JP4325245B2 - Nitrided member excellent in durability fatigue characteristics and method for producing the same - Google Patents

Nitrided member excellent in durability fatigue characteristics and method for producing the same Download PDF

Info

Publication number
JP4325245B2
JP4325245B2 JP2003088628A JP2003088628A JP4325245B2 JP 4325245 B2 JP4325245 B2 JP 4325245B2 JP 2003088628 A JP2003088628 A JP 2003088628A JP 2003088628 A JP2003088628 A JP 2003088628A JP 4325245 B2 JP4325245 B2 JP 4325245B2
Authority
JP
Japan
Prior art keywords
nitriding
hardness
gas
depth
fatigue characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003088628A
Other languages
Japanese (ja)
Other versions
JP2004292911A (en
Inventor
力 上
信男 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003088628A priority Critical patent/JP4325245B2/en
Publication of JP2004292911A publication Critical patent/JP2004292911A/en
Application granted granted Critical
Publication of JP4325245B2 publication Critical patent/JP4325245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工具、機械構造用部品および自動車部品など、耐摩耗性、耐疲労強度および耐焼き付き性等が必要とされる用途に供して好適な、耐久疲労特性に優れた窒化処理部材およびその製造方法に関するものである。
【0002】
【従来の技術】
工具、機械構造用部品および自動車部品など、耐磨耗性や耐疲労強度、耐焼き付き性等が必要とされる部品については、その表面特性を改善するために、通常表面硬化処理が施される。かかる表面硬化処理の一つに窒化処理があり、鋼中に窒素を侵入させて、表面硬度の向上を図っている。
【0003】
従って、これらの部品に提供される鋼には、窒化促進元素が多量に含有されている(例えば特許文献1、特許文献2参照)。
そのため、窒化処理前の鋼材は、高強度でかつ加工性が乏しい。従って、複雑な部品形状の場合には、棒鋼などのバルク体から研削加工により成形し、その後窒化処理を施している。
しかしながら、このような従来技術で複雑な部品形状を作製するには、多大の研削コストが必要となる。
【0004】
一方、低コストでかつ安易な成形法としてプレス成形があり、低炭素鋼および極低炭素鋼などの鋼板を適用すれば、プレス成形体を製造することができる。しかしながら、耐磨耗性および耐疲労強度などが強く要求される場合には、十分な表面硬度を得ることができなかった。
【0005】
上記の問題を解決するものとして、特許文献3が提案された。
この技術は、基本成分として、質量%で
C:0.0002〜0.0100%未満、Si:0.005 〜1.00%、Mn:0.010 〜3.00%、P:0.001 〜0.150 %、N:0.0002〜0.0100%、Cr:0.80超〜5.00%
を含有し、さらに窒化硬化元素群として、
V:0.10超〜1.00%、Al:0.10超〜2.00%、Ti:0.010 〜1.00%の1種または2種以上
を含有させたものであるが、表面硬度を制御するだけでは窒化部材の疲労耐久性や捩じり剛性などの耐久疲労特性を満足させることは困難であった。
【0006】
【特許文献1】
特開昭59−31850 号公報
【特許文献2】
特開昭59−50158 号公報
【特許文献3】
特開平9−25544 号公報
【0007】
【発明が解決しようとする課題】
プレス加工および曲げ加工などの塑性加工によりプレス成形体を得ることは、従来の薄鋼板を用いて達成できるが、従来鋼板では、窒化処理後の表面硬度およびその硬度深さ分布が不十分であり、所望の耐磨耗性および耐疲労強度などの必要特性を満足させることはできなかった。
このため、プレス加工および曲げ加工などの容易な成形法で成形することができ、しかも十分な窒化性、すなわち所望の表面硬度および硬度深さを得ることができる、薄鋼板を素材とした窒化処理部材が切望されていた。
【0008】
本発明は、上記の要望に有利に応えるもので、プレス加工や曲げ加工などの塑性加工によって成形することにより、部品成形に関わるコストを大幅に低減することができ、しかも窒化処理にて十分な表面硬度と硬化深さを得ることができる薄鋼板製の窒化処理部材を、その有利な製造方法と共に提案することを目的とする。
【0009】
【課題を解決するための手段】
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.0005〜0.010 %、
Si:0.005 〜0.50%、
Mn:0.01〜1.0 %、
P:0.001 〜0.05%、
Al:0.02〜0.20%、
Cr:0.20〜0.80%、
V:0.001 〜0.20%、
S:0.010 %以下および
N:0.010 %以下
を含有し、残部はFeおよび不可避的不純物の組成になり、窒化処理後の表面から板厚方向深さ:0.6 mmまでの硬度HV が、次式(1)
440−1240x+1090x2 ≦HV ≦ 980−1880x+1140x2 --- (1)
ここで、x:表面からの板厚方向の深さ(mm)
V :表面からの板厚方向の深さx位置でのビッカース硬度
の関係を満足することを特徴とする耐久疲労特性に優れた窒化処理部材。
【0010】
2.上記1において、窒化処理部材が、さらに質量%で
Ti:0.01〜0.06%および
Nb:0.01〜0.06%
のうちから選んだ1種または2種を含有する組成になることを特徴とする耐久疲労特性に優れた窒化処理部材。
【0011】
3.上記1または2において、窒化処理部材が、さらに質量%で
B:0.0005〜0.0050%
を含有する組成になることを特徴とする耐久疲労特性に優れた窒化処理部材。
【0012】
4.上記1〜3のいずれかに記載の組成になる薄鋼板を、塑性加工により成形したのち、 NH3ガス比率が30〜80 vol%で、浸炭性ガスまたは炭素化合物含有ガスを含む混合ガス雰囲気中にて、 500〜600 ℃の温度域で窒化処理を行うことを特徴とする耐久疲労特性に優れた窒化処理部材の製造方法。
【0013】
以下、本発明を具体的に説明する。
まず、本発明において鋼の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.0005〜0.010 %
Cは、成形性に影響を及ぼす元素であり、含有量が多くなると成形性が低下するだけでなく、窒化深さが低下する。そこで、素材の機械的性質の確保と窒化処理後の硬度上昇の観点から、C量の上限値は 0.010%に定めた。一方、C量の下限値は、製鋼コストの面から規定され、0.0005%未満までの低減は大幅な製鋼コストの増加を招くため、C量の下限値は0.0005%に定めた。なお、製鋼コストの問題がなければ、0.0005%未満でも良いのは言うまでもない。
【0014】
Si:0.01%、Mn:0.02%、P:0.01%、S:0.003 %、N:0.004 %、Al:0.05%、Cr:0.7%およびV:0.08%を基本成分とし、C量を 0.002%から0.11%までの範囲で変化させた鋼を、1200℃に加熱し、仕上げ温度:850 〜900 ℃の条件で板厚:1.8 mmに熱間圧延したのち、600 ℃で巻取り処理を行った。ついで、酸洗処理後、圧下率:1%の調質圧延を実施した。
その後、得られた熱延鋼板を、 NH3のガス比率が50 vol%の NH3とRXガスの混合ガスを雰囲気ガスとして、 570℃, 2時間のガス軟窒化処理を施したのち、温度:80℃のクエンチオイルを用いて油冷を行った。
かくして得られた窒化処理板の表面から板厚方向深さ:0.15mm位置での硬度をマイクロビッカース(荷重:0.98N)で測定した結果を、図1に示す。
【0015】
同図に示したとおり、鋼中C量を 0.010%以下に低減させることにより、V,Al,Ti等の窒化形成元素量を減少させても高い硬度が得られることが分かる。
このように、窒化形成元素の添加量を低減できるため、合金元素増加に伴う延性の低下を抑制できる。
【0016】
Si:0.005 〜0.50%
Siは、Mnと同様、強度を高める効果があるが、過度の添加は加工性を低下させ、また表面酸化による窒化反応が阻害されるので、その上限値は0.50%とした。一方、 0.005%未満までの低減は製鋼コストの増大を招くので、Si量の下限値は0.005 %とした。なお、製鋼コストの問題がなければ 0.005%未満でも良いのは言うまでもない。
【0017】
Mn:0.01〜1.0 %
Mnは、強度を高める効果と同時に、熱間圧延時のAr3変態温度を低下させる効果があるが、過度の添加は加工性を低下させるため、その上限値は 1.0%とする。一方、含有量が0.01%未満では製鋼コストが高くなるため、下限値は0.01%とする。なお、製鋼コストの問題がなければ0.01%未満でも良いのは言うまでもない。
【0018】
P:0.001 〜0.05%
Pは、加工性を低下させずに強度を上げられる元素であるが、0.05%を超える添加は成形性および2次加工脆性などの問題から好ましくない。一方、 0.001%未満とする場合は、製鋼コストが飛躍的に増大し経済性が劣化するので、下限値は 0.001%とした。なお、製鋼コストの問題がなければ 0.001%未満でも良いのは言うまでもない。
【0019】
Al:0.02〜0.20%
Alは、溶鋼の脱酸剤として有用であり、ブローホール等の欠陥の発生を防止するためには、少なくとも 0.005%のAlが必要である。また、CrおよびVとの複合添加により析出物サイズを微細化する効果を発現させるためには、0.02%以上のAlを添加する必要がある。一方、0.20%を超える過度の添加は熱間圧延時のAr3変態温度を上昇させ、好ましくない。そこで、Al量は0.02〜0.20%の範囲に限定した。
【0020】
Cr:0.20〜0.80%
Crは、窒化硬化元素として重要であり、0.20%未満では窒化による硬度上昇および硬化深さが十分に得られない。しかしながら、0.80%を超えて含有させると高応力負荷環境での疲労強度が低下するため、0.80%を上限とする。
【0021】
V:0.001 〜0.20%
Vは、窒素の拡散を促進させる働きがあり、硬化深さを深めるのに有効な元素であるだけでなく、Crとの複合効果によって析出物サイズを微細化する効果も有している。しかしながら、V含有量が 0.001%未満ではその添加効果に乏しく、一方0.20%を超えると成形性が低下するので、Vは 0.001〜0.20%の範囲に限定した。
【0022】
S:0.010 %以下
S量が 0.010%を超えると、表面疵の発生および延性の低下を招き好ましくないので、S量は 0.010%を上限値とする。一方、S量を0.0001%未満にするには製造コストが飛躍的に上がり経済的でなくなるので、下限値は0.0001%程度とするのが望ましい。
【0023】
N:0.010 %以下
Nは、深絞り性を確保するためには少ない方が好ましく、特に 0.010%を超えると深絞り性の低下が著しくなるので、0.010 %を上限値とした。一方、N量を 0.001%未満にするには製造コストが飛躍的に上がり経済的でなくなるので、下限値は 0.001%程度とするのが望ましい。
【0024】
以上、基本成分について説明したが、本発明ではその他にも、以下に述べる元素を適宜含有させることができる。
Ti:0.01〜0.06%、Nb:0.01〜0.06%
Ti,Nbはいずれも、炭素および窒素との親和力が強く、固溶C,Nを低減させて、延性やr値などの機械的性質を向上させる効果がある。そのために、Ti,Nbはそれぞれ0.01〜0.06%の範囲で含有させるものとした。特に好ましくは
{ (48/12)×C + (48/14)×N}≦Ti≦{ (48/12)×C + (48/14)×N}+0.02{ (93/12)×C + (93/14)×N}≦Nb≦{ (93/12)×C + (93/14)×N}+0.03の範囲である。というのは、固溶C,Nと結合したTi、Nb以外のフリーのTi,Nbが存在すると、窒化深さが浅くなったり、表面硬度が極端に高くなることがあるためである。
【0025】
B:0.0005〜0.0050%
Bは、塑性加工後の脆性を防止する目的で添加する。しかしながら、含有量が0.0005%未満ではその効果が発揮されず、一方0.0050%超えでは塑性加工時の成形性が低下するので、Bは0.0005〜0.0050%の範囲で含有させるものとした。
【0026】
次に、本発明の鋼材の表面硬化層について説明する。
窒化処理後の表面から板厚方向深さ:0.6 mmまでにわたる、表面から板厚方向の深さx位置におけるビッカース硬度HV が、次式(1) の関係を満足する。
440−1240x+1090x2 ≦HV ≦ 980−1880x+1140x2 --- (1)
この関係式は、窒化処理部材の耐久疲労特性を満足させるための必要条件である。すなわち、高応力負荷時の疲労寿命と疲労限を満足させるためには、表面から板厚方向の硬度分布を制御する必要がある。
発明者らは、本発明で所期した高応力負荷時の疲労寿命と疲労限等の特性を確保するための鋼板表層部における硬度分布について調査したところ、所期した目的を達成するためには、鋼板表面から板厚方向深さ:0.6 mmまでの深さ範囲にわたって、表面から板厚方向の深さx位置におけるビッカース硬度HV が、上掲式(1) の関係を満足する必要があることを突き止めた。
そこで、本発明では、鋼板表面から板厚方向深さ:0.6 mmまでの硬度HV については、上掲式(1) の範囲を満足させるものとした。
【0027】
次に、本発明の製造条件について説明する。
本発明において、鋼板の製造方法は、薄鋼板(熱延鋼板、冷延鋼板を指す)の通常の製造方法であれば良く、特に限定されるものではない。勿論、鋼板の形状矯正などを目的とした調質圧延を施してもよい。
【0028】
次に、窒化処理条件および窒化後の硬度分布について述べる。
雰囲気ガス:ガス比率:30〜80 vol%の NH3ガスと浸炭性ガスまたは炭素化合物含有ガスとの混合ガス
ここでいう浸炭性ガスとはRXガス、吸熱性変成ガスなどを指す。また炭素化合物含有ガスとは、CO2, CO ガスなどのガス種を指す。なお、雰囲気ガスとして、NH3 ガスと炭素化合物含有ガスとを混合したガスを用いる場合には、N2ガスなどの不活性ガスを混合させてもよい。但し、この場合には、炭素化合物の含有量が全体で3 vol%以上とする必要がある。
本発明の窒化処理において肝要な点は、窒化処理後の表層部C量を0.01%以上とすることであり、これにより結晶粒界に存在するC量が増加して、窒化部材の低温靭性が向上する。これに対し、C量が0.01%未満では窒化部材の低温靭性を招く。
【0029】
このためには、混合ガス中における NH3ガスの比率を30〜80 vol%とすることが重要である。この NH3ガス比率が30 vol%に満たないと窒化速度が低下して、所望の硬度深さが得られず、一方80 vol%を超えるとNH3 の分解が過剰となり、窒素含有量が高い鉄窒化層が厚く形成されるため、切り欠き感受性が高くなって耐久疲労強度の低下を招く。
なお、窒化部材のC量は、窒化部材より試片を切り出し、脱脂処理後に貫通分析を行って調べることができる。
【0030】
窒化処理温度:500 〜600 ℃
窒化処理時の熱処理温度が 500℃未満では、NおよびCの拡散速度が低下し、内部濃度の低下および表面化合物層の粗密化による耐磨耗性の低下が生じる。一方、600 ℃超の熱処理温度では、オーステナイトが生成し、冷却過程でソルバイトが生成して、耐久疲労が低下する。
【0031】
なお、冷却速度は、γ′相(Fe4N)が結晶粒内に析出しない冷却速度で冷却することが好ましく、炉冷以上の冷却速度が必要である。
【0032】
内部硬度分布:
表1に示す鋼組成を有する薄鋼板を、 NH3ガスとRXガスとの混合比率が50:50の混合ガス雰囲気中で、 570℃, 2時間の窒化処理を施したのち、油冷を行って得た鋼板の表層部における硬度分布を測定した結果を、図2に示す。
【0033】
【表1】

Figure 0004325245
【0034】
本発明で規定した硬度分布領域 440−1240x+1090x2 ≦HV ≦ 980−1880x+1140x2 をNo.1の鋼は満足しているが、No.2の鋼は表面から0.05mm深さ位置での硬度が外れ、表層近傍硬度が過剰に高くなることから切り欠き感受性が高く、高応力負荷時の耐久疲労がかえって低下した。一方、No.3 の鋼は表面から0.28mm深さ位置での硬度が外れ、硬度不足による耐久疲労限が低下した。
従って、鋼板の表層部硬度を、本発明の硬度分布適正領域とすることにより、高応力負荷時の耐久疲労と疲労限を両立させることができる。
【0035】
【実施例】
実施例1
表2に示す成分組成になる鋼を溶製し、連続鋳造によりスラブとしたのち、加熱炉にて1200℃に加熱後、900 ℃以上の仕上げ温度で熱間圧延したのち、600 ℃の温度でコイルに巻き取った。ついで、酸洗処理後、熱間圧延ついで冷延圧延を施して板厚:1.8 mmの冷延鋼板に仕上げたのち、 840℃, 40秒の再結晶焼鈍を施した。ついで、得られた冷延鋼板を表3に記載のガス軟窒化条件で窒化した。
かくして得られた窒化処理部材の引張強さ(TS)、延び(El)、窒化後の貫通分析によるC量、表層部の硬度分布および耐久疲労特性について調べた結果を、表3に併記する。
【0036】
なお、表層部の硬度分布は、得られた硬度分布が 440−1240x+1090x2 ≦HV ≦ 980−1880x+1140x2 の要件を満足しているか否かで、評価した。
また、耐久疲労特性は、JIS Z 2275に記載されている金属平板の平面曲げ疲れ試験に準拠した疲労耐久試験を、図8に示す寸法・形状の試験片により実施し、応力:700 N/mm2 時における繰り返し数および繰り返し数:107 回での応力により、評価した。
さらに、No.1〜18の全ての鋼材について、JIS G 0562に記載されている鉄鋼の窒化層深さ測定方法に準拠した方法で、マイクロビッカース測定器により荷重:0.98Nにて窒化層深さを測定し、表層から深さ:0.6 mmまでの硬度分布を求めた結果を、図3〜7に示す。
【0037】
【表2】
Figure 0004325245
【0038】
【表3】
Figure 0004325245
【0039】
表3および図3〜7から明らかなように、硬度分布が適正化されたNo.1〜10の発明例はいずれも、優れた耐久疲労特性を示したが、適正範囲外の No.10〜18の比較例では、高応力時の繰り返し回数が低くなっていることが分かる。
特にNo.17, 18 はそれぞれ、ガス軟窒化時における雰囲気ガス中の NH3ガス比率が30〜80 vol%の範囲外の場合であるが、No.17 では高応力時の繰り返し数が低下た。また、No.18 では、窒化後の炭素量が0.01%未満であり、高応力時の繰り返し数が低下し、かつ繰り返し数:107 回での応力も低下している。
【0040】
【発明の効果】
かくして、本発明によれば、高い生産性を有する熱延鋼板または冷延鋼板等の薄鋼板から、プレス成形性に優れ、しかもプレス成形後の窒化処理により十分な表面硬さと適正な硬化深さを兼ね備えた窒化処理部材を得ることができ、ひいては優れた寸法精度、強度および耐久性が要求される高強度一般構造用部品および自動車用部品などに供して極めて有用である。
【図面の簡単な説明】
【図1】 鋼中C量がガス軟窒化後の硬度に及ぼす影響を示すグラフである。
【図2】 鋼組成による硬度分布の変化を示すグラフである。
【図3】 実施例のNo.1〜4 の表層部硬度分布を示すグラブである。
【図4】 実施例のNo.5〜8 の表層部硬度分布を示すグラブである。
【図5】 実施例のNo.9〜12の表層部硬度分布を示すグラブである。
【図6】 実施例のNo.13 〜16の表層部硬度分布を示すグラブである。
【図7】 実施例のNo.17, 18 の表層部硬度分布を示すグラブである。
【図8】 切り欠きを有する平面曲げ疲労試験片の寸法・形状を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a nitriding member excellent in durability fatigue characteristics suitable for applications requiring wear resistance, fatigue strength, seizure resistance, etc., such as tools, machine structural parts, and automobile parts, and the like. It relates to a manufacturing method.
[0002]
[Prior art]
Parts that require wear resistance, fatigue resistance, seizure resistance, etc., such as tools, machine structural parts, and automobile parts, are usually subjected to surface hardening treatment to improve their surface properties. . One such surface hardening treatment is nitriding treatment, in which nitrogen is infiltrated into the steel to improve the surface hardness.
[0003]
Therefore, the steel provided for these parts contains a large amount of nitriding promoting elements (see, for example, Patent Document 1 and Patent Document 2).
Therefore, the steel material before nitriding treatment has high strength and poor workability. Therefore, in the case of a complicated part shape, it is formed by grinding from a bulk body such as a steel bar, and then subjected to nitriding treatment.
However, in order to produce a complicated part shape by such a conventional technique, a great grinding cost is required.
[0004]
On the other hand, there is press molding as a low-cost and easy forming method, and a press-formed body can be manufactured by applying a steel sheet such as low carbon steel and extremely low carbon steel. However, when wear resistance and fatigue strength are strongly required, sufficient surface hardness cannot be obtained.
[0005]
Patent Document 3 has been proposed as a solution to the above problem.
In this technology, as basic components, C: 0.0002 to less than 0.0100% by mass, Si: 0.005 to 1.00%, Mn: 0.010 to 3.00%, P: 0.001 to 0.150%, N: 0.0002 to 0.0100%, Cr: 0.80 Super ~ 5.00%
In addition, as a group of nitriding hardening elements,
V: more than 0.10 to 1.00%, Al: more than 0.10 to 2.00%, Ti: 0.010 to 1.00%, or one or more of them, but only by controlling the surface hardness, fatigue durability of nitrided members It has been difficult to satisfy endurance fatigue characteristics such as durability and torsional rigidity.
[0006]
[Patent Document 1]
JP 59-31850 A [Patent Document 2]
JP 59-50158 [Patent Document 3]
Japanese Patent Laid-Open No. 9-25544
[Problems to be solved by the invention]
Obtaining a press-formed body by plastic working such as press working and bending can be achieved using conventional thin steel sheets, but with conventional steel sheets, the surface hardness after nitriding and the hardness depth distribution are insufficient. The required properties such as desired wear resistance and fatigue strength could not be satisfied.
For this reason, the nitriding treatment can be performed by an easy forming method such as pressing and bending, and sufficient nitriding properties, that is, a desired surface hardness and hardness depth can be obtained. The material was longing for.
[0008]
The present invention advantageously responds to the above-mentioned demand. By forming by plastic working such as press working or bending, the cost related to part forming can be greatly reduced, and nitriding treatment is sufficient. The object is to propose a nitriding member made of a thin steel plate capable of obtaining surface hardness and hardening depth together with its advantageous manufacturing method.
[0009]
[Means for Solving the Problems]
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.0005 to 0.010%,
Si: 0.005 to 0.50%,
Mn: 0.01 to 1.0%,
P: 0.001 to 0.05%,
Al: 0.02 to 0.20%,
Cr: 0.20 to 0.80%,
V: 0.001 to 0.20%,
S: 0.010% or less and N: 0.010% or less, with the balance being Fe and inevitable impurities, the hardness H V from the surface after nitriding to the depth in the thickness direction: 0.6 mm is (1)
440-1240x + 1090x 2 ≦ H V ≦ 980-1880x + 1140x 2 --- (1)
Where x: depth in the plate thickness direction from the surface (mm)
H V : A nitriding member excellent in durability fatigue characteristics characterized by satisfying the relationship of Vickers hardness at a depth x position in the thickness direction from the surface.
[0010]
2. In 1 above, the nitriding member is further in mass%.
Ti: 0.01-0.06% and
Nb: 0.01-0.06%
A nitriding member having excellent durability fatigue characteristics, characterized in that the composition contains one or two selected from among them.
[0011]
3. In the above 1 or 2, the nitriding member is further mass% B: 0.0005 to 0.0050%
A nitriding member excellent in durability fatigue characteristics, characterized by comprising a composition containing
[0012]
4). After forming the thin steel plate having the composition according to any one of 1 to 3 by plastic working, the NH 3 gas ratio is 30 to 80 vol% in a mixed gas atmosphere containing a carburizing gas or a carbon compound-containing gas. A method for producing a nitriding member having excellent durability fatigue characteristics, characterized in that nitriding is performed in a temperature range of 500 to 600 ° C.
[0013]
Hereinafter, the present invention will be specifically described.
First, the reason why the composition of steel is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.0005 to 0.010%
C is an element that affects the formability. When the content is increased, not only the formability is lowered but also the nitriding depth is lowered. Therefore, from the viewpoint of securing the mechanical properties of the material and increasing the hardness after nitriding, the upper limit value of the C content is set to 0.010%. On the other hand, the lower limit value of the C amount is defined from the viewpoint of steelmaking cost, and since the reduction to less than 0.0005% causes a significant increase in steelmaking cost, the lower limit value of the C amount is set to 0.0005%. Needless to say, it may be less than 0.0005% if there is no problem in steelmaking cost.
[0014]
Si: 0.01%, Mn: 0.02%, P: 0.01%, S: 0.003%, N: 0.004%, Al: 0.05%, Cr: 0.7% and V: 0.08% are the basic components, and the amount of C is 0.002. % Of steel in the range of 0.1 to 0.11% is heated to 1200 ° C, hot-rolled to a thickness of 1.8 mm at a finishing temperature of 850 to 900 ° C, and then wound at 600 ° C. It was. Next, after the pickling treatment, temper rolling with a rolling reduction of 1% was performed.
After that, the obtained hot-rolled steel sheet was subjected to gas soft nitriding treatment at 570 ° C for 2 hours using a mixed gas of NH 3 and RX gas with an NH 3 gas ratio of 50 vol% as the atmosphere gas. Oil cooling was performed using quench oil at 80 ° C.
FIG. 1 shows the results of measuring the hardness at the position in the thickness direction depth: 0.15 mm from the surface of the nitriding plate thus obtained with micro Vickers (load: 0.98 N).
[0015]
As shown in the figure, it can be seen that by reducing the amount of C in steel to 0.010% or less, high hardness can be obtained even if the amount of nitriding elements such as V, Al, Ti, etc. is reduced.
Thus, since the addition amount of the nitriding element can be reduced, a decrease in ductility associated with an increase in alloy elements can be suppressed.
[0016]
Si: 0.005 to 0.50%
Si, like Mn, has the effect of increasing strength, but excessive addition reduces workability and inhibits the nitriding reaction by surface oxidation, so the upper limit was made 0.50%. On the other hand, since the reduction to less than 0.005% leads to an increase in steelmaking costs, the lower limit of the Si content is set to 0.005%. Needless to say, if there is no problem in steelmaking cost, it may be less than 0.005%.
[0017]
Mn: 0.01 to 1.0%
Mn has the effect of lowering the Ar 3 transformation temperature during hot rolling as well as the effect of increasing the strength, but excessive addition reduces workability, so the upper limit is made 1.0%. On the other hand, if the content is less than 0.01%, the steelmaking cost becomes high, so the lower limit is made 0.01%. Needless to say, it may be less than 0.01% if there is no problem in steelmaking cost.
[0018]
P: 0.001 to 0.05%
P is an element that can increase the strength without degrading the workability. However, addition of more than 0.05% is not preferable because of problems such as formability and secondary work embrittlement. On the other hand, when the content is less than 0.001%, the steelmaking cost increases dramatically and the economic efficiency deteriorates, so the lower limit was set to 0.001%. Needless to say, if there is no problem in steelmaking cost, it may be less than 0.001%.
[0019]
Al: 0.02-0.20%
Al is useful as a deoxidizer for molten steel, and at least 0.005% Al is necessary to prevent the occurrence of defects such as blow holes. Further, in order to develop the effect of reducing the precipitate size by the combined addition with Cr and V, it is necessary to add 0.02% or more of Al. On the other hand, excessive addition exceeding 0.20% raises the Ar 3 transformation temperature during hot rolling, which is not preferable. Therefore, the Al content is limited to the range of 0.02 to 0.20%.
[0020]
Cr: 0.20 to 0.80%
Cr is important as a nitriding hardening element, and if it is less than 0.20%, sufficient hardness increase and hardening depth cannot be obtained by nitriding. However, if the content exceeds 0.80%, the fatigue strength in a high stress load environment decreases, so 0.80% is made the upper limit.
[0021]
V: 0.001 to 0.20%
V has a function of promoting the diffusion of nitrogen, and is not only an element effective for increasing the hardening depth, but also has an effect of refining the precipitate size by a combined effect with Cr. However, when the V content is less than 0.001%, the effect of addition is poor. On the other hand, when it exceeds 0.20%, the moldability decreases, so V is limited to the range of 0.001 to 0.20%.
[0022]
S: 0.010% or less If the amount of S exceeds 0.010%, surface flaws and ductility are lowered, which is not preferable. Therefore, the upper limit of the amount of S is 0.010%. On the other hand, if the amount of S is less than 0.0001%, the manufacturing cost will increase dramatically and it will not be economical, so the lower limit is preferably about 0.0001%.
[0023]
N: 0.010% or less N is preferably smaller in order to ensure deep drawability. In particular, if it exceeds 0.010%, the deep drawability deteriorates remarkably, so 0.010% was made the upper limit. On the other hand, if the amount of N is less than 0.001%, the manufacturing cost will increase dramatically and it will not be economical, so the lower limit is preferably about 0.001%.
[0024]
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
Ti: 0.01-0.06%, Nb: 0.01-0.06%
Both Ti and Nb have a strong affinity for carbon and nitrogen, and have the effect of reducing the solid solution C and N and improving mechanical properties such as ductility and r value. Therefore, Ti and Nb are each contained in the range of 0.01 to 0.06%. Particularly preferably {(48/12) × C + (48/14) × N} ≦ Ti ≦ {(48/12) × C + (48/14) × N} +0.02 {(93/12) × C + (93/14) × N} ≦ Nb ≦ {(93/12) × C + (93/14) × N} +0.03. This is because the presence of free Ti and Nb other than Ti and Nb bonded to solute C and N may cause the nitriding depth to be shallow and the surface hardness to be extremely high.
[0025]
B: 0.0005-0.0050%
B is added for the purpose of preventing brittleness after plastic working. However, if the content is less than 0.0005%, the effect is not exhibited. On the other hand, if it exceeds 0.0050%, the formability at the time of plastic working decreases, so B is included in the range of 0.0005 to 0.0050%.
[0026]
Next, the surface hardened layer of the steel material of the present invention will be described.
Nitriding the surface after the thickness direction depths of 0.6 over the up mm, the Vickers hardness H V in the sheet thickness direction of the depth x from the surface is, satisfies the following relationship (1).
440-1240x + 1090x 2 ≦ H V ≦ 980-1880x + 1140x 2 --- (1)
This relational expression is a necessary condition for satisfying the durability fatigue characteristics of the nitriding member. That is, in order to satisfy the fatigue life and fatigue limit at the time of high stress load, it is necessary to control the hardness distribution in the thickness direction from the surface.
The inventors investigated the hardness distribution in the steel sheet surface layer portion to ensure the characteristics such as fatigue life and fatigue limit at the time of high stress load as expected in the present invention, and in order to achieve the intended purpose. , thickness direction depth from the surface of the steel sheet: over a depth range of up to 0.6 mm, the Vickers hardness H V in the sheet thickness direction of the depth x from the surface is, it is necessary to satisfy the relationship of the upper掲式(1) I found out.
Therefore, in the present invention, the plate thickness direction depth from the surface of the steel sheet: The hardness H V of up to 0.6 mm, was assumed to satisfy the range above掲式(1).
[0027]
Next, the manufacturing conditions of the present invention will be described.
In this invention, the manufacturing method of a steel plate should just be a normal manufacturing method of a thin steel plate (it points out a hot-rolled steel plate and a cold-rolled steel plate), and is not specifically limited. Of course, temper rolling may be performed for the purpose of correcting the shape of the steel sheet.
[0028]
Next, nitriding conditions and hardness distribution after nitriding will be described.
Atmospheric gas: Gas ratio: 30-80 vol% NH 3 gas and carburizing gas or carbon compound-containing gas mixed gas The carburizing gas here refers to RX gas, endothermic metamorphic gas, and the like. The carbon compound-containing gas refers to gas species such as CO 2 and CO 2 gas. As the atmospheric gas, in the case of using a gas that is a mixture of NH 3 gas and a carbon compound-containing gas may be mixed with an inert gas such as N 2 gas. However, in this case, the total content of carbon compounds needs to be 3 vol% or more.
The important point in the nitriding treatment of the present invention is that the amount of surface layer C after nitriding treatment is 0.01% or more, which increases the amount of C existing in the crystal grain boundary, and the low temperature toughness of the nitrided member is increased. improves. On the other hand, if the C content is less than 0.01%, the low temperature toughness of the nitrided member is caused.
[0029]
For this purpose, it is important that the ratio of NH 3 gas in the mixed gas is 30 to 80 vol%. If this NH 3 gas ratio is less than 30 vol%, the nitriding rate decreases and the desired hardness depth cannot be obtained. On the other hand, if it exceeds 80 vol%, decomposition of NH 3 becomes excessive and the nitrogen content is high. Since the iron nitride layer is formed thick, the notch sensitivity is increased and the durability fatigue strength is reduced.
The amount of C in the nitriding member can be examined by cutting a specimen from the nitriding member and performing a penetration analysis after degreasing.
[0030]
Nitriding temperature: 500-600 ° C
When the heat treatment temperature during nitriding is less than 500 ° C., the diffusion rate of N and C decreases, resulting in a decrease in internal concentration and wear resistance due to the densification of the surface compound layer. On the other hand, when the heat treatment temperature exceeds 600 ° C., austenite is generated and sorbite is generated during the cooling process, resulting in a decrease in durability fatigue.
[0031]
The cooling rate is preferably a cooling rate at which the γ ′ phase (Fe 4 N) does not precipitate in the crystal grains, and a cooling rate higher than the furnace cooling is required.
[0032]
Internal hardness distribution:
A steel sheet with the steel composition shown in Table 1 is subjected to nitriding treatment at 570 ° C for 2 hours in a mixed gas atmosphere with a mixing ratio of NH 3 gas and RX gas of 50:50, followed by oil cooling The result of measuring the hardness distribution in the surface layer portion of the steel sheet obtained in this way is shown in FIG.
[0033]
[Table 1]
Figure 0004325245
[0034]
Hardness distribution region 440-1240x + 1090x 2 ≦ H V ≦ 980-1880x + 1140x 2 the No.1 steel as defined in the present invention are satisfied, but the hardness of the steel is 0.05mm depth position from the surface of the No.2 Since the hardness near the surface layer is excessively high, the notch sensitivity is high, and the durability fatigue under high stress load is reduced. On the other hand, the No. 3 steel lost its hardness at a depth of 0.28 mm from the surface, and the durability fatigue limit was lowered due to insufficient hardness.
Accordingly, by setting the surface layer hardness of the steel sheet to the appropriate hardness distribution region of the present invention, it is possible to achieve both endurance fatigue and fatigue limit under high stress load.
[0035]
【Example】
Example 1
After melting steel with the composition shown in Table 2 and making it into a slab by continuous casting, after heating to 1200 ° C in a heating furnace, hot rolling at a finishing temperature of 900 ° C or higher, then at a temperature of 600 ° C It was wound up on a coil. Next, after pickling treatment, hot rolling followed by cold rolling was performed to obtain a cold rolled steel sheet having a thickness of 1.8 mm, followed by recrystallization annealing at 840 ° C. for 40 seconds. Subsequently, the obtained cold-rolled steel sheet was nitrided under the gas soft nitriding conditions shown in Table 3.
Table 3 shows the results of examining the tensile strength (TS), elongation (El), C content by penetration analysis after nitriding, hardness distribution of the surface layer portion and durability fatigue characteristics of the nitriding member thus obtained.
[0036]
Incidentally, the hardness distribution of the surface portion, resulting hardness distribution on whether satisfies the 440-1240x + 1090x 2 ≦ H V ≦ 980-1880x + 1140x 2 requirements were evaluated.
In addition, durability fatigue characteristics were determined by conducting a fatigue endurance test in accordance with the plane bending fatigue test of a metal flat plate described in JIS Z 2275 with a test piece having the dimensions and shape shown in FIG. 8, and stress: 700 N / mm The number of repetitions at 2 o'clock and the number of repetitions were evaluated by stress at 10 7 times.
Furthermore, for all steel materials No. 1 to 18, the nitrided layer depth was measured with a micro Vickers measuring instrument at a load of 0.98 N in accordance with the method for measuring the nitrided layer depth of steel described in JIS G 0562. The results of measuring the hardness distribution from the surface layer to a depth of 0.6 mm are shown in FIGS.
[0037]
[Table 2]
Figure 0004325245
[0038]
[Table 3]
Figure 0004325245
[0039]
As is apparent from Table 3 and FIGS. 3 to 7, the invention examples of Nos. 1 to 10 in which the hardness distribution was optimized showed excellent durability fatigue properties. In the 18 comparative examples, it can be seen that the number of repetitions during high stress is low.
In particular, Nos. 17 and 18 are cases in which the NH 3 gas ratio in the atmospheric gas during gas soft nitriding is outside the range of 30 to 80 vol%. However, in No. 17, the number of repetitions at high stress decreased. . In No. 18, the amount of carbon after nitriding is less than 0.01%, the number of repetitions at high stress is reduced, and the stress at the number of repetitions: 10 7 is also reduced.
[0040]
【The invention's effect】
Thus, according to the present invention, from a thin steel plate such as a hot-rolled steel plate or a cold-rolled steel plate having high productivity, it is excellent in press formability, and has sufficient surface hardness and proper hardening depth by nitriding after press forming. Thus, the nitriding member can be obtained, and as a result, it is extremely useful for use in high-strength general structural parts and automobile parts that require excellent dimensional accuracy, strength and durability.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of the amount of C in steel on the hardness after gas soft nitriding.
FIG. 2 is a graph showing changes in hardness distribution according to steel composition.
FIG. 3 is a grab showing surface layer hardness distributions of Nos. 1 to 4 in Examples.
FIG. 4 is a grab showing surface layer hardness distributions of Nos. 5 to 8 in Examples.
FIG. 5 is a grab showing surface layer hardness distributions of Nos. 9 to 12 in Examples.
FIG. 6 is a grab showing surface layer hardness distributions of Nos. 13 to 16 in Examples.
FIG. 7 is a grab showing the surface layer hardness distribution of Nos. 17 and 18 in Examples.
FIG. 8 is a diagram showing dimensions and shapes of a plane bending fatigue test piece having a notch.

Claims (4)

質量%で、
C:0.0005〜0.010 %、
Si:0.005 〜0.50%、
Mn:0.01〜1.0 %、
P:0.001 〜0.05%、
Al:0.02〜0.20%、
Cr:0.20〜0.80%、
V:0.001 〜0.20%、
S:0.010 %以下および
N:0.010 %以下
を含有し、残部はFeおよび不可避的不純物の組成になり、窒化処理後の表面から板厚方向深さ:0.6 mmまでの硬度HV が、次式(1)
440−1240x+1090x2 ≦HV ≦ 980−1880x+1140x2 --- (1)
ここで、x:表面からの板厚方向の深さ(mm)
V :表面からの板厚方向の深さx位置でのビッカース硬度
の関係を満足することを特徴とする耐久疲労特性に優れた窒化処理部材。
% By mass
C: 0.0005 to 0.010%,
Si: 0.005 to 0.50%,
Mn: 0.01 to 1.0%,
P: 0.001 to 0.05%,
Al: 0.02 to 0.20%,
Cr: 0.20 to 0.80%,
V: 0.001 to 0.20%,
S: 0.010% or less and N: containing 0.010% or less, the balance being the Fe and unavoidable impurities, the sheet thickness direction depth from the surface after the nitriding treatment: up to 0.6 mm hardness H V is the following formula (1)
440-1240x + 1090x 2 ≦ H V ≦ 980-1880x + 1140x 2 --- (1)
Where x: depth in the plate thickness direction from the surface (mm)
H V : A nitriding member excellent in durability fatigue characteristics characterized by satisfying the relationship of Vickers hardness at a depth x position in the thickness direction from the surface.
請求項1において、窒化処理部材が、さらに質量%で
Ti:0.01〜0.06%および
Nb:0.01〜0.06%
のうちから選んだ1種または2種を含有する組成になることを特徴とする耐久疲労特性に優れた窒化処理部材。
The nitriding member according to claim 1, further comprising:
Ti: 0.01-0.06% and
Nb: 0.01-0.06%
A nitriding member excellent in durability fatigue characteristics, characterized by having a composition containing one or two selected from among them.
請求項1または2において、窒化処理部材が、さらに質量%で
B:0.0005〜0.0050%
を含有する組成になることを特徴とする耐久疲労特性に優れた窒化処理部材。
3. The nitriding member according to claim 1, wherein the nitriding member further has a mass% of B: 0.0005 to 0.0050%.
A nitriding member excellent in durability fatigue characteristics, characterized by comprising a composition containing
請求項1〜3のいずれかに記載の組成になる薄鋼板を、塑性加工により成形したのち、 NH3ガス比率が30〜80 vol%で、浸炭性ガスまたは炭素化合物含有ガスを含む混合ガス雰囲気中にて、 500〜600 ℃の温度域で窒化処理を行うことを特徴とする耐久疲労特性に優れた窒化処理部材の製造方法。After the thin steel sheet having the composition according to any one of claims 1 to 3 is formed by plastic working, the NH 3 gas ratio is 30 to 80 vol%, and a mixed gas atmosphere containing a carburizing gas or a carbon compound-containing gas A method for producing a nitriding member excellent in durability fatigue characteristics, characterized in that nitriding is performed in a temperature range of 500 to 600 ° C.
JP2003088628A 2003-03-27 2003-03-27 Nitrided member excellent in durability fatigue characteristics and method for producing the same Expired - Fee Related JP4325245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088628A JP4325245B2 (en) 2003-03-27 2003-03-27 Nitrided member excellent in durability fatigue characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088628A JP4325245B2 (en) 2003-03-27 2003-03-27 Nitrided member excellent in durability fatigue characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004292911A JP2004292911A (en) 2004-10-21
JP4325245B2 true JP4325245B2 (en) 2009-09-02

Family

ID=33402708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088628A Expired - Fee Related JP4325245B2 (en) 2003-03-27 2003-03-27 Nitrided member excellent in durability fatigue characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4325245B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118947B2 (en) * 2006-11-21 2013-01-16 株式会社アキタファインブランキング Nano surface modification method with enhanced high-temperature durability, metal member subjected to nano surface modification method, and exhaust guide assembly in VGS type turbocharger to which this member is applied
KR101626227B1 (en) * 2011-11-21 2016-05-31 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet for nitriding and cold-rolled steel sheet for nitriding with excellent fatigue strength and manufacturing method therefor, as well as automobile parts of excellent fatigue strength using same
WO2017094876A1 (en) * 2015-12-04 2017-06-08 新日鐵住金株式会社 Nitrided plate component and manfacturing method therefor

Also Published As

Publication number Publication date
JP2004292911A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP1731627B1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
EP1731626A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP2005139485A (en) Steel sheet to be hot-formed
JP5034803B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JP2006224162A (en) Hot press forming method
JP5630523B2 (en) Steel sheet for nitriding treatment and method for producing the same
US10077485B2 (en) Steel sheet for soft-nitriding and method for manufacturing the same
JP3460659B2 (en) Soft high carbon steel strip with small heat treatment distortion and method for producing the same
KR101701652B1 (en) Steel sheet for soft-nitriding and method for manufacturing the same
JP6477904B2 (en) Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
JP5614330B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JP5614329B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JP4946617B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JP4462264B2 (en) Manufacturing method of cold rolled steel sheet for nitriding treatment
JP3928454B2 (en) Thin steel sheet for nitriding
JP4325245B2 (en) Nitrided member excellent in durability fatigue characteristics and method for producing the same
JP5515949B2 (en) Low carbon steel production method with excellent material uniformity in the thickness direction
EP4353862A1 (en) Hot-dip galvanized steel plate and manufacturing method therefor
JP2005146354A (en) Reinforcing parts for collision with high energy absorption when bend-deformed at high speed
JP2021155806A (en) Nitriding component and manufacturing method of nitriding component
TW201400625A (en) Steel sheet for soft-nitriding and method for manufacturing the same
TW201400627A (en) Steel sheet for soft-nitriding and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees