JP2001279259A - Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery - Google Patents

Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery

Info

Publication number
JP2001279259A
JP2001279259A JP2000096489A JP2000096489A JP2001279259A JP 2001279259 A JP2001279259 A JP 2001279259A JP 2000096489 A JP2000096489 A JP 2000096489A JP 2000096489 A JP2000096489 A JP 2000096489A JP 2001279259 A JP2001279259 A JP 2001279259A
Authority
JP
Japan
Prior art keywords
desulfurizing agent
nickel
petroleum
weight
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000096489A
Other languages
Japanese (ja)
Inventor
Takashi Katsuno
尚 勝野
Satoshi Matsuda
聡 松田
Masahiro Yoshinaka
正浩 吉仲
Kazuhito Saito
一仁 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000096489A priority Critical patent/JP2001279259A/en
Publication of JP2001279259A publication Critical patent/JP2001279259A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain a profitable desulfurizing agent which is used for a petroleum-based hydrocarbon, can efficiently remove sulfur contents in the petroleum-based hydrocarbon down to an extremely low concentration and has a long life, and to provide a method for producing hydrogen for fuel batteries, comprising subjecting the petroleum-based hydrocarbon desulfurized with the desulfurizing agent to a steam reformation treatment. SOLUTION: This desulfurizing agent in which at least a nickel component is carried on a carrier and which is used for petroleum-based hydrocarbons is characterized in that the nickel component contains metal nickel in an amount of >=95 wt.% based on the total nickel content, and the method for producing the hydrogen for fuel batteries is characterized by desulfurizing the petroleum- based hydrocarbon with the desulfurizing agent for the petroleum-based hydrocarbon and then bringing the desulfurized petroleum-based hydrocarbon into contact with a steam reformation catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石油系炭化水素用
脱硫剤及び燃料電池用水素の製造方法に関する。さらに
詳しくは、本発明は、石油系炭化水素中、特に灯油中の
硫黄分を極めて低濃度まで効率よく除去することがで
き、かつ寿命の長い石油系炭化水素用脱硫剤、及びこの
脱硫剤を用いて脱硫処理された石油系炭化水素を水蒸気
改質処理し、燃料電池用水素を製造する方法に関するも
のである。
The present invention relates to a desulfurizing agent for petroleum hydrocarbons and a method for producing hydrogen for fuel cells. More specifically, the present invention provides a desulfurizing agent for petroleum hydrocarbons that can efficiently remove sulfur content in petroleum hydrocarbons, particularly kerosene to an extremely low concentration, and has a long life, and a desulfurizing agent for the same. The present invention relates to a method for producing hydrogen for a fuel cell by subjecting a petroleum hydrocarbon desulfurized using the same to steam reforming.

【0002】[0002]

【従来の技術】近年、環境問題から新エネルギー技術が
脚光を浴びており、この新エネルギー技術の一つとして
燃料電池が注目されている。この燃料電池は、水素と酸
素を電気化学的に反応させることにより、化学エネルギ
ーを電気エネルギーに変換するものであって、エネルギ
ーの利用効率が高いという特徴を有しており、民生用、
産業用あるいは自動車用などとして、実用化研究が積極
的になされている。この燃料電池には、使用する電解質
の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物
型、固体高分子型などのタイプが知られている。一方、
水素源としては、メタノール、メタンを主体とする液化
天然ガス、この天然ガスを主成分とする都市ガス、天然
ガスを原料とする合成液体燃料、さらには石油系のLP
G、ナフサ、灯油などの石油系炭化水素の使用が研究さ
れている。
2. Description of the Related Art In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency.
Practical research is being actively conducted for industrial or automotive use. As the fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known according to the type of electrolyte used. on the other hand,
As a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel composed of natural gas as raw material, and petroleum LP
The use of petroleum hydrocarbons such as G, naphtha, and kerosene is being studied.

【0003】燃料電池を民生用や自動車用などに利用す
る場合、上記石油系炭化水素、特に灯油は常温常圧で液
状であって、保管及び取扱いが容易である上、ガソリン
スタンドや販売店など、供給システムが整備されている
ことから、水素源として有利である。しかしながら、石
油系炭化水素は、メタノールや天然ガス系のものに比べ
て、硫黄分の含有量が多いという問題がある。この石油
系炭化水素を用いて水素を製造する場合、一般に、該炭
化水素を、改質触媒の存在下に水蒸気改質又は部分酸化
改質処理する方法が用いられる。このような改質処理に
おいては、上記改質触媒は、炭化水素中の硫黄分により
被毒するため、触媒寿命の点から、該炭化水素に脱硫処
理を施し、硫黄分含有量を、極力低濃度にすることが肝
要である。
When a fuel cell is used for consumer or automobile use, the above-mentioned petroleum hydrocarbons, especially kerosene, are liquid at normal temperature and normal pressure, and are easy to store and handle. It is advantageous as a hydrogen source because the supply system is in place. However, petroleum hydrocarbons have a problem that the sulfur content is higher than that of methanol or natural gas. When hydrogen is produced using this petroleum hydrocarbon, a method is generally used in which the hydrocarbon is subjected to steam reforming or partial oxidation reforming treatment in the presence of a reforming catalyst. In such a reforming treatment, the reforming catalyst is poisoned by the sulfur content in the hydrocarbon. Therefore, from the viewpoint of the life of the catalyst, the hydrocarbon is desulfurized to reduce the sulfur content as much as possible. It is important to make the concentration.

【0004】石油系炭化水素の脱硫方法としては、これ
まで多くの研究がなされており、例えばCo−Mo/ア
ルミナやNi−Mo/アルミナなどの水素化脱硫触媒と
ZnOなどの硫化水素吸着剤を用い、常圧〜5MPaの
圧力下、200〜400℃の温度で水素化脱硫する方法
が知られている。この方法は、厳しい条件下で水素化脱
硫を行い、硫黄分を硫化水素にして除去する方法であ
り、小規模の分散型燃料電池用としては、安全・環境上
の配慮、高圧ガス取締法等の関連法規との関係上好まし
くない。すなわち、燃料電池用としては、10kg/c
2 未満の条件で長期間石油系炭化水素を脱硫すること
のできる脱硫剤が望まれている。一方、石油系炭化水素
中の硫黄分を、水素化精製処理を行うことなく、温和な
条件で吸着除去し、硫黄分を低下させうる脱硫剤として
は、ニッケル系あるいはニッケル−銅系吸着剤が知られ
ている〔特公平6−65602号公報、同平7−115
842号公報、同平7−115843号公報、特開平1
−188405号公報、同平2−275701号公報、
同平2−204301号公報、同平5−70780号公
報、同平6−80972号公報、同平6−91173号
公報、同6−228570号公報(以上、ニッケル系吸
着剤)、特開平6−315628号公報(ニッケル−銅
系吸着剤)〕。これらのニッケル系あるいはニッケル−
銅系吸着剤は、燃料電池用の石油系炭化水素に対して、
脱硫剤として適用するのに有利であるが、いずれも脱硫
剤としての寿命の面で実用的なレベルに対していない
上、石油系炭化水素脱硫用に適した吸着剤の設計条件に
ついては、明らかでないのが実状である。特に、上記ニ
ッケル−銅系吸着剤では、硫黄を効率よく脱硫するには
未だ不十分であった。
Many studies have been made on the desulfurization method of petroleum hydrocarbons. For example, a hydrodesulfurization catalyst such as Co-Mo / alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO are used. A method of hydrodesulfurization at a temperature of 200 to 400 ° C. under a pressure of normal pressure to 5 MPa is known. In this method, hydrodesulfurization is performed under severe conditions to remove sulfur from hydrogen sulfide.For small-scale distributed fuel cells, safety and environmental considerations, high-pressure gas control law, etc. Is not preferable in relation to the related laws and regulations. That is, for fuel cells, 10 kg / c
There is a demand for a desulfurizing agent that can desulfurize petroleum hydrocarbons for a long time under conditions of less than m 2 . On the other hand, nickel-based or nickel-copper-based adsorbents are used as desulfurizing agents that can adsorb and remove sulfur content in petroleum hydrocarbons under mild conditions without hydrorefining treatment and reduce sulfur content. Known [Japanese Patent Publication No. 6-65602, 7-115
842, 7-115843, and JP-A-1
JP-188405, JP-A-2-275701,
JP-A-2-204301, JP-A-5-70780, JP-A-6-80972, JP-A-6-91173, JP-A-6-228570 (the above is a nickel-based adsorbent), -315628 (nickel-copper adsorbent)]. These nickel-based or nickel-
Copper-based adsorbents are used for petroleum hydrocarbons for fuel cells.
Although it is advantageous for application as a desulfurizing agent, none of them is at a practical level in terms of the life as a desulfurizing agent, and the design conditions of an adsorbent suitable for petroleum hydrocarbon desulfurization are clear. It is not the actual situation. In particular, the nickel-copper-based adsorbent was still insufficient for desulfurizing sulfur efficiently.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
状況下で、石油系炭化水素中の硫黄分を極めて低濃度ま
で効率よく除去することができ、かつ寿命の長い工業的
に有利な石油系炭化水素用脱硫剤、及びこの脱硫剤を用
いて脱硫処理された石油系炭化水素を水蒸気改質処理
し、燃料電池用水素を製造する方法を提供することを目
的とするものである。
SUMMARY OF THE INVENTION Under such circumstances, the present invention can effectively remove sulfur from petroleum hydrocarbons to an extremely low concentration, and is industrially advantageous with a long life. It is an object of the present invention to provide a desulfurizing agent for petroleum hydrocarbons and a method for producing hydrogen for fuel cells by subjecting a petroleum hydrocarbon desulfurized using the desulfurizing agent to steam reforming treatment.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、担体に担持さ
れたニッケル成分のうち金属ニッケル分の割合を特定の
値以上に大きくしたものが、石油系炭化水素用脱硫剤と
してその目的に適合しうること、そして、この脱硫剤を
用いて脱硫処理した石油系炭化水素を水素化改質処理す
ることにより、燃料電池用水素が効率よく得られること
を見出した。本発明は、かかる知見に基づいて完成した
ものである。すなわち、本発明は、担体に少なくともニ
ッケル成分を担持してなる石油系炭化水素用脱硫剤にお
いて、上記ニッケル成分が全ニッケル含有量に対し95
重量%以上の金属ニッケルを含有することを特徴とする
石油系炭化水素用脱硫剤を提供するものである。また、
本発明は、上記石油系炭化水素用脱硫剤を用いて石油系
炭化水素を脱硫したのち、水蒸気改質触媒と接触させる
ことを特徴とする燃料電池用水素の製造方法をも提供す
るものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the proportion of metallic nickel in the nickel component carried on the carrier was increased to a specific value or more. Is suitable for the purpose as a desulfurizing agent for petroleum hydrocarbons, and by hydrotreating petroleum hydrocarbons desulfurized using this desulfurizing agent, hydrogen for fuel cells is It has been found that it can be obtained efficiently. The present invention has been completed based on such findings. That is, the present invention provides a desulfurizing agent for petroleum hydrocarbons having at least a nickel component supported on a carrier, wherein the nickel component is 95% of the total nickel content.
An object of the present invention is to provide a desulfurizing agent for petroleum hydrocarbons, characterized in that the desulfurizing agent contains nickel by weight or more. Also,
The present invention also provides a method for producing hydrogen for fuel cells, which comprises desulfurizing petroleum hydrocarbons using the above-described desulfurization agent for petroleum hydrocarbons and then contacting the desulfurization catalyst with a steam reforming catalyst. .

【0007】[0007]

【発明の実施の形態】本発明の石油系炭化水素用脱硫剤
は、担体に少なくともニッケル成分を担持させたもので
あり、特に、上記ニッケル成分が全ニッケル含有量に対
し95重量%以上の金属ニッケルを含有するものであ
る。金属ニッケル含有量が95重量%より少ない場合
は、本発明の上記目的が十分達成されない。この点か
ら、ニッケル成分中の金属ニッケル含有量は96%以上
であることが好ましい。担体上のニッケル成分として
は、通常酸化ニッケル、これを還元して得られる金属ニ
ッケル、その他、炭酸ニッケル、硝酸ニッケル、塩化ニ
ッケル、硫酸ニッケル、酢酸ニッケル等が挙げられ、本
発明の脱硫剤においては、このうち、金属ニッケル含有
量が全ニッケル含有量の95重量%以上である。
BEST MODE FOR CARRYING OUT THE INVENTION The desulfurizing agent for petroleum hydrocarbons according to the present invention comprises a carrier having at least a nickel component supported thereon. It contains nickel. When the content of metallic nickel is less than 95% by weight, the above object of the present invention is not sufficiently achieved. From this point, the content of metallic nickel in the nickel component is preferably 96% or more. As the nickel component on the carrier, usually nickel oxide, metallic nickel obtained by reducing the same, and others, nickel carbonate, nickel nitrate, nickel chloride, nickel sulfate, nickel acetate, and the like.In the desulfurizing agent of the present invention, Of these, the metallic nickel content is 95% by weight or more of the total nickel content.

【0008】本発明の脱硫剤においては、担体として、
多孔質担体が好ましく用いられ、特に多孔質の無機酸化
物が好ましい。このようなものとしては、例えばシリ
カ、アルミナ、シリカ−アルミナ、チタニア、ジルコニ
ア、マグネシア、酸化亜鉛、白土、粘土及び珪藻土など
を挙げることができる。これらは単独で用いてもよく、
二種以上を組み合わせて用いてもよい。これらの中で、
特にシリカ−アルミナ及びシリカが好適である。本発明
において、これらの担体に担持させる金属成分は、少な
くともニッケル成分を含有するものであるが、更に銅を
担持したものが好ましく用いられる。また、必要に応
じ、コバルト、鉄、マンガン、クロムなどの他の金属を
少量混在させてもよい。
[0008] In the desulfurizing agent of the present invention,
A porous carrier is preferably used, and a porous inorganic oxide is particularly preferred. Such materials include, for example, silica, alumina, silica-alumina, titania, zirconia, magnesia, zinc oxide, clay, clay and diatomaceous earth. These may be used alone,
Two or more kinds may be used in combination. Among these,
Particularly, silica-alumina and silica are preferred. In the present invention, the metal component supported on these carriers contains at least a nickel component, but those further supporting copper are preferably used. If necessary, other metals such as cobalt, iron, manganese, and chromium may be mixed in a small amount.

【0009】本発明においては、ニッケルの担持量は、
脱硫剤全量に基づき、40重量%以上が好ましい。この
担持量が40重量%未満では充分な脱硫性能が発揮され
ないおそれがある。また、担持量があまり多すぎると担
体の割合が少なくなって、脱硫剤の機械的強度や脱硫性
能が低下する原因となる。脱硫性能及び機械的強度など
を考慮すると、このニッケルのより好ましい担持量は、
50〜70重量%の範囲である。また、ニッケルに加え
更に銅を担持する場合は、銅の担持量は脱硫剤全量に基
づき、10〜50重量%、更に15〜35重量%が好ま
しい。この担持量が10重量%未満ではニッケルの還元
が十分でなく本発明の効果が得られない場合がある。ま
た、50重量%を超える場合は、ニッケルの奏する効果
が失われる恐れがあり、好ましくない場合がある。
In the present invention, the amount of nickel carried is
It is preferably 40% by weight or more based on the total amount of the desulfurizing agent. If the supported amount is less than 40% by weight, sufficient desulfurization performance may not be exhibited. On the other hand, if the supported amount is too large, the ratio of the carrier is reduced, which causes a decrease in the mechanical strength and desulfurization performance of the desulfurizing agent. Considering desulfurization performance and mechanical strength, the more preferred amount of nickel supported is
It is in the range of 50-70% by weight. When copper is further supported in addition to nickel, the supported amount of copper is preferably 10 to 50% by weight, more preferably 15 to 35% by weight based on the total amount of the desulfurizing agent. If the supported amount is less than 10% by weight, the reduction of nickel may not be sufficient and the effect of the present invention may not be obtained. On the other hand, if it exceeds 50% by weight, the effect of nickel may be lost, which may be undesirable.

【0010】該担体にニッケル成分その他の金属成分を
担持させる方法については特に制限はなく、含浸法、共
沈法、混練法などの公知の任意の方法を採用することが
できる。本発明の好ましい脱硫剤である、シリカ−アル
ミナ担体上にニッケルあるいはニッケル−銅を担持させ
てなる脱硫剤は、例えば以下に示すような共沈法によっ
て製造することができる。この共沈法においては、まず
ニッケル源及びアルミニウム源、必要に応じ銅源を含む
酸性水溶液又は酸性水性分散液と、ケイ素源及び無機塩
基を含む塩基性水溶液を調製する。前者の酸性水溶液又
は酸性水分散液に用いられるニッケル源としては、例え
ば塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニ
ッケル、炭酸ニッケル及びこれらの水和物などが挙げら
れる。また銅源としては、例えば塩化銅、硝酸銅、硫酸
銅、酢酸銅及びこれらの水和物などが挙げられる。更に
アルミニウム源としては、硝酸アルミニウム、擬ベーマ
イト、ベーマイトアルミナ、バイヤライト、ジブサイト
などのアルミナ水和物や、γ−アルミナなどが挙げられ
る。
The method for supporting the nickel component and other metal components on the carrier is not particularly limited, and any known method such as an impregnation method, a coprecipitation method, or a kneading method can be employed. A desulfurizing agent obtained by supporting nickel or nickel-copper on a silica-alumina carrier, which is a preferable desulfurizing agent of the present invention, can be produced, for example, by a coprecipitation method as described below. In this coprecipitation method, first, an acidic aqueous solution or acidic aqueous dispersion containing a nickel source and an aluminum source, and if necessary, a copper source, and a basic aqueous solution containing a silicon source and an inorganic base are prepared. Examples of the nickel source used in the former acidic aqueous solution or acidic aqueous dispersion include nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, nickel carbonate, and hydrates thereof. Examples of the copper source include copper chloride, copper nitrate, copper sulfate, copper acetate, and hydrates thereof. Further, examples of the aluminum source include aluminum hydrates such as aluminum nitrate, pseudoboehmite, boehmite alumina, bayerite and gibbsite, and γ-alumina.

【0011】一方、塩基性水溶液に用いられるケイ素源
としては、アルカリ水溶液に可溶であって、焼成により
シリカになるものであればよく、特に制限されず、例え
ばオルトケイ酸、メタケイ酸及びそれらのナトリウム塩
やカリウム塩、水ガラスなどが挙げられる。また、無機
塩基としては、アルカリ金属の炭酸塩や水酸化物などが
挙げられる。次に、このようにして調製した酸性の水溶
液又は水分散液と塩基性水溶液を、それぞれ50〜90
℃程度に加温して、両者を混合し、さらに50〜90℃
程度の温度に保持して反応を完結させる。次に、生成し
た固形物を充分に洗浄したのち固液分離するか、あるい
は生成した固形物を固液分離したのち充分に洗浄し、次
いで、この固形物を公知の方法により80〜150℃程
度の温度で乾燥処理する。このようにして得られた乾燥
処理物を、好ましくは200〜400℃の範囲の温度に
おいて焼成することにより、シリカーアルミナ担体上に
金属成分が担持された脱硫剤が得られる。
On the other hand, the silicon source used in the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica upon firing. For example, orthosilicic acid, metasilicic acid, Sodium salts, potassium salts, water glass and the like can be mentioned. In addition, examples of the inorganic base include carbonates and hydroxides of alkali metals. Next, the acidic aqueous solution or aqueous dispersion thus prepared and the basic aqueous solution were each added to 50-90.
Heated to about ℃, mixed both, further 50 ~ 90 ℃
The reaction is completed by maintaining the temperature at about the same level. Next, the produced solid is sufficiently washed and then subjected to solid-liquid separation, or the produced solid is subjected to solid-liquid separation and thoroughly washed, and then the solid is subjected to a known method at about 80 to 150 ° C. Drying at the temperature of The desulfurizing agent in which a metal component is supported on a silica-alumina carrier is obtained by calcining the dried product thus obtained, preferably at a temperature in the range of 200 to 400 ° C.

【0012】担体として、シリカ等のアルミナ−シリカ
以外の担体を用いる場合も、適宜上記の方法に準じて行
うことができる。また、上記得られた脱硫剤を更に還元
処理して、金属ニッケルの量を本発明の範囲内とするに
は、当業界において通常用いられる方法が適宜用いられ
るが、例えば、上記得られた脱硫剤を反応管において、
水素流通下、常圧〜1MPaの圧力で、80〜120℃
の温度で1〜2時間保持した後、必要に応じ更に昇温し
300〜400℃の温度で1〜3時間保持することによ
り行うことができる。上記温度範囲及び保持時間を逸脱
する場合は、本発明の範囲内の金属ニッケル含有量が得
られない場合がある。上記還元処理は、燃料電池用水素
の製造においては、その脱硫処理工程の直前に行うこと
が好ましい。
When a carrier other than alumina-silica such as silica is used as the carrier, it can be carried out according to the above-mentioned method as appropriate. Further, in order to further reduce the desulfurizing agent obtained above to bring the amount of metallic nickel within the range of the present invention, a method usually used in the art is appropriately used. In the reaction tube,
Under a hydrogen flow, at a pressure of normal pressure to 1 MPa, 80 to 120 ° C
After holding at the above temperature for 1 to 2 hours, the temperature can be further raised, if necessary, and held at a temperature of 300 to 400 ° C. for 1 to 3 hours. If the temperature and the holding time are out of the above range, the metal nickel content within the range of the present invention may not be obtained. In the production of hydrogen for a fuel cell, the above-mentioned reduction treatment is preferably performed immediately before the desulfurization treatment step.

【0013】本発明の脱硫剤は、石油系炭化水素、好ま
しくは灯油の脱硫剤として用いられ、特に、硫黄分含有
量が80重量ppm以下のJIS1号灯油に適用するの
が好ましい。このJIS1号灯油は、原油を常圧蒸留し
て得た粗灯油を脱硫することにより得られる。該粗灯油
は、通常硫黄分が多く、そのままではJIS1号灯油と
はならず、硫黄分を低減させる必要がある。この硫黄分
を低減させる方法としては、一般に工業的に実施されて
いる水素化精製法で脱硫処理するのが好ましい。この場
合、脱硫触媒として、通常ニッケル、コバルト、モリブ
デン、タングステンなどの遷移金属を適当な割合で混合
したものを金属、酸化物、硫化物などの形態でアルミナ
を主成分とする担体に担持させたものが用いられる。反
応条件は、例えば反応温度250〜400℃、圧力2〜
10MPa・G、水素/油モル比2〜10、液時空間速
度(LHSV)1〜5h-1などの条件が用いられる。
The desulfurizing agent of the present invention is used as a desulfurizing agent for petroleum hydrocarbons, preferably kerosene, and is particularly preferably applied to JIS No. 1 kerosene having a sulfur content of 80 ppm by weight or less. This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by distilling crude oil at normal pressure. The crude kerosene usually has a high sulfur content, and does not become JIS No. 1 kerosene as it is, and it is necessary to reduce the sulfur content. As a method of reducing the sulfur content, desulfurization treatment is preferably performed by a hydrorefining method that is generally carried out industrially. In this case, as a desulfurization catalyst, a mixture of transition metals such as nickel, cobalt, molybdenum, and tungsten in an appropriate ratio is usually supported on a carrier containing alumina as a main component in the form of a metal, oxide, or sulfide. Things are used. The reaction conditions are, for example, a reaction temperature of 250 to 400 ° C. and a pressure of 2 to
Conditions such as 10 MPa · G, a hydrogen / oil molar ratio of 2 to 10, and a liquid hourly space velocity (LHSV) of 1 to 5 h −1 are used.

【0014】本発明の脱硫剤を用いて、石油系炭化水素
を脱硫処理する方法としては、例えば以下に示す方法を
用いることができる。石油系炭化水素、好ましくは灯油
1号を、液相で本発明の脱硫剤を充填した脱硫塔中を上
向き又は下向きの流れで通過させ、温度130〜230
℃程度、圧力常圧〜1MPa・G程度、LHSV10h
-1以下程度の条件で脱硫処理する。この際、必要によ
り、少量の水素を共存させてもよい。脱硫条件を上記範
囲で適当に選択することにより、硫黄分0.2重量pp
m以下の石油系炭化水素を得ることができる。本発明の
燃料電池用水素の製造方法は、このようにして脱硫処理
した石油系炭化水素を、水蒸気改質触媒と接触させるこ
とにより、水素を製造する方法である。
As a method for desulfurizing petroleum hydrocarbons using the desulfurizing agent of the present invention, for example, the following method can be used. A petroleum hydrocarbon, preferably kerosene No. 1, is passed in a liquid phase through a desulfurization tower filled with the desulfurizing agent of the present invention in an upward or downward flow at a temperature of 130 to 230.
℃, pressure normal pressure ~ 1MPa · G, LHSV10h
Desulfurize under the condition of -1 or less. At this time, if necessary, a small amount of hydrogen may be allowed to coexist. By appropriately selecting the desulfurization conditions within the above range, a sulfur content of 0.2 wt.
m or less of petroleum hydrocarbons can be obtained. The method for producing hydrogen for a fuel cell of the present invention is a method for producing hydrogen by bringing the petroleum hydrocarbon desulfurized in this manner into contact with a steam reforming catalyst.

【0015】本発明の方法において用いられる水蒸気改
質触媒としては特に制限はなく、従来炭化水素油の水蒸
気改質触媒として知られている公知のものの中から、任
意のものを適宜選択して用いることができる。このよう
な水蒸気改質触媒としては、例えば適当な担体に、ニッ
ケルやジルコニウム、あるいはルテニウム、ロジウム、
白金などの貴金属を担持したものを挙げることができ
る。上記担持金属は一種担持させてもよく、二種以上を
組み合わせて担持させてもよい。これらの触媒の中で、
ルテニウムを担持させたもの(以下、ルテニウム系触媒
と称す。)が好ましく、水蒸気改質反応中の炭素析出を
抑制する効果が大きい。このルテニウム系触媒の場合、
ルテニウムの担持量は、担体基準で0.05〜20重量
%の範囲が好ましい。この担持量が0.05重量%未満
では水蒸気改質活性が充分に発揮されないおそれがあ
り、一方20重量%を超えるとその担持量の割には触媒
活性の向上効果があまり認められず、むしろ経済的に不
利となる。触媒活性及び経済性などを考慮すると、この
ルテニウムのより好ましい担持量は0.05〜15重量
%であり、特に0.1〜2重量%の範囲が好ましい。
[0015] The steam reforming catalyst used in the method of the present invention is not particularly limited, and any one selected from known catalysts conventionally known as steam reforming catalysts for hydrocarbon oils may be appropriately used. be able to. As such a steam reforming catalyst, for example, nickel or zirconium, or ruthenium, rhodium,
One supporting a noble metal such as platinum can be used. One of the above-mentioned supported metals may be supported, or two or more may be supported in combination. Among these catalysts,
A catalyst supporting ruthenium (hereinafter referred to as a ruthenium-based catalyst) is preferable, and has a large effect of suppressing carbon deposition during a steam reforming reaction. In the case of this ruthenium-based catalyst,
The supported amount of ruthenium is preferably in the range of 0.05 to 20% by weight based on the carrier. If the supported amount is less than 0.05% by weight, the steam reforming activity may not be sufficiently exhibited. On the other hand, if it exceeds 20% by weight, the effect of improving the catalytic activity is not so much recognized for the supported amount. Economically disadvantageous. Taking into account the catalytic activity and economic efficiency, the more preferable amount of the supported ruthenium is 0.05 to 15% by weight, and particularly preferably 0.1 to 2% by weight.

【0016】このルテニウムを担持する場合、所望によ
り、他の金属と組み合わせて担持することができる。該
他の金属としては、例えばジルコニウム、コバルト、マ
グネシウムなどが挙げられる。ルテニウムとジルコニウ
ムを組み合わせて担持する場合、ジルコニウムの担持量
は、ZrO2 として担体基準で、通常0.5〜20重量
%、好ましくは0.5〜15重量%、より好ましくは1
〜15重量%の範囲で選定される。また、ルテニウムと
コバルトを組み合わせて担持する場合、コバルトの担持
量は、ルテニウムに対するコバルトの原子比が、通常
0.01〜30、好ましくは0.1〜30、より好まし
くは0.1〜10になるように選定される。さらに、ル
テニウムとマグネシウムを組み合わせて担持する場合、
マグネシウムの担持量は、MgOとして担体基準で通常
0.5〜20重量%、好ましくは0.5〜15重量%、
より好ましくは1〜15重量%の範囲で選定される。一
方、担体としては、無機酸化物が好ましく、具体的には
アルミナ、シリカ、ジルコニア、マグネシア及びこれら
の混合物などが挙げられる。これらの中で、特にアルミ
ナ及びジルコニアが好適である。
When ruthenium is supported, it can be supported in combination with another metal, if desired. Examples of the other metal include zirconium, cobalt, and magnesium. When carrying a combination of ruthenium and zirconium, the supported amount of zirconium in the carrier reference as ZrO 2, usually 0.5 to 20 wt%, preferably from 0.5 to 15 wt%, more preferably 1
-15% by weight. When ruthenium and cobalt are supported in combination, the supported amount of cobalt is such that the atomic ratio of cobalt to ruthenium is usually 0.01 to 30, preferably 0.1 to 30, and more preferably 0.1 to 10. Is chosen to be Furthermore, when carrying ruthenium and magnesium in combination,
The loading amount of magnesium is usually 0.5 to 20% by weight, preferably 0.5 to 15% by weight based on the carrier as MgO,
More preferably, it is selected in the range of 1 to 15% by weight. On the other hand, as the carrier, an inorganic oxide is preferable, and specific examples include alumina, silica, zirconia, magnesia, and a mixture thereof. Of these, alumina and zirconia are particularly preferred.

【0017】本発明で用いられる水蒸気改質触媒の好ま
しい態様の一つとして、ルテニウムをジルコニアに担持
した触媒が挙げられる。このジルコニアは、単体のジル
コニア(ZrO2 )でもよいし、マグネシアのような安
定化成分を含む安定化ジルコニアでもよい。この安定化
ジルコニアとしては、マグネシア、イットリア、セリア
などを含むものが好適である。本発明で用いられる水蒸
気改質触媒の好ましい態様のもう一つとしては、ルテニ
ウムとジルコニウム、又はルテニウムとジルコニウムの
他に、さらにコバルト及び/又はマグネシウムとをアル
ミナ担体に担持した触媒を挙げることができる。該アル
ミナとしては、特に耐熱性と機械的強度に優れるα−ア
ルミナが好ましい。水蒸気改質処理における反応条件と
しては、水蒸気と石油系炭化水素油に由来する炭素との
比S/C(モル比)は、通常2〜5、好ましくは2〜
4、より好ましくは2〜3の範囲で選定される。S/C
モル比が2未満では水素の生成量が低下するおそれがあ
り、また5を超えると過剰の水蒸気を必要とし、熱ロス
が大きく、水素製造の効率が低下するので好ましくな
い。
One preferred embodiment of the steam reforming catalyst used in the present invention is a catalyst in which ruthenium is supported on zirconia. The zirconia may be simple zirconia (ZrO 2 ) or stabilized zirconia containing a stabilizing component such as magnesia. As the stabilized zirconia, those containing magnesia, yttria, ceria, and the like are preferable. Another preferred embodiment of the steam reforming catalyst used in the present invention is a catalyst in which, in addition to ruthenium and zirconium, or ruthenium and zirconium, cobalt and / or magnesium are further supported on an alumina carrier. . As the alumina, α-alumina which is particularly excellent in heat resistance and mechanical strength is preferable. As the reaction conditions in the steam reforming treatment, the ratio S / C (molar ratio) between steam and carbon derived from petroleum hydrocarbon oil is usually 2 to 5, preferably 2 to 5.
4, more preferably in the range of 2-3. S / C
If the molar ratio is less than 2, the amount of generated hydrogen may decrease. If the molar ratio exceeds 5, an excessive amount of steam is required, heat loss is large, and the efficiency of hydrogen production is undesirably reduced.

【0018】また、水蒸気改質触媒層の入口温度を63
0℃以下、さらには600℃以下に保って水蒸気改質を
行うのが好ましい。入口温度が630℃を超えると石油
系炭化水素の熱分解が促進され、生成したラジカル経由
で触媒あるいは反応管壁に炭素が析出して、運転が困難
になる場合がある。なお、触媒層出口温度は特に制限は
ないが、650〜800℃の範囲が好ましい。触媒層出
口温度が650℃未満では水素の生成量が充分ではない
おそれがあり、800℃を超えると反応装置は耐熱材料
を必要とする場合があり、経済的に好ましくない。反応
圧力は、通常常圧〜3MPa、好ましくは常圧〜1MP
aの範囲であり、また、LHSVは、通常0.1〜10
0h-1、好ましくは0.2〜50h-1の範囲である。上
記水素の製造方法においては、上記水蒸気改質により得
られるCOが水素生成に悪影響を及ぼすため、これを反
応によりCO2 としてCOを除くことが好ましい。この
ようにして、燃料電池用水素を効率よく製造することが
できる。
Further, the inlet temperature of the steam reforming catalyst layer is set to 63
It is preferable to carry out steam reforming at a temperature of 0 ° C. or lower, more preferably 600 ° C. or lower. If the inlet temperature exceeds 630 ° C., thermal decomposition of petroleum hydrocarbons is promoted, and carbon is deposited on the catalyst or the reaction tube wall via generated radicals, which may make operation difficult. The outlet temperature of the catalyst layer is not particularly limited, but is preferably in the range of 650 to 800 ° C. If the outlet temperature of the catalyst layer is lower than 650 ° C., the amount of generated hydrogen may not be sufficient. If the temperature exceeds 800 ° C., the reactor may require a heat-resistant material, which is not economically preferable. The reaction pressure is usually from normal pressure to 3 MPa, preferably from normal pressure to 1 MPa.
a, and LHSV is usually 0.1 to 10
0h -1, preferably in the range of 0.2~50h -1. In the above-mentioned method for producing hydrogen, since CO obtained by the steam reforming has a bad influence on hydrogen generation, it is preferable to remove CO as CO 2 by reaction. In this way, hydrogen for a fuel cell can be efficiently produced.

【0019】[0019]

【実施例】次に、本発明を実施例により、さらに具体的
に説明するが、本発明は、これらの例によってなんら限
定されるものではない。なお、各例で得られた脱硫剤の
脱硫性能及び金属ニッケル量は、下記の方法に従って評
価した。 <脱硫性能>内径17mmのステンレス鋼製反応管に充
填した活性化処理した脱硫剤の温度を150℃に保持
し、硫黄分濃度65重量ppmのJIS1号灯油を、常
圧下、LHSV10h-1で反応管に供給開始する。5時
間経過した時点における処理灯油中の硫黄分濃度を分析
し、脱硫性能を評価する。なお、使用するJIS1号灯
油の蒸留性状は以下のとおりである。 初留温度 :152℃ 10%留出温度:169℃ 30%留出温度:184℃ 50%留出温度:203℃ 70%留出温度:224℃ 90%留出温度:254℃ 終点 :276℃
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the desulfurization performance and the amount of metallic nickel of the desulfurizing agent obtained in each example were evaluated according to the following methods. <Desulfurization Performance> The temperature of the activated desulfurizing agent filled in a stainless steel reaction tube having an inner diameter of 17 mm is maintained at 150 ° C., and JIS No. 1 kerosene having a sulfur content of 65 ppm by weight is reacted under normal pressure at an LHSV of 10 h −1 . Start supplying to the tube. After 5 hours, the sulfur content in the treated kerosene is analyzed to evaluate the desulfurization performance. The distillation properties of JIS No. 1 kerosene used are as follows. Initial distillation temperature: 152 ° C 10% distillation temperature: 169 ° C 30% distillation temperature: 184 ° C 50% distillation temperature: 203 ° C 70% distillation temperature: 224 ° C 90% distillation temperature: 254 ° C End point: 276 ° C

【0020】<金属ニッケル量の測定>吸着剤1gをT
PR(温度制御還元装置、大倉理研社製)に導入し、窒
素流通下120℃で1時間乾燥を行い、試料が常温まで
冷却した後にTPR測定を行い、得られた水素消費量か
ら全NiO量を求めた。一方、これとは別に吸着剤1g
を水素流通下、120℃で1時間乾燥し、380℃で1
時間水素還元処理を実施した。その後、常温まで試料を
冷却し、TPR測定を実施して、水素消費量から還元さ
れないNiO量(未還元のNiO量)を求めた。上記得
られた全NiO量と未還元NiO量から、金属ニッケル
量/全ニッケル含有量の比を以下の計算式より求めた。 金属ニッケル量/全ニッケル含有量の比=〔(全NiO
量−未還元NiO量)/全NiO量〕×100
<Measurement of the amount of nickel metal>
The sample was introduced into a PR (temperature controlled reduction device, manufactured by Okura Riken Co., Ltd.), dried at 120 ° C. for 1 hour under a nitrogen flow, cooled down to room temperature, and subjected to TPR measurement. I asked. Separately, 1 g of adsorbent
Is dried at 120 ° C. for 1 hour under a stream of hydrogen, and dried at 380 ° C. for 1 hour.
A hydrogen reduction treatment was performed for a time. Thereafter, the sample was cooled to room temperature and TPR measurement was performed to determine the amount of unreduced NiO (the amount of unreduced NiO) from the hydrogen consumption. From the obtained total NiO amount and the unreduced NiO amount, the ratio of metallic nickel amount / total nickel content was determined by the following formula. Ratio of metallic nickel content / total nickel content = [(total NiO
Amount-unreduced NiO amount) / total NiO amount] x 100

【0021】実施例1 水500ミリリットルに塩化ニッケル50.9gを溶解
し、これにアルミナ(擬ベーマイト)0.6gを加えた
のち、1モル/リットル濃度の硝酸水溶液20ミリリッ
トルを加え、pH2に調整し、(A)液を調製した。一
方、水500ミリリットルに炭酸ナトリウム33.1g
を溶解し、これに水ガラス11.7g(SiO2 濃度2
9重量%)を加え、(B)液を調製した。次に、上記
(A)液と(B)液を、それぞれ80℃に加熱したの
ち、両者を瞬時に混合し、混合液の温度を80℃に保持
したまま1時間撹拌した。その後、蒸留水60リットル
を用いて生成物を充分に洗浄したのち、ろ過し、次いで
固形物を120℃送風乾燥機にて12時間乾燥し、さら
に300℃で1時間焼成処理することにより、シリカ−
アルミナ担体にニッケルが63重量%担持された脱硫剤
を得た。得られた脱硫剤15ミリリットルを、内径17
mmのステンレス鋼製反応管に充填する。次いで、常圧
下、水素気流中にて120℃に昇温し、1時間保持した
のち、さらに昇温し、380℃で1時間保持することに
より、脱硫剤を還元した後、150℃に降温した。この
脱硫剤の金属ニッケル量/全ニッケル含有量比及び脱硫
性能を第1表に示す。
Example 1 50.9 g of nickel chloride was dissolved in 500 ml of water, 0.6 g of alumina (pseudo boehmite) was added, and 20 ml of a 1 mol / l nitric acid aqueous solution was added to adjust the pH to 2. Then, solution (A) was prepared. Meanwhile, 33.1 g of sodium carbonate was added to 500 ml of water.
And 11.7 g of water glass (SiO 2 concentration 2
9% by weight) to prepare solution (B). Next, after each of the solution (A) and the solution (B) was heated to 80 ° C., the two were instantaneously mixed and stirred for 1 hour while maintaining the temperature of the mixed solution at 80 ° C. Thereafter, the product was sufficiently washed with 60 liters of distilled water, filtered, and then the solid was dried in a blow dryer at 120 ° C. for 12 hours, and further calcined at 300 ° C. for 1 hour to obtain silica. −
A desulfurizing agent in which 63% by weight of nickel was supported on an alumina carrier was obtained. Fifteen milliliters of the obtained desulfurizing agent was
mm stainless steel reaction tube. Next, the temperature was raised to 120 ° C. in a hydrogen stream under normal pressure, and the temperature was maintained for 1 hour. After that, the temperature was further raised, and the temperature was maintained at 380 ° C. for 1 hour. . Table 1 shows the metal nickel content / total nickel content ratio and desulfurization performance of this desulfurizing agent.

【0022】実施例2 水500ミリリットルに硝酸ニッケル62.3gを溶解
し、これにシリカ粉末(担体)4.0gを加えたのち、
1モル/リットル濃度の硝酸水溶液20ミリリットルを
加え、pH2に調整し、(A)液を調製した。一方、水
500ミリリットルに炭酸ナトリウム33.1gを溶解
して(B)液を調製した。以下に、実施例1と同様に反
応・処理することにより、シリカ担体にニッケルが5
6.8重量%担持された脱硫剤を得た。得られた脱硫剤
を実施例1と同様にして還元処理した。この脱硫剤の金
属ニッケル量/全ニッケル含有量比及び脱硫性能を第1
表に示す。
Example 2 62.3 g of nickel nitrate was dissolved in 500 ml of water, and 4.0 g of silica powder (carrier) was added thereto.
20 ml of a 1 mol / liter nitric acid aqueous solution was added to adjust the pH to 2 to prepare solution (A). On the other hand, 33.1 g of sodium carbonate was dissolved in 500 ml of water to prepare solution (B). The reaction and treatment were carried out in the same manner as in Example 1 so that nickel was added to the silica support.
A desulfurizing agent loaded with 6.8% by weight was obtained. The obtained desulfurizing agent was reduced in the same manner as in Example 1. The desulfurizing agent has the first ratio of metallic nickel content / total nickel content and the desulfurization performance to the first.
It is shown in the table.

【0023】実施例3 水500ミリリットルに硝酸ニッケル49.8g及び硝
酸銅10.3gを溶解し、これにアルミナ(擬ベーマイ
ト)0.9gを加えたのち、1モル/リットル濃度の硝
酸水溶液20ミリリットルを加え、pH2に調整し、
(A)液を調製した。一方、水500ミリリットルに炭
酸ナトリウム35.0gを溶解し、これに水ガラス1
1.7g(SiO2 ・Na2 O、SiO2 濃度29重量
%)を加え、(B)液を調製した。以下、実施例1と同
様に反応・処理することにより、シリカ−アルミナ担体
にニッケルが61重量%、銅が19.8重量%担持され
た脱硫剤を得た。得られた脱硫剤を実施例1と同様にし
て還元処理した。この脱硫剤の金属ニッケル量/全ニッ
ケル含有量比及び脱硫性能を第1表に示す。
Example 3 49.8 g of nickel nitrate and 10.3 g of copper nitrate were dissolved in 500 ml of water, 0.9 g of alumina (pseudo-boehmite) was added thereto, and 20 ml of a 1 mol / liter nitric acid aqueous solution was added. And adjust to pH 2,
(A) The liquid was prepared. On the other hand, 35.0 g of sodium carbonate was dissolved in 500 ml of water.
1.7 g (SiO 2 · Na 2 O, SiO 2 concentration 29% by weight) was added to prepare solution (B). Thereafter, the same reaction and treatment as in Example 1 were carried out to obtain a desulfurizing agent in which 61% by weight of nickel and 19.8% by weight of copper were supported on a silica-alumina carrier. The obtained desulfurizing agent was reduced in the same manner as in Example 1. Table 1 shows the metal nickel content / total nickel content ratio and desulfurization performance of this desulfurizing agent.

【0024】比較例1 水500ミリリットルに硝酸ニッケル62.3gを溶解
し、これにアルミナ粉末(担体)4.0gを加えたの
ち、1モル/リットル濃度の硝酸水溶液20ミリリット
ルを加え、pH2に調整し、(A)液を調製した。一
方、水500ミリリットルに炭酸ナトリウム33.1g
を溶解して(B)液を調製した。以下、実施例1と同様
に反応・処理することにより、アルミナにニッケルが6
0.2重量%担持された脱硫剤を得た。得られた脱硫剤
を実施例1と同様に還元した。この脱硫剤の金属ニッケ
ル量/全ニッケル含有量比及び脱硫性能を第1表に示
す。
Comparative Example 1 62.3 g of nickel nitrate was dissolved in 500 ml of water, 4.0 g of alumina powder (carrier) was added thereto, and 20 ml of a 1 mol / liter nitric acid aqueous solution was added to adjust the pH to 2. Then, solution (A) was prepared. Meanwhile, 33.1 g of sodium carbonate was added to 500 ml of water.
Was dissolved to prepare a solution (B). Thereafter, the reaction and treatment were carried out in the same manner as in Example 1, so that 6
A 0.2% by weight supported desulfurizing agent was obtained. The obtained desulfurizing agent was reduced in the same manner as in Example 1. Table 1 shows the metal nickel content / total nickel content ratio and desulfurization performance of this desulfurizing agent.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例4 内径17mmのステンレス鋼製反応管に充填した実施例
1で得られた脱硫剤15ミリリットルを150℃に保持
し、これに前記硫黄分濃度65重量ppmのJIS1号
灯油を、常圧下、LHSV2h-1で反応管を通過させ、
さらに、下流にルテニウム系改質触媒(ルテニウム担持
量0.5重量%)20ミリリットルが充填された改質器
により、水蒸気改質処理した。改質処理条件は、圧力:
大気圧、水蒸気/炭素(S/C)モル比2.5、LHS
V:1.5h-1、入り口温度:500℃、出口温度:7
50℃である。その結果、150時間経過後の改質器出
口での転化率は100%であった。また、この反応期間
中の脱硫処理灯油の硫黄分は0.2重量ppm以下であ
った。なお、転化率は、式 転化率(%)=100×B/A 〔ただし、Aは時間当たりの供給灯油中の全炭素量(モ
ル流量)で、A=CO+CO2 +CH4 +2×C2 留分
+3×C3 留分+4×C4 留分+5×C5 留分であり、
Bは時間当たりの改質器出口ガス中の全炭素量(モル流
量)でB=CO+CO2 +CH4 である。〕によって算
出した値である。なお、分析はガスクロマトグラフィー
法による。
Example 4 15 ml of the desulfurizing agent obtained in Example 1 filled in a stainless steel reaction tube having an inner diameter of 17 mm was kept at 150 ° C., and JIS No. 1 kerosene having a sulfur concentration of 65 ppm by weight was added thereto. Under normal pressure, let LHSV2h- 1 pass through the reaction tube,
Further, a steam reforming treatment was performed by a reformer in which 20 ml of a ruthenium-based reforming catalyst (a ruthenium carrying amount 0.5% by weight) was filled downstream. The reforming conditions are pressure:
Atmospheric pressure, water / carbon (S / C) molar ratio 2.5, LHS
V: 1.5 h −1 , inlet temperature: 500 ° C., outlet temperature: 7
50 ° C. As a result, the conversion at the outlet of the reformer after 150 hours had passed was 100%. The sulfur content of the desulfurized kerosene during this reaction period was 0.2 ppm by weight or less. The conversion is expressed by the following formula: Conversion (%) = 100 × B / A [where A is the total amount of carbon in the supplied kerosene (molar flow rate) and A = CO + CO 2 + CH 4 + 2 × C 2 fraction Min + 3 × C 3 fraction + 4 × C 4 fraction + 5 × C 5 fraction,
B is the total amount of carbon (molar flow rate) in the reformer outlet gas per hour, where B = CO + CO 2 + CH 4 . ]. The analysis is based on a gas chromatography method.

【0027】比較例2 実施例4において、脱硫剤として、比較例1で得たもの
を用いた以外は、実施例4と同様にして、灯油の脱硫処
理及び水蒸気改質処理を行った。その結果、80時間経
過後、改質器出口の転化率は100%を下回り、120
時間経過後に改質器出口で油滴が確認された。なお、7
0時間及び90時間経過した時点における脱硫処理灯油
中の硫黄分は、それぞれ8重量ppm及び23重量pp
mであった。
Comparative Example 2 Kerosene was subjected to desulfurization treatment and steam reforming treatment in the same manner as in Example 4 except that the desulfurizing agent obtained in Comparative Example 1 was used. As a result, after 80 hours, the conversion at the outlet of the reformer was less than 100%,
After a lapse of time, oil droplets were confirmed at the outlet of the reformer. Note that 7
The sulfur content in the desulfurized kerosene at the time when 0 hours and 90 hours have passed is 8 ppm by weight and 23 parts by weight, respectively.
m.

【0028】[0028]

【発明の効果】本発明の石油系炭化水素用脱硫剤は、石
油系炭化水素中の硫黄分を極めて低濃度まで効率よく吸
着除去することができ、かつ寿命も長い。また、この脱
硫剤を用いて脱硫処理された灯油を水蒸気改質処理する
ことにより、燃料電池用水素を効果的に製造することが
できる。く
The desulfurizing agent for petroleum hydrocarbons of the present invention can efficiently adsorb and remove sulfur in petroleum hydrocarbons to an extremely low concentration and has a long life. Further, by subjecting kerosene desulfurized with this desulfurizing agent to steam reforming, hydrogen for fuel cells can be effectively produced. K

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10G 25/05 C10G 25/05 H01M 8/06 H01M 8/06 G Fターム(参考) 4G040 EA03 EB01 EC03 4G066 AA02B AA20C AA22C AA27A AA27B AA30A AA30C AA39A AA53A AA63A AA63C BA05 BA09 BA42 CA22 DA09 FA05 FA17 FA22 FA34 FA37 4G069 AA03 AA08 BA02A BA02B BA03A BA03B BB02A BB02B BC68A BC68B BC70A BC70B CC02 CC17 DA05 FA02 FB14 FC08 5H027 AA02 BA01 BA16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10G 25/05 C10G 25/05 H01M 8/06 H01M 8/06 GF term (Reference) 4G040 EA03 EB01 EC03 4G066 AA02B AA20C AA22C AA27A AA27B AA30A AA30C AA39A AA53A AA63A AA63C BA05 BA09 BA42 CA22 DA09 FA05 FA17 FA22 FA34 FA37 4G069 AA03 AA08 BA02A BA02B BA03A BA03B BB02A CC02 BC02A BC02A BC02A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 担体に少なくともニッケル成分を担持し
てなる石油系炭化水素用脱硫剤において、上記ニッケル
成分が全ニッケル含有量に対し95重量%以上の金属ニ
ッケルを含有することを特徴とする石油系炭化水素用脱
硫剤。
1. A desulfurizing agent for petroleum hydrocarbons comprising at least a nickel component supported on a carrier, wherein the nickel component contains 95% by weight or more of metallic nickel with respect to the total nickel content. Desulfurizing agent for hydrocarbons.
【請求項2】 担体に、脱硫剤全量に基づき、40重量
%以上のニッケル成分を担持することを特徴とする請求
項1記載の脱硫剤。
2. The desulfurizing agent according to claim 1, wherein the carrier carries a nickel component in an amount of 40% by weight or more based on the total amount of the desulfurizing agent.
【請求項3】 担体に、更に銅を担持してなる請求項1
又は2記載の脱硫剤。
3. The method according to claim 1, wherein the carrier further supports copper.
Or the desulfurizing agent according to 2.
【請求項4】 担体の銅の担持量が、脱硫剤全量に基づ
き、10〜50重量%である請求項1〜3のいずれかに
記載の脱硫剤。
4. The desulfurizing agent according to claim 1, wherein the amount of copper supported on the carrier is 10 to 50% by weight based on the total amount of the desulfurizing agent.
【請求項5】 請求項1〜4のいずれかに記載の石油系
炭化水素用脱硫剤を用いて石油系炭化水素を脱硫したの
ち、水蒸気改質触媒と接触させることを特徴とする燃料
電池用水素の製造方法。
5. A fuel cell for desulfurizing petroleum hydrocarbons using the desulfurizing agent for petroleum hydrocarbons according to claim 1, and then contacting the desulfurization catalyst with a steam reforming catalyst. Hydrogen production method.
【請求項6】 水蒸気改質触媒がルテニウム系触媒であ
る請求項5記載の製造方法。
6. The method according to claim 5, wherein the steam reforming catalyst is a ruthenium-based catalyst.
JP2000096489A 2000-03-31 2000-03-31 Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery Pending JP2001279259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000096489A JP2001279259A (en) 2000-03-31 2000-03-31 Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096489A JP2001279259A (en) 2000-03-31 2000-03-31 Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery

Publications (1)

Publication Number Publication Date
JP2001279259A true JP2001279259A (en) 2001-10-10

Family

ID=18611252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096489A Pending JP2001279259A (en) 2000-03-31 2000-03-31 Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery

Country Status (1)

Country Link
JP (1) JP2001279259A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095817A (en) * 2003-09-26 2005-04-14 Petroleum Energy Center Desulfurization agent and desulfurization method using the same
JP2010001480A (en) * 2009-07-17 2010-01-07 Idemitsu Kosan Co Ltd Desulfurizing agent and desulfurization method using the same
JP2010069473A (en) * 2008-06-30 2010-04-02 China Petrochemical Corp Desulfurization adsorbent, and method for producing and using the same
WO2010113506A1 (en) 2009-03-31 2010-10-07 新日本石油株式会社 Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfurizing hydrocarbons, and fuel cell system
JP2010235901A (en) * 2009-03-31 2010-10-21 Jx Nippon Oil & Energy Corp Desulfurizing agent for hydrocarbon and manufacturing method therefor, desulfurization method for hydrocarbon, and fuel cell system
JP2010235896A (en) * 2009-03-31 2010-10-21 Jx Nippon Oil & Energy Corp Desulfurizing agent precursor for hydrocarbon and manufacturing method for the same, desulfurizing method of hydrocarbon and fuel cell system
JP2017029874A (en) * 2015-07-29 2017-02-09 株式会社日本触媒 Metal catalyst, production method thereof and regeneration process thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095817A (en) * 2003-09-26 2005-04-14 Petroleum Energy Center Desulfurization agent and desulfurization method using the same
JP4521172B2 (en) * 2003-09-26 2010-08-11 出光興産株式会社 Desulfurization agent and desulfurization method using the same
JP2010069473A (en) * 2008-06-30 2010-04-02 China Petrochemical Corp Desulfurization adsorbent, and method for producing and using the same
WO2010113506A1 (en) 2009-03-31 2010-10-07 新日本石油株式会社 Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfurizing hydrocarbons, and fuel cell system
JP2010235901A (en) * 2009-03-31 2010-10-21 Jx Nippon Oil & Energy Corp Desulfurizing agent for hydrocarbon and manufacturing method therefor, desulfurization method for hydrocarbon, and fuel cell system
JP2010235896A (en) * 2009-03-31 2010-10-21 Jx Nippon Oil & Energy Corp Desulfurizing agent precursor for hydrocarbon and manufacturing method for the same, desulfurizing method of hydrocarbon and fuel cell system
JP2010001480A (en) * 2009-07-17 2010-01-07 Idemitsu Kosan Co Ltd Desulfurizing agent and desulfurization method using the same
JP2017029874A (en) * 2015-07-29 2017-02-09 株式会社日本触媒 Metal catalyst, production method thereof and regeneration process thereof

Similar Documents

Publication Publication Date Title
EP1270069B1 (en) Use of a desulfurizing agent
WO2006101079A1 (en) Desulfurizing agent and method of desulfurization with the same
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP2001279256A (en) Desulfurization device for fuel battery and method for operating the same
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP4322804B2 (en) Method for desulfurizing liquid hydrocarbon and method for producing hydrogen for fuel cell
JP2001279257A (en) Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2004130216A (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP2005146054A6 (en) Desulfurization agent and desulfurization method using the same
JP2005146054A (en) Desulfurizing agent and desulfurizing method using the same
JP2001278602A (en) Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
JP2001276605A (en) Desulfurization agent and method of producing hydrogen for fuel cell
JP2001294874A (en) Fuel oil for kerosene-based fuel cell
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP2001279273A (en) Kerosene-based fuel oil for fuel cell
JP4531917B2 (en) Method for producing nickel-based desulfurization agent
JP2001262164A (en) Fuel oil for fuel cell
JP2006117921A (en) Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080225

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080321