JP2001342010A - Inorganic hollow particle and its manufacturing method - Google Patents

Inorganic hollow particle and its manufacturing method

Info

Publication number
JP2001342010A
JP2001342010A JP2000160748A JP2000160748A JP2001342010A JP 2001342010 A JP2001342010 A JP 2001342010A JP 2000160748 A JP2000160748 A JP 2000160748A JP 2000160748 A JP2000160748 A JP 2000160748A JP 2001342010 A JP2001342010 A JP 2001342010A
Authority
JP
Japan
Prior art keywords
inorganic
powder
inorganic compound
hollow powder
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000160748A
Other languages
Japanese (ja)
Other versions
JP4822576B2 (en
Inventor
Noriaki Hamada
紀彰 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000160748A priority Critical patent/JP4822576B2/en
Publication of JP2001342010A publication Critical patent/JP2001342010A/en
Application granted granted Critical
Publication of JP4822576B2 publication Critical patent/JP4822576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide inorganic hollow particles consisting of fine particles with closed pore inside and a method capable of manufacturing these particles in a simple means. SOLUTION: A composite is formed by applying an inorganic compound or its precursor to the surface of organic particles with an average particle size of 0.1-15 μm. After the composite is heat treated, the organic resin particles are decomposed and removed and a film of the inorganic compound is formed. By heating to a prescribed temperature, the film of the inorganic compound compacted to obtain organic hollow particles having an average particle size of 20 μm or less, 0.1-15 μm closed pores inside of particles, closed pore ratio of 30 volume % or more, and BET specific surface area of 30 m2/g or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無機質中空粉体お
よびその製造法に関するものである。
TECHNICAL FIELD The present invention relates to an inorganic hollow powder and a method for producing the same.

【0002】[0002]

【従来技術】従来、無機質中空体は、軽量材、塗料の充
填材、補強用充填材、低誘電率化のための特性改善材、
爆薬の増感剤などの様々な用途に用いるために種々の開
発が行なわれている。
2. Description of the Related Art Conventionally, inorganic hollow bodies are made of lightweight materials, fillers for paints, fillers for reinforcement, materials for improving properties for lowering the dielectric constant,
Various developments have been made for use in various applications such as sensitizers for explosives.

【0003】このような中空粉体として、例えば、ガラ
ス質の中空粉体やアルミナ、ジルコニアなどの中空粉体
が知られている。これらの中空粉体は、ガラスなどを高
温に加熱溶融して発泡剤によって発泡させながら、粒子
状に吹き飛ばして形成される(特公平2−27295
号)。また、シラスなどの火山ガラス質堆積物を原料と
して、中空ガラス球状体を作製すること(特開昭61−
222969号)等が報告されている。
As such a hollow powder, for example, a glassy hollow powder and a hollow powder such as alumina and zirconia are known. These hollow powders are formed by heating and melting glass or the like at a high temperature and blowing it into particles while foaming with a foaming agent (Japanese Patent Publication No. 2-27295).
issue). Further, a hollow glass spherical body is produced from a volcanic glassy deposit such as shirasu as a raw material (Japanese Patent Application Laid-Open No. 61-1986)
No. 222969) has been reported.

【0004】また、金属炭化物やその前駆体を含む溶液
または分散液を微小液滴化し、これを高温雰囲気に微小
液滴を噴霧することによって、炭化物からなる微小中空
体を形成することが提案されている(特開平6−321
520号)。
[0004] It has also been proposed to form a fine hollow body made of carbide by forming a microdroplet from a solution or dispersion containing a metal carbide or its precursor and spraying the microdroplet in a high-temperature atmosphere. (Japanese Patent Laid-Open No. 6-321)
520).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の手法による無機中空体によれば、ガラス質材料を原料
とする方法では、ガラス質中に低融点化するために少な
からずアルカリ元素を含有しており、また、これらの無
機中空粉体の平均粒径は、そのほとんどが30μmより
も大きいものであった。そのために、アルカリ元素が水
や酸に対して容易に溶出し、耐候性に劣るという欠点が
あった。しかも、電子部品材料、例えば絶縁基板材料の
1成分として混合、複合化することも行なわれている
が、このような場合にも、絶縁信頼性が劣化するなどの
問題があった。
However, according to the inorganic hollow bodies obtained by these methods, in the method using a vitreous material as a raw material, not a small amount of an alkali element is contained in the vitreous material in order to lower the melting point. Most of the inorganic hollow powders had an average particle size of more than 30 μm. For this reason, there is a disadvantage that the alkali element is easily eluted with water or acid, and the weather resistance is poor. Moreover, mixing and compounding as one component of an electronic component material, for example, an insulating substrate material, are also performed. However, in such a case, there is a problem that insulation reliability is deteriorated.

【0006】また、粒子径が30μm以上と大きいと、
これを他の材料と複合化することによって軽量化を図る
場合、大きな無機中空体が破壊源となるために高強度が
要求される構造部材には適用できないものであった。
When the particle diameter is as large as 30 μm or more,
When this is combined with another material to reduce the weight, it cannot be applied to a structural member requiring high strength because a large inorganic hollow body becomes a destruction source.

【0007】また、無機質の炭化物を溶媒とともに高温
雰囲気中に噴霧する方法は、装置が大がかりになるとと
もに、溶媒の揮発とともに球状および中空化するため
に、中空であっても多孔質化しやすく、閉気孔が形成さ
れにくいという問題があった。
Further, the method of spraying an inorganic carbide together with a solvent in a high-temperature atmosphere requires a large-scale apparatus, and because the solvent is volatilized and becomes spherical and hollow, it is easy to make it porous even if it is hollow. There is a problem that pores are not easily formed.

【0008】また、従来の方法では、中空粉体を形成す
る無機材料が限定されており、あらゆる無機材料の中空
粉体を形成することが難しいものであった。
Further, in the conventional method, the inorganic material forming the hollow powder is limited, and it is difficult to form the hollow powder of any inorganic material.

【0009】従って、本発明は、無機中空粉体における
上記問題点を解決し、微小粉体からなるとともに内部に
閉気孔を具備する無機質中空粉体と、それを簡単な方法
で作製することのできる製造方法を提供することを目的
とするものである。
Accordingly, the present invention solves the above-mentioned problems of the inorganic hollow powder, and provides an inorganic hollow powder comprising fine powder and having closed pores therein, and a method for producing the same by a simple method. It is an object of the present invention to provide a manufacturing method which can be performed.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記課題に
対して検討を重ねた結果、所定の大きさの有機樹脂球を
用いて、球表面に無機化合物、あるいはその前駆体を形
成してなる複合体を形成し、この複合体を加熱処理して
有機樹脂球を分解除去して無機化合物からなる皮膜を作
製した後、さらに所定温度に加熱して前記無機化合物か
らなる皮膜を緻密化することによって、無機化合物粉体
内に閉気孔を具備する中空粉体が得られることを見いだ
し、本発明に至った。
Means for Solving the Problems As a result of repeated studies on the above problems, the present inventor has formed an inorganic resin or a precursor thereof on the surface of a sphere by using an organic resin sphere of a predetermined size. After forming a composite made of, and heat-treating the composite to decompose and remove the organic resin spheres to produce a coating made of an inorganic compound, the coating is further heated to a predetermined temperature to densify the coating made of the inorganic compound. By doing so, it was found that a hollow powder having closed pores in the inorganic compound powder was obtained, and the present invention was achieved.

【0011】即ち、本発明の無機質中空粉体は、平均粒
径20μm以下、粉体内部の平均気孔径が0.1〜15
μm、閉気孔率が30%以上、BET比表面積が30m
2/g以下であることを特徴とするものであって、この
中空粉体を形成する無機質材料は、実質的に単一金属酸
化物からなっても、実質的に2種以上の金属酸化物の混
合物あるいは化合物からなってもよい。また、アルカリ
元素の含有率が酸化物換算で500ppm以下であるこ
とも大きな特徴である。
That is, the inorganic hollow powder of the present invention has an average particle diameter of 20 μm or less and an average pore diameter inside the powder of 0.1 to 15 μm.
μm, closed porosity is 30% or more, BET specific surface area is 30m
2 / g or less, wherein the inorganic material forming the hollow powder is substantially composed of a single metal oxide or substantially two or more metal oxides. Or a mixture of the above. Another significant feature is that the alkali element content is 500 ppm or less in terms of oxide.

【0012】また、かかる無機質中空粉体を製造する方
法としては、平均粒径が0.1〜15μmの有機樹脂球
の表面に無機化合物、あるいはその前駆体を形成した複
合体を形成した後、この複合体を加熱処理して、前記有
機樹脂球を分解除去して無機化合物からなる皮膜を作製
した後、さらに所定温度に加熱して前記無機化合物から
なる皮膜を緻密化して、無機化合物粉体内に閉気孔を具
備する中空粉体を形成することを特徴とするものであ
る。
As a method for producing such an inorganic hollow powder, a composite in which an inorganic compound or a precursor thereof is formed on the surface of an organic resin sphere having an average particle diameter of 0.1 to 15 μm is formed. After heating the composite to decompose and remove the organic resin spheres to produce a film made of an inorganic compound, the film is further heated to a predetermined temperature to densify the film made of the inorganic compound, and the inorganic compound powder In which a hollow powder having closed pores is formed.

【0013】前記無機化合物が、実質的に単一金属酸化
物からなっても、実質的に2種以上の金属酸化物の混合
物または複合化合物からなってもよい。
The inorganic compound may consist essentially of a single metal oxide, or may consist essentially of a mixture or composite compound of two or more metal oxides.

【0014】[0014]

【発明の実施の形態】以下に本発明の無機中空粉体の製
造方法について説明する。本発明によれば、まず、有機
樹脂球を準備する。この有機樹脂球は最終的に得られる
中空粉体における独立平均気孔径を決定する要素である
ことから、有機樹脂球の大きさとしては、平均粒径が
0.1〜15μm、特に2〜5μmであることが必要で
ある。つまり、0.1μmよりも小さいと、中空粉体中
の閉気孔が小さく、所定の空隙率を達成することが難し
く、15μmよりも大きいと、微小な中空粉体を形成す
ることが困難となるためである。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing an inorganic hollow powder of the present invention will be described below. According to the present invention, first, an organic resin ball is prepared. Since this organic resin sphere is an element that determines the independent average pore diameter in the finally obtained hollow powder, the size of the organic resin sphere is 0.1 to 15 μm, particularly 2 to 5 μm. It is necessary to be. That is, if it is smaller than 0.1 μm, the closed pores in the hollow powder are small, and it is difficult to achieve a predetermined porosity. If it is larger than 15 μm, it is difficult to form a fine hollow powder. That's why.

【0015】次に、この有機樹脂球の表面に無機化合物
あるいはその前駆体を被覆する。被覆方法としては、所
定の無機化合物のアルコキシド法や沈殿法等の液相を利
用して有機樹脂球の表面に無機化合物あるいはその前駆
体を析出形成させる手法や、有機樹脂球の表面に、サブ
ミクロンの無機化合物粉末を付着させる手法が挙げられ
るが、有機樹脂球表面に無機化合物を均一に形成する上
で、前者の方が好適である。
Next, the surface of the organic resin sphere is coated with an inorganic compound or its precursor. As a coating method, a method of depositing and forming an inorganic compound or its precursor on the surface of an organic resin sphere by using a liquid phase such as an alkoxide method or a precipitation method of a predetermined inorganic compound, A method of adhering a micron inorganic compound powder may be mentioned, but the former is more suitable for uniformly forming the inorganic compound on the surface of the organic resin sphere.

【0016】その後、得られた複合体を有機樹脂球が分
解消失しうる温度、雰囲気下で1次熱処理して、有機樹
脂を分解除去することによって、無機化合物のみからな
る皮膜内部に空洞を有する見かけ上、中空粉体が形成さ
れる。ところが、この段階では、無機化合物からなる皮
膜は緻密化されておらず、多孔質からなるために、粉体
中の空洞は、閉気孔とはなっておらず、比表面積も大き
い状態である。
Thereafter, the obtained composite is subjected to a first heat treatment in an atmosphere at a temperature at which the organic resin spheres can be decomposed and disappeared to decompose and remove the organic resin, thereby forming a cavity inside the coating made of only the inorganic compound. Apparently, a hollow powder is formed. However, at this stage, since the film made of the inorganic compound is not densified and made of a porous material, the cavities in the powder are not closed pores and have a large specific surface area.

【0017】そこで、本発明によれば、さらに昇温にて
2次熱処理を施し、上記処理後の粉体の無機化合物から
なる皮膜を緻密化する。この場合の2次熱処理の温度
は、無機化合物の組成等に応じて緻密化が進行し得る温
度に加熱される。この2次熱処理によって、一次処理後
の一次粉体における皮膜の緻密化の進行とともに、粉体
の比表面積も次第には小さくなり、緻密な無機化合物か
らなる皮膜内に閉気孔を有する中空粉体を作製すること
ができる。
Therefore, according to the present invention, a secondary heat treatment is further performed at an elevated temperature to densify the coating of the powdered inorganic compound after the above treatment. The temperature of the secondary heat treatment in this case is heated to a temperature at which densification can proceed according to the composition of the inorganic compound and the like. Due to this secondary heat treatment, the specific surface area of the powder gradually decreases with the progress of densification of the film in the primary powder after the primary treatment, and the hollow powder having closed pores in the film made of the dense inorganic compound is formed. Can be made.

【0018】なお、本発明の上記の製造方法によれば、
有機樹脂球の大きさによって、中空粉体の大きさを任意
に定めることができ、有機樹脂球の大きさを平均で0.
1〜15μmとすることによって、内部の平均気孔径が
0.1〜15μmであり、平均粒径が20μm以下の微
細な中空粉体を作製することができる。また、かかる中
空粉体は、閉気孔率が30%以上、特に40%以上であ
ることも大きな特徴であって、この閉気孔率が30%よ
りも低いと、軽量化等を目的とした部材等に適用した場
合に、充分な効果が得られないという問題がある。ま
た、本発明の中空粉体は、無機化合物からなる皮膜が緻
密質からなるために、BET比表面積が30m2/g以
下、特に15m2/g以下であることも大きな特徴であ
る。
According to the above-mentioned manufacturing method of the present invention,
The size of the hollow powder can be arbitrarily determined according to the size of the organic resin sphere, and the average size of the organic resin sphere is 0.1 mm.
By setting the average pore diameter to 1 to 15 μm, a fine hollow powder having an average internal pore diameter of 0.1 to 15 μm and an average particle diameter of 20 μm or less can be produced. Further, such a hollow powder is characterized by having a closed porosity of 30% or more, particularly 40% or more. If the closed porosity is lower than 30%, a member intended for weight reduction or the like is used. However, there is a problem that a sufficient effect cannot be obtained when the method is applied to, for example, the present invention. In addition, the hollow powder of the present invention is also characterized by having a BET specific surface area of 30 m 2 / g or less, particularly 15 m 2 / g or less, because the film made of the inorganic compound is dense.

【0019】しかも、本発明の上記の製造方法において
は、有機樹脂球の表面に形成する無機化合物の種類は何
ら問うものではなく、有機樹脂球の表面に被覆可能なも
のであれば、あらゆる無機化合物によって、中空粉体を
形成することができることも大きな特徴である。
Further, in the above-mentioned production method of the present invention, the type of the inorganic compound formed on the surface of the organic resin sphere does not matter at all, as long as it can cover the surface of the organic resin sphere. It is also a great feature that a compound can form a hollow powder.

【0020】従って、従来のようなガラスのみならず、
あらゆる無機化合物、例えば、SiO2、Al23、Z
rO2、ZnO、BaO、CaO、MgO、SrOの群
から選ばれる1種による単一金属化合物、特に酸化物か
らなる中空粉体を形成することができる。
Therefore, not only conventional glass but also
Any inorganic compounds, such as SiO 2 , Al 2 O 3 , Z
It is possible to form a hollow powder made of a single metal compound, particularly an oxide, of one kind selected from the group consisting of rO 2 , ZnO, BaO, CaO, MgO, and SrO.

【0021】また、2種以上の金属化合物との混合物あ
るいは化合物によって中空粉体を形成することもでき、
2種以上の混合系では、上記の有機樹脂球を除去した後
の熱処理による緻密化処理を低温で行なうことができ
る。
Further, a hollow powder can be formed by a mixture or compound with two or more metal compounds,
In a mixed system of two or more types, the densification treatment by heat treatment after removing the organic resin spheres can be performed at a low temperature.

【0022】しかも、本発明の製造方法によれば、ガラ
スなどの発泡によって形成する場合、必然的にアルカリ
金属が含有されるが、本発明によれば、上記のように、
あらゆる任意の無機化合物によって中空粉体を形成でき
るために、アルカリ金属量が500ppm以下、特に3
00ppm以下とすることができる。
Further, according to the production method of the present invention, when the glass is formed by foaming, an alkali metal is inevitably contained, but according to the present invention, as described above,
Since the hollow powder can be formed by any arbitrary inorganic compound, the content of the alkali metal is 500 ppm or less, particularly 3 ppm.
It can be set to 00 ppm or less.

【0023】[0023]

【実施例】実施例1 テトラメトキシシラン:1000gに対し、平均粒径が
0.15μm、2.0μm、5.0μm、10.0μ
m、15.0μmの単分散アクリル樹脂球をそれぞれ1
50g添加し撹拌しながらさらに水500gを添加して
加水分解反応を開始させた。
Example 1 Tetramethoxysilane: 1000 g, average particle size 0.15 μm, 2.0 μm, 5.0 μm, 10.0 μm
m and 15.0 μm monodispersed acrylic resin
While adding 50 g and stirring, 500 g of water was further added to start a hydrolysis reaction.

【0024】ゲル化したものを#100のナイロンメッ
シュを用いて粉砕し、200℃で真空乾燥を行い、さら
に振動ミルを用いて粉砕した。この状態の粉体のBET
比表面積はいずれもほぼ300m2/gであった。作製
した粉体を電子顕微鏡にて観察した結果、アクリル樹脂
球の表面にシリカゲルが被覆されたものが凝集した状態
であった。
The gelled product was pulverized using a # 100 nylon mesh, vacuum-dried at 200 ° C., and further pulverized using a vibration mill. BET of powder in this state
The specific surface areas were all about 300 m 2 / g. As a result of observing the produced powder with an electron microscope, it was found that the surface of the acrylic resin sphere was coated with silica gel and was in an agglomerated state.

【0025】得られたこの粉末をアルミナ製るつぼに入
れ大気中450℃、5時間の条件で保持し、有機樹脂分
を完全に分解消失させた。その後、さらに温度を上げ、
1000℃〜1600℃の温度で10時間保持して粉体
を作製した。
The obtained powder was placed in an alumina crucible and kept at 450 ° C. for 5 hours in the atmosphere to completely decompose and eliminate the organic resin component. After that, raise the temperature further,
The powder was held at a temperature of 1000 ° C. to 1600 ° C. for 10 hours to produce a powder.

【0026】作製した粉体のBET比表面積を測定し、
また、ピクノメーターによって粉体密度を測定し理論密
度で割ることで閉気孔率を計算した。
The BET specific surface area of the produced powder was measured,
The closed porosity was calculated by measuring the powder density with a pycnometer and dividing by the theoretical density.

【0027】また、粉体の断面の走査電子顕微鏡写真を
観察して、任意に抽出した10個の粉体中の空隙のうち
最大のものを気孔径の平均値とみなした。評価結果を表
1に示す。
Further, by observing a scanning electron micrograph of the cross section of the powder, the largest one of the 10 voids in the arbitrarily extracted powder was regarded as the average value of the pore diameter. Table 1 shows the evaluation results.

【0028】[0028]

【表1】 [Table 1]

【0029】この実施例によれば、熱処理温度が140
0℃よりも低い場合、粉体は多孔質のままで、閉気孔率
は0であり、中空粉体にはならなかった。さらに熱処理
温度を1400℃以上に高めた場合、BET比表面積は
30m2/g以下に減少し、同時に閉気孔率が30体積
%以上の中空粉体を作製することができた。
According to this embodiment, the heat treatment temperature is 140
When the temperature was lower than 0 ° C., the powder remained porous, had a closed porosity of 0, and did not become a hollow powder. Further, when the heat treatment temperature was increased to 1400 ° C. or higher, the BET specific surface area was reduced to 30 m 2 / g or less, and at the same time, a hollow powder having a closed porosity of 30% by volume or more could be produced.

【0030】なお、作製した中空粉体について、X線回
折測定を行なって結果、いずれもSiO2(クオーツ)
またはクリストバライトからなる結晶相からなることが
わかった。また、ICP発光分光分析の結果、この粉体
中におけるアルカリ金属の総量は酸化物換算で40pp
m以下と非常に少ないものであった。
An X-ray diffraction measurement was performed on the produced hollow powder, and as a result, all of the powders were SiO 2 (quartz).
Alternatively, it was found that the crystal phase was composed of cristobalite. As a result of ICP emission spectroscopy, the total amount of alkali metals in the powder was 40 pp in terms of oxide.
m or less.

【0031】実施例2 食塩水溶液と、珪酸アルカリ水溶液と、平均粒径5、1
0μmのアクリル樹脂球の混合液にさらに塩酸を加え、
pH6、80℃に維持し、熟成を行い、アクリル樹脂球
の表面にシリカゲルの皮膜を析出させた平均粒径が6μ
mおよび11μmの複合体を得た。
Example 2 A saline solution, an alkali silicate aqueous solution and an average particle size of 5, 1
Hydrochloric acid was further added to a mixture of 0 μm acrylic resin balls,
The pH was maintained at 80 ° C., aging was performed, and an average particle diameter of 6 μm was obtained by depositing a silica gel film on the surface of the acrylic resin sphere.
m and 11 μm complexes were obtained.

【0032】得られた複合体をアルカリ成分が500p
pm以下となるまで酸洗浄した。そして、洗浄後の複合
体を、さらにB23、ZnO、BaO、CaO、ZrO
2のうちの少なくと1種を含む水溶液に浸漬した後、こ
れを乾燥して有機樹脂球の表面に、シリカゲルと上記金
属化合物を被覆した複合体を作製した。
The obtained composite was prepared by adding 500 p
pm or less. Then, the complex after washing is further subjected to B 2 O 3 , ZnO, BaO, CaO, ZrO.
After immersion in an aqueous solution containing at least one of the two , it was dried to produce a composite in which silica gel and the above-mentioned metal compound were coated on the surface of an organic resin sphere.

【0033】この粉末を大気中、450℃で5時間熱処
理して有機樹脂分を完全に分解消失させた。そして、8
00℃〜1500℃の温度範囲で熱処理し、実施例1の
場合と同様の評価を行った。評価結果を表2、表3に示
す。
This powder was heat-treated at 450 ° C. for 5 hours in the air to completely decompose and eliminate the organic resin component. And 8
Heat treatment was performed in the temperature range of 00 ° C to 1500 ° C, and the same evaluation as in Example 1 was performed. The evaluation results are shown in Tables 2 and 3.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】熱処理を全く行なわなかった場合(試料N
o.31、37、43、49、55)粉体は多孔質のま
まであり閉気孔率は0%のままで中空粉体は形成されな
かった。また、複合化した酸化物の種類によって中空粉
体が形成されるための熱処理温度は様々変化し、ZnO
の場合、800℃以上、BaO、CaO,ZrO2の場
合、1500℃以上、B23では850℃以上での熱処
理によって、中空粉体が形成され比表面積30m2/g
以下となり同時に20体積%以上の閉気孔が形成された
が、B23の場合、1000℃よりも温度が高いと、粉
体が凝集して閉気孔が形成されなかった。
When no heat treatment was performed (sample N
o. 31, 37, 43, 49, 55) The powder remained porous, the closed porosity remained 0%, and no hollow powder was formed. Further, the heat treatment temperature for forming the hollow powder varies depending on the type of the composite oxide, and ZnO
In the case of the above, hollow powder is formed by heat treatment at 800 ° C. or more, at 1500 ° C. or more for BaO, CaO, and ZrO 2 and at 850 ° C. or more for B 2 O 3 , and the specific surface area is 30 m 2 / g.
At the same time, 20% by volume or more of closed pores were formed. However, in the case of B 2 O 3 , if the temperature was higher than 1000 ° C., the powder aggregated and no closed pores were formed.

【0037】また、作製した各中空粉体について、X線
回折測定を行なって主結晶相を同定した結果、試料N
o.32〜36、62〜66では、クオーツ、試料N
o.42、48、54、72、78、84ではアモルフ
ァス、試料No.57〜60、87〜90ではクリスト
バライトの結晶相からなることがわかった。また、IC
P発光分光分析の結果、この粉体中におけるアルカリ金
属の総量は酸化物換算でいずれも300ppm以下と非
常に少ないものであった。
The main crystal phase was identified by performing X-ray diffraction measurement on each of the produced hollow powders.
o. For 32-36 and 62-66, quartz, sample N
o. Samples No. 42, 48, 54, 72, 78 and 84 were amorphous. 57 to 60 and 87 to 90, it was found that they consisted of a crystal phase of cristobalite. Also, IC
As a result of P emission spectroscopy, the total amount of alkali metals in this powder was very small at 300 ppm or less in terms of oxide.

【0038】実施例3 平均粒径:0.4μmのAl23と平均粒径:0.4μ
mのZnOと、Al23とZnOの比率が重量比で10
0:0、75:25、50:50、25:75、0:1
00の5種の比率混合した。そして、この無機化合物と
平均粒径が2μmの有機アクリル樹脂球を無機成分:有
機成分=2:5の体積比率になるように計量し、奈良機
械製ハイブリダイザーを用いて混合処理した。処理後の
粉末について電子顕微鏡写真で観察した結果、有機樹脂
球の表面にAl23とZnOの混合粉末が付着した状態
であることがわかった。
Example 3 Al 2 O 3 having an average particle size of 0.4 μm and an average particle size of 0.4 μm
m of ZnO and Al 2 O 3: ZnO in a weight ratio of 10
0: 0, 75:25, 50:50, 25:75, 0: 1
00 were mixed in five ratios. Then, this inorganic compound and an organic acrylic resin sphere having an average particle diameter of 2 μm were weighed so as to have a volume ratio of inorganic component: organic component = 2: 5, and mixed using a hybridizer manufactured by Nara Machinery. As a result of observing the powder after the treatment with an electron micrograph, it was found that a mixed powder of Al 2 O 3 and ZnO was attached to the surface of the organic resin sphere.

【0039】この粉末を大気中、450℃で5時間熱処
理して有機樹脂分を完全に分解消失させた。そして、こ
の複合体を900℃〜1600℃の温度範囲で熱処理
し、実施例1,2と同様に評価した。評価結果を表4に
示す。
This powder was heat-treated at 450 ° C. for 5 hours in the air to completely decompose and eliminate the organic resin component. Then, this composite was heat-treated in a temperature range of 900 ° C. to 1600 ° C. and evaluated in the same manner as in Examples 1 and 2. Table 4 shows the evaluation results.

【0040】[0040]

【表4】 [Table 4]

【0041】Al23:ZnOの比率によって、中空粉
体が形成される温度が変化しており、Al23100%
では1600℃で、中空粉体が形成された。Al23
ZnO=75:25では、1100℃以上、Al23
ZnO=50:50では、1000℃以上、Al23
ZnO=25:75では、1000℃以上、ZnO10
0%では、1600℃の加熱温度で、閉気孔率が20%
以上の中空粉体を作製することができた。
[0041] Al 2 O 3: by the ratio of ZnO, the temperature of the hollow powder is formed are changed, Al 2 O 3 100%
At 1600 ° C., a hollow powder was formed. Al 2 O 3 :
When ZnO = 75: 25, the temperature is 1100 ° C. or higher, and Al 2 O 3 :
When ZnO = 50: 50, the temperature is 1000 ° C. or higher, and Al 2 O 3 :
In the case of ZnO = 25: 75, 1000 ° C. or more, ZnO10
At 0%, the closed porosity is 20% at a heating temperature of 1600 ° C.
The above hollow powder could be produced.

【0042】また、作製した各中空粉体について、X線
回折測定によって主結晶相の同定を行なった結果、試料
No.95では、Al23、試料No.99、100、
103〜105、108〜110では、ZnO・Al2
3、試料No.115ではZnOが観察された。ま
た、ICP発光分光分析の結果、この粉体中におけるア
ルカリ金属の総量は酸化物換算でいずれも70ppm以
下と非常に少ないものであった。
The main crystal phase of each of the produced hollow powders was identified by X-ray diffraction measurement. 95, Al 2 O 3 , sample no. 99, 100,
In 103 to 105 and 108 to 110, ZnO.Al 2
O 3 , sample no. In No. 115, ZnO was observed. As a result of ICP emission spectroscopy, the total amount of alkali metals in this powder was as very small as 70 ppm or less in terms of oxide.

【0043】[0043]

【発明の効果】以上詳述したように、本発明によれば有
機樹脂球の表面に無機成分を析出あるいは付着させ、加
熱によって有機樹脂球を分解除去した後、さらに加熱す
ることで種々の組成の閉気孔を有する無機質中空粉体を
容易に作製することが可能となる。また、アルカリ元素
を実質的に含まないため様々な用途への適応が可能とな
る。しかも、空孔径および隔壁の厚さについても自由に
設計することが可能であるために構造材料への適用にお
いても強度劣化などの問題発生を防ぐことができる。
As described above in detail, according to the present invention, various components can be obtained by precipitating or adhering an inorganic component to the surface of the organic resin sphere, decomposing and removing the organic resin sphere by heating, and further heating. It is possible to easily produce an inorganic hollow powder having closed pores. Further, since it does not substantially contain an alkali element, it can be applied to various uses. In addition, since it is possible to freely design the hole diameter and the thickness of the partition walls, it is possible to prevent the occurrence of problems such as deterioration in strength when applied to a structural material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01G 9/00 C01G 25/02 4G075 25/02 B01J 13/02 Z Fターム(参考) 4G005 AA04 AB06 AB13 AB30 BA20 DA05Y DA12Z DA13Z DA18Z DC58Y DD27W DD59W EA06 EA09 EA10 4G042 DA01 DA02 DB11 DB31 DC03 DD01 DE03 DE09 4G047 AA04 AB01 AC03 AD03 4G048 AA02 AA03 AA05 AB02 AB05 AC08 AD03 AE05 AE08 4G072 AA32 AA35 BB05 BB16 GG01 GG03 HH18 JJ46 KK17 MM01 MM36 RR05 TT01 TT06 UU07 UU30 4G075 AA27 BA05 BA10 CA02 CA51 DA13 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01G 9/00 C01G 25/02 4G075 25/02 B01J 13/02 Z F-term (Reference) 4G005 AA04 AB06 AB13 AB30 BA20 DA05Y DA12Z DA13Z DA18Z DC58Y DD27W DD59W EA06 EA09 EA10 4G042 DA01 DA02 DB11 DB31 DC03 DD01 DE03 DE09 4G047 AA04 AB01 AC03 AD03 4G048 AA02 AA03 AA05 AB02 AB05 AC08 AD03 AE05 AE08 4G072 OA08 4G072 BB08 UU07 UU30 4G075 AA27 BA05 BA10 CA02 CA51 DA13

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】平均粒径20μm以下、内部の気孔の平均
気孔径が0.1〜15μm、閉気孔率が30体積%以
上、BET比表面積が30m2/g以下であることを特
徴とする無機質中空粉体。
(1) an average particle diameter of 20 μm or less, an average pore diameter of internal pores of 0.1 to 15 μm, a closed porosity of 30% by volume or more, and a BET specific surface area of 30 m 2 / g or less. Inorganic hollow powder.
【請求項2】実質的に単一金属酸化物からなることを特
徴とする請求項1記載の無機質中空粉体。
2. The inorganic hollow powder according to claim 1, which is substantially composed of a single metal oxide.
【請求項3】実質的に2種以上の金属酸化物の混合物ま
たは化合物からなることを特徴とする請求項1記載の無
機質中空粉体。
3. The inorganic hollow powder according to claim 1, wherein the powder is substantially composed of a mixture or compound of two or more metal oxides.
【請求項4】アルカリ元素の含有率が酸化物換算で50
0ppm以下であることを特徴とする請求項1記載の無
機質中空粉体。
4. An alkali element content of 50 in terms of oxide.
The inorganic hollow powder according to claim 1, wherein the content is 0 ppm or less.
【請求項5】平均粒径が0.1〜15μmの有機樹脂球
の表面に無機化合物、あるいはその前駆体を被覆した複
合体を形成した後、この複合体を加熱処理して、前記有
機樹脂球を分解除去して無機化合物からなる皮膜を作製
した後、さらに所定温度に加熱して前記無機化合物から
なる皮膜を緻密化して、無機化合物粉体内に閉気孔を具
備する中空粉体を形成することを特徴とする無機質中空
粉体の製造方法。
5. An organic resin sphere having an average particle diameter of 0.1 to 15 μm is coated with an inorganic compound or a precursor thereof to form a composite on the surface thereof. After the spheres are decomposed and removed to form a coating made of an inorganic compound, the coating is further heated to a predetermined temperature to densify the coating made of the inorganic compound to form a hollow powder having closed pores in the inorganic compound powder. A method for producing an inorganic hollow powder.
【請求項6】前記無機化合物が、実質的に単一金属酸化
物からなる請求項5記載の無機質中空粉体の製造方法。
6. The method for producing an inorganic hollow powder according to claim 5, wherein said inorganic compound substantially comprises a single metal oxide.
【請求項7】前記無機化合物が、実質的に2種以上の金
属酸化物の混合物または複合化合物からなる請求項5記
載の無機質中空粉体の製造方法。
7. The method for producing an inorganic hollow powder according to claim 5, wherein said inorganic compound substantially comprises a mixture or a composite compound of two or more metal oxides.
JP2000160748A 2000-05-30 2000-05-30 Inorganic hollow powder and method for producing the same Expired - Lifetime JP4822576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160748A JP4822576B2 (en) 2000-05-30 2000-05-30 Inorganic hollow powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160748A JP4822576B2 (en) 2000-05-30 2000-05-30 Inorganic hollow powder and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010199068A Division JP2011016718A (en) 2010-09-06 2010-09-06 Inorganic hollow powder and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001342010A true JP2001342010A (en) 2001-12-11
JP4822576B2 JP4822576B2 (en) 2011-11-24

Family

ID=18664894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160748A Expired - Lifetime JP4822576B2 (en) 2000-05-30 2000-05-30 Inorganic hollow powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4822576B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10226131A1 (en) * 2002-06-12 2003-12-24 Studiengesellschaft Kohle Mbh Thermally stable materials with a high specific surface
JP2005263550A (en) * 2004-03-18 2005-09-29 Nagoya Kogyo Univ High dispersion silica nano hollow particle and its producing method
EP1657219A2 (en) 2004-11-05 2006-05-17 Toda Kogyo Corporation Nanostructural substance
JP2007505025A (en) * 2003-09-12 2007-03-08 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Valve metal oxide powder and method for producing the same
WO2007125891A1 (en) * 2006-04-24 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
JP2008111058A (en) * 2006-10-31 2008-05-15 National Institute For Materials Science Core/shell structure and hollow shell structure and method for producing those
JP2009203115A (en) * 2008-02-28 2009-09-10 Kao Corp Hollow silica particle and its manufacturing method
JP2009249268A (en) * 2008-04-10 2009-10-29 Toyota Central R&D Labs Inc Metal oxide containing mesoporous silica capsule
JP2010264416A (en) * 2009-05-18 2010-11-25 Adeka Corp Hybrid fine particle and method for producing the same
JP2015155373A (en) * 2010-05-11 2015-08-27 日揮触媒化成株式会社 Silica-based particle and use of the same
JP2017193462A (en) * 2016-04-20 2017-10-26 花王株式会社 Hollow silica particle and method for producing the same
JP2019026543A (en) * 2017-08-04 2019-02-21 太平洋セメント株式会社 Oxide hollow particles
JP2021075438A (en) * 2019-11-13 2021-05-20 日鉄ケミカル&マテリアル株式会社 Hollow silica particle, method for producing the same, resin composite composition using the same, and resin composite
US11179694B2 (en) 2017-09-11 2021-11-23 Basf Se Method of forming porous metal oxide microspheres
US11185835B2 (en) 2017-09-11 2021-11-30 Basf Se Method of forming porous metal oxide microspheres using polydisperse polymer nanospheres

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120525A (en) * 1982-01-05 1983-07-18 Asahi Glass Co Ltd Manufacture of hollow silicate sphere
JPS58223606A (en) * 1982-06-14 1983-12-26 Nippon Soda Co Ltd Preparation of ultrafine hollow microsphere of metallic oxide
JPS61174145A (en) * 1985-01-29 1986-08-05 Fuji Debuison Kagaku Kk Production of hollow spherical glass body
JPS63229140A (en) * 1987-03-18 1988-09-26 Nippon Shokubai Kagaku Kogyo Co Ltd Production of mineral hollow spherical particle
JPH02180631A (en) * 1988-11-17 1990-07-13 Minnesota Mining & Mfg Co <3M> Hollow ceramic microsphere produced by sol-gel process and manufacture thereof
JPH02225327A (en) * 1989-02-23 1990-09-07 Nippon Muki Kk Production of filler for sealing material and hollow spherical silica glass
JPH05138009A (en) * 1991-11-22 1993-06-01 Japan Synthetic Rubber Co Ltd Production of spherical inorganic hollow particles
JPH06142491A (en) * 1992-11-12 1994-05-24 Japan Synthetic Rubber Co Ltd Composite particle, hollow particle and their production
JPH0769617A (en) * 1993-06-29 1995-03-14 Nitto Chem Ind Co Ltd High purity spherical silica and production thereof
JPH0796165A (en) * 1992-12-11 1995-04-11 Asahi Glass Co Ltd Production of crystalline fine hollow body and crystalline fine hollow body
JPH07265686A (en) * 1994-03-29 1995-10-17 Kansai Shin Gijutsu Kenkyusho:Kk Particles uniform in particle diameter and production thereof
JP2000500113A (en) * 1996-04-22 2000-01-11 ロディア シミ Method for producing hollow silica particles

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120525A (en) * 1982-01-05 1983-07-18 Asahi Glass Co Ltd Manufacture of hollow silicate sphere
JPS58223606A (en) * 1982-06-14 1983-12-26 Nippon Soda Co Ltd Preparation of ultrafine hollow microsphere of metallic oxide
JPS61174145A (en) * 1985-01-29 1986-08-05 Fuji Debuison Kagaku Kk Production of hollow spherical glass body
JPS63229140A (en) * 1987-03-18 1988-09-26 Nippon Shokubai Kagaku Kogyo Co Ltd Production of mineral hollow spherical particle
JPH02180631A (en) * 1988-11-17 1990-07-13 Minnesota Mining & Mfg Co <3M> Hollow ceramic microsphere produced by sol-gel process and manufacture thereof
JPH02225327A (en) * 1989-02-23 1990-09-07 Nippon Muki Kk Production of filler for sealing material and hollow spherical silica glass
JPH05138009A (en) * 1991-11-22 1993-06-01 Japan Synthetic Rubber Co Ltd Production of spherical inorganic hollow particles
JPH06142491A (en) * 1992-11-12 1994-05-24 Japan Synthetic Rubber Co Ltd Composite particle, hollow particle and their production
JPH0796165A (en) * 1992-12-11 1995-04-11 Asahi Glass Co Ltd Production of crystalline fine hollow body and crystalline fine hollow body
JPH0769617A (en) * 1993-06-29 1995-03-14 Nitto Chem Ind Co Ltd High purity spherical silica and production thereof
JPH07265686A (en) * 1994-03-29 1995-10-17 Kansai Shin Gijutsu Kenkyusho:Kk Particles uniform in particle diameter and production thereof
JP2000500113A (en) * 1996-04-22 2000-01-11 ロディア シミ Method for producing hollow silica particles

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10226131A1 (en) * 2002-06-12 2003-12-24 Studiengesellschaft Kohle Mbh Thermally stable materials with a high specific surface
JP2007505025A (en) * 2003-09-12 2007-03-08 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Valve metal oxide powder and method for producing the same
JP2012126645A (en) * 2003-09-12 2012-07-05 Hc Starck Gmbh Valve metal-oxide powder and method for producing the same
JP4654428B2 (en) * 2004-03-18 2011-03-23 国立大学法人 名古屋工業大学 Highly dispersed silica nano hollow particles and method for producing the same
JP2005263550A (en) * 2004-03-18 2005-09-29 Nagoya Kogyo Univ High dispersion silica nano hollow particle and its producing method
EP1657219A2 (en) 2004-11-05 2006-05-17 Toda Kogyo Corporation Nanostructural substance
WO2007125891A1 (en) * 2006-04-24 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
JP5414027B2 (en) * 2006-04-24 2014-02-12 電気化学工業株式会社 Inorganic hollow powder, method for producing the same, and composition using the same
US7816428B2 (en) 2006-04-24 2010-10-19 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
JP2008111058A (en) * 2006-10-31 2008-05-15 National Institute For Materials Science Core/shell structure and hollow shell structure and method for producing those
JP2009203115A (en) * 2008-02-28 2009-09-10 Kao Corp Hollow silica particle and its manufacturing method
JP2009249268A (en) * 2008-04-10 2009-10-29 Toyota Central R&D Labs Inc Metal oxide containing mesoporous silica capsule
JP2010264416A (en) * 2009-05-18 2010-11-25 Adeka Corp Hybrid fine particle and method for producing the same
JP2015155373A (en) * 2010-05-11 2015-08-27 日揮触媒化成株式会社 Silica-based particle and use of the same
JP2017193462A (en) * 2016-04-20 2017-10-26 花王株式会社 Hollow silica particle and method for producing the same
WO2017183657A1 (en) * 2016-04-20 2017-10-26 花王株式会社 Hollow silica particles and method for producing same
JP2019026543A (en) * 2017-08-04 2019-02-21 太平洋セメント株式会社 Oxide hollow particles
US11179694B2 (en) 2017-09-11 2021-11-23 Basf Se Method of forming porous metal oxide microspheres
US11185835B2 (en) 2017-09-11 2021-11-30 Basf Se Method of forming porous metal oxide microspheres using polydisperse polymer nanospheres
US11471849B2 (en) 2017-09-11 2022-10-18 President And Fellows Of Harvard College Porous metal oxide microspheres with varying pore sizes
US11517871B2 (en) 2017-09-11 2022-12-06 President And Fellows Of Harvard College Porous metal oxide microspheres
JP2021075438A (en) * 2019-11-13 2021-05-20 日鉄ケミカル&マテリアル株式会社 Hollow silica particle, method for producing the same, resin composite composition using the same, and resin composite
JP7433022B2 (en) 2019-11-13 2024-02-19 日鉄ケミカル&マテリアル株式会社 Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same

Also Published As

Publication number Publication date
JP4822576B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP2001342010A (en) Inorganic hollow particle and its manufacturing method
Li et al. A template route to the preparation of mesoporous amorphous calcium silicate with high in vitro bone‐forming bioactivity
CN107098700B (en) BMN suspension ink with high solid content and suitable for direct-write printing and preparation method thereof
CA2736100A1 (en) Method for making porous mullite-containing composites
JP2010195604A (en) Method for producing surface-reformed porous silica, surface-reformed porous silica, slurry composition for addition to resin, filler for resin, and resin composition
Shih et al. One-step synthesis of bioactive glass by spray pyrolysis
Yun et al. Hierarchically mesoporous–macroporous bioactive glasses scaffolds for bone tissue regeneration
Bigham et al. On the bioactivity and mechanical properties of gehlenite nanobioceramic: A comparative study
Shih et al. Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass
CN109320257B (en) Preparation method of high-strength high-porosity porous silicon nitride ceramic
JP2011016718A (en) Inorganic hollow powder and method for manufacturing the same
JP5822663B2 (en) Silica-based particles having moisture resistance and a method for producing the same, a resin composition for encapsulating a semiconductor containing the particles, and a substrate on which a coating film is formed by the resin composition
Oréfice et al. Novel sol‐gel bioactive fibers
JP2001240901A (en) Surface-decorated silver powder and its producing method
JP2002275356A (en) Filler for epoxy resin, and epoxy resin composition
WO2021153755A1 (en) Manufacturing method of heat insulating material
JP5358355B2 (en) Resin composition and method for producing metal resin laminate
JP4052836B2 (en) Antibacterial glass microsphere and method for producing the same
JP2002154869A (en) Sintered body containing tourmaline ore and method for manufacturing the same
KR102175902B1 (en) The method for producing a silica-modified calcium carbonate surface coating
JP2748961B2 (en) Method for producing surface-modified alumina ceramics
WO2021171859A1 (en) Hollow particles, method for producing said hollow particles, resin composition, and resin molded article and laminate using said resin composition
JP2022172938A (en) Hollow particle, method for producing hollow particle, resin composition, and resin molded body and laminated body using resin composition
JP4426524B2 (en) INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME
JP6028420B2 (en) Hollow particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4822576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

EXPY Cancellation because of completion of term