is 2.0 or more, or the {110} <110> of the plate surface at a steel plate 1/2 thickness. Wherein the X-ray random intensity ratio is 3.0 or more, or both.
【請求項2】 質量%にて、Cを0.04%以上0.3
%以下含みむことを特徴とする請求項1記載の成形性に
優れた高強度鋼管。
2. C is 0.04% or more and 0.3% by mass%.
%. The high-strength steel pipe excellent in formability according to claim 1, wherein the content is not more than%.
【請求項3】 質量%で、さらに Mn:3%以下、 Ni:3%以下、 Cr:3%以下、 Cu:2%以下、 Mo:2%以下、 W :2%以下、 Co:3%以下、 Sn:0.5%以下 の中の1種または2種以上を合計で0.5%以上3.5
%以下含むことを特徴とする請求項2記載の成形性に優
れた高強度鋼管。
3. In mass%, Mn: 3% or less, Ni: 3% or less, Cr: 3% or less, Cu: 2% or less, Mo: 2% or less, W: 2% or less, Co: 3% In the following, Sn: 0.5% or less One or more of 0.5% or more and 3.5% or more in total
%. The high-strength steel pipe excellent in formability according to claim 2.
【請求項4】 質量%で、さらに Si:0.003〜3%、 Al:3%以下 の一方または双方を合計で0.5%以上3%以下含むこ
とを特徴とする請求項2または3記載の成形性に優れた
高強度鋼管。
4. The method according to claim 2, wherein one or both of Si: 0.003 to 3% and Al: 3% or less are contained in a total of 0.5% to 3% in mass%. High-strength steel pipe with excellent formability as described.
【請求項5】質量%で、さらに P :0.001〜0.2%、 B :0.0002〜0.001% の一方または双方を含むことを特徴とする請求項2〜4
の何れか1項に記載の成形性に優れた高強度鋼管。
5. The composition according to claim 2, further comprising one or both of P: 0.001 to 0.2% and B: 0.0002 to 0.001% by mass%.
The high-strength steel pipe excellent in formability according to any one of the above.
【請求項6】質量%で、さらに Ti:0.3%以下、 Nb:0.3%以下、 V :0.3%以下 の中の1種または2種以上を合計で0.005%以上
0.3%以下含むことを特徴とする請求項2〜5の何れ
か1項に記載の成形性に優れた高強度鋼管。
6. In mass%, one or more of Ti: 0.3% or less, Nb: 0.3% or less, and V: 0.3% or less are 0.005% or more in total. The high-strength steel pipe excellent in formability according to any one of claims 2 to 5, which contains 0.3% or less.
【請求項7】質量%で、さらに Ca:0.0005〜0.005%、 Rem:0.001〜0.02% の一方または双方を含むことを特徴とする請求項4〜6
の何れか1項に記載の成形性に優れた高強度鋼管。
7. The composition according to claim 4, further comprising one or both of Ca: 0.0005 to 0.005% and Rem: 0.001 to 0.02% by mass%.
The high-strength steel pipe excellent in formability according to any one of the above.
【請求項8】 請求項1〜7の何れか1項に記載の鋼管
を製造するにあたり、請求項2〜7の何れか1項に記載
の成分を有する鋳造スラブを、鋳造ままもしくは一旦冷
却した後に1000℃〜1300℃の範囲に再度加熱
し、熱間圧延して冷却後巻取った熱延鋼板を造管し、鋼
材の化学成分で決まる(2×Ac1 変態温度+Ac3 変
態温度)/3以上1050℃以下に加熱した後縮径加工
を行い、その後、空冷もしくは150℃/秒以下の冷却
速度で300℃以上600℃以下まで冷却し、その後1
5℃/秒以下の冷却速度で室温まで冷却することを特徴
とする成形性に優れた高強度鋼管の製造方法。但し、 Ac1(℃) =723-10.7×Mn%-16.9×Ni%+29.1×Si%+16.9×
Cr% Ac3(℃) =910-203×(C%)1/2-15.2×Ni%+44.7×Si%+31.
5×Mo%+13.1×W%-30×Mn%-11×Cr%-20×Cu%+70×P%+40
×Al%
8. In producing the steel pipe according to any one of claims 1 to 7, the cast slab having the component according to any one of claims 2 to 7 is cast or cooled once. Thereafter, the rolled steel sheet is heated again to a temperature in the range of 1000 ° C. to 1300 ° C., hot rolled, cooled, and rolled to form a tube, and determined by the chemical composition of the steel material (2 × Ac1 transformation temperature + Ac3 transformation temperature) / 3 or more After heating to 1050 ° C. or less, diameter reduction processing is performed, and then cooling to 300 ° C. or more and 600 ° C. or less by air cooling or a cooling rate of 150 ° C./second or less,
A method for producing a high-strength steel pipe excellent in formability, characterized by cooling to room temperature at a cooling rate of 5 ° C./second or less. However, Ac1 (℃) = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 ×
Cr% Ac3 (℃) = 910-203 × (C%) 1 / 2-15.2 × Ni% + 44.7 × Si% + 31.
5 × Mo% + 13.1 × W% -30 × Mn% -11 × Cr% -20 × Cu% + 70 × P% + 40
× Al%
【請求項9】 請求項1〜7の何れか1項に記載の鋼管
を製造するにあたり、請求項2〜7の何れか1項に記載
の成分を有する熱延鋼板を酸洗し冷延した後に焼鈍した
鋼板を造管し、鋼材の化学成分で決まる(2×Ac1 変
態温度+Ac3 変態温度)/3以上1050℃以下に加
熱した後縮径加工を行い、その後、空冷もしくは150
℃/秒以下の冷却速度で300℃以上500℃以下まで
冷却し、その後15℃/秒以下の冷却速度で室温まで冷
却することを特徴とする成形性に優れた高強度鋼管の製
造方法。
9. In producing the steel pipe according to any one of claims 1 to 7, the hot-rolled steel sheet having the component according to any one of claims 2 to 7 is pickled and cold-rolled. The annealed steel sheet is formed into a tube, heated to a temperature determined by the chemical composition of the steel material (2 × Ac1 transformation temperature + Ac3 transformation temperature) / 3 or more and 1050 ° C. or less, and then subjected to diameter reduction processing.
A method for producing a high-strength steel pipe excellent in formability, comprising cooling at a cooling rate of not more than 300C / sec to 300C or less and not more than 500C, and then cooling to a room temperature at a cooling rate of 15C / sec or less.
【請求項10】 縮径加工後時の縮径率が25%以上で
あることを特徴とする請求項8もしくは請求項9記載の
成形性に優れた高強度鋼管の製造方法。
10. The method for producing a high-strength steel pipe excellent in formability according to claim 8, wherein a diameter reduction rate after the diameter reduction processing is 25% or more.
JP2000174370A 2000-06-09 2000-06-09 High strength steel pipe with excellent formability and its manufacturing method Expired - Fee Related JP4336027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000174370A JP4336027B2 (en) 2000-06-09 2000-06-09 High strength steel pipe with excellent formability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174370A JP4336027B2 (en) 2000-06-09 2000-06-09 High strength steel pipe with excellent formability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001355036A true JP2001355036A (en) 2001-12-25
JP4336027B2 JP4336027B2 (en) 2009-09-30

Family

ID=18676424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174370A Expired - Fee Related JP4336027B2 (en) 2000-06-09 2000-06-09 High strength steel pipe with excellent formability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4336027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210079482A (en) * 2019-12-19 2021-06-30 주식회사 포스코 Steel sheet having excellent ductility and low-temperature impact toughness and method for manufacturing thereof
WO2022215548A1 (en) * 2021-04-08 2022-10-13 日本製鉄株式会社 Hot-stretch-reduced electric resistance welded pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210079482A (en) * 2019-12-19 2021-06-30 주식회사 포스코 Steel sheet having excellent ductility and low-temperature impact toughness and method for manufacturing thereof
KR102321319B1 (en) * 2019-12-19 2021-11-03 주식회사 포스코 Steel sheet having excellent ductility and low-temperature impact toughness and method for manufacturing thereof
WO2022215548A1 (en) * 2021-04-08 2022-10-13 日本製鉄株式会社 Hot-stretch-reduced electric resistance welded pipe
JP7160235B1 (en) * 2021-04-08 2022-10-25 日本製鉄株式会社 Hot shrinking ERW pipe

Also Published As

Publication number Publication date
JP4336027B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP5664797B2 (en) Hot-rolled steel sheet for nitriding excellent in fatigue strength, cold-rolled steel sheet for nitriding, production method thereof, and automotive parts excellent in fatigue strength using them
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP6973694B1 (en) High-strength steel plate and its manufacturing method
JP2009030091A (en) High-strength cold-rolled steel sheet with excellent manufacturing stability, and its manufacturing method
JP2017125235A (en) Hot rolled steel sheet and production method therefor
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
CN113316649A (en) High-strength high-ductility complex-phase cold-rolled steel strip or plate
JP2002241897A (en) Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same
JP3924108B2 (en) Manufacturing method of high strength steel sheet with excellent hydroformability after pre-processing
JP5533143B2 (en) Cold rolled steel sheet and method for producing the same
JP2019011508A (en) Low-yield-ratio high strength steel sheet and method for producing the same
JP2006097109A (en) High-carbon hot-rolled steel sheet and manufacturing method therefor
JP3549483B2 (en) Hydroform forming steel pipe excellent in processability and manufacturing method
JP3066689B2 (en) High-strength composite structure hot-rolled steel sheet excellent in workability and fatigue properties, and method for producing the same
JP4336026B2 (en) High strength steel pipe with excellent formability and its manufacturing method
JP2001355036A (en) High strength steel tube excellent in formability and its production method
JP2001348643A (en) Steel tube excellent in formability and its production method
JP4114521B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
JPH09310165A (en) Thin steel sheet for working excellent in fatigue characteristic and its production
JP2004225131A (en) High strength steel pipe having excellent workability, and production method therefor
JP2000192191A (en) High tensile strength steel plate excellent in burring property, and its manufacture
JP4325245B2 (en) Nitrided member excellent in durability fatigue characteristics and method for producing the same
JP2004250744A (en) High workability, high strength hot rolled steel sheet having excellent shape-fixability, and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4336027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees