JP4052836B2 - Antibacterial glass microsphere and method for producing the same - Google Patents

Antibacterial glass microsphere and method for producing the same Download PDF

Info

Publication number
JP4052836B2
JP4052836B2 JP2002006343A JP2002006343A JP4052836B2 JP 4052836 B2 JP4052836 B2 JP 4052836B2 JP 2002006343 A JP2002006343 A JP 2002006343A JP 2002006343 A JP2002006343 A JP 2002006343A JP 4052836 B2 JP4052836 B2 JP 4052836B2
Authority
JP
Japan
Prior art keywords
antibacterial
glass
metal
glass microspheres
antibacterial glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002006343A
Other languages
Japanese (ja)
Other versions
JP2003206139A (en
Inventor
正 小久保
将一 川下
紀彰 益田
武宏 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002006343A priority Critical patent/JP4052836B2/en
Publication of JP2003206139A publication Critical patent/JP2003206139A/en
Application granted granted Critical
Publication of JP4052836B2 publication Critical patent/JP4052836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/08Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/32Nature of the non-vitreous component comprising a sol-gel process

Description

【0001】
【発明の属する技術分野】
この発明は、抗菌性ガラス微小球及びその製造方法に属する。この発明の抗菌性ガラス微小球は、繊維、建材、プラスティック、塗料、水の殺菌等に好適に利用されうる。
【0002】
【従来の技術】
抗菌性ガラスの製造方法の一つとして、ゾルーゲル法が知られている(特開平9−110463、特開2001−97735等)。ゾルーゲル法は、ガラス形成酸化物の原料としてテトラエチルオルトシリケート、アルミニウムイソプロポキシド等の金属アルコキシド化合物を用い、これを加水分解してゲル体を調製した後、焼成する方法である。
【0003】
上記特開平9−110463及び特開2001−97735には、加水分解性の有機ケイ素化合物、加水分解性の金属M化合物(ただし、Mは酸化物となったときにその価数が配位数よりも少ない金属原子を示す。)、抗菌性金属塩、触媒及び水を含む原料溶液を混合してゲル化させた後、焼成する方法が開示されている。これらの方法によれば、いずれも抗菌性金属がイオン状態でガラス中に存在し、ガラスが着色せず緻密で安定である、抗菌性金属の放出速度が緩やかである等の効果を生じる。
【0004】
このうち、特開平9−110463に記載の方法は、酸触媒を添加するものであって、特にバルク体を得ることができる点とバルクの中心から表面に至るまで均一に抗菌性金属イオンを存在させることができる点において優れている。また、特開2001−97735に記載の方法は、アルカリ触媒を添加するものであっって、粉砕工程を経ることなくゲルからガラス微粒子が得られる点とガラス微粒子のうち抗菌性能に最も寄与する表面層にのみ抗菌性金属を存在させることができる点において優れている。
【0005】
【発明が解決しようとする課題】
しかし、特開平9−110463には、粉砕工程を経ずにガラス微粒子を得る方法が開示されていない。また、特開2001−97735の方法では、ガラス微粒子の粒径が不揃いであり、また凝集も起こりやすい。さらに各粒子における抗菌性金属濃度を均一にする方法が開示されていない。
それ故、この発明の課題は、粉砕工程を経ずに粒径の揃ったガラス微小球であって、粒子の分散性に優れ、抗菌性金属濃度の均一なものを提供することにある。
【0006】
【課題を解決するための手段】
この発明の抗菌性ガラス微小球は、抗菌性金属のイオンであるAgイオンが均一に分散したSiO −M (ただし、Mはその価数が配位数よりも少ない金属原子、XとYはそれぞれMとOの原子比を示す。)系ガラス微小球であって、原子比{M/Ag}≧1であり、その平均粒子径が0.05〜5.0μmの特定値を有し、粒子径の標準偏差がその特定値に対して±0.08μm以内であることを特徴とする。この発明のガラス微小球は、球状であって且つ粒子径の標準偏差が小さいので分散性に優れている。
【0007】
この発明の抗菌性ガラス微小球を製造する適切な方法は、加水分解性の有機ケイ素化合物を含む溶液と水を混合し、これに加水分解性の金属M化合物(ただし、Mは酸化物となったときにその価数が配位数よりも少ない金属原子を示す)を添加した後、抗菌性金属塩及びアルカリ触媒を添加し、ゲル化した後焼成することを特徴とする。
【0008】
有機ケイ素化合物と金属M化合物とでは金属M化合物の方が加水分解速度が速い。この方法によれば、有機ケイ素化合物と水を混合して反応を開始させた後に、金属M化合物を添加するので、両化合物の反応度合いが一致し、得られるガラスの組成が均一となる。尚、この段階では積極的に触媒を添加することはせず、好ましくはpH=7〜9の中性状態が保たれるが、温度を常温より高くすることにより、ある程度加水分解を進行させることができる。
【0009】
その後、抗菌性金属塩及びアルカリ触媒を添加する。すると加水分解が促進されて有機ケイ素化合物及び金属M化合物が縮合しゲル化する。このときアルカリ触媒の作用により、触媒添加直後に生成したゲル微粒子の表面が負に帯電し、そのクーロン反発力により微粒子同士の結合が防止され、その結果、後の粉砕工程が不要になる。この点、硝酸等の酸触媒を用い、ゲル化の進行に伴って微粒子同士が結合してバルク体となる特開平9−110463に開示の方法と著しく相違する。
【0010】
また、加水分解及び縮合過程で抗菌性金属イオンがゲル中に均一に分散する。ゲル中に含まれる金属Mは、価数nが配位数zよりも少ないので、金属Mの電荷(n+)で電気的に中和されずに負電荷を帯びた余剰の酸素原子が金属Mの周囲に存在しており、これが抗菌性金属イオンと中和して安定化する。従って焼成後に抗菌性金属をイオンの状態で安定、且つ均一に分散させることができる。
次に得られたゲル微粒子を焼成してガラス化することで、ガラス微小球を得ることができる。
【0011】
このようにして得られる抗菌性ガラス微小球は、球状体であり、またその粒子径が揃っている。しかも粒子がほとんど凝集しない。抗菌性ガラスは通常、単独では使用されず、繊維、プラスチック等に混合して使用される。そのため、粒子に凝集体が存在していると、繊維、プラスチック等に混合した際、均一に分散させることが難しく、繊維、プラスチック等内で抗菌性ガラスの濃度が不均一となる可能性がある。そうすると、抗菌製品において抗菌性能のバラツキを生じる可能性がある。この点、この発明のガラス微小球は凝集しがたく有利である。
【0012】
更にまた、抗菌性金属がイオン状態で分散しているので、ガラスが着色することがない。そして、粒子表面から抗菌性金属イオンが放出され消費されても、粒子内部の抗菌性金属がイオン状態で表面に向かって拡散するので、粒子表面からの抗菌性金属の放出速度は連続的かつ緩やかである。加えて化学耐久性が良好であり、樹脂を変色させることがない。従って、様々な用途に合った抗菌剤設計が可能となる。
【0013】
なお、ガラス微小球の表面のみに抗菌性金属が存在していると、粒子内部からの拡散が期待できない。そのため、初期の抗菌性能は問題ないが、抗菌持続性に劣ると考えられる。また表面のみに抗菌性金属が存在していると、樹脂を変色させやすい。つまり抗菌ガラスの繊維、プラスチック等への混合は、通常200〜300℃の温度で行う。その際、化学耐久性が低いと、抗菌性金属イオンが過剰に溶出する可能性がある。溶出した抗菌性金属イオンは容易に樹脂中で茶褐色のコロイドに還元され、樹脂変色の原因となるからである。
【0014】
【発明の実施の形態】
有機ケイ素化合物としては、加水分解性を有するものであれば特に制限はなく、例えばテトラエトキシシラン(TEOS)等のケイ素のアルコキシドを使用することができる。金属M化合物としては、加水分解性を有するとともに、金属Mが酸化物となったときにその価数が配位数よりも少ないものであれば特に制限はなく、例えばアルミニウムトリイソプロポキシド(Al(OPr)3)等のアルミニウムアルコキシドが使用できる。抗菌性金属塩としては、硝酸銀(AgNO3)等が使用可能である。金属Mと抗菌性金属の好適な組み合わせは、MがAl、抗菌性金属がAgである。また、アルカリ触媒としては、アンモニア(NH3)がガラス中に残らないことの故に好適である。溶媒としてはアルコール等の有機溶媒が使用できる。特にエタノール、メタノール等の低級アルコールが好適である。
原料の好ましい配合比は、モル単位で有機ケイ素化合物をSiO2に換算して1とするとき、Al化合物及びAg塩の添加量がAl23及びAg2Oに換算して各々0.001〜0.5及び0.001〜0.1である
【0015】
【実施例】
[実施例1〜4]
以下、実施例に基づいて本発明を説明する。なお表1に各実施例のガラス組成を示している。
【0016】
(1)試料の調整
▲1▼テトラエトキシシラン(TEOS)の予備加水分解
まず、恒温漕中で50℃に保持したテフロン(登録商標)製容器に溶媒としてエタノール60ml、蒸留水1.5gを入れた。その中に、TEOSを4.3g加え、密閉状態で10時間攪拌した。
【0017】
▲2▼SiO2−Al23予備骨格反応
▲1▼で作製した反応液に、アルミニウムトリイソプロポキシド(Al(OPr)3)0.03〜0.25g加え、さらに5時間攪拌した。
▲3▼抗菌性金属の塩の添加、およびアルカリ触媒による微小球化
上記攪拌終了後、反応温度を室温に下げ、28%アンモニア水11.9〜119ml、硝酸銀0.007〜0.175gを加え、さらに約24時間攪拌を続けた。その後攪拌をとめ、遠心分離器で固形分と溶媒を分離、溶媒を除去した後、50℃で1日乾燥させ、完全に溶媒を除去した後、1000℃で2時間(昇温100℃/時間)加熱し、平均粒子径が約0.5μmの無色のガラス試料を得た。
【0018】
【表1】

Figure 0004052836
【0019】
(2)ガラス中の銀の状態
試料がアモルファス状態かどうかと、ガラス中に銀がイオンとして担持されているかどうかを確認するために、試料の粉末X線回折を測定した。図1に測定結果の代表例として実施例1の回折パターンを示す。図1に見られるように、ガラスのハローパターンのみが観察でき、試料がアモルファス状態であることと、銀がイオンとしてガラス中にとりこまれていることが確認できた。
【0020】
(3)ガラスの化学耐久性
▲1▼評価方法
得られたガラスの化学耐久性及びAgの徐放性を評価するために、以下の要領でガラス中から水中へのSi及びAgの溶出量を調べた。
まず上記で作製したガラスを0.1g秤取り、それぞれ個別にポリプロピレン製の容器に入れて蒸留水を20ml添加し、容器を37℃の恒温漕に入れた後、回転頻度100rpmで振とうさせた。ガラスを水中に所定期間浸漬後、容器を恒温漕より取り出し、濾過してガラスと溶液とを分別し、同溶液中のSi及びAgの濃度を高周波誘導結合プラズマ発光分析により測定した。Si濃度及びAg濃度の測定結果を各々図2及び図3に示す。
【0021】
▲2▼化学耐久性の評価
図2より、各実施例ともSiの溶出量は浸漬時間とともに一定速度で増加したが、浸漬後2週間における溶出量は2μg/ml以下であった。これは、ガラス中からのSiの溶出量が約0.05%以下であると認められる。従って、化学耐久性が非常に高いことを示している。なお同様にしてAlの溶出について測定したところ、Alの溶出はほとんど確認できなかった。
【0022】
▲3▼Agの徐放性の評価
図3より、各実施例ともAgの溶出量は浸漬時間とともにほぼ一定速度で溶出し、浸漬後2週間におけるAgの溶出量は約1〜2μg/mlであった。ガラス中のAg含有量が多くなるにつれて、溶出量が増加することも確認できた。従って、ガラス中のAg含有量の増加に伴って抗菌性能が強くなることが予想される。
【0023】
(4)ガラスの抗菌性
▲1▼評価方法
作製したガラスの抗菌性について評価した。評価方法は液体培地希釈法による最小発育阻止濃度(MIC)法を用い、下記の手順で測定した。
1)菌液の調整
ミューラーヒントン(MHB)液体培地で大腸菌を調整する。(菌液:1.0〜5.0×104cfu/ml)
2)試料の調整
160〜180℃で120分以上加熱して滅菌処理する。
3)試験培地調整
MHB培地に6400μg/mlの試料を添加し、それを基準にして順次に1/2倍希釈を行い、試料培地を調整する。
4)菌液接種
調整した菌液をそれぞれに希釈された試験培地に接種する。
5)培養
菌液を接種した試料をウォーターバスに入れ、振とう培養させる。(35℃、24h)
【0024】
▲2▼評価
MIC法により作製したサンプルのMIC値を表2に示す。
【表2】
Figure 0004052836
表2に示されるように、作製したサンプルはすべて抗菌性能規格基準である800μg/mlをクリアーしている。
【0025】
(5)ガラスの粒子径と標準偏差
上記実施例1の粒子群を走査型電子顕微鏡(SEM)にて観察した。その写真を図4として示す。写真上に直接ノギスを当てて100個の粒子の直径を測定したところ、図5に棒グラフで示すような粒子径分布を有し、平均粒子径は0.570μm、標準偏差は0.042μmであった。
【0026】
[比較例1]
(1)試料の調製
TEOS、アルミニウムトリイソプロポキシド及び硝酸銀について、各々シリカ、アルミナ及び酸化銀に換算して理論的に実施例1と同じ組成が得られるように以下の手順で試料を調製した。
TEOS70gにエタノールC25OH70mlを溶媒として加えた。別途、水42g,硝酸HNO33.5g,エタノール70ml,硝酸銀AgNO30.16g,硝酸アルミニウム9水和物Al(NO33・9H2O0.35gを混合して溶液とした。この溶液を前記TEOS溶液に加えて30分間撹拌しながら加水分解を行い、ゾル溶液を調製した。
【0027】
ゾル溶液をプラスチック製の容器に入れて40゜Cに放置してゲル化させ、ゲル化後引き続いて40℃で1週間乾燥した。乾燥後、試料を容器から取り出し、ジルコニア製遊星型ボールミルで24時間乾式粉砕し、平均粒径を約10μmとし、粉末となった試料をるつぼに入れて1000℃で2時間焼成した。焼成粉末を水とともにジルコニア製遊星型ボールミルに入れて72時間湿式粉砕することによって、ガラス試料を得た。
【0028】
(2)評価
このガラス試料を実施例1と同様にSEMにて観察したところ、破砕状で図6に示すような粒子径分布を有し、平均粒子径は0.991μm、標準偏差は0.238μmであった。また、MIC値は3200μg/mlであった。
【0029】
[比較例2]
(1)試料の調製
TEOS、アルミニウムトリイソプロポキシド及び硝酸銀について、各々シリカ、アルミナ及び酸化銀に換算して理論的に実施例1と同じ組成が得られるように以下の手順で試料を調製した。
【0030】
▲1▼シリカ微粒子(Seed)分散白濁液の作製
まず、テフロン(登録商標)製容器に溶媒としてエタノール140ml、アルカリ触媒としてアンモニア水28mlを入れた。加水分解に必要な水については、アンモニア水中の水を使用した。
次にSeed作製のため、TEOS25gを重量比で総使用量の8%、16%、16%の3回に分けて加え、その状態で攪拌した。なおTEOSの添加は1時間おきに行った。
【0031】
▲2▼微小球状ガラスの作製
▲1▼で作製した白濁液に、TEOSを総使用量(25g)の15%加え、その後にアルミニウムトリイソプロポキシドを総使用量(0.22g)の25%、硝酸銀を同じく総使用量(0.045g)の25%加え、この一連の操作を1時間おきに合計4回繰り返した。
【0032】
▲3▼エージング、乾燥、焼成
上記の作業終了後、さらに約20時間攪拌を続け、その後室温で5時間、40℃で1日乾燥させ、完全に溶媒を除去した後、1000℃で2時間(昇温100℃/時間)焼成することによって、ガラス試料を得た。
【0033】
(2)評価
このガラス試料を実施例1と同様にSEMにて観察したところ、球状であったが、凝集体が認められた。また図7に示すような粒子径分布を有し、平均粒子径は0.513μm、標準偏差は0.093μmであった。なお、MIC値は400μg/mlであった。
【0034】
【発明の効果】
以上のように、この発明のガラス微小球は、無色且つ緻密で化学的耐久性及び抗菌性金属の徐放性に優れているので、抗菌性が要求される様々な箇所で長期安定的に抗菌力を発揮させることができる。また、粒子径分布の標準偏差が小さいので、各粒子における抗菌性金属の含有量も同等となり、高価な抗菌性金属を有効に利用することができる。しかも粉砕工程を経ないで粒子径が揃ったものであるから、製造コストも低くてすむ。
【図面の簡単な説明】
【図1】 実施例1のガラス微小球の粉末X線回折パターンを示すグラフである。
【図2】 実施例1−4のガラス微小球の水中へのSi溶出量と振とう時間との関係を示すグラフである。
【図3】 実施例1−4のガラス微小球の水中へのAg溶出量と振とう時間との関係を示すグラフである。
【図4】 実施例1のガラス微小球の走査型電子顕微鏡写真である。
【図5】 実施例1のガラス微小球の粒子径分布を示すグラフである。
【図6】 比較例1のガラス微小球の粒子径分布を示すグラフである。
【図7】 比較例2のガラス微小球の粒子径分布を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to an antibacterial glass microsphere and a method for producing the same. The antibacterial glass microsphere of the present invention can be suitably used for sterilization of fibers, building materials, plastics, paints, water and the like.
[0002]
[Prior art]
As one method for producing antibacterial glass, a sol-gel method is known (Japanese Patent Laid-Open Nos. 9-110463, 2001-97735, etc.). The sol-gel method is a method in which a metal alkoxide compound such as tetraethylorthosilicate and aluminum isopropoxide is used as a raw material for the glass-forming oxide, and this is hydrolyzed to prepare a gel body and then fired.
[0003]
In JP-A-9-110463 and JP-A-2001-97735, hydrolyzable organosilicon compounds and hydrolyzable metal M compounds (however, when M becomes an oxide, its valence is determined from the coordination number). And a method of firing after mixing a raw material solution containing an antibacterial metal salt, a catalyst and water to make it gel. According to these methods, the antibacterial metal is present in the glass in an ionic state, and the glass is not colored and dense and stable, and the release rate of the antibacterial metal is slow.
[0004]
Among them, the method described in JP-A-9-110463 is to add an acid catalyst, and in particular, a bulk body can be obtained and the antibacterial metal ion exists uniformly from the center of the bulk to the surface. It is excellent in that it can be made. In addition, the method described in JP-A-2001-97735 is a method in which an alkali catalyst is added, and glass fine particles can be obtained from a gel without going through a pulverization step, and the surface most contributing to antibacterial performance among glass fine particles It is excellent in that the antibacterial metal can be present only in the layer.
[0005]
[Problems to be solved by the invention]
However, Japanese Patent Application Laid-Open No. 9-110463 does not disclose a method for obtaining glass fine particles without going through a pulverization step. In addition, in the method of JP-A-2001-97735, the particle diameters of the glass fine particles are not uniform and aggregation easily occurs. Furthermore, a method for making the antibacterial metal concentration uniform in each particle is not disclosed.
Therefore, an object of the present invention is to provide glass microspheres having a uniform particle size without going through a pulverization step, having excellent dispersibility of particles and having a uniform antibacterial metal concentration.
[0006]
[Means for Solving the Problems]
The antibacterial glass microsphere of the present invention has SiO 2 -M X O Y in which Ag ions, which are antibacterial metal ions, are uniformly dispersed (where M is a metal atom whose valence is less than the coordination number, X And Y represent atomic ratios of M and O, respectively.) System glass microspheres having an atomic ratio {M / Ag} ≧ 1 and an average particle diameter of 0.05 to 5.0 μm. And the standard deviation of the particle diameter is within ± 0.08 μm with respect to the specific value. The glass microspheres of the present invention are spherical and have a small standard deviation in particle diameter, so that they have excellent dispersibility.
[0007]
A suitable method for producing the antibacterial glass microspheres of the present invention is to mix a solution containing a hydrolyzable organosilicon compound and water, and to this, a hydrolyzable metal M compound (where M is an oxide). And an antibacterial metal salt and an alkali catalyst are added, gelled, and then fired.
[0008]
Among organosilicon compounds and metal M compounds, the metal M compound has a faster hydrolysis rate. According to this method, since the metal M compound is added after the organic silicon compound and water are mixed and the reaction is started, the degree of reaction of both the compounds coincides and the resulting glass has a uniform composition. In this stage, the catalyst is not actively added, and preferably the neutral state of pH = 7 to 9 is maintained, but the hydrolysis is allowed to proceed to some extent by raising the temperature from room temperature. Can do.
[0009]
Thereafter, an antibacterial metal salt and an alkali catalyst are added. Then, hydrolysis is accelerated and the organosilicon compound and the metal M compound are condensed and gelled. At this time, due to the action of the alkali catalyst, the surface of the gel fine particles generated immediately after the addition of the catalyst is negatively charged, and the coulomb repulsive force prevents the fine particles from being bonded to each other. As a result, the subsequent pulverization step becomes unnecessary. This point is significantly different from the method disclosed in Japanese Patent Laid-Open No. 9-110463 in which an acid catalyst such as nitric acid is used and fine particles are bonded together as gelation proceeds to form a bulk body.
[0010]
In addition, the antibacterial metal ions are uniformly dispersed in the gel during the hydrolysis and condensation process. Since the metal M contained in the gel has a valence n smaller than the coordination number z, the excess oxygen atom having a negative charge without being electrically neutralized by the charge (n + ) of the metal M is a metal. It exists around M, and it is stabilized by neutralizing with antibacterial metal ions. Accordingly, the antibacterial metal can be stably and uniformly dispersed in an ionic state after firing.
Next, glass microspheres can be obtained by baking and vitrifying the obtained gel fine particles.
[0011]
The antibacterial glass microspheres thus obtained are spherical and have a uniform particle size. Moreover, the particles hardly aggregate. Antibacterial glass is usually not used alone, but mixed with fibers, plastics and the like. Therefore, if aggregates are present in the particles, it is difficult to uniformly disperse when mixed into fibers, plastics, etc., and the concentration of antibacterial glass may be uneven within the fibers, plastics, etc. . If it does so, the antibacterial product may produce variation in antibacterial performance. In this respect, the glass microspheres of the present invention are advantageous in that they do not easily aggregate.
[0012]
Furthermore, since the antibacterial metal is dispersed in an ionic state, the glass is not colored. Even if antibacterial metal ions are released from the particle surface and consumed, the antibacterial metal inside the particle diffuses toward the surface in an ionic state, so that the release rate of the antibacterial metal from the particle surface is continuous and slow. It is. In addition, the chemical durability is good and the resin is not discolored. Therefore, it is possible to design antibacterial agents suitable for various applications.
[0013]
If the antibacterial metal exists only on the surface of the glass microsphere, diffusion from the inside of the particle cannot be expected. Therefore, there is no problem in the initial antibacterial performance, but it is considered that the antibacterial durability is inferior. Moreover, when an antibacterial metal exists only on the surface, the resin is easily discolored. That is, the mixing of the antibacterial glass into the fiber, plastic, etc. is usually performed at a temperature of 200 to 300 ° C. At that time, if the chemical durability is low, antibacterial metal ions may be eluted excessively. This is because the eluted antibacterial metal ions are easily reduced to brownish colloid in the resin and cause resin discoloration.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The organosilicon compound is not particularly limited as long as it has hydrolyzability. For example, silicon alkoxide such as tetraethoxysilane (TEOS) can be used. The metal M compound is not particularly limited as long as it has hydrolyzability and has a valence less than the coordination number when the metal M becomes an oxide. For example, aluminum triisopropoxide (Al Aluminum alkoxides such as (OPr) 3 ) can be used. Silver nitrate (AgNO 3 ) or the like can be used as the antibacterial metal salt. A preferable combination of the metal M and the antibacterial metal is M for Al and the antibacterial metal for Ag. Further, the alkali catalyst is suitable because ammonia (NH 3 ) does not remain in the glass. An organic solvent such as alcohol can be used as the solvent. In particular, lower alcohols such as ethanol and methanol are preferred.
A preferable blending ratio of the raw materials is that when the organosilicon compound is converted to SiO 2 in molar units to be 1, the addition amount of the Al compound and the Ag salt is 0.001 in terms of Al 2 O 3 and Ag 2 O, respectively. -0.5 and 0.001-0.1.
【Example】
[Examples 1 to 4]
Hereinafter, the present invention will be described based on examples. Table 1 shows the glass composition of each example.
[0016]
(1) Preparation of sample (1) Prehydrolysis of tetraethoxysilane (TEOS) First, 60 ml of ethanol and 1.5 g of distilled water were put as solvents in a Teflon (registered trademark) container maintained at 50 ° C. in a constant temperature bath. It was. Into this, 4.3 g of TEOS was added and stirred for 10 hours in a sealed state.
[0017]
▲ 2 ▼ to SiO 2 -Al 2 O 3 pre-skeletal reaction ▲ 1 ▼ reaction solution prepared in, aluminum triisopropoxide (Al (OPr) 3) 0.03~0.25g added and stirred for further 5 hours.
(3) Addition of antibacterial metal salt and micro-spheronization with alkali catalyst After completion of the above stirring, the reaction temperature was lowered to room temperature, and 11.9 to 119 ml of 28% ammonia water and 0.007 to 0.175 g of silver nitrate were added. Stirring was continued for about 24 hours. After that, the agitation was stopped, the solid content and the solvent were separated with a centrifuge, the solvent was removed, and the mixture was dried at 50 ° C. for 1 day. ) To obtain a colorless glass sample having an average particle size of about 0.5 μm.
[0018]
[Table 1]
Figure 0004052836
[0019]
(2) State of silver in glass In order to confirm whether the sample is in an amorphous state and whether silver is supported as ions in the glass, powder X-ray diffraction of the sample was measured. FIG. 1 shows the diffraction pattern of Example 1 as a representative example of measurement results. As can be seen in FIG. 1, only the halo pattern of the glass could be observed, confirming that the sample was in an amorphous state and that silver was incorporated in the glass as ions.
[0020]
(3) Chemical durability of glass (1) Evaluation method In order to evaluate the chemical durability of the glass and the sustained release of Ag, the amount of Si and Ag eluted from the glass into the water was determined as follows. Examined.
First, 0.1 g of the glass prepared above was weighed, put individually in a polypropylene container, 20 ml of distilled water was added, the container was placed in a constant temperature bath at 37 ° C., and then shaken at a rotation frequency of 100 rpm. . After immersing the glass in water for a predetermined period, the container was removed from the thermostatic bath, filtered to separate the glass and the solution, and the concentrations of Si and Ag in the solution were measured by high frequency inductively coupled plasma emission spectrometry. The measurement results of Si concentration and Ag concentration are shown in FIGS. 2 and 3, respectively.
[0021]
(2) Evaluation of chemical durability As shown in FIG. 2, in each example, the elution amount of Si increased at a constant rate with the immersion time, but the elution amount in 2 weeks after the immersion was 2 μg / ml or less. It is recognized that the amount of Si eluted from the glass is about 0.05% or less. Therefore, it shows that chemical durability is very high. In addition, when the elution of Al was measured in the same manner, Al elution was hardly confirmed.
[0022]
(3) Evaluation of Sustained Release of Ag From FIG. 3, in each Example, the elution amount of Ag was eluted at a substantially constant rate with the immersion time, and the elution amount of Ag in the two weeks after immersion was about 1-2 μg / ml. there were. It was also confirmed that the amount of elution increased as the Ag content in the glass increased. Therefore, it is expected that the antibacterial performance becomes stronger as the Ag content in the glass increases.
[0023]
(4) Antibacterial properties of glass (1) Evaluation method The antibacterial properties of the prepared glass were evaluated. The minimum growth inhibition concentration (MIC) method by the liquid culture medium dilution method was used as the evaluation method, and the measurement was performed according to the following procedure.
1) Preparation of bacterial solution Prepare Escherichia coli using Mueller Hinton (MHB) liquid medium. (Bacterial fluid: 1.0-5.0 × 10 4 cfu / ml)
2) Preparation of sample Sterilize by heating at 160-180 ° C for 120 minutes or longer.
3) Test medium preparation
A sample of 6400 μg / ml is added to the MHB medium, and the sample medium is prepared by sequentially performing 1 / 2-fold dilution based on the sample.
4) Inoculate the prepared bacterial solution into each diluted test medium.
5) Place the sample inoculated with the culture solution in a water bath and incubate with shaking. (35 ° C, 24h)
[0024]
(2) Evaluation
Table 2 shows the MIC values of samples prepared by the MIC method.
[Table 2]
Figure 0004052836
As shown in Table 2, all the prepared samples cleared 800 μg / ml, which is an antibacterial performance standard.
[0025]
(5) Particle size and standard deviation of glass The particle group of Example 1 was observed with a scanning electron microscope (SEM). The photograph is shown as FIG. When the diameter of 100 particles was measured by directly applying a caliper on the photograph, it had a particle size distribution as shown by a bar graph in FIG. 5, and the average particle size was 0.570 μm and the standard deviation was 0.042 μm. It was.
[0026]
[Comparative Example 1]
(1) Preparation of sample For TEOS, aluminum triisopropoxide and silver nitrate, the sample was prepared by the following procedure so that the same composition as Example 1 was theoretically obtained in terms of silica, alumina and silver oxide, respectively. .
70 ml of ethanol C 2 H 5 OH was added as a solvent to 70 g of TEOS. Separately, 42 g of water, 3.5 g of nitric acid HNO 3 , 70 ml of ethanol, 0.16 g of silver nitrate AgNO 3 , and 0.35 g of aluminum nitrate nonahydrate Al (NO 3 ) 3 .9H 2 O were mixed to obtain a solution. This solution was added to the TEOS solution and hydrolyzed with stirring for 30 minutes to prepare a sol solution.
[0027]
The sol solution was placed in a plastic container and allowed to gel at 40 ° C. After the gelation, it was subsequently dried at 40 ° C. for 1 week. After drying, the sample was taken out of the container, and dry pulverized with a zirconia planetary ball mill for 24 hours, the average particle size was about 10 μm, and the powdered sample was placed in a crucible and baked at 1000 ° C. for 2 hours. A glass sample was obtained by placing the calcined powder together with water in a zirconia planetary ball mill and performing wet grinding for 72 hours.
[0028]
(2) Evaluation When this glass sample was observed by SEM in the same manner as in Example 1, it was crushed and had a particle size distribution as shown in FIG. 6, with an average particle size of 0.991 μm and a standard deviation of 0.8. It was 238 μm. The MIC value was 3200 μg / ml.
[0029]
[Comparative Example 2]
(1) Preparation of sample For TEOS, aluminum triisopropoxide and silver nitrate, the sample was prepared by the following procedure so that the same composition as Example 1 was theoretically obtained in terms of silica, alumina and silver oxide, respectively. .
[0030]
(1) Production of silica fine particle (Seed) dispersion cloudy solution First, 140 ml of ethanol as a solvent and 28 ml of ammonia water as an alkali catalyst were put in a Teflon (registered trademark) container. As water necessary for hydrolysis, water in ammonia water was used.
Next, for preparation of Seed, 25 g of TEOS was added in three parts by weight, 8%, 16% and 16% of the total amount used, and the mixture was stirred in that state. TEOS was added every hour.
[0031]
(2) Production of microspherical glass To the cloudy liquid produced in (1), TEOS was added at 15% of the total amount used (25 g), and then aluminum triisopropoxide was added at 25% of the total amount used (0.22 g). In addition, 25% of the total amount (0.045 g) of silver nitrate was added, and this series of operations was repeated a total of 4 times every hour.
[0032]
(3) Aging, drying, and baking After the above operation is completed, stirring is further continued for about 20 hours, followed by drying at room temperature for 5 hours and at 40 ° C. for 1 day, completely removing the solvent, and then at 1000 ° C. for 2 hours ( A glass sample was obtained by firing (temperature increase: 100 ° C./hour).
[0033]
(2) Evaluation When this glass sample was observed by SEM in the same manner as in Example 1, it was spherical, but aggregates were observed. Moreover, it had a particle size distribution as shown in FIG. 7, the average particle size was 0.513 μm, and the standard deviation was 0.093 μm. The MIC value was 400 μg / ml.
[0034]
【The invention's effect】
As described above, the glass microspheres of the present invention are colorless and dense, excellent in chemical durability and sustained release of antibacterial metals, so that antibacterial properties can be stably prevented for a long time in various places where antibacterial properties are required. You can show your power. In addition, since the standard deviation of the particle size distribution is small, the content of antibacterial metal in each particle is equivalent, and an expensive antibacterial metal can be used effectively. Moreover, since the particle diameters are uniform without going through the pulverization step, the production cost can be reduced.
[Brief description of the drawings]
1 is a graph showing a powder X-ray diffraction pattern of glass microspheres of Example 1. FIG.
FIG. 2 is a graph showing the relationship between the amount of Si eluted into the water and the shaking time of the glass microspheres of Example 1-4.
FIG. 3 is a graph showing the relationship between the amount of Ag elution into the water of the glass microspheres of Example 1-4 and the shaking time.
4 is a scanning electron micrograph of the glass microspheres of Example 1. FIG.
5 is a graph showing the particle size distribution of the glass microspheres of Example 1. FIG.
6 is a graph showing the particle size distribution of the glass microspheres of Comparative Example 1. FIG.
7 is a graph showing the particle size distribution of glass microspheres of Comparative Example 2. FIG.

Claims (8)

Agイオンが均一に分散したSiO −M (ただし、Mはその価数が配位数よりも少ない金属原子、XとYはそれぞれMとOの原子比を示す。)系ガラス微小球であって、原子比{M/Ag}≧1であり、その平均粒子径が0.05〜5.0μmの特定値を有し、粒子径の標準偏差がその特定値に対して±0.08μm以内であることを特徴とする抗菌性ガラス微小球。 SiO 2 —M X O Y in which Ag ions are uniformly dispersed (where M is a metal atom whose valence is less than the coordination number, and X and Y indicate the atomic ratio of M and O, respectively). A sphere having an atomic ratio {M / Ag} ≧ 1, an average particle diameter of 0.05 to 5.0 μm, and a standard deviation of the particle diameter of ± 0 with respect to the specific value Antibacterial glass microspheres characterized by being within .08 μm. MがAlある請求項に記載の抗菌性ガラス微小球。Antimicrobial glass microspheres of claim 1 M is is Al. モル単位でSiOを1とするとき、Al及びAgがAl及びAgOに換算して各々0.001〜0.5及び0.001〜0.1含まれている請求項に記載の抗菌性ガラス微小球。When the SiO 2 and 1 on a molar basis, claims Al and Ag are contained respectively 0.001 and 0.001 in terms of Al 2 O 3 and Ag 2 O 2 Antibacterial glass microspheres as described in 1. 加水分解性の有機ケイ素化合物と溶媒と水を混合し、これに加水分解性の金属M化合物(ただし、Mは酸化物となったときにその価数が配位数よりも少ない金属原子を示す)を添加した後、抗菌性金属塩及びアルカリ触媒を添加し、ゲル化した後焼成することを特徴とする抗菌性ガラス微小球の製造方法。  A hydrolyzable organosilicon compound, a solvent, and water are mixed, and a hydrolyzable metal M compound (however, M represents a metal atom whose valence is less than the coordination number when it becomes an oxide). ), Followed by the addition of an antibacterial metal salt and an alkali catalyst to gelation, followed by firing, a method for producing antibacterial glass microspheres. MがAl、抗菌性金属塩の金属がAgである請求項に記載の抗菌性ガラス微小球の製造方法。The method for producing antibacterial glass microspheres according to claim 4 , wherein M is Al and the metal of the antibacterial metal salt is Ag. アルカリ触媒がアンモニアである請求項に記載の抗菌性ガラス微小球の製造方法。The method for producing antibacterial glass microspheres according to claim 4 , wherein the alkali catalyst is ammonia. モル単位で有機ケイ素化合物をSiOに換算して1とするとき、Al化合物及びAg塩の添加量がAl及びAgOに換算して各々0.001〜0.5及び0.001〜0.1である請求項に記載の抗菌性ガラス微小球の製造方法。When the organosilicon compound is converted to SiO 2 in terms of mole unit, the addition amount of the Al compound and the Ag salt is 0.001 to 0.5 and 0.002 respectively in terms of Al 2 O 3 and Ag 2 O. It is 001-0.1, The manufacturing method of the antimicrobial glass microsphere of Claim 5 . 請求項4〜7の方法で製造されてなることを特徴とする抗菌性ガラス微小球。An antibacterial glass microsphere produced by the method according to claim 4 .
JP2002006343A 2002-01-15 2002-01-15 Antibacterial glass microsphere and method for producing the same Expired - Fee Related JP4052836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006343A JP4052836B2 (en) 2002-01-15 2002-01-15 Antibacterial glass microsphere and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006343A JP4052836B2 (en) 2002-01-15 2002-01-15 Antibacterial glass microsphere and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003206139A JP2003206139A (en) 2003-07-22
JP4052836B2 true JP4052836B2 (en) 2008-02-27

Family

ID=27645142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006343A Expired - Fee Related JP4052836B2 (en) 2002-01-15 2002-01-15 Antibacterial glass microsphere and method for producing the same

Country Status (1)

Country Link
JP (1) JP4052836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018496A1 (en) 2001-08-22 2003-03-06 Schott Glas Antimicrobial, anti-inflammatory, wound-healing glass powder and use thereof
EP1597211A2 (en) 2003-02-25 2005-11-23 Schott AG Antimicrobial phosphate glass
DE102004026433A1 (en) * 2004-05-29 2005-12-22 Schott Ag Nanoglass powder and its use
JP6550350B2 (en) * 2015-05-15 2019-07-24 富士フイルム株式会社 Antibacterial liquid, antibacterial film and wet wiper
WO2017033926A1 (en) * 2015-08-25 2017-03-02 富士フイルム株式会社 Antibacterial solution, antibacterial film, spray and cloth
JP6542716B2 (en) * 2015-08-25 2019-07-10 富士フイルム株式会社 Antibacterial liquid, antibacterial film, spray, cross
WO2020045404A1 (en) * 2018-08-29 2020-03-05 富士フイルム株式会社 Composition, spray, wiper, membrane, substrate with membrane, and resin molded body
WO2020045416A1 (en) * 2018-08-29 2020-03-05 富士フイルム株式会社 Deodorant composition, spray, wiper, membrane, substrate with membrane, and resin molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same

Also Published As

Publication number Publication date
JP2003206139A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
Kawashita et al. Preparation of antibacterial silver‐doped silica glass microspheres
AU756352B2 (en) Spherical ionomer particles and production thereof
EP2753180A1 (en) Antimicrobial composite material
JP4052836B2 (en) Antibacterial glass microsphere and method for producing the same
CN101263826A (en) Silver ion antimicrobial agent and dry method production process
EP0384728B1 (en) Preparation method for zircon powder
JP3199354B2 (en) Antibacterial glass and method for producing the same
JP2001097735A (en) Antibacterial glass and its production method
CN114605143A (en) Based on ZnO @ SiO2Zinc oxide piezoresistor with core-shell structure and preparation method thereof
CN101302358B (en) Waterless nano-znic antimonite sol and preparation thereof
CN109496201B (en) Composite particle containing zinc oxide, composition for shielding ultraviolet ray, and cosmetic
CN102822260A (en) Method of manufacturing the silica nanopowders with biocidal properties, especially for polymer composites
Cao et al. Morphology-controlled synthesis of SiO2 hollow microspheres using pollen grain as a biotemplate
CN109437574A (en) A kind of micro-nano bioactivity glass microballoon of high calcium phosphorus content and preparation method thereof
Miola et al. Sol-gel synthesis of spherical monodispersed bioactive glass nanoparticles co-doped with boron and copper
CN102532553A (en) Preparation method of nano-silver penetrating hybridization sol
CN108723390A (en) A kind of short-cut method preparing nano silver composite antibacterial agent
JP3286071B2 (en) Production method of hydrophobic antimony-containing tin oxide fine particles, heat ray shielding coating liquid and its production method, and heat ray shielding glass and its production method
JP4939021B2 (en) Coated magnesium hydroxide, method for producing the same, and resin composition for electronic component material containing the same
JP2000313624A (en) Production of antimicrobial glass
JP2006076854A (en) Antibacterial glass fine sphere and manufacturing method therefor
JP2000256102A (en) Antimicrobial agent and its production
JPH1157494A (en) Microcapsule-shaped photocatalyst and its manufacture, paint composition, resin composition and resin body
JPS63176308A (en) Zirconia based particle having treated surface and production thereof
JPH0222120A (en) Spherical silica porous form and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees