JP4336026B2 - High strength steel pipe with excellent formability and its manufacturing method - Google Patents

High strength steel pipe with excellent formability and its manufacturing method Download PDF

Info

Publication number
JP4336026B2
JP4336026B2 JP2000174369A JP2000174369A JP4336026B2 JP 4336026 B2 JP4336026 B2 JP 4336026B2 JP 2000174369 A JP2000174369 A JP 2000174369A JP 2000174369 A JP2000174369 A JP 2000174369A JP 4336026 B2 JP4336026 B2 JP 4336026B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
steel
formability
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000174369A
Other languages
Japanese (ja)
Other versions
JP2001355035A (en
Inventor
学 高橋
直樹 吉永
展弘 藤田
康浩 篠原
亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000174369A priority Critical patent/JP4336026B2/en
Publication of JP2001355035A publication Critical patent/JP2001355035A/en
Application granted granted Critical
Publication of JP4336026B2 publication Critical patent/JP4336026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車の足廻り、メンバーなどに用いられる鋼材で特にハイドロフォーム等に用いられる成形性に優れた高強度鋼管およびその製造方法に関するものである。
【0002】
【従来の技術】
自動車の軽量化ニーズに伴い、鋼板の高強度化が望まれている。高強度化することで板厚減少による軽量化や衝突時の安全性向上が可能となる。また、最近では、複雑な形状の部位について、高強度鋼の素鋼板または鋼管からハイドロフォーム法を用いて成形加工する試みが行われている。これは、自動車の軽量化や低コスト化のニーズに伴い、部品数の減少や溶接フランジ箇所の削減などを狙ったものである。このように、ハイドロフォーム(特開平10−175026号公報参照)などの新しい成形加工方法が実際に採用されれば、コストの削減や設計の自由度が拡大されるなどの大きなメリットが期待される。
【0003】
このようなハイドロフォーム成形のメリットを充分に生かすためには、これらの新しい成形法に適した材料が必要となる。例えば、第50回塑性加工連合講演大会(1999、447頁)にあるようにハイドロフォーム成形に及ぼすr値の影響が示されている。しかしここでは、シミュレーションによる解析が主で、実際の材料と1対1対応するものではない。
【0004】
【発明が解決しようとする課題】
以上のように、ハイドロフォーム成形に適した材料開発は実用レベルではほとんど行われておらず、既存の高r値鋼板や高延性鋼板がハイドロフォーム成形に使用されつつある状況と言える。本発明では、このようなハイドロフォーム成形に適した優れた成形性を有する鋼管およびその製造方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明では、鋼材の集合組織とミクロ組織を制御することでハイドロフォーム成形性に優れた材料を提供するものである。
即ち、本発明の要旨とするところは以下の通りである。
(1)質量%で、
C :0.02〜0.2%、 P :0.001〜0.2%
を含み、
Si:0.003〜3%、 Al:0.03〜3%
の双方を合計で0.3〜3%含み、さらにMnを含み、かつ
Mn:3%以下、 Ni:3%以下、
Cr:3%以下、 Cu:2%以下、
Mo:2%以下、 W :2%以下、
Co:3%以下、 Sn:0.5%以下
の中の1種または2種以上を合計で0.5〜3.5%含み、
N :0.01%以下に制限し、
残部がFe及び不可避的不純物からなり、ミクロ組織が体積分率で60%以上のフェライトと、体積分率で2%以上25%以下のマルテンサイトを含む第2相との複合組織であり、マルテンサイトの硬度がフェライトの硬度の1.4倍以上であり、鋼板1/2板厚での板面の{110}<110>〜{332}<110>の方位群のX線ランダム強度比の平均が2.0以上、あるいは鋼板1/2板厚での板面の{110}<110>のX線ランダム強度比が3.0以上の何れかまたは双方であることを特徴とする成形性に優れた高強度鋼管。
【0009】
)質量%で、さらに、B:0.0002〜0.01%を含むことを特徴とする前記(記載の成形性に優れた高強度鋼管。
【0010】
)質量%で、さらに
Ti:0.3%以下、 Nb:0.3%以下、
V :0.3%以下
の中の1種または2種以上を合計で0.0050.3%含むことを特徴とする前記(
記載の成形性に優れた高強度鋼管。
【0011】
)質量%で、さらに
Ca:0.0005〜0.005%、 Rem:0.001〜0.02%
の一方または双方を含むことを特徴とする前記()〜()の何れか1項に記載の成形性に優れた高強度鋼管。
【0012】
)前記(1)〜()の何れか1項に記載の鋼管を製造するにあたり、前記()〜()の何れか1項に記載の成分を有する鋳造スラブを、鋳造ままもしくは一旦冷却した後に1000℃〜1300℃の範囲に再度加熱し、熱間圧延して冷却後巻取った熱延鋼板を造管し、鋼材の化学成分で決まる(2×Ac1 変態温度+Ac3 変態温度)/3以上1050℃以下に加熱した後縮径加工を行い、その後、3℃/秒〜500℃/秒の冷却速度で250℃以下まで冷却することを特徴とする成形性に優れた高強度鋼管の製造方法。
但し、
Ac1(℃) =723-10.7×Mn%-16.9×Ni%+29.1×Si%+16.9×Cr%
Ac3(℃) =910-203×(C%) 1/2 -15.2×Ni%+44.7×Si%+31.5×Mo%+13.1×W%
-30×Mn%-11×Cr%-20×Cu%+70×P%+40×Al%
【0013】
)前記(1)〜()の何れか1項に記載の鋼管を製造するにあたり、前記()〜()の何れか1項に記載の成分を有する熱延鋼板を酸洗し冷延した後に焼鈍した鋼板を造管し、鋼材の化学成分で決まる(2×Ac1 変態温度+Ac3 変態温度)/3以上1050℃以下に加熱した後縮径加工を行い、その後、3℃/秒〜150℃/秒の冷却速度で250℃以下まで冷却することを特徴とする成形性に優れた高強度鋼管の製造方法。
但し、
Ac1(℃) =723-10.7×Mn%-16.9×Ni%+29.1×Si%+16.9×Cr%
Ac3(℃) =910-203×(C%) 1/2 -15.2×Ni%+44.7×Si%+31.5×Mo%+13.1×W%
-30×Mn%-11×Cr%-20×Cu%+70×P%+40×Al%
【0014】
)縮径加工後の管の長さが母管の長さの1.25倍以上であることを特徴とする前記(または)記載の成形性に優れた高強度鋼管の製造方法
【0015】
【発明の実施の形態】
以下、本発明の成形性に優れた高強度鋼管とその製造方法について詳細に述べる。
ハイドロフォーム成形では鋼管を素材とした成形加工が行われる。この際、鋼管の軸方向への押し込み量と内圧の関係を適正に設定することが重要である。内圧のみを増加させた通常の液圧成形と異なり、ハイドロフォーム成形では軸押しによる強制的な材料供給によってより厳しい成形にも耐えることができる。本発明者らは、種々の材料を用いたハイドロフォーム成形試験を元に、鋼材の結晶集合組織の制御と適正なミクロ組織形成によって初めて非常に高いハイドロフォーム成形性が確保できることを見出した。
【0016】
即ち、鋼板1/2板厚での板面の{110}<110>〜{332}<110>の方位群および/または{110}<110>のX線ランダム強度比がハイドロフォーム成形等を行う上で最も重要な特性値である。板厚中心位置での板面のX線回折を行い、ランダム結晶に対する各方位の強度比を求めたときの、{110}<110>〜{332}<110>の方位群での平均が2.0以上とした。この方位群に含まれる主な方位は、{110}<110>、{661}<110>、{441}<110>、{331}<110>、{221}<110>、{332}<110>、{443}<110>、{554}<110>および{111}<110>である。これらの各方位のX線ランダム強度比は{110}極点図よりベクトル法により計算した3次元集合組織や{110},{100},{211},{310}極点図のうち、複数の極点図を基に級数展開法で計算した3次元集合組織から求めればよい。例えば、後者の方法から各結晶方位のX線ランダム強度比を求めるには、3次元集合組織のΦ2=45゜断面における(110)[1−10]、(661)[1−10]、(441)[1−10]、(331)[1−10]、(221)[1−10]、(332)[1−10]、(443)[1−10]、(554)[1−10]、(111)[1−10]の強度で代表させられる。
【0017】
{110}<110>〜{111}<110>方位群の平均X線ランダム強度比とは、上記の各方位の相加平均である。上記方位のすべての強度が得られない場合には{110}<110>、{441}<110>、{221}<110>の方位の相加平均で代替しても良い。中でも、{110}<110>は重要であり、この方位のX線ランダム強度比が3.5以上であることが特に望ましい。{110}<110>〜{332}<110>方位群の平均強度比が2.0以上でかつ{110}<110>の強度比が3.0以上であれば特にハイドロフォーム用鋼管としてはさらに好適であることは言うまでもない。また、成形困難な場合には上記方位群の平均強度比が3.5以上であること、{110}<110>の強度比が5.0以上であることのうち少なくとも1つを満たすことが望ましい。
【0018】
なお、本発明の集合組織は通常の場合、Φ2=45°断面において上記の方位群の範囲内に最高強度を有し、この方位群から離れるにしたって徐々に強度レベルが低下するが、X線の測定精度の問題や鋼管製造時の軸周りのねじれの問題、X線試料作製の精度の問題などを考慮すると、最高強度を示す方位がこれらの方位群から±5°ないし10°程度ずれる場合も有りうる。
【0019】
鋼管のX線回折を行う場合には、鋼管より弧状試験片を切り出し、これをプレスして平板としX線解析を行う。また、弧状試験片から平板とするときは、試験片加工による結晶回転の影響を避けるため極力低歪みで行うものとし、加えられる歪み量の上限を10%以下で行うこととした。このようにして得られた板状の試料について機械研磨によって所定の板厚まで減厚した後、化学研磨などによって板厚中心付近まで研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によって歪みを除去すると同時に板厚中心層が側面となるように調整する。なお、鋼板の板厚中心層に偏析帯が認められる場合には、板厚の3/8〜5/8の範囲で偏析帯のない場所について測定すればよく、またこの範囲外でも前述の条件を満たしていることは何ら鋼管の成形性を落とすものではない。
【0020】
なお、{hkl}<uvw>とは上述の方法でX線用試料を採取したとき、板面に垂直な結晶方位が<hkl>で鋼管の長手方向が<uvw>であることを意味する。
【0021】
本発明の集合組織に関する特徴は、通常の逆極点図や正極点図だけでは表すことができないが、例えば鋼管の半径方向の方位を表す逆極点図を板厚の中心付近に関して測定した場合、各方位のX線ランダム強度比は以下のようになることが好ましい。<100>:2以下、<411>:2以下、<211>:4以下、<111>:15以下、<332>:15以下、<221>:20.0以下、<110>:30.0以下。また、軸方向を表す逆極点図においては、<110>:10以上で、<100>、<411>、<211>、<111>、<332>、<221>の全ての方位:3以下。
【0022】
ハイドロフォーム成形では非常に厳しい加工まで成形可能となることから、一旦鋼管のある位置にくびれが生じると、その場所での変形が加速的に進み、破断(バースト)に至る。従って、極力このような歪みの集中に起因するくびれを発生させないことも非常に重要となる。歪みの集中を回避する方法としては鋼材の加工硬化指数(n値)を高めることが効果的であり、本発明者らは、特に軟質なフェライト中に硬質のマルテンサイトを導入することで、降伏強度を低下させて高いn値を確保することが上述の集合組織制御との組み合わせでは有効であることを見出した。
【0023】
この時、マルテンサイト体積分率が2%未満ではマルテンサイト変態によって周囲のフェライトに導入される変態歪み量が少ないために降伏強度が十分低下しないためにこれをマルテンサイト体積分率の下限値とした。また、マルテンサイト体積分率が25%超となると、マルテンサイト同士が連結したいわゆるネットワーク状のマルテンサイト組織が生成し、著しく成形性を劣化させるために、これをマルテンサイト体積分率の最大値とした。フェライト体積分率が60%未満の場合には上述の結晶集合組織を得ることができないためフェライト体積分率の最小値を60%と限定した。
【0024】
また、マルテンサイトとフェライトの硬度差が1.4未満の場合には、降伏比が十分に低下しないことから、高いn値が得られないために、これをマルテンサイトとフェライトの硬度差の下限値とした。ここで、硬度の測定は粒径が大きい場合には50g以上の加重で、また、粒径が小さい場合には10gもしくは必要に応じて5g加重のヴィッカース硬度計にて粒毎に測定され、5点以上の平均値として得られる。
【0025】
第2相としては、上述のマルテンサイト以外に、ベイナイトおよび一部パーライトさらには残留オーステナイトを含んでいても何ら最終的な鋼管の成形性を劣化させるものではない。
【0026】
n値は一般的に鋼材の強度と共に低下する。良好なハイドロフォーム成形性を得るためには鋼材の最大強度TSと加工硬化指数nの積TS×nが45MPa以上であることが望ましい。
【0027】
鋼管の強度およびn値は鋼管の管状引張り試験(JIS11号)または軸方向に切り出した弧状引張り試験(JIS12号B)等で得ることができ、強度は最大強度TS、n値は5%〜10%もしくは3%〜8%の歪み範囲での加工硬化率として定義する。
【0028】
次に化学成分の限定理由について述べる。
C:Cは鋼材の強度を制御すると同時に、第2相としてのマルテンサイトの体積率を制御するために重要な元素であり、製造の加工熱処理中に未変態オーステナイト中に濃化することで、未変態オーステナイトの焼き入れ性を高める。しかしながら、この添加量が0.02質量%未満の場合には、焼き入れ性が十分でないために、2%〜25%の範囲の体積分率のマルテンサイトを得られないことから、0.02%を下限とした。一方、鋼材の平均C量が増加するに従って確保可能なマルテンサイト体積分率は増加するが、同時に鋼材強度も増加する。しかしながら、鋼材のC添加量が過大になると、必要以上に鋼材の強度を上昇させ、最終的に得られる鋼管の成形性をするのみならず、成形後の組立工程において重要となる溶接性を大きく劣化させる。従って鋼材のC質量%の上限を0.2%とした。
【0029】
Mn,Ni,Cr,Cu,Mo,W,Co,Sn:Mn,Ni,Cr,Cu,Mo,W,Co,Snは全て変態挙動を制御するためには有効な元素である。特に、溶接性の観点からCの添加量が制限される場合には、このような元素を適量添加することによって効果的にマルテンサイトを生成させることが可能となる。また、これらの元素はAlやSi程ではないがセメンタイトの生成を抑制する効果があり、2相分離を容易にする働きもする。さらに、これらの元素はAl,Siと共にマトリックスであるフェライトやベイナイトを固溶強化させることによって、鋼材の強度を高める働きも持つ。しかしながら、これらの元素の1種もしくは2種以上の添加の合計が0.5質量%未満の場合には、必要な焼き入れ性の確保ができなくなるとともに、鋼材の強度が低くなり、有効な車体軽量化が達成できなくなることから、下限を0.5質量%とした。一方、これらの合計が3.5質量%を超える場合には、母相であるフェライトもしくはベイナイトの硬質化を招き、最終的に得られる鋼管の成形性の低下、靭性の低下、さらには鋼材コストの上昇を招くために、上限を3.5質量%とした。
【0030】
Al,Si:AlとSiは共にフェライトの安定化元素であり、フェライト体積率を増加させることによって鋼材の加工性を向上させる働きがある。また、Al,Si共にセメンタイトの生成を抑制することから、効果的にオーステナイトとフェライトの2相分離を促進させ、適当な体積分率のマルテンサイトを得るために重要な元素である。しかしながら、AlとSiの合計が0.3質量%未満の場合には、セメンタイト生成抑制の効果が十分でなく、マルテンサイトが得にくくなることから下限を0.3質量%とした。また、AlとSiの合計が3%を超える場合には、母相であるフェライトもしくはベイナイトの硬質化や脆化を招き、歪み速度上昇による変形抵抗の増加を阻害するばかりでなく、最終的に得られる鋼管の成形性の低下、靭性の低下、さらには鋼材コストの上昇を招き、また化成処理性等の表面処理特性が著しく劣化するために、3質量%を上限値とした。なお、Al量の下限値は、本発明の実施例に基づいて0.03質量%以上とした。
【0031】
P:さらにPは、鋼材の高強度化に有効ではあると同時にフェライトの生成を促進し、2相分離を容易にするが、0.2質量%を超えて添加された場合には体積分率最大の相であるフェライトの変形抵抗を必要以上に高め、最終的に得られる鋼管の成形性の低下、靭性の低下、さらには鋼材コストの上昇を招く。さらに、耐置き割れ性の劣化や疲労特性、靭性の劣化を招くことから、0.2質量%をその上限とした。但し、Pの添加の効果を得るためには、0.001質量%以上含有することが好ましい。
【0032】
B:また、必要に応じて添加するBは、粒界の強化や鋼材の高強度化に有効ではあるが、その添加量が0.01質量%を超えるとその効果が飽和するばかりでなく、必要以上に鋼材強度を上昇させ、最終的に得られる鋼管の成形性の低下を招くことから、上限を0.01質量%とした。但し、Bの添加効果を得るためには、0.0002質量%以上含有することが好ましい。
【0033】
Nb,Ti,V:また、必要に応じて添加するNb,Ti,Vは、炭化物、窒化物もしくは炭窒化物を形成することによって鋼材を高強度化することができるが、その合計が0.3%を超えた場合には母相であるフェライトやベイナイト粒内もしくは粒界に多量の炭化物、窒化物もしくは炭窒化物として析出し、最終的に得られる鋼管の成形性の低下、靭性の低下、さらには鋼材コストの上昇を招くことから上限を0.3質量%とした。但し、これらの元素の添加によって高強度化するためには、Nb,Ti,Vの合計で0.005質量%以上添加することが好ましい。
【0034】
Ca,希土類元素(Rem):介在物制御に有効な元素で、Caは0.0005質量%以上、Remは0.001%以上の添加により熱間加工性を向上させるが、Caは0.005%超、Remは0.02%超の添加は逆に熱間脆化を助長させるため、上記の範囲とした。ここで、希土類元素とは、Y,Scおよびランタノイド系の元素を指し、工業的には、これらの混合物であるミッシュメタルとして添加することがコスト的に有利である。
【0035】
鋼板中のNはCと同様に焼き入れ性を向上させることができるが、同時に鋼材の靭性や延性を劣化させる傾向があるために0.01質量%以下とすることが望ましい。
【0036】
また、Oは酸化物を形成し、介在物として鋼材の加工性、特に伸びフランジ成形性に代表されるような極限変形能や鋼材の疲労強度、靭性を劣化させることから、0.01質量%以下に制御することが望ましい。
【0037】
以下に本発明の製造方法について述べる。
(スラブ再加熱温度)
所定の成分に調整された鋼は、鋳造後直接もしくは一旦Ar3 変態温度以下まで冷却された後に再加熱された後に熱間圧延される。この時の再加熱温度が1000℃未満の場合には、熱間圧延を完了するまでに、何らかの加熱装置必要となるためにこれを下限とした。また再加熱温度が1300℃を超える場合には、加熱時のスケール生成による歩留まり劣化を招くと同時に、製造コストの上昇も招くことから、これを再加熱温度の上限値とした。
【0038】
(熱延条件)
熱延は通常の方法にて行われれば良く、熱延終了温度が鋼のAr3 変態温度以下となっていても良い。但し、最終的に得られる鋼管の集合組織を好ましいものとするためには、熱延鋼板での集合組織発達を回避することが有効であり、このためにAr3 変態温度+50℃以上で熱延を完了することが望ましい。一方、スケール生成に起因する表面特性の劣化を抑制するためには、仕上げ温度を980℃以下とすることが好ましい。
【0039】
(冷延−焼鈍条件)
熱延完了した鋼板をそのまま造管し縮径加工を行っても良いが、必要に応じて酸洗後冷延し、焼鈍後に造管し縮径加工を行っても良い。この時の冷延−焼鈍条件は特に規定しない。
【0040】
(造 管)
造管はコイル状の鋼板を連続的に巻きながら、もしくは前もって所定のサイズに切断された鋼板を巻いた後に溶接もしくは固相拡散接合等の方法によって行われる。
【0041】
(縮径加工)
以上のような方法によって製造された鋼管を縮径加工によって所定のサイズに調整する際に、縮径加工開始前の加熱温度が鋼材の化学成分によって決まる(2×Ac1 変態温度+Ac3 変態温度)/3未満の場合には、最終的に得られるマルテンサイト体積分率が2%未満となり、鋼管の成形性を劣化させることから、これを加熱温度の下限値とした。一方、この加熱温度が1050℃超となった場合には、最終的に得られる鋼管において{110}<110>〜{332}<110>の方位群が発達せず、結果として鋼管の成形性が劣化するために、これを加熱温度の上限値とした。
【0042】
縮径は上記の加熱温度に規定することにより、縮径の温度範囲を特に定めることなく本発明の効果を得ることができるが、最終的なミクロ組織中にマルテンサイトを得るために、縮径の仕上げ温度は鋼の成分で決まるAr3 変態温度−100℃以上とすることが、また、2相分離を十分に進めるためにはAr3 変態温度+150℃以下とすることが好ましい。
但し、

Figure 0004336026
縮径加工によって、鋼管の長さ、鋼管外周径、板厚を変化させることができるが、これらを全て独立に変化させることができないために、この中の1つに着目して制御することで縮径加工時に導入された全歪み量を評価することができる。ここではその代表値として鋼管の長さ変化(縮径加工後の鋼管長さ/縮径加工前の鋼管長さ)を採用した。この鋼管の長さ変化が1.25未満の場合には鋼材に導入される歪み量が十分でないために集合組織の発達が不十分となり鋼管の成形性を劣化させる。従って鋼管の長さ変化の最小値として、1.25以上とすることが好ましい。この長さ変化は大きければ大きいほど良く、望ましくは1.45以上、さらに非常に高い加工性が要求される場合には1.8以上とすることがさらに望ましい。
【0043】
縮径加工後の冷却によって鋼材のミクロ組織が制御される。この時の冷却は空冷でも良いが、ブロワーや気水冷却、水冷等の設備を配して加速冷却しても良い。但しこの時に、冷却速度を500℃/秒超とするためには過大の設備投資を必要とするためにこれを冷却速度の上限とした。一方、未変態オーステナイトからマルテンサイトを得るために冷却速度の下限を3℃/秒とした。空冷される場合には、冷却は室温まで連続的に行われても良いが、加速冷却される場合には、冷却完了温度が250℃超の場合には、生成したマルテンサイトが冷却中にオートテンパーされて降伏強度の上昇と加工硬化率の低下を招き、最終的に得られる鋼管の成形性を劣化させるためにこれを冷却停止温度の上限値とした。この冷却停止温度は低いほど降伏強度が下がることから、150℃以下とすることが望ましい。
【0044】
このようにして製造された鋼管をハイドロフォーム成形する前に、表面の摩擦抵抗を小さくする目的で、油脂や固体潤滑剤等を塗布しても良い。
また、防錆効果のために、これらの鋼管にZn等の表面処理を施しても良い。
【0045】
【実施例】
表1に示す化学成分の鋼を溶解し、鋳造後一旦室温まで冷却した後に再度1200℃に加熱し900℃以上で熱延を完了した後冷却し、電縫溶接した。このようにして製造した母管を所定の温度に加熱し縮径加工を行った。
【0046】
最終的に得られた鋼管の加工性の評価は以下の方法で行った。前もって鋼管に10mmΦのスクライブドサークルを転写し、内圧と軸押し量を制御して、円周方向への張り出し成形を行った。バースト直前での最大拡管率を示す部位(拡管率=成形後の最大周長/母管の周長)の軸方向の歪みεΦと円周方向の歪みεθを測定した。この2つの歪みの比ρ=εΦ/εθと最大拡管率をプロットし、ρ=−0.5となる拡管率Re(0.5)をもってハイドロフォーム成形性の指標とした。
【0047】
集合組織の測定はX線解析によって、鋼管から弧状試験片を切り出し、プレスして平板としたサンプルの1/2部に対して行った。また、X線の相対強度はランダム結晶と対比することで求めた。
【0048】
フェライトおよびマルテンサイトの体積分率は、鋼管の軸方向断面の1/4厚部において500倍の写真を撮影し、ポイントカウント法によって求めた。
【0049】
表2には表1中の鋼P2を表中に示した縮径加工条件で加工し、得られた鋼管のハイドロォーム成形性とミクロ組織、集合組織を調査した結果を示した。縮径加工条件が本発明の範囲内であるものは最大拡管率が1.4以上の極めて良好なハイドロフォーム成形性を示すことがわかる。
【0050】
また、表3には表1に示す全ての鋼に対して、表3中に示した本発明の範囲内である縮径加工条件で縮径加工を行った後、5〜20℃/秒の冷却速度で150℃以下まで冷却された鋼管のハイドロフォーム成形性とミクロ組織、集合組織の調査結果を示す。本発明の範囲外の化学成分を有するC1〜C6の鋼は、たとえ縮径加工条件が本発明の範囲内であったとしても、最終的に得られる鋼管のミクロ組織もしくは集合組織の少なくとも何れかが本発明の範囲外となり、その結果ハイドロフォーム成形性が本発明の例に比較して劣位にあることが分かる。
【0051】
【表1】
Figure 0004336026
【0052】
【表2】
Figure 0004336026
【0053】
【表3】
Figure 0004336026
【0054】
【発明の効果】
鋼管の集合組織とミクロ組織を制御することで、鋼管のハイドロフォーム成形性が著しく向上することを以上に詳述した。本発明によって、複雑な形状の部品へのハイドロフォーム加工が可能となり、自動車車体の軽量化をより一層推進することができる。従って、本発明は、工業的に極めて高い価値のある発明である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel pipe having excellent formability, for example, a steel material used for, for example, an automobile undercarriage and a member, and particularly used for hydroform and the like, and a method for producing the same.
[0002]
[Prior art]
Along with the need for lighter automobiles, higher strength of steel sheets is desired. By increasing the strength, it becomes possible to reduce the weight by reducing the plate thickness and improve the safety at the time of collision. Recently, attempts have been made to form a complex-shaped portion from a high-strength steel base or steel pipe using a hydroform method. This is aimed at reducing the number of parts and reducing the number of welding flanges in accordance with the need for lighter and lower cost vehicles. As described above, if a new molding method such as hydroform (see Japanese Patent Laid-Open No. 10-175026) is actually employed, significant advantages such as cost reduction and increased design freedom are expected. .
[0003]
In order to make full use of the merits of such hydroform molding, materials suitable for these new molding methods are required. For example, the influence of r value on hydroforming is shown as shown in the 50th Plastic Working Joint Conference (1999, p. 447). Here, however, the primary analysis by simulation, are not intended to actual material and one-to-one correspondence.
[0004]
[Problems to be solved by the invention]
As described above, material development suitable for hydroforming is hardly developed at a practical level, and it can be said that existing high r-value steel plates and high ductility steel plates are being used for hydroforming. In this invention, the steel pipe which has the outstanding moldability suitable for such hydroforming, and its manufacturing method are provided.
[0005]
[Means for Solving the Problems]
In the present invention, a material excellent in hydroform formability is provided by controlling the texture and microstructure of a steel material.
That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.02-0.2%, P: 0.001-0.2%
Including
Si: 0.003-3%, Al : 0.03-3 %
A total of 0.3 to 3%, further including Mn, and
Mn: 3% or less, Ni: 3% or less,
Cr: 3% or less, Cu: 2% or less,
Mo: 2% or less, W: 2% or less,
Co: 3% or less, Sn: 0.5% or less
1 to 2 or more of the total containing 0.5 to 3.5%,
N: limited to 0.01% or less,
The balance is composed of Fe and inevitable impurities, and the microstructure is a composite structure of ferrite with a volume fraction of 60% or more and a second phase containing martensite with a volume fraction of 2% or more and 25% or less. The hardness of the site is 1.4 times or more of the hardness of ferrite, and the X-ray random intensity ratio of the {110} <110> to {332} <110> orientation groups of the plate surface at a steel plate 1/2 thickness Formability characterized in that the average is 2.0 or more, or the X-ray random intensity ratio of {110} <110> of the plate surface at 1/2 steel plate thickness is 3.0 or more or both Excellent high strength steel pipe.
[0009]
(2) in mass%, in further, B: the, characterized in that it comprises a 0.0002 to 0.01 percent (1) high-strength steel pipe excellent in formability according.
[0010]
( 3 ) In mass%, Ti: 0.3% or less, Nb: 0.3% or less,
V: 0.005 to 0.3 % in total including one or more of 0.3% or less ( 1 )
High strength steel pipe with excellent formability as described.
[0011]
( 4 ) By mass%, Ca: 0.0005-0.005%, Rem: 0.001-0.02%
The high-strength steel pipe excellent in formability according to any one of the above ( 1 ) to ( 3 ), wherein one or both of the above are included.
[0012]
(5) (1) In producing a steel pipe according to any one of the - (4), the cast slab having a component according to any one of the above (1) to (4), while the casting Alternatively, after being cooled, it is heated again within the range of 1000 ° C. to 1300 ° C., hot-rolled steel sheet is rolled after being cooled and rolled, and is determined by the chemical composition of the steel (2 × Ac1 transformation temperature + Ac3 transformation temperature). ) / 3 to 1050 ° C. or less and then reduced diameter processing, and then cooled to 250 ° C. or less at a cooling rate of 3 ° C./sec to 500 ° C./sec. Steel pipe manufacturing method.
However,
Ac1 (℃) = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 × Cr%
Ac3 (℃) = 910-203 × (C%) 1/2 -15.2 × Ni% + 44.7 × Si% + 31.5 × Mo% + 13.1 × W%
-30 × Mn% -11 × Cr% -20 × Cu% + 70 × P% + 40 × Al%
[0013]
(6) the (1) to in producing the steel tube according to any one of (4), wherein (1) pickling - a hot-rolled steel sheet having a component according to any one of (4) Then, the steel sheet annealed after cold rolling is piped and heated to a temperature of not less than 2 (Ac1 transformation temperature + Ac3 transformation temperature) / 3 to 1050 ° C. determined by the chemical composition of the steel material, and then subjected to diameter reduction processing, followed by 3 ° C. / A method for producing a high-strength steel pipe excellent in formability, characterized by cooling to 250 ° C. or lower at a cooling rate of from 2 to 150 ° C./second.
However,
Ac1 (℃) = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 × Cr%
Ac3 (℃) = 910-203 × (C%) 1/2 -15.2 × Ni% + 44.7 × Si% + 31.5 × Mo% + 13.1 × W%
-30 × Mn% -11 × Cr% -20 × Cu% + 70 × P% + 40 × Al%
[0014]
( 7 ) The high-strength steel pipe excellent in formability according to ( 5 ) or ( 6 ) above, wherein the length of the pipe after diameter reduction is 1.25 times or more of the length of the mother pipe Manufacturing method .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the high-strength steel pipe excellent in formability of the present invention and the manufacturing method thereof will be described in detail.
In hydroforming, a forming process using a steel pipe as a raw material is performed. At this time, it is important to appropriately set the relationship between the amount of pushing in the axial direction of the steel pipe and the internal pressure. Unlike normal hydraulic forming where only the internal pressure is increased, hydroform forming can withstand severer forming by forced material supply by axial pushing. The inventors of the present invention have found that, based on hydroform molding tests using various materials, very high hydroform moldability can be ensured only by controlling the crystal texture of the steel material and forming an appropriate microstructure.
[0016]
That is, the {110} <110> to {332} <110> orientation group and / or the {110} <110> X-ray random intensity ratio of the plate surface at the 1/2 steel plate thickness is hydroforming. This is the most important characteristic value to do. When the X-ray diffraction of the plate surface at the center position of the plate thickness is performed and the intensity ratio of each orientation to the random crystal is obtained, the average in the orientation group of {110} <110> to {332} <110> is 2 0.0 or more. The main orientations included in this orientation group are {110} <110>, {661} <110>, {441} <110>, {331} <110>, {221} <110>, {332} <110>, {443} <110>, {554} <110>, and {111} <110>. The X-ray random intensity ratio in each direction is a plurality of extreme points among the three-dimensional texture calculated by the vector method from the {110} pole figure and {110}, {100}, {211}, {310} pole figures. What is necessary is just to obtain | require from the three-dimensional texture calculated by the series expansion method based on the figure. For example, in order to obtain the X-ray random intensity ratio of each crystal orientation from the latter method, (110) [1-10], (661) [1-10], ( 441) [1-10], (331) [1-10], (221) [1-10], (332) [1-10], (443) [1-10], (554) [1- 10] and (111) [1-10].
[0017]
The average X-ray random intensity ratio of the {110} <110> to {111} <110> azimuth group is an arithmetic average of the above azimuths. If all the intensities in the above azimuth cannot be obtained, an arithmetic average of the azimuths of {110} <110>, {441} <110>, and {221} <110> may be substituted. Among these, {110} <110> is important, and it is particularly desirable that the X-ray random intensity ratio in this orientation is 3.5 or more. If the average strength ratio of the {110} <110> to {332} <110> orientation groups is 2.0 or more and the strength ratio of {110} <110> is 3.0 or more, particularly as a steel pipe for hydroform. Needless to say, it is more preferable. Further, when molding is difficult, at least one of the above-mentioned orientation group having an average intensity ratio of 3.5 or more and {110} <110> having an intensity ratio of 5.0 or more is satisfied. desirable.
[0018]
The texture of the present invention usually has the highest intensity within the range of the above azimuth group in the section of Φ2 = 45 °, and the intensity level gradually decreases as the distance from the azimuth group increases. When taking into account measurement accuracy problems, torsion around the axis when manufacturing steel pipes, accuracy problems in X-ray sample preparation, etc., the orientation that shows the maximum strength deviates from these orientation groups by about ± 5 ° to 10 ° There is also a possibility.
[0019]
When performing X-ray diffraction of a steel pipe, an arc-shaped test piece is cut out from the steel pipe and pressed to form a flat plate for X-ray analysis. In addition, when the arc-shaped test piece is used as a flat plate, it should be performed with as low a strain as possible in order to avoid the influence of crystal rotation due to the processing of the test piece, and the upper limit of the applied strain amount should be 10% or less. The plate-like sample thus obtained is reduced to a predetermined plate thickness by mechanical polishing, then polished to near the center of the plate thickness by chemical polishing, etc., finished to a mirror surface by buffing, and then subjected to electrolytic polishing or chemical polishing. The distortion is removed by polishing, and at the same time, the thickness center layer is adjusted to be a side surface. In the case where a segregation band is observed in the thickness center layer of the steel sheet, it may be measured in a place where there is no segregation band in the range of 3/8 to 5/8 of the plate thickness. Satisfying this does not impair the formability of the steel pipe.
[0020]
Here, {hkl} <uvw> means that when the X-ray sample is collected by the above-described method, the crystal orientation perpendicular to the plate surface is <hkl> and the longitudinal direction of the steel pipe is <uvw>.
[0021]
The characteristics related to the texture of the present invention cannot be expressed only by a normal reverse pole figure or a positive pole figure. The azimuth X-ray random intensity ratio is preferably as follows. <100>: 2 or less, <411>: 2 or less, <211>: 4 or less, <111>: 15 or less, <332>: 15 or less, <221>: 20.0 or less, <110>: 30. 0 or less. In the inverted pole figure representing the axial direction, <110>: 10 or more, and all orientations of <100>, <411>, <211>, <111>, <332>, <221>: 3 or less .
[0022]
In hydroform molding, molding can be performed up to extremely severe processing, and once a constriction occurs at a certain position of a steel pipe, the deformation at that position progresses at an accelerated rate, leading to a burst (burst). Therefore, it is very important not to generate a constriction caused by such strain concentration as much as possible. As a method of avoiding the concentration of strain, it is effective to increase the work hardening index (n value) of the steel material, and the present inventors have particularly obtained yield by introducing hard martensite in soft ferrite. It has been found that reducing the strength and ensuring a high n value is effective in combination with the texture control described above.
[0023]
At this time, if the martensite volume fraction is less than 2%, the amount of transformation strain introduced into the surrounding ferrite by the martensite transformation is small and the yield strength is not sufficiently lowered. Therefore, this is regarded as the lower limit value of the martensite volume fraction. did. Further, when the martensite volume fraction exceeds 25%, a so-called network-like martensite structure in which martensites are connected to each other is generated, and this significantly reduces the formability. This is the maximum value of the martensite volume fraction. It was. When the ferrite volume fraction is less than 60%, the above-mentioned crystal texture cannot be obtained, so the minimum value of the ferrite volume fraction is limited to 60%.
[0024]
In addition, when the hardness difference between martensite and ferrite is less than 1.4, the yield ratio is not sufficiently lowered, so a high n value cannot be obtained. This is the lower limit of the hardness difference between martensite and ferrite. Value. Here, the hardness is measured with a weight of 50 g or more when the particle size is large, and measured with a Vickers hardness meter weighing 10 g or 5 g as necessary for each particle when the particle size is small. Obtained as an average value of points or more.
[0025]
As the second phase, in addition to the martensite described above, even if it contains bainite, partly pearlite, and retained austenite, the final formability of the steel pipe is not deteriorated.
[0026]
The n value generally decreases with the strength of the steel material. In order to obtain good hydroformability, the product TS × n of the maximum strength TS and work hardening index n of the steel material is desirably 45 MPa or more.
[0027]
The strength and n value of the steel pipe can be obtained by a tubular pipe tensile test (JIS No. 11) or an arc-shaped tensile test cut out in the axial direction (JIS No. B), and the strength is the maximum strength TS, and the n value is 5% to 10%. % Or the work hardening rate in the strain range of 3% to 8%.
[0028]
Next, the reasons for limiting chemical components will be described.
C: C is an element important for controlling the volume ratio of martensite as the second phase at the same time as controlling the strength of the steel material, and by concentrating in the untransformed austenite during the manufacturing heat treatment, Increases the hardenability of untransformed austenite. However, when this addition amount is less than 0.02% by mass, since the hardenability is not sufficient, a martensite having a volume fraction in the range of 2% to 25% cannot be obtained. % Was the lower limit. On the other hand, the martensite volume fraction that can be secured increases as the average C content of the steel increases, but at the same time, the strength of the steel increases. However, when the amount of C added to the steel material becomes excessive, the strength of the steel material is increased more than necessary, and not only the formability of the steel pipe finally obtained is increased, but also the weldability that is important in the assembly process after forming is greatly increased. Deteriorate. Therefore, the upper limit of C mass% of the steel material is set to 0.2%.
[0029]
Mn, Ni, Cr, Cu, Mo, W, Co, Sn: Mn, Ni, Cr, Cu, Mo, W, Co, and Sn are all effective elements for controlling the transformation behavior. In particular, when the amount of addition of C is limited from the viewpoint of weldability, it is possible to effectively generate martensite by adding an appropriate amount of such an element. In addition, these elements, although not as much as Al and Si, have an effect of suppressing the formation of cementite and also serve to facilitate two-phase separation. Furthermore, these elements also have a function of increasing the strength of the steel material by strengthening ferrite and bainite as a matrix together with Al and Si. However, if the total of the addition of one or more of these elements is less than 0.5% by mass, the necessary hardenability cannot be ensured and the strength of the steel material is reduced, and the effective vehicle body Since weight reduction cannot be achieved, the lower limit was set to 0.5% by mass. On the other hand, if the total of these exceeds 3.5% by mass, the ferrite or bainite that is the parent phase will be hardened, and the formability and toughness of the steel pipe that will ultimately be obtained will be reduced, and further the steel material cost will be reduced. Therefore, the upper limit was set to 3.5% by mass.
[0030]
Al, Si: Both Al and Si are stabilizing elements of ferrite and have a function of improving the workability of the steel material by increasing the ferrite volume fraction. Also, since both Al and Si suppress the formation of cementite, it is an important element for effectively promoting the two-phase separation of austenite and ferrite and obtaining martensite with an appropriate volume fraction. However, when the total of Al and Si is less than 0.3% by mass, the effect of suppressing the formation of cementite is not sufficient, and it becomes difficult to obtain martensite, so the lower limit was set to 0.3% by mass. In addition, when the total of Al and Si exceeds 3%, the ferrite or bainite that is the parent phase is hardened and embrittled, not only preventing an increase in deformation resistance due to an increase in strain rate, but finally The resulting steel pipe has lower formability, lower toughness, and higher steel material costs, and the surface treatment characteristics such as chemical conversion treatment are significantly deteriorated, so 3% by mass was made the upper limit. In addition, the lower limit of the amount of Al was set to 0.03% by mass or more based on the example of the present invention.
[0031]
P: P is the further, at the same time is effective in increasing the strength of steel and promote the formation of ferrite, but to facilitate the two-phase separation, if it is added in an amount exceeding 0.2 mass% volume fraction The deformation resistance of ferrite, which is the largest phase, is increased more than necessary, leading to a decrease in formability and toughness of the steel pipe that is finally obtained, and an increase in steel material cost. Furthermore, since the crack resistance, fatigue characteristics, and toughness are deteriorated, the upper limit is set to 0.2% by mass. However, in order to acquire the effect of addition of P, it is preferable to contain 0.001 mass% or more.
[0032]
B: In addition, B added as necessary is effective for strengthening grain boundaries and increasing the strength of steel materials, but when the added amount exceeds 0.01% by mass, not only the effect is saturated, The steel material strength is increased more than necessary and the formability of the steel pipe finally obtained is reduced, so the upper limit was made 0.01 mass%. However, in order to obtain the effect of addition of B, the content is preferably 0.0002% by mass or more.
[0033]
Nb, Ti, V: Nb, Ti, V added as necessary can increase the strength of the steel material by forming carbides, nitrides, or carbonitrides. If it exceeds 3%, it precipitates as a large amount of carbide, nitride or carbonitride in the parent phase of ferrite or bainite grains or at grain boundaries, resulting in a decrease in formability and toughness of the finally obtained steel pipe. In addition, the upper limit is set to 0.3% by mass because of an increase in steel material cost. However, in order to increase the strength by adding these elements, it is preferable to add 0.005% by mass or more in total of Nb, Ti, and V.
[0034]
Ca, rare earth element (Rem): An element effective for inclusion control. Ca is added to 0.0005% by mass or more, and Rem is added to 0.001% or more to improve hot workability. Addition of more than% and Rem exceeding 0.02% conversely promotes hot embrittlement. Here, the rare earth elements refer to Y, Sc and lanthanoid elements, and it is industrially advantageous to add them as misch metal which is a mixture thereof.
[0035]
N in the steel sheet can improve the hardenability like C, but at the same time, it tends to deteriorate the toughness and ductility of the steel material, so it is desirable to make it 0.01% by mass or less.
[0036]
Further, O forms an oxide, which deteriorates the workability of steel as inclusions, particularly the ultimate deformability represented by stretch flangeability, fatigue strength, and toughness of steel. It is desirable to control the following.
[0037]
The production method of the present invention will be described below.
(Slab reheating temperature)
The steel adjusted to a predetermined component is hot-rolled directly after casting or after being reheated after being cooled to below the Ar3 transformation temperature. When the reheating temperature at this time is less than 1000 ° C., some heating device is required before the hot rolling is completed, so this is set as the lower limit. Further, when the reheating temperature exceeds 1300 ° C., the yield is deteriorated due to scale generation during heating, and at the same time, the manufacturing cost is increased, so this is set as the upper limit of the reheating temperature.
[0038]
(Hot rolling conditions)
Hot rolling may be performed by a normal method, and the hot rolling end temperature may be equal to or lower than the Ar3 transformation temperature of the steel. However, in order to make the finally obtained steel pipe texture preferable, it is effective to avoid the texture development in the hot-rolled steel sheet. For this reason, hot rolling is performed at an Ar3 transformation temperature of + 50 ° C or higher. It is desirable to complete. On the other hand, in order to suppress deterioration of the surface characteristics due to scale generation, the finishing temperature is preferably 980 ° C. or lower.
[0039]
(Cold rolling-annealing conditions)
The steel sheet that has been hot-rolled may be directly piped and subjected to diameter reduction processing. However, if necessary, the steel sheet may be cold-rolled after pickling, and may be piped after annealing to perform diameter reduction processing. The cold rolling-annealing conditions at this time are not particularly specified.
[0040]
(Pipe making)
Pipe making is performed by a method such as welding or solid phase diffusion bonding while continuously winding a coiled steel plate or after winding a steel plate that has been cut into a predetermined size in advance.
[0041]
(Diameter processing)
When the steel pipe manufactured by the above method is adjusted to a predetermined size by diameter reduction, the heating temperature before the diameter reduction starts depends on the chemical composition of the steel material (2 × Ac1 transformation temperature + Ac3 transformation temperature) / When it is less than 3, the martensite volume fraction finally obtained is less than 2%, and the formability of the steel pipe is deteriorated, so this is set as the lower limit value of the heating temperature. On the other hand, when this heating temperature exceeds 1050 ° C., the orientation group of {110} <110> to {332} <110> does not develop in the steel pipe finally obtained, and as a result, the formability of the steel pipe Since this deteriorates, this was made the upper limit value of the heating temperature.
[0042]
By defining the reduced diameter at the above heating temperature, the effect of the present invention can be obtained without particularly defining the temperature range of the reduced diameter, but in order to obtain martensite in the final microstructure, The finishing temperature is preferably Ar3 transformation temperature -100 ° C. or higher determined by the steel components, and Ar3 transformation temperature + 150 ° C. or lower in order to sufficiently promote the two-phase separation.
However,
Figure 0004336026
By reducing the diameter, it is possible to change the length of the steel pipe, the outer diameter of the steel pipe, and the plate thickness, but since these cannot all be changed independently, control by paying attention to one of them. It is possible to evaluate the total strain introduced during the diameter reduction processing. Here, the change in length of the steel pipe (steel pipe length after diameter reduction / steel pipe length before diameter reduction) was adopted as the representative value. When the change in length of the steel pipe is less than 1.25, the amount of strain introduced into the steel material is not sufficient, so that the texture development is insufficient and the formability of the steel pipe is deteriorated. Therefore, the minimum value of the change in length of the steel pipe is preferably 1.25 or more. The greater the change in length, the better. Desirably, 1.45 or more, and more desirably 1.8 or more when very high workability is required.
[0043]
The microstructure of the steel material is controlled by cooling after the diameter reduction processing. The cooling at this time may be air cooling, but may be accelerated cooling by providing equipment such as a blower, air-water cooling, or water cooling. However, at this time, in order to make the cooling rate over 500 ° C./second, an excessive equipment investment is required, so this was set as the upper limit of the cooling rate. On the other hand, in order to obtain martensite from untransformed austenite, the lower limit of the cooling rate was set to 3 ° C./second. In the case of air cooling, the cooling may be performed continuously to room temperature. However, in the case of accelerated cooling, if the cooling completion temperature exceeds 250 ° C., the generated martensite is automatically Tempering causes an increase in yield strength and a decrease in work hardening rate, and this is used as the upper limit of the cooling stop temperature in order to deteriorate the formability of the steel pipe finally obtained. The lower the cooling stop temperature, the lower the yield strength.
[0044]
Before hydroforming the steel pipe manufactured in this way, an oil or a solid lubricant may be applied for the purpose of reducing the surface frictional resistance.
Moreover, you may give surface treatments, such as Zn, to these steel pipes for the antirust effect.
[0045]
【Example】
Steels having the chemical components shown in Table 1 were melted, cooled to room temperature after casting, heated again to 1200 ° C., hot-rolled at 900 ° C. or higher, cooled, and electro-welded. The mother tube manufactured in this way was heated to a predetermined temperature and subjected to diameter reduction processing.
[0046]
Evaluation of workability of the finally obtained steel pipe was performed by the following method. A scribed circle of 10 mmΦ was transferred to the steel pipe in advance, and the inner pressure and the axial push amount were controlled to perform the overhang forming in the circumferential direction. Strain εΦ in the axial direction and strain εθ in the circumferential direction of the portion showing the maximum tube expansion rate immediately before the burst (tube expansion rate = maximum circumferential length after molding / circumferential length of the mother tube) were measured. The ratio of these two strains ρ = εΦ / εθ and the maximum tube expansion ratio were plotted, and the tube expansion ratio Re (0.5) at which ρ = −0.5 was used as an index of hydroform moldability.
[0047]
The texture was measured by X-ray analysis with respect to ½ part of a sample obtained by cutting an arc specimen from a steel pipe and pressing it into a flat plate. The relative intensity of X-rays was determined by comparing with random crystals.
[0048]
The volume fraction of ferrite and martensite was determined by a point count method by taking a 500 times photograph at a 1/4 thickness portion of the axial cross section of the steel pipe.
[0049]
Table 2 shows the results of investigating the hydroformability, microstructure, and texture of the steel pipe obtained by processing steel P2 in Table 1 under the diameter reduction processing conditions shown in the table. It can be seen that when the diameter reduction processing condition is within the range of the present invention, the extremely high formability of the hydroform having a maximum tube expansion ratio of 1.4 or more is shown.
[0050]
Moreover, after performing diameter reduction processing on the diameter reduction processing conditions which are in the range of this invention shown in Table 3 with respect to all the steel shown in Table 3 at Table 3, it is 5-20 degreeC / second. The investigation results of hydroform formability, microstructure and texture of steel pipes cooled to 150 ° C. or less at a cooling rate are shown. C1-C6 steel having a chemical component outside the scope of the present invention is at least either a microstructure or a texture of the steel pipe that is finally obtained even if the diameter reduction processing conditions are within the scope of the present invention. Is outside the scope of the present invention, and as a result, it can be seen that the hydroform moldability is inferior to the examples of the present invention.
[0051]
[Table 1]
Figure 0004336026
[0052]
[Table 2]
Figure 0004336026
[0053]
[Table 3]
Figure 0004336026
[0054]
【The invention's effect】
It has been described in detail above that the hydroform formability of a steel pipe is remarkably improved by controlling the texture and microstructure of the steel pipe. According to the present invention, hydroforming can be performed on a component having a complicated shape, and the weight reduction of the automobile body can be further promoted. Therefore, the present invention is industrially extremely valuable.

Claims (7)

質量%で、
C :0.02〜0.2%、 P :0.001〜0.2%
を含み、
Si:0.003〜3%、 Al:0.03〜3%
の双方を合計で0.3〜3%含み、さらにMnを含み、かつ
Mn:3%以下、 Ni:3%以下、
Cr:3%以下、 Cu:2%以下、
Mo:2%以下、 W :2%以下、
Co:3%以下、 Sn:0.5%以下
の中の1種または2種以上を合計で0.5〜3.5%含み、
N :0.01%以下に制限し、
残部がFe及び不可避的不純物からなり、ミクロ組織が体積分率で60%以上のフェライトと、体積分率で2%以上25%以下のマルテンサイトを含む第2相との複合組織であり、マルテンサイトの硬度がフェライトの硬度の1.4倍以上であり、鋼板1/2板厚での板面の{110}<110>〜{332}<110>の方位群のX線ランダム強度比の平均が2.0以上、あるいは鋼板1/2板厚での板面の{110}<110>のX線ランダム強度比が3.0以上の何れかまたは双方であることを特徴とする成形性に優れた高強度鋼管。
% By mass
C: 0.02-0.2%, P: 0.001-0.2%
Including
Si: 0.003-3%, Al : 0.03-3 %
A total of 0.3 to 3%, further including Mn, and
Mn: 3% or less, Ni: 3% or less,
Cr: 3% or less, Cu: 2% or less,
Mo: 2% or less, W: 2% or less,
Co: 3% or less, Sn: 0.5% or less
1 to 2 or more of the total containing 0.5 to 3.5%,
N: limited to 0.01% or less,
The balance is composed of Fe and inevitable impurities, and the microstructure is a composite structure of ferrite with a volume fraction of 60% or more and a second phase containing martensite with a volume fraction of 2% or more and 25% or less. The hardness of the site is 1.4 times or more of the hardness of ferrite, and the X-ray random intensity ratio of the {110} <110> to {332} <110> orientation groups of the plate surface at a steel plate 1/2 thickness Formability characterized in that the average is 2.0 or more, or the X-ray random intensity ratio of {110} <110> of the plate surface at 1/2 steel plate thickness is 3.0 or more or both Excellent high strength steel pipe.
質量%で、さらに、B:0.0002〜0.01%を含むことを特徴とする請求項1記載の成形性に優れた高強度鋼管。By mass%, in addition, B: high strength steel pipe excellent in formability according to claim 1, characterized in that it comprises from 0.0002 to 0.01 percent. 質量%で、さらに
Ti:0.3%以下、 Nb:0.3%以下、
V :0.3%以下
の中の1種または2種以上を合計で0.0050.3%含むことを特徴とする請求項1または2に記載の成形性に優れた高強度鋼管。
% By mass, Ti: 0.3% or less, Nb: 0.3% or less,
The high-strength steel pipe excellent in formability according to claim 1 or 2 , characterized in that one or more of V: 0.3% or less is contained in a total amount of 0.005 to 0.3%.
質量%で、さらに
Ca:0.0005〜0.005%、 Rem:0.001〜0.02%
の一方または双方を含むことを特徴とする請求項1〜3の何れか1項に記載の成形性に優れた高強度鋼管。
By mass%, Ca: 0.0005 to 0.005%, Rem: 0.001 to 0.02%
One or both of these are included, The high-strength steel pipe excellent in the moldability of any one of Claims 1-3 characterized by the above-mentioned.
請求項1〜の何れか1項に記載の鋼管を製造するにあたり、請求項の何れか1項に記載の成分を有する鋳造スラブを、鋳造ままもしくは一旦冷却した後に1000℃〜1300℃の範囲に再度加熱し、熱間圧延して冷却後巻取った熱延鋼板を造管し、鋼材の化学成分で決まる(2×Ac1 変態温度+Ac3 変態温度)/3以上1050℃以下に加熱した後縮径加工を行い、その後、3℃/秒〜500℃/秒の冷却速度で250℃以下まで冷却することを特徴とする成形性に優れた高強度鋼管の製造方法。
但し、
Ac1(℃) =723-10.7×Mn%-16.9×Ni%+29.1×Si%+16.9×Cr%
Ac3(℃) =910-203×(C%) 1/2 -15.2×Ni%+44.7×Si%+31.5×Mo%+13.1×W%
-30×Mn%-11×Cr%-20×Cu%+70×P%+40×Al%
In producing a steel pipe according to any one of claims 1-4, the cast slab having a component according to any one of claims 1 ~ 4 1000 ° C. After the cast remained or once cooled to 1300 Heated again in the range of ℃, hot-rolled and rolled hot-rolled steel plate after cooling, determined by the chemical composition of the steel (2 x Ac1 transformation temperature + Ac3 transformation temperature) / 3 to 1050 ℃ A method for producing a high-strength steel pipe excellent in formability, characterized in that after diameter reduction is performed, and then cooled to 250 ° C. or lower at a cooling rate of 3 ° C./second to 500 ° C./second.
However,
Ac1 (℃) = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 × Cr%
Ac3 (℃) = 910-203 × (C%) 1/2 -15.2 × Ni% + 44.7 × Si% + 31.5 × Mo% + 13.1 × W%
-30 × Mn% -11 × Cr% -20 × Cu% + 70 × P% + 40 × Al%
請求項1〜の何れか1項に記載の鋼管を製造するにあたり、請求項の何れか1項に記載の成分を有する熱延鋼板を酸洗し冷延した後に焼鈍した鋼板を造管し、鋼材の化学成分で決まる(2×Ac1 変態温度+Ac3 変態温度)/3以上1050℃以下に加熱した後縮径加工を行い、その後、3℃/秒〜500℃/秒の冷却速度で250℃以下まで冷却することを特徴とする成形性に優れた高強度鋼管の製造方法。
但し、
Ac1(℃) =723-10.7×Mn%-16.9×Ni%+29.1×Si%+16.9×Cr%
Ac3(℃) =910-203×(C%) 1/2 -15.2×Ni%+44.7×Si%+31.5×Mo%+13.1×W%
-30×Mn%-11×Cr%-20×Cu%+70×P%+40×Al%
In producing a steel pipe according to any one of claims 1-4, the annealed steel sheet after rolled pickled cold hot-rolled steel sheet having a component according to any one of claims 1 to 4, The tube is formed and determined by the chemical composition of the steel material (2 × Ac1 transformation temperature + Ac3 transformation temperature) / 3 to 1050 ° C. and then reduced diameter processing, then cooling rate of 3 ° C./second to 500 ° C./second The manufacturing method of the high strength steel pipe excellent in the moldability characterized by cooling to 250 degrees C or less by.
However,
Ac1 (℃) = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 × Cr%
Ac3 (℃) = 910-203 × (C%) 1/2 -15.2 × Ni% + 44.7 × Si% + 31.5 × Mo% + 13.1 × W%
-30 × Mn% -11 × Cr% -20 × Cu% + 70 × P% + 40 × Al%
縮径加工後の管の長さが母管の長さの1.25倍以上であることを特徴とする請求項5または6に記載の成形性に優れた高強度鋼管の製造方法。The method for producing a high-strength steel pipe with excellent formability according to claim 5 or 6, wherein the length of the pipe after the diameter reduction is 1.25 times or more of the length of the mother pipe.
JP2000174369A 2000-06-09 2000-06-09 High strength steel pipe with excellent formability and its manufacturing method Expired - Fee Related JP4336026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000174369A JP4336026B2 (en) 2000-06-09 2000-06-09 High strength steel pipe with excellent formability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174369A JP4336026B2 (en) 2000-06-09 2000-06-09 High strength steel pipe with excellent formability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001355035A JP2001355035A (en) 2001-12-25
JP4336026B2 true JP4336026B2 (en) 2009-09-30

Family

ID=18676423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174369A Expired - Fee Related JP4336026B2 (en) 2000-06-09 2000-06-09 High strength steel pipe with excellent formability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4336026B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2556574C (en) 2004-02-19 2011-12-13 Nippon Steel Corporation Steel plate or steel pipe with small occurrence of bauschinger effect and methods of production of same
JP4635708B2 (en) * 2005-05-09 2011-02-23 Jfeスチール株式会社 Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing
JP5026327B2 (en) * 2008-04-07 2012-09-12 新日本製鐵株式会社 High-stiffness steel plate and method for manufacturing the same

Also Published As

Publication number Publication date
JP2001355035A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP4264212B2 (en) Steel pipe with excellent formability and method for producing the same
US6632296B2 (en) Steel pipe having high formability and method for producing the same
US7887649B2 (en) High-tensile strength welded steel tube for structural parts of automobiles and method of producing the same
JP6103165B1 (en) Hot press-formed parts
JP4692259B2 (en) High-strength steel sheet with excellent formability and shape freezeability
WO2001081640A1 (en) Steel plate having excellent burring workability together with high fatigue strength, and method for producing the same
US20140352852A1 (en) Hot rolled high tensile strength steel sheet and method for manufacturing same
JP4220666B2 (en) Highly corrosion-resistant steel pipe for hydroforming with excellent formability and method for producing the same
CN113316649A (en) High-strength high-ductility complex-phase cold-rolled steel strip or plate
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP4051999B2 (en) High tensile hot-rolled steel sheet excellent in shape freezing property and durability fatigue property after forming, and method for producing the same
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
JP3924108B2 (en) Manufacturing method of high strength steel sheet with excellent hydroformability after pre-processing
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP4336026B2 (en) High strength steel pipe with excellent formability and its manufacturing method
JP4336027B2 (en) High strength steel pipe with excellent formability and its manufacturing method
JP3828719B2 (en) Manufacturing method of steel pipe with excellent formability
EP0535238A1 (en) High-strength steel sheet for forming and production thereof
JP3549483B2 (en) Hydroform forming steel pipe excellent in processability and manufacturing method
JP4406154B2 (en) Steel pipe for hydrofoam with excellent formability and method for producing the same
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP3887155B2 (en) Steel pipe excellent in formability and manufacturing method thereof
JP4160840B2 (en) High formability and high strength hot-rolled steel sheet with excellent shape freezing property and its manufacturing method
JP4160839B2 (en) High formability and high strength hot-rolled steel sheet with low shape anisotropy and small anisotropy and method for producing the same
JP2002105594A (en) High burring property hot rolled steel sheet having excellent low cycle fatigue strength and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4336026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees