JP4580070B2 - Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells - Google Patents

Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells Download PDF

Info

Publication number
JP4580070B2
JP4580070B2 JP2000214145A JP2000214145A JP4580070B2 JP 4580070 B2 JP4580070 B2 JP 4580070B2 JP 2000214145 A JP2000214145 A JP 2000214145A JP 2000214145 A JP2000214145 A JP 2000214145A JP 4580070 B2 JP4580070 B2 JP 4580070B2
Authority
JP
Japan
Prior art keywords
nickel
desulfurization agent
desulfurization
weight
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000214145A
Other languages
Japanese (ja)
Other versions
JP2001342464A (en
Inventor
尚 勝野
聡 松田
正浩 吉仲
一仁 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000214145A priority Critical patent/JP4580070B2/en
Priority to EP01917783A priority patent/EP1270069B1/en
Priority to PCT/JP2001/002861 priority patent/WO2001072417A1/en
Priority to AU2001244705A priority patent/AU2001244705A1/en
Priority to US10/221,199 priority patent/US7268097B2/en
Priority to DK01917783.1T priority patent/DK1270069T3/en
Publication of JP2001342464A publication Critical patent/JP2001342464A/en
Application granted granted Critical
Publication of JP4580070B2 publication Critical patent/JP4580070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、石油系炭化水素用脱硫剤及び燃料電池用水素の製造方法に関する。さらに詳しくは、本発明は、石油系炭化水素中、特に灯油中の硫黄分を0.2重量ppm以下まで効率よく除去することができ、かつ寿命の長い石油系炭化水素用脱硫剤、及びこの脱硫剤を用いて脱硫処理された石油系炭化水素を水蒸気改質処理し、燃料電池用水素を製造する方法に関するものである。
【0002】
【従来の技術】
近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のLPG、ナフサ、灯油などの石油系炭化水素の使用が研究されている。
【0003】
燃料電池を民生用や自動車用などに利用する場合、上記石油系炭化水素、特に灯油は、保管及び取扱いが容易である上、ガソリンスタンドや販売店など、供給システムが整備されていることから、水素源として有利である。
しかしながら、石油系炭化水素は、メタノールや天然ガス系のものに比べて、硫黄分の含有量が多いという問題がある。この石油系炭化水素を用いて水素を製造する場合、一般に、該炭化水素を、改質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法が用いられる。このような改質処理においては、上記改質触媒は、炭化水素中の硫黄分により被毒するため、触媒寿命の点から、該炭化水素に脱硫処理を施し、硫黄分含有量を、通常0.2重量ppm以下にすることが肝要である。
【0004】
石油系炭化水素の脱硫方法としては、これまで多くの研究がなされており、例えばCo−Mo/アルミナやNi−Mo/アルミナなどの水素化脱硫触媒とZnOなどの硫化水素吸着剤を用い、常圧〜5MPaの圧力下、200〜400℃の温度で水素化脱硫する方法が知られている。この方法は、厳しい条件下で水素化脱硫を行い、硫黄分を硫化水素にして除去する方法であり、しかも硫黄分を0.2重量ppm以下にすることは困難であるため、燃料電池用の石油系炭化水素には適用しにくい。
一方、石油系炭化水素中の硫黄分を、水素化精製処理を行うことなく、温和な条件で吸着除去し、硫黄分を0.2重量ppm以下にし得る脱硫剤として、ニッケル系あるいはニッケル−銅系吸着剤が知られている〔特公平6−65602号公報、同平7−115842号公報、同平7−115843号公報、特開平1−188405号公報、同平2−275701号公報、同平2−204301号公報、同平5−70780号公報、同平6−80972号公報、同平6−91173号公報、同6−228570号公報(以上、ニッケル系吸着剤)、特開平6−315628号公報(ニッケル−銅系吸着剤)〕。
これらのニッケル系あるいはニッケル−銅系吸着剤は、燃料電池用の石油系炭化水素に対して、脱硫剤として適用するのに有利であるが、いずれも脱硫剤としての寿命の面で実用的なレベルに対していない上、石油系炭化水素脱硫用に適した吸着剤の設計条件については、明らかでないのが実状である。特に、上記ニッケル−銅系吸着剤では、硫黄を効率よく脱硫するには未だ不十分であった。
【0005】
【発明が解決しようとする課題】
本発明は、このような状況下で、石油系炭化水素中の硫黄分を0.2重量ppm以下まで効率よく除去することができ、かつ寿命の長い工業的に有利な石油系炭化水素用脱硫剤、及びこの脱硫剤を用いて脱硫処理された石油系炭化水素を水蒸気改質処理し、燃料電池用水素を製造する方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、金属成分を担体に担持してなりかつ特定の細孔分布を有する脱粒剤が、石油系炭化水素用脱硫剤としてその目的に適合しうること、そして、この脱硫剤を用いて脱硫処理した石油系炭化水素を水素化改質処理することにより、燃料電池用水素が効率よく得られることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、担体上に金属成分を担持してなる石油系炭化水素用脱硫剤であって、細孔直径3nm以下の細孔比表面積が100m2 /g以上であることを特徴とする石油系炭化水素用脱硫剤を提供するものである。
また、本発明は、上記石油系炭化水素用脱硫剤を用いて石油系炭化水素を脱硫したのち、水蒸気改質触媒と接触させることを特徴とする燃料電池用水素の製造方法をも提供するものである。
【0007】
【発明の実施の形態】
本発明の石油系炭化水素用脱硫剤は、担体上に金属成分を担持させたものであって、細孔直径3nm以下の細孔比表面積が100m2 /g以上であるものが用いられる。
本発明者らの研究によると、脱硫剤の全表面積は、脱硫性能と明確な相関性をもたないことが確認されると共に、細孔直径3nm以下の細孔が有する表面積と脱硫性能との間に明確な相関性が存在することが確認された。
本発明においては、脱粒剤として、細孔直径3nm以下の細孔比表面積が100m2 /g以上のものを用いることが必要である。この細孔比表面積が100m2 /g未満では、脱硫活性成分である金属の分散性が不十分となり、十分な脱硫性能を出せないおそれがある。この細孔比表面積の上限については特に制限はないが、あまり大きなものは製造が困難であるので、脱硫性能及び製造面などから、細孔直径3nm以下の細孔比表面積は、100〜200m2 /gの範囲が好ましく、特に120〜180m2 /gの範囲が好ましい。
なお、前記細孔直径3nm以下の細孔比表面積及びBET値は、以下に示す方法により測定した値である。
▲1▼ BET比表面積はN2 吸着法により測定した。
▲2▼ 細孔直径3nm以下の細孔比表面積は、N2 吸着等温線をBJH法により解析し、計算した。
【0008】
本発明においては、該担体として、多孔質担体が好ましく、特に多孔質の無機酸化物が好ましい。このようなものとしては、例えばシリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、マグネシア、酸化亜鉛、白土、粘土及び珪藻土などを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中で、特にシリカ−アルミナが好適である。
これらの担体上に担持させる金属成分としては、特にニッケル及び/又は銅が好適である。また、これらに必要に応じ、コバルト、鉄、マンガン、クロムなどの他の金属を少量混在させてもよい。
本発明においては、ニッケルの担持量は、脱硫剤全量に基づき、金属ニッケルとして40重量%以上が好ましい。この担持量が40重量%未満では充分な脱硫性能が発揮されないおそれがある。また、担持量があまり多すぎると担体の割合が少なくなって、脱硫剤の機械的強度や脱硫性能が低下する原因となる。脱硫性能及び機械的強度などを考慮すると、この金属ニッケルのより好ましい担持量は、50〜70重量%の範囲である。また、ニッケルに加え更に銅を担持する場合は、銅の担持量は金属銅として脱硫剤全量に基づき、10〜50重量%、更に15〜35重量%が好ましい。この担持量が10重量%未満では硫黄吸着容量が低くなる場合があり、50重量%を超えると硫黄吸着速度が低くなる場合がある。ニッケルと銅を担持する場合は、その合計担持量は脱硫剤全量に基づき金属換算で70〜90重量%、更に75〜80重量%が好ましい。
【0009】
該担体に金属成分を担持させる方法については特に制限はなく、含浸法、共沈法、混練法などの公知の任意の方法を採用することができる。
本発明の好ましい脱硫剤である、シリカ−アルミナ担体上にニッケルあるいはニッケル−銅を担持させてなる脱硫剤は、例えば以下に示すような共沈法によって製造することができる。
この共沈法においては、まずニッケル源及びアルミニウム源、必要に応じ銅源を含む酸性水溶液又は酸性水性分散液と、ケイ素源及び無機塩基を含む塩基性水溶液を調製する。前者の酸性水溶液又は酸性水分散液に用いられるニッケル源としては、例えば塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル及びこれらの水和物などが挙げられる。また銅源としては、例えば塩化銅、硝酸銅、硫酸銅、酢酸銅及びこれらの水和物などが挙げられる。更にアルミニウム源としては、硝酸アルミニウム、擬ベーマイト、ベーマイトアルミナ、バイヤライト、ジブサイトなどのアルミナ水和物や、γ−アルミナなどが挙げられる。
【0010】
一方、塩基性水溶液に用いられるケイ素源としては、アルカリ水溶液に可溶であって、焼成によりシリカになるものであればよく、特に制限されず、例えばオルトケイ酸、メタケイ酸及びそれらのナトリウム塩やカリウム塩、水ガラスなどが挙げられる。また、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが挙げられる。
次に、このようにして調製した酸性の水溶液又は水分散液と塩基性水溶液を、それぞれ50〜90℃程度に加温して、両者を混合し、さらに50〜90℃程度の温度に保持して反応を完結させる。
次に、生成した固形物を充分に洗浄したのち固液分離するか、あるいは生成した固形物を固液分離したのち充分に洗浄し、次いで、この固形物を公知の方法により80〜150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200〜400℃の範囲の温度において焼成することにより、シリカーアルミナ担体上に金属成分が担持された脱硫剤が得られる。この際、前述の細孔分布を有する担体が形成され、かつ金属担持量が所望の値になるように、使用する原料の種類や量、反応条件、焼成条件などを選択する。
【0011】
本発明の脱硫剤は、石油系炭化水素、好ましくは灯油の脱硫剤として用いられる。石油系炭化水素の中でも硫黄分含有量が80重量ppm以下のJIS1号灯油に適用するのが好ましい。このJIS1号灯油は、原油を常圧蒸留して得た粗灯油を脱硫することにより得られる。該粗灯油は、通常硫黄分が多く、そのままではJIS1号灯油とはならず、硫黄分を低減させる必要がある。この硫黄分を低減させる方法としては、一般に工業的に実施されている水素化精製法で脱硫処理するのが好ましい。この場合、脱硫触媒として、通常ニッケル、コバルト、モリブデン、タングステンなどの遷移金属を適当な割合で混合したものを金属、酸化物、硫化物などの形態でアルミナを主成分とする担体に担持させたものが用いられる。反応条件は、例えば反応温度250〜400℃、圧力2〜10MPa・G、水素/油モル比2〜10、液時空間速度(LHSV)1〜5h-1などの条件が用いられる。
【0012】
本発明の脱硫剤を用いて、石油系炭化水素を脱硫処理する方法としては、例えば以下に示す方法を用いることができる。
まず、該本発明の脱硫剤が充填された脱硫塔に、予め水素を供給し、150〜400℃程度の温度において、該脱硫剤の還元処理を行う。次に、石油系炭化水素、好ましくは灯油1号を、脱硫塔中を上向き又は下向きの流れで通過させ、温度130〜230℃程度、圧力常圧〜1MPa・G程度、LHSV10h-1以下程度の条件で脱硫処理する。この際、必要により、少量の水素を共存させてもよい。脱硫条件を上記範囲で適当に選択することにより、硫黄分0.2重量ppm以下の石油系炭化水素を得ることができる。
本発明の燃料電池用水素の製造方法は、このようにして脱硫処理した石油系炭化水素を、水蒸気改質触媒と接触させることにより、水素を製造する方法である。
【0013】
本発明の方法において用いられる水蒸気改質触媒としては特に制限はなく、従来炭化水素油の水蒸気改質触媒として知られている公知のものの中から、任意のものを適宜選択して用いることができる。このような水蒸気改質触媒としては、例えば適当な担体に、ニッケルやジルコニウム、あるいはルテニウム、ロジウム、白金などの貴金属を担持したものを挙げることができる。上記担持金属は一種担持させてもよく、二種以上を組み合わせて担持させてもよい。これらの触媒の中で、ルテニウムを担持させたもの(以下、ルテニウム系触媒と称す。)が好ましく、水蒸気改質反応中の炭素析出を抑制する効果が大きい。
このルテニウム系触媒の場合、ルテニウムの担持量は、担体基準で0.05〜20重量%の範囲が好ましい。この担持量が0.05重量%未満では水蒸気改質活性が充分に発揮されないおそれがあり、一方20重量%を超えるとその担持量の割には触媒活性の向上効果があまり認められず、むしろ経済的に不利となる。触媒活性及び経済性などを考慮すると、このルテニウムのより好ましい担持量は0.05〜15重量%であり、特に0.1〜2重量%の範囲が好ましい。
【0014】
このルテニウムを担持する場合、所望により、他の金属と組み合わせて担持することができる。該他の金属としては、例えばジルコニウム、コバルト、マグネシウムなどが挙げられる。ルテニウムとジルコニウムを組み合わせて担持する場合、ジルコニウムの担持量は、ZrO2 として担体基準で、通常0.5〜20重量%、好ましくは0.5〜15重量%、より好ましくは1〜15重量%の範囲で選定される。また、ルテニウムとコバルトを組み合わせて担持する場合、コバルトの担持量は、ルテニウムに対するコバルトの原子比が、通常0.01〜30、好ましくは0.1〜30、より好ましくは0.1〜10になるように選定される。さらに、ルテニウムとマグネシウムを組み合わせて担持する場合、マグネシウムの担持量は、MgOとして担体基準で通常0.5〜20重量%、好ましくは0.5〜15重量%、より好ましくは1〜15重量%の範囲で選定される。
一方、担体としては、無機酸化物が好ましく、具体的にはアルミナ、シリカ、ジルコニア、マグネシア及びこれらの混合物などが挙げられる。これらの中で、特にアルミナ及びジルコニアが好適である。
【0015】
本発明で用いられる水蒸気改質触媒の好ましい態様の一つとして、ルテニウムをジルコニアに担持した触媒が挙げられる。このジルコニアは、単体のジルコニア(ZrO2 )でもよいし、マグネシアのような安定化成分を含む安定化ジルコニアでもよい。この安定化ジルコニアとしては、マグネシア、イットリア、セリアなどを含むものが好適である。
本発明で用いられる水蒸気改質触媒の好ましい態様のもう一つとしては、ルテニウムとジルコニウム、又はルテニウムとジルコニウムの他に、さらにコバルト及び/又はマグネシウムとをアルミナ担体に担持した触媒を挙げることができる。該アルミナとしては、特に耐熱性と機械的強度に優れるα−アルミナが好ましい。
水蒸気改質処理における反応条件としては、水蒸気と石油系炭化水素に由来する炭素との比S/C(モル比)は、通常1.5〜10、好ましくは1.5〜5、より好ましくは2〜4の範囲で選定される。S/Cモル比が1.5未満では水素の生成量が低下するおそれがあり、また10を超えると過剰の水蒸気を必要とし、熱ロスが大きく、水素製造の効率が低下するので好ましくない。
【0016】
また、水蒸気改質触媒層の入口温度を630℃以下、さらには600℃以下に保って水蒸気改質を行うのが好ましい。入口温度が630℃を超えると石油系炭化水素の熱分解が促進され、生成したラジカル経由で触媒あるいは反応管壁に炭素が析出して、運転が困難になる場合がある。なお、触媒層出口温度は特に制限はないが、650〜800℃の範囲が好ましい。触媒層出口温度が650℃未満では水素の生成量が充分ではないおそれがあり、800℃を超えると反応装置は耐熱材料を必要とする場合があり、経済的に好ましくない。
反応圧力は、通常常圧〜3MPa、好ましくは常圧〜1MPaの範囲であり、また、LHSVは、通常0.1〜100h-1、好ましくは0.2〜50h-1の範囲である。
上記水素の製造方法においては、上記水蒸気改質により得られるCOが水素生成に悪影響を及ぼすため、これを反応によりCO2 としてCOを除くことが好ましい。
このようにして、燃料電池用水素を効率よく製造することができる。
【0017】
【実施例】
次に、本発明を実施例により、さらに具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例で得られた脱硫剤の脱硫性能は、下記の方法に従って評価した。
<脱硫性能>
脱硫剤15ミリリットルを、内径17mmのステンレス鋼製反応管に充填する。次いで、常圧下、水素気流中にて120℃に昇温し、1時間保持したのち、さらに昇温し、380℃で1時間保持することにより、脱硫剤を活性化する。
次に、反応管の温度を150℃に保持し、硫黄分濃度65重量ppmのJIS1号灯油を、常圧下、LHSV3h-1で反応管に供給開始する。50時間経過した時点における処理灯油中の硫黄分濃度を分析し、脱硫性能を評価する。
なお、使用するJIS1号灯油の蒸留性状は以下のとおりである。
初留温度 :152℃
10%留出温度:169℃
30%留出温度:184℃
50%留出温度:203℃
70%留出温度:224℃
90%留出温度:254℃
終点 :276℃
【0018】
実施例1
水500ミリリットルに硝酸ニッケル62.3gを溶解し、これに硝酸アルミニウム1.3gを加えたのち、1モル/リットル濃度の硝酸水溶液20ミリリットルを加え、pH1に調整し、(A)液を調製した。
一方、水500ミリリットルに炭酸ナトリウム33.1gを溶解し、これに水ガラス11.7g(Si濃度29重量%)を加え、(B)液を調製した。
次に、上記(A)液と(B)液を、それぞれ80℃に加熱したのち、両者を瞬時に混合し、混合液の温度を80℃に保持したまま1時間撹拌した。その後、蒸留水60リットルを用いて生成物を充分に洗浄したのち、ろ過し、次いで固形物を120℃送風乾燥機にて12時間乾燥し、さらに300℃で1時間焼成処理することにより、シリカ−アルミナ担体にニッケルが63重量%担持された脱硫剤を得た。
この脱硫剤のBET値(窒素吸着比表面積)、細孔直径3nm以下の比表面積及び脱硫性能を第1表に示す。
【0019】
実施例2
実施例1において、(A)、(B)両液を瞬時で混合する代わりに、1時間かけて混合した以外は、実施例1と同様にしてシリカ−アルミナ担体にニッケルが63重量%担持された脱硫剤を得た。
この脱硫剤のBET値、細孔直径3nm以下の比表面積及び脱硫性能を第1表に示す。
実施例3
水500ミリリットルに塩化ニッケル50.9gを溶解し、これに担体(アルミナ)0.6gを加えたのち、1モル/リットル濃度の硝酸水溶液20ミリリットルを加え、pH1に調整し、(A)液を調製した。
一方、水500ミリリットルに炭酸ナトリウム33.1gを溶解したの、水ガラス11.7g(Si濃度29重量%)を加え、(B)液を調製した。
以下、実施例1と同様な操作を行い、シリカ−アルミナ担体にニッケルが63重量%担持された脱硫剤を得た。この脱硫剤のBET値、細孔直径3nm以下の比表面積及び脱硫性能を第1表に示す。
なお、上記実施例1〜3においては、2時間経過した時点における脱硫処理灯油中の硫黄分はいずれも0.2重量ppm以下であった。
【0020】
比較例1
特公平6−65602号公報に記載の実施例に従い、脱硫剤を製造した。
すなわち、水500ミリリットルに硝酸ニッケル62.3gを溶解し、これに担体(珪藻土)4gを加え、(A)液を調製した。
一方、水500ミリリットルに炭酸ナトリウム33.1gを溶解し、(B)液を調製した。
以下、実施例1と同様な操作を行い、珪藻土担体にニッケルが67重量%担持された脱硫剤を得た。この脱硫剤のBET値、細孔直径3nm以下の比表面積及び脱硫性能を第1表に示す。
【0021】
比較例2
水500ミリリットルに硝酸ニッケル62.3gを溶解し、これにシリカ−アルミナ4.0gを加え、(A)液を調製した。一方、水500ミリリットルに水酸化ナトリウム25.0gを溶解し、(B)液を調製した。
次に、上記(A)液と(B)液を、それぞれ80℃に加熱したのち、両者を1時間かけて混合し、その混合液の温度を80℃に保持したまま1時間撹拌した。
以下、実施例1と同様な操作を行い、シリカ−アルミナ担体にニッケルが63重量%担持された脱硫剤を得た。この脱硫剤のBET値、細孔直径3nm以下の比表面積及び脱硫性能を第1表に示す。
【0022】
【表1】

Figure 0004580070
【0023】
実施例4
実施例3で得た脱硫剤15ミリリットルを、内径17mmのステンレス鋼製反応管に充填した。次いで、常圧下、水素気流中にて120℃に昇温し、1時間保持したのち、さらに昇温し、380℃で1時間保持することにより、脱硫剤を活性化した。
次に、反応管の温度を150℃に保持し、前記硫黄分濃度65重量ppmのJIS 1号灯油を、常圧下、LHSV2h-1で反応管を通過させ、さらに、下流にルテニウム系改質触媒(ルテニウム担持量0.5重量%)30ミリリットルが充填された改質器により、水蒸気改質処理した。
改質処理条件は、圧力:大気圧、水蒸気/炭素(S/C)モル比2.5、LHSV:1.0h-1、入り口温度:500℃、出口温度:750℃である。
その結果、200時間経過後の改質器出口での転化率は100%であった。また、この反応期間中の脱硫処理灯油の硫黄分は0.2重量ppm以下であった。なお、転化率は、式
転化率(%)=100×B/A
〔ただし、Aは時間当たりの供給灯油中の全炭素量(モル流量)で、A=CO+CO2 +CH4 +2×C2 留分+3×C3 留分+4×C4 留分+5×C5 留分であり、Bは時間当たりの改質器出口ガス中の全炭素量(モル流量)でB=CO+CO2 +CH4 である。〕
によって算出した値である。なお、分析はガスクロマトグラフィー法による。
【0024】
比較例3
実施例4において、脱硫剤として、比較例1で得たものを用いた以外は、実施例4と同様にして、灯油の脱硫処理及び水蒸気改質処理を行った。
その結果、70時間経過後、改質器出口の転化率は100%を下回り、90時間経過後に改質器出口で油滴が確認された。なお、70時間及び90時間経過した時点における脱硫処理灯油中の硫黄分は、それぞれ1.5重量ppm及び8.0重量ppmであった。
【0025】
実施例5
水500ミリリットルに硝酸ニッケル49.8g及び硝酸銅10.3gを溶解し、これに擬ベーマイト0.9gを加えたのち、1モル/リットル濃度の硝酸水溶液20ミリリットルを加え、pH1に調整し、(A)液を調製した。
一方、水500ミリリットルに炭酸ナトリウム33.1gを溶解し、これに水ガラス11.7g(Si濃度29重量%)を加え、(B)液を調製した。
次に、上記(A)液と(B)液を、それぞれ80℃に加熱したのち、両者を瞬時に混合し、混合液の温度を80℃に保持したまま1時間撹拌した。その後、蒸留水60リットルを用いて生成物を充分に洗浄したのち、ろ過し、次いで固形物を120℃送風乾燥機にて12時間乾燥し、さらに300℃で1時間焼成処理することにより、シリカ−アルミナ担体(Si/Al比=5)にニッケルが61重量%、銅が19.8重量%担持された脱硫剤を得た。
この脱硫剤のBET値(窒素吸着比表面積)、細孔直径3nm以下の比表面積及び脱硫性能を第2表に示す。
【0026】
実施例6
実施例5において、硝酸ニッケル49.8g及び硝酸銅10.3gに代えて、硝酸ニッケル56.0g及び硝酸銅5.2gを用い、更に、擬ベーマイト0.9gに代えてγアルミナ0.6gを用いた以外は、実施例5と同様にしてシリカ−アルミナ担体(Si/Al比=5)にニッケルが72.1重量%、銅が11.2重量%担持された脱硫剤を得た。
この脱硫剤のBET値、細孔直径3nm以下の比表面積及び脱硫性能を第2表に示す。
実施例7
実施例5において、硝酸ニッケル49.8g及び硝酸銅10.3gに代えて、硝酸ニッケル62.2g及び硝酸銅51.7gを用い、擬ベーマイトを0.9gに代えて0.8g用い、更に炭酸ナトリウムを33.1gに代えて70g用い、なおかつ水ガラス11.7gに代えてシリカ2.5gを用いた以外は、実施例5と同様にしてシリカ−アルミナ担体(Si/Al比=8)にニッケルが30.2重量%、銅が50.8重量%担持された脱硫剤を得た。
この脱硫剤のBET値、細孔直径3nm以下の比表面積及び脱硫性能を第2表に示す。
なお、上記実施例5〜7においては、5時間経過した時点における脱硫処理灯油中の硫黄分はいずれも0.2重量ppm以下であった。
【0027】
比較例4
特開平6−315628号公報に記載の実施例に従い、脱硫剤を製造した。
すなわち、水1000ミリリットルに硝酸銅58g、硝酸ニッケル69.8g、硝酸亜鉛116.6g及び硝酸アルミニウム60gを溶解し、(A)液を調製した。
一方、水2000ミリリットルに炭酸ナトリウム105gを溶解して、(B)液を調製した。
次に、上記(A)液と(B)液を攪拌しながら、徐々に混合した。混合液のpHが7になった時点で炭酸ナトリウム溶液の添加を終了し、そのまま1時間撹拌した。その後、得られた沈殿ケーキを重炭酸アンモニウムを用いて洗浄したのち、固形物を110℃乾燥機にて一昼夜乾燥し、さらに400℃で1時間焼成処理することにより、ニッケル量が21重量%、銅量が22重量%である脱硫剤を得た。
この脱硫剤のBET値(窒素吸着比表面積)、細孔直径3nm以下の比表面積及び脱硫性能を第2表に示す。
【0028】
比較例5
水500ミリリットルに硝酸ニッケル50.0g及び硝酸銅9.5gを溶解し、これにシリカ−アルミナ4.0gを加え、(A)液を調製した。一方、水500ミリリットルに水酸化ナトリウム25.0gを溶解し、(B)液を調製した。
次に、上記(A)液と(B)液を、それぞれ80℃に加熱したのち、両者を1時間かけて混合し、混合液の温度を80℃に保持したまま1時間撹拌した。その後、蒸留水60リットルを用いて生成物を充分に洗浄したのち、ろ過し、次いで固形物を120℃送風乾燥機にて12時間乾燥し、さらに300℃で1時間焼成処理することにより、シリカ−アルミナ担体(Si/Al比=8)にニッケルが55.9重量%、銅が18.2重量%担持された脱硫剤を得た。
この脱硫剤のBET値、細孔直径3nm以下の比表面積及び脱硫性能を第2表に示す。
【0029】
【表2】
Figure 0004580070
【0030】
実施例8
実施例5で得た脱硫剤15ミリリットルを、内径17mmのステンレス鋼製反応管に充填した。次いで、常圧下、水素気流中にて120℃に昇温し、1時間保持したのち、さらに昇温し、380℃で1時間保持することにより、脱硫剤を活性化した。
次に、反応管の温度を150℃に保持し、前記硫黄分濃度65重量ppmのJIS 1号灯油を、常圧下、LHSV2h-1で反応管を通過させ、さらに、下流にルテニウム系改質触媒(ルテニウム担持量0.5重量%)20ミリリットルが充填された改質器により、水蒸気改質処理した。
改質処理条件は、圧力:大気圧、水蒸気/炭素(S/C)モル比2.5、LHSV:1.5h-1、入り口温度:500℃、出口温度:750℃である。
その結果、230時間経過後の改質器出口での転化率は100%であった。また、この反応期間中の脱硫処理灯油の硫黄分は0.2重量ppm以下であった。
【0031】
比較例6
実施例8において、脱硫剤として、比較例4で得たものを用いた以外は、実施例8と同様にして、灯油の脱硫処理及び水蒸気改質処理を行った。
その結果、80時間経過後、改質器出口の転化率は100%を下回り、120時間経過後に改質器出口で油滴が確認された。なお、70時間及び90時間経過した時点における脱硫処理灯油中の硫黄分は、それぞれ4重量ppm及び13重量ppmであった。
【0032】
【発明の効果】
本発明の灯油用脱硫剤は、石油系炭化水素中の硫黄分を0.2重量ppm以下まで効率よく吸着除去することができ、かつ寿命も長い。また、この脱硫剤を用いて脱硫処理された灯油を水蒸気改質処理することにより、燃料電池用水素を効果的に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desulfurizing agent for petroleum hydrocarbons and a method for producing hydrogen for fuel cells. More specifically, the present invention relates to a petroleum hydrocarbon desulfurization agent capable of efficiently removing sulfur in petroleum hydrocarbons, particularly kerosene, to 0.2 ppm by weight or less, and this The present invention relates to a method for producing hydrogen for fuel cells by subjecting petroleum hydrocarbons desulfurized using a desulfurizing agent to steam reforming.
[0002]
[Prior art]
In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like.
For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and petroleum-based LPG, naphtha, kerosene, etc. The use of petroleum-based hydrocarbons has been studied.
[0003]
When fuel cells are used for consumer use and automobiles, the petroleum-based hydrocarbons, especially kerosene, are easy to store and handle, and supply systems such as gas stations and dealers have been established. It is advantageous as a hydrogen source.
However, petroleum-based hydrocarbons have a problem that the sulfur content is higher than that of methanol or natural gas-based ones. When hydrogen is produced using this petroleum-based hydrocarbon, generally, a method of subjecting the hydrocarbon to steam reforming or partial oxidation reforming in the presence of a reforming catalyst is used. In such reforming treatment, the reforming catalyst is poisoned by the sulfur content in the hydrocarbon. Therefore, from the viewpoint of catalyst life, the hydrocarbon is subjected to desulfurization treatment, and the sulfur content is usually 0. It is important to make it less than 2 ppm by weight.
[0004]
As a desulfurization method for petroleum hydrocarbons, many studies have been made so far. For example, a hydrodesulfurization catalyst such as Co-Mo / alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO are usually used. There is known a method of hydrodesulfurization at a temperature of 200 to 400 ° C. under a pressure of 5 to 5 MPa. This method is a method in which hydrodesulfurization is performed under severe conditions to remove the sulfur content to hydrogen sulfide, and it is difficult to reduce the sulfur content to 0.2 ppm by weight or less. It is difficult to apply to petroleum hydrocarbons.
On the other hand, as a desulfurization agent capable of adsorbing and removing sulfur content in petroleum hydrocarbons under mild conditions without performing hydrorefining treatment, the sulfur content can be reduced to 0.2 ppm by weight or less. System adsorbents are known [JP-B-6-65602, JP-A-7-115842, JP-A-7-115843, JP-A-1-188405, JP-A-2-275701, JP-A-2-204301, JP-A-5-70780, JP-A-6-80972, JP-A-6-91173, JP-A-6-228570 (above, nickel-based adsorbent), JP-A-6- No. 315628 (nickel-copper adsorbent)].
These nickel-based or nickel-copper-based adsorbents are advantageous for application as desulfurization agents to petroleum-based hydrocarbons for fuel cells, but both are practical in terms of life as desulfurization agents. In addition to the level, the design conditions of the adsorbent suitable for petroleum hydrocarbon desulfurization are not clear. In particular, the nickel-copper adsorbent is still insufficient to efficiently desulfurize sulfur.
[0005]
[Problems to be solved by the invention]
Under such circumstances, the present invention can efficiently remove sulfur in petroleum hydrocarbons to 0.2 ppm by weight or less, and has a long life and is industrially advantageous for desulfurization of petroleum hydrocarbons. It is an object of the present invention to provide an agent and a method for producing hydrogen for a fuel cell by subjecting a petroleum hydrocarbon desulfurized using the desulfurizing agent to steam reforming.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that a degreasing agent comprising a metal component supported on a carrier and having a specific pore distribution is a desulfurizing agent for petroleum hydrocarbons. It has been found that hydrogen for fuel cells can be obtained efficiently by hydrotreating petroleum petroleum hydrocarbons desulfurized using this desulfurizing agent. The present invention has been completed based on such findings.
That is, the present invention is a petroleum hydrocarbon desulfurization agent in which a metal component is supported on a support, and has a pore specific surface area of 3 m or less in pore diameter of 100 m 2 / g or more. A desulfurizing agent for petroleum hydrocarbons is provided.
The present invention also provides a method for producing hydrogen for fuel cells, characterized in that petroleum hydrocarbon is desulfurized using the petroleum hydrocarbon desulfurizing agent and then contacted with a steam reforming catalyst. It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As the petroleum hydrocarbon desulfurization agent of the present invention, one having a metal component supported on a carrier and having a pore specific surface area with a pore diameter of 3 nm or less and 100 m 2 / g or more is used.
According to the study by the present inventors, it is confirmed that the total surface area of the desulfurizing agent does not have a clear correlation with the desulfurization performance, and the surface area of the pores having a pore diameter of 3 nm or less and the desulfurization performance. It was confirmed that there was a clear correlation between them.
In the present invention, it is necessary to use a degranulating agent having a pore specific surface area of not more than 3 nm and a pore specific surface area of not less than 100 m 2 / g. When the pore specific surface area is less than 100 m 2 / g, the dispersibility of the metal as the desulfurization active component becomes insufficient, and there is a possibility that sufficient desulfurization performance cannot be obtained. The upper limit of the pore specific surface area is not particularly limited, but it is difficult to produce a very large pore surface area. Therefore, from the viewpoint of desulfurization performance and production, the pore specific surface area with a pore diameter of 3 nm or less is 100 to 200 m 2. / G is preferable, and a range of 120 to 180 m 2 / g is particularly preferable.
The pore specific surface area and BET value of the pore diameter of 3 nm or less are values measured by the following method.
(1) The BET specific surface area was measured by the N 2 adsorption method.
(2) The pore specific surface area with a pore diameter of 3 nm or less was calculated by analyzing the N 2 adsorption isotherm by the BJH method.
[0008]
In the present invention, as the carrier, a porous carrier is preferable, and a porous inorganic oxide is particularly preferable. Examples of such materials include silica, alumina, silica-alumina, titania, zirconia, magnesia, zinc oxide, white clay, clay, and diatomaceous earth. These may be used alone or in combination of two or more. Of these, silica-alumina is particularly preferred.
As the metal component supported on these carriers, nickel and / or copper are particularly suitable. Moreover, you may mix other metals, such as cobalt, iron, manganese, and chromium, in small quantities as needed.
In the present invention, the supported amount of nickel is preferably 40% by weight or more as metallic nickel based on the total amount of the desulfurizing agent. If the supported amount is less than 40% by weight, sufficient desulfurization performance may not be exhibited. On the other hand, if the loading amount is too large, the proportion of the carrier decreases, which causes a decrease in the mechanical strength and desulfurization performance of the desulfurizing agent. Considering desulfurization performance and mechanical strength, a more preferable loading amount of this nickel metal is in the range of 50 to 70% by weight. When copper is further supported in addition to nickel, the supported amount of copper is preferably 10 to 50% by weight, more preferably 15 to 35% by weight based on the total amount of the desulfurizing agent as copper metal. If this loading is less than 10% by weight, the sulfur adsorption capacity may be low, and if it exceeds 50% by weight, the sulfur adsorption rate may be low. When nickel and copper are supported, the total supported amount is preferably 70 to 90% by weight, more preferably 75 to 80% by weight in terms of metal based on the total amount of the desulfurizing agent.
[0009]
The method for supporting the metal component on the carrier is not particularly limited, and any known method such as an impregnation method, a coprecipitation method, or a kneading method can be employed.
A desulfurization agent obtained by supporting nickel or nickel-copper on a silica-alumina carrier, which is a preferred desulfurization agent of the present invention, can be produced by, for example, a coprecipitation method as described below.
In this coprecipitation method, first, an acidic aqueous solution or acidic aqueous dispersion containing a nickel source and an aluminum source, and optionally a copper source, and a basic aqueous solution containing a silicon source and an inorganic base are prepared. Examples of the nickel source used in the former acidic aqueous solution or acidic aqueous dispersion include nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, and hydrates thereof. Examples of the copper source include copper chloride, copper nitrate, copper sulfate, copper acetate, and hydrates thereof. Furthermore, examples of the aluminum source include alumina hydrates such as aluminum nitrate, pseudoboehmite, boehmite alumina, bayerite, and dibsite, and γ-alumina.
[0010]
On the other hand, the silicon source used in the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica upon firing. For example, orthosilicic acid, metasilicic acid and their sodium salts A potassium salt, water glass, etc. are mentioned. Examples of the inorganic base include alkali metal carbonates and hydroxides.
Next, the acidic aqueous solution or aqueous dispersion thus prepared and the basic aqueous solution are each heated to about 50 to 90 ° C., mixed together, and further maintained at a temperature of about 50 to 90 ° C. To complete the reaction.
Next, the produced solid is sufficiently washed and separated into solid and liquid, or the produced solid is separated into solid and liquid and washed sufficiently, and then this solid is obtained at a temperature of about 80 to 150 ° C. by a known method. Dry at a temperature of The desulfurization agent in which the metal component is supported on the silica-alumina carrier is obtained by firing the dried product thus obtained, preferably at a temperature in the range of 200 to 400 ° C. At this time, the kind and amount of raw materials to be used, reaction conditions, firing conditions, and the like are selected so that the support having the above-described pore distribution is formed and the metal loading amount becomes a desired value.
[0011]
The desulfurizing agent of the present invention is used as a desulfurizing agent for petroleum hydrocarbons, preferably kerosene. Among petroleum hydrocarbons, it is preferably applied to JIS No. 1 kerosene having a sulfur content of 80 ppm by weight or less. This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by atmospheric distillation of crude oil. The crude kerosene usually has a high sulfur content, and as such, does not become a JIS No. 1 kerosene, and it is necessary to reduce the sulfur content. As a method for reducing the sulfur content, it is preferable to perform a desulfurization treatment by a hydrorefining method which is generally carried out industrially. In this case, as a desulfurization catalyst, usually a mixture of transition metals such as nickel, cobalt, molybdenum, tungsten, etc., mixed at an appropriate ratio is supported on a carrier mainly composed of alumina in the form of metal, oxide, sulfide or the like. Things are used. As the reaction conditions, for example, the reaction temperature is 250 to 400 ° C., the pressure is 2 to 10 MPa · G, the hydrogen / oil molar ratio is 2 to 10, and the liquid hourly space velocity (LHSV) is 1 to 5 h −1 .
[0012]
As a method for desulfurizing petroleum hydrocarbons using the desulfurizing agent of the present invention, for example, the following methods can be used.
First, hydrogen is supplied in advance to the desulfurization tower filled with the desulfurization agent of the present invention, and the desulfurization agent is reduced at a temperature of about 150 to 400 ° C. Next, a petroleum hydrocarbon, preferably kerosene No. 1, is passed through the desulfurization tower in an upward or downward flow, and the temperature is about 130 to 230 ° C., the pressure is about normal pressure to about 1 MPa · G, and the LHSV is about 10 h −1 or less. Desulfurization treatment is performed under conditions. At this time, if necessary, a small amount of hydrogen may coexist. By appropriately selecting the desulfurization conditions within the above range, a petroleum hydrocarbon having a sulfur content of 0.2 ppm by weight or less can be obtained.
The method for producing hydrogen for fuel cells of the present invention is a method for producing hydrogen by bringing the petroleum-based hydrocarbon thus desulfurized into contact with a steam reforming catalyst.
[0013]
There is no restriction | limiting in particular as a steam reforming catalyst used in the method of this invention, From the well-known thing conventionally known as a steam reforming catalyst of hydrocarbon oil, arbitrary things can be selected suitably and can be used. . As such a steam reforming catalyst, for example, a catalyst obtained by supporting a noble metal such as nickel, zirconium, ruthenium, rhodium or platinum on a suitable carrier can be cited. One of the above supported metals may be supported, or a combination of two or more may be supported. Among these catalysts, those supporting ruthenium (hereinafter referred to as ruthenium catalysts) are preferable, and the effect of suppressing carbon deposition during the steam reforming reaction is great.
In the case of this ruthenium catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by weight based on the carrier. If the supported amount is less than 0.05% by weight, the steam reforming activity may not be sufficiently exerted. On the other hand, if the supported amount exceeds 20% by weight, the effect of improving the catalytic activity is not so much recognized for the supported amount. Economic disadvantage. Considering catalytic activity and economy, the more preferable amount of ruthenium supported is 0.05 to 15% by weight, and particularly preferably 0.1 to 2% by weight.
[0014]
When this ruthenium is supported, it can be supported in combination with other metals as desired. Examples of the other metal include zirconium, cobalt, and magnesium. When ruthenium and zirconium are supported in combination, the supported amount of zirconium is usually 0.5 to 20% by weight, preferably 0.5 to 15% by weight, more preferably 1 to 15% by weight, based on the carrier as ZrO 2. It is selected in the range. In the case of supporting ruthenium and cobalt in combination, the amount of cobalt supported is such that the atomic ratio of cobalt to ruthenium is usually 0.01 to 30, preferably 0.1 to 30, and more preferably 0.1 to 10. It is selected to be. Furthermore, when supporting a combination of ruthenium and magnesium, the supported amount of magnesium is usually 0.5 to 20% by weight, preferably 0.5 to 15% by weight, more preferably 1 to 15% by weight, based on the carrier as MgO. It is selected in the range.
On the other hand, the support is preferably an inorganic oxide, and specific examples include alumina, silica, zirconia, magnesia, and mixtures thereof. Of these, alumina and zirconia are particularly suitable.
[0015]
One preferred embodiment of the steam reforming catalyst used in the present invention is a catalyst in which ruthenium is supported on zirconia. The zirconia may be single zirconia (ZrO 2 ) or stabilized zirconia containing a stabilizing component such as magnesia. As this stabilized zirconia, those containing magnesia, yttria, ceria and the like are suitable.
Another preferred embodiment of the steam reforming catalyst used in the present invention is a catalyst in which cobalt and / or magnesium is supported on an alumina carrier in addition to ruthenium and zirconium, or ruthenium and zirconium. . As the alumina, α-alumina excellent in heat resistance and mechanical strength is particularly preferable.
As reaction conditions in the steam reforming treatment, the ratio S / C (molar ratio) between steam and carbon derived from petroleum hydrocarbon is usually 1.5 to 10, preferably 1.5 to 5, and more preferably. It is selected in the range of 2-4. If the S / C molar ratio is less than 1.5, the amount of hydrogen produced may decrease, and if it exceeds 10, excessive steam is required, heat loss is large, and the efficiency of hydrogen production is unfavorable.
[0016]
Further, it is preferable to perform the steam reforming while keeping the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower, more preferably 600 ° C. or lower. When the inlet temperature exceeds 630 ° C., thermal decomposition of petroleum hydrocarbons is promoted, and carbon may be deposited on the catalyst or reaction tube wall via the generated radicals, which may make operation difficult. The catalyst layer outlet temperature is not particularly limited, but is preferably in the range of 650 to 800 ° C. If the catalyst layer outlet temperature is less than 650 ° C, the amount of hydrogen produced may not be sufficient. If it exceeds 800 ° C, the reaction apparatus may require a heat-resistant material, which is economically undesirable.
The reaction pressure is usually in the range of normal pressure to 3 MPa, preferably normal pressure to 1 MPa, and LHSV is usually in the range of 0.1 to 100 h −1 , preferably 0.2 to 50 h −1 .
In the method for producing hydrogen, CO obtained by the steam reforming has an adverse effect on hydrogen generation. Therefore, it is preferable to remove CO as CO 2 by reaction.
In this way, hydrogen for fuel cells can be produced efficiently.
[0017]
【Example】
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
In addition, the desulfurization performance of the desulfurization agent obtained in each example was evaluated according to the following method.
<Desulfurization performance>
A stainless steel reaction tube having an inner diameter of 17 mm is filled with 15 ml of a desulfurizing agent. Next, the temperature is raised to 120 ° C. in a hydrogen stream under normal pressure, held for 1 hour, further heated, and held at 380 ° C. for 1 hour to activate the desulfurizing agent.
Next, the temperature of the reaction tube is maintained at 150 ° C., and supply of JIS No. 1 kerosene having a sulfur content concentration of 65 ppm by weight to the reaction tube at LHSV3h −1 under normal pressure is started. The sulfur content in the treated kerosene after 50 hours is analyzed to evaluate the desulfurization performance.
The distillation properties of JIS No. 1 kerosene used are as follows.
Initial distillation temperature: 152 ° C
10% distillation temperature: 169 ° C
30% distillation temperature: 184 ° C
50% distillation temperature: 203 ° C
70% distillation temperature: 224 ° C
90% distillation temperature: 254 ° C
End point: 276 ° C
[0018]
Example 1
After dissolving 62.3 g of nickel nitrate in 500 ml of water and adding 1.3 g of aluminum nitrate thereto, 20 ml of 1 mol / liter nitric acid aqueous solution was added to adjust to pH 1 to prepare solution (A). .
On the other hand, 33.1 g of sodium carbonate was dissolved in 500 ml of water, and 11.7 g of water glass (Si concentration 29% by weight) was added thereto to prepare a liquid (B).
Next, each of the liquids (A) and (B) was heated to 80 ° C., and both were mixed instantaneously, and stirred for 1 hour while maintaining the temperature of the mixed liquid at 80 ° C. Thereafter, the product is sufficiently washed with 60 liters of distilled water, filtered, and then the solid is dried in a 120 ° C. blower dryer for 12 hours and further subjected to a baking treatment at 300 ° C. for 1 hour to obtain silica. -A desulfurization agent having 63% by weight of nickel supported on an alumina support was obtained.
Table 1 shows the BET value (nitrogen adsorption specific surface area), specific surface area of pore diameters of 3 nm or less, and desulfurization performance of this desulfurizing agent.
[0019]
Example 2
In Example 1, 63% by weight of nickel was supported on the silica-alumina support in the same manner as in Example 1 except that both liquids (A) and (B) were mixed over 1 hour instead of instantaneously mixing them. A desulfurizing agent was obtained.
Table 1 shows the BET value, specific surface area of pore diameters of 3 nm or less, and desulfurization performance of this desulfurization agent.
Example 3
Dissolve 50.9 g of nickel chloride in 500 ml of water, add 0.6 g of support (alumina) to this, add 20 ml of 1 mol / liter nitric acid aqueous solution, adjust to pH 1, and (A) solution Prepared.
On the other hand, 31.7 g of sodium carbonate was dissolved in 500 ml of water, and 11.7 g of water glass (Si concentration: 29% by weight) was added to prepare a liquid (B).
Thereafter, the same operation as in Example 1 was performed to obtain a desulfurization agent in which 63% by weight of nickel was supported on a silica-alumina carrier. Table 1 shows the BET value, specific surface area of pore diameters of 3 nm or less, and desulfurization performance of this desulfurization agent.
In Examples 1 to 3, the sulfur content in the desulfurized kerosene after 2 hours was 0.2 ppm by weight or less.
[0020]
Comparative Example 1
A desulfurizing agent was produced according to the examples described in JP-B-6-65602.
That is, 62.3 g of nickel nitrate was dissolved in 500 ml of water, and 4 g of a carrier (diatomaceous earth) was added thereto to prepare a liquid (A).
On the other hand, 33.1 g of sodium carbonate was dissolved in 500 ml of water to prepare solution (B).
Thereafter, the same operation as in Example 1 was performed to obtain a desulfurization agent in which 67% by weight of nickel was supported on a diatomaceous earth support. Table 1 shows the BET value, specific surface area of pore diameters of 3 nm or less, and desulfurization performance of this desulfurization agent.
[0021]
Comparative Example 2
62.3 g of nickel nitrate was dissolved in 500 ml of water, and 4.0 g of silica-alumina was added thereto to prepare a liquid (A). On the other hand, 25.0 g of sodium hydroxide was dissolved in 500 ml of water to prepare a liquid (B).
Next, the liquid (A) and the liquid (B) were heated to 80 ° C., respectively, and both were mixed over 1 hour, and the mixture was stirred for 1 hour while maintaining the temperature at 80 ° C.
Thereafter, the same operation as in Example 1 was performed to obtain a desulfurization agent in which 63% by weight of nickel was supported on a silica-alumina carrier. Table 1 shows the BET value, specific surface area of pore diameters of 3 nm or less, and desulfurization performance of this desulfurization agent.
[0022]
[Table 1]
Figure 0004580070
[0023]
Example 4
15 ml of the desulfurizing agent obtained in Example 3 was charged into a stainless steel reaction tube having an inner diameter of 17 mm. Next, the temperature was raised to 120 ° C. in a hydrogen stream under normal pressure, held for 1 hour, further heated, and held at 380 ° C. for 1 hour to activate the desulfurizing agent.
Next, the temperature of the reaction tube is maintained at 150 ° C., and the JIS No. 1 kerosene having a sulfur concentration of 65 ppm by weight is passed through the reaction tube with LHSV2h −1 under normal pressure, and further, the ruthenium-based reforming catalyst is downstream. Steam reforming treatment was carried out using a reformer filled with 30 ml of (ruthenium loading 0.5 wt%).
The reforming treatment conditions are pressure: atmospheric pressure, water vapor / carbon (S / C) molar ratio 2.5, LHSV: 1.0 h −1 , inlet temperature: 500 ° C., outlet temperature: 750 ° C.
As a result, the conversion rate at the reformer outlet after 200 hours was 100%. Further, the sulfur content of the desulfurized kerosene during the reaction period was 0.2 ppm by weight or less. The conversion rate is the formula conversion rate (%) = 100 × B / A
[However, A is the total carbon amount (molar flow rate) in the supplied kerosene per hour, and A = CO + CO 2 + CH 4 + 2 × C 2 fraction + 3 × C 3 fraction + 4 × C 4 fraction + 5 × C 5 fraction B is the total carbon content (molar flow rate) in the reformer outlet gas per hour, B = CO + CO 2 + CH 4 . ]
Is a value calculated by The analysis is based on gas chromatography.
[0024]
Comparative Example 3
In Example 4, kerosene desulfurization treatment and steam reforming treatment were performed in the same manner as in Example 4 except that the desulfurization agent obtained in Comparative Example 1 was used.
As a result, after 70 hours, the conversion rate at the reformer outlet was less than 100%, and after 90 hours, oil droplets were confirmed at the reformer outlet. The sulfur content in the desulfurized kerosene after 70 hours and 90 hours was 1.5 ppm by weight and 8.0 ppm by weight, respectively.
[0025]
Example 5
49.8 g of nickel nitrate and 10.3 g of copper nitrate are dissolved in 500 ml of water, 0.9 g of pseudoboehmite is added thereto, 20 ml of 1 mol / liter nitric acid aqueous solution is added, and the pH is adjusted to 1 ( A) A solution was prepared.
On the other hand, 33.1 g of sodium carbonate was dissolved in 500 ml of water, and 11.7 g of water glass (Si concentration 29% by weight) was added thereto to prepare a liquid (B).
Next, each of the liquids (A) and (B) was heated to 80 ° C., and both were mixed instantaneously, and stirred for 1 hour while maintaining the temperature of the mixed liquid at 80 ° C. Thereafter, the product is sufficiently washed with 60 liters of distilled water, filtered, and then the solid is dried in a 120 ° C. blower dryer for 12 hours and further subjected to a baking treatment at 300 ° C. for 1 hour to obtain silica. -A desulfurization agent having 61 wt% nickel and 19.8 wt% copper supported on an alumina support (Si / Al ratio = 5) was obtained.
Table 2 shows the BET value (nitrogen adsorption specific surface area), specific surface area of pore diameter of 3 nm or less, and desulfurization performance of this desulfurizing agent.
[0026]
Example 6
In Example 5, in place of 49.8 g of nickel nitrate and 10.3 g of copper nitrate, 56.0 g of nickel nitrate and 5.2 g of copper nitrate were used, and 0.6 g of γ alumina was substituted for 0.9 g of pseudoboehmite. A desulfurizing agent was obtained in the same manner as in Example 5 except that 72.1% by weight of nickel and 11.2% by weight of copper were supported on a silica-alumina support (Si / Al ratio = 5).
Table 2 shows the BET value, specific surface area of pore diameters of 3 nm or less, and desulfurization performance of this desulfurization agent.
Example 7
In Example 5, instead of 49.8 g of nickel nitrate and 10.3 g of copper nitrate, 62.2 g of nickel nitrate and 51.7 g of copper nitrate were used, 0.8 g of pseudo boehmite was used instead of 0.9 g, and carbonic acid was further added. A silica-alumina support (Si / Al ratio = 8) was used in the same manner as in Example 5 except that 70 g was used instead of 33.1 g, and 2.5 g of silica was used instead of 11.7 g of water glass. A desulfurization agent carrying 30.2% by weight of nickel and 50.8% by weight of copper was obtained.
Table 2 shows the BET value, specific surface area of pore diameters of 3 nm or less, and desulfurization performance of this desulfurization agent.
In Examples 5 to 7, the sulfur content in the desulfurized kerosene after 5 hours was 0.2 ppm by weight or less.
[0027]
Comparative Example 4
A desulfurizing agent was produced according to the examples described in JP-A-6-315628.
That is, 58 g of copper nitrate, 69.8 g of nickel nitrate, 116.6 g of zinc nitrate and 60 g of aluminum nitrate were dissolved in 1000 ml of water to prepare solution (A).
On the other hand, 105 g of sodium carbonate was dissolved in 2000 ml of water to prepare solution (B).
Next, the liquids (A) and (B) were gradually mixed while stirring. When the pH of the mixed solution reached 7, the addition of the sodium carbonate solution was terminated, and the mixture was stirred as it was for 1 hour. Thereafter, the obtained precipitated cake was washed with ammonium bicarbonate, and then the solid was dried in a dryer at 110 ° C. all day and night, and further calcined at 400 ° C. for 1 hour, whereby the nickel amount was 21% by weight, A desulfurization agent having a copper content of 22% by weight was obtained.
Table 2 shows the BET value (nitrogen adsorption specific surface area), specific surface area of pore diameter of 3 nm or less, and desulfurization performance of this desulfurizing agent.
[0028]
Comparative Example 5
In 500 ml of water, 50.0 g of nickel nitrate and 9.5 g of copper nitrate were dissolved, and 4.0 g of silica-alumina was added thereto to prepare a liquid (A). On the other hand, 25.0 g of sodium hydroxide was dissolved in 500 ml of water to prepare solution (B).
Next, after heating the said (A) liquid and (B) liquid to 80 degreeC, respectively, both were mixed over 1 hour, and it stirred for 1 hour, keeping the temperature of a liquid mixture at 80 degreeC. Thereafter, the product was sufficiently washed with 60 liters of distilled water, filtered, and then the solid was dried with a 120 ° C. blower dryer for 12 hours, and further subjected to a baking treatment at 300 ° C. for 1 hour to obtain silica. -A desulfurization agent in which 55.9 wt% nickel and 18.2 wt% copper were supported on an alumina support (Si / Al ratio = 8) was obtained.
Table 2 shows the BET value, specific surface area of pore diameters of 3 nm or less, and desulfurization performance of this desulfurization agent.
[0029]
[Table 2]
Figure 0004580070
[0030]
Example 8
15 ml of the desulfurizing agent obtained in Example 5 was filled into a stainless steel reaction tube having an inner diameter of 17 mm. Next, the temperature was raised to 120 ° C. in a hydrogen stream under normal pressure, held for 1 hour, further heated, and held at 380 ° C. for 1 hour to activate the desulfurizing agent.
Next, the temperature of the reaction tube is maintained at 150 ° C., and JIS No. 1 kerosene having a sulfur concentration of 65 ppm by weight is passed through the reaction tube with LHSV2h −1 under normal pressure, and further, the ruthenium-based reforming catalyst is downstream. Steam reforming treatment was carried out using a reformer filled with 20 ml (ruthenium loading 0.5 wt%).
The reforming treatment conditions are pressure: atmospheric pressure, water vapor / carbon (S / C) molar ratio 2.5, LHSV: 1.5 h −1 , inlet temperature: 500 ° C., outlet temperature: 750 ° C.
As a result, the conversion rate at the reformer outlet after 230 hours was 100%. Further, the sulfur content of the desulfurized kerosene during the reaction period was 0.2 ppm by weight or less.
[0031]
Comparative Example 6
In Example 8, kerosene desulfurization treatment and steam reforming treatment were performed in the same manner as in Example 8 except that the desulfurization agent obtained in Comparative Example 4 was used.
As a result, the conversion rate at the reformer outlet was less than 100% after 80 hours, and oil droplets were confirmed at the reformer outlet after 120 hours. The sulfur content in the desulfurized kerosene after 70 hours and 90 hours was 4 ppm by weight and 13 ppm by weight, respectively.
[0032]
【The invention's effect】
The desulfurization agent for kerosene of the present invention can efficiently adsorb and remove sulfur content in petroleum-based hydrocarbons to 0.2 ppm by weight or less, and has a long life. Moreover, hydrogen for fuel cells can be produced effectively by subjecting kerosene desulfurized using this desulfurizing agent to steam reforming.

Claims (6)

多孔質担体上に金属成分を担持してなる石油系炭化水素用脱硫剤であって、金属成分としてニッケルを含み、ニッケルの担持量が、脱硫剤全量に基づき、金属ニッケルとして40重量%以上であり、さらに細孔直径3nm以下の細孔比表面積が100m2/g以上であることを特徴とする石油系炭化水素用脱硫剤。 A petroleum hydrocarbon desulfurization agent having a metal component supported on a porous carrier, which contains nickel as the metal component, and the amount of nickel supported is 40 wt% or more as metal nickel based on the total amount of the desulfurization agent. A petroleum hydrocarbon desulfurization agent characterized by having a pore specific surface area of 3 m or less and a pore diameter of 3 nm or less of 100 m 2 / g or more. 多孔質担体上に金属成分を担持してなる石油系炭化水素用脱硫剤であって、金属成分としてニッケル及び銅を含み、ニッケルと銅の合計担持量が、脱硫剤全量に基づき金属換算で70〜90重量%であり、さらに細孔直径3nm以下の細孔比表面積が100mA petroleum hydrocarbon desulfurization agent having a metal component supported on a porous carrier, which contains nickel and copper as metal components, and the total supported amount of nickel and copper is 70 in terms of metal based on the total amount of the desulfurization agent. ˜90% by weight, and the pore specific surface area with pore diameter of 3 nm or less is 100 m. 22 /g以上であることを特徴とする石油系炭化水素用脱硫剤。A desulfurization agent for petroleum hydrocarbons, characterized in that it is at least / g. 担体がシリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、マグネシア、酸化亜鉛、白土、粘土及び珪藻土の中から選ばれる少なくとも一種である請求項1又は2記載の脱硫剤。  The desulfurization agent according to claim 1 or 2, wherein the carrier is at least one selected from silica, alumina, silica-alumina, titania, zirconia, magnesia, zinc oxide, white clay, clay and diatomaceous earth. 石油系炭化水素が灯油である請求項1〜3のいずれかに記載の脱硫剤。The desulfurizing agent according to any one of claims 1 to 3, wherein the petroleum hydrocarbon is kerosene. 請求項1〜4のいずれかに記載の石油系炭化水素用脱硫剤を用いて石油系炭化水素を脱硫したのち、水蒸気改質触媒と接触させることを特徴とする燃料電池用水素の製造方法。A method for producing hydrogen for a fuel cell, comprising desulfurizing petroleum hydrocarbon using the petroleum hydrocarbon desulfurization agent according to any one of claims 1 to 4 and then contacting with a steam reforming catalyst. 水蒸気改質触媒がルテニウム系触媒である請求項5記載の製造方法。The production method according to claim 5, wherein the steam reforming catalyst is a ruthenium-based catalyst.
JP2000214145A 2000-03-31 2000-07-14 Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells Expired - Lifetime JP4580070B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000214145A JP4580070B2 (en) 2000-03-31 2000-07-14 Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
EP01917783A EP1270069B1 (en) 2000-03-31 2001-04-02 Use of a desulfurizing agent
PCT/JP2001/002861 WO2001072417A1 (en) 2000-03-31 2001-04-02 Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent
AU2001244705A AU2001244705A1 (en) 2000-03-31 2001-04-02 Desulfurizing agent for hydrocarbon derived from petroleum, method for producinghydrogen for use in fuel cell and method for producing nickel-based desulfurizi ng agent
US10/221,199 US7268097B2 (en) 2000-03-31 2001-04-02 Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent
DK01917783.1T DK1270069T3 (en) 2000-03-31 2001-04-02 Use of a desulfurizing agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000096350 2000-03-31
JP2000-96350 2000-03-31
JP2000214145A JP4580070B2 (en) 2000-03-31 2000-07-14 Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells

Publications (2)

Publication Number Publication Date
JP2001342464A JP2001342464A (en) 2001-12-14
JP4580070B2 true JP4580070B2 (en) 2010-11-10

Family

ID=26589029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000214145A Expired - Lifetime JP4580070B2 (en) 2000-03-31 2000-07-14 Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells

Country Status (1)

Country Link
JP (1) JP4580070B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020446A1 (en) * 2003-07-23 2005-01-27 Choudhary Tushar V. Desulfurization and novel process for same
JP4616569B2 (en) * 2004-03-29 2011-01-19 三菱重工業株式会社 Desulfurization agent for hydrocarbon fuel and method for producing the same
US7897538B2 (en) * 2004-05-21 2011-03-01 Exxonmobil Research And Engineering Company Process for removing sulfur compounds from hydrocarbon streams and adsorbent used in this process
CN101146894B (en) * 2005-03-24 2012-12-19 出光兴产株式会社 Desulfurizing agent and desulfurization method using same
JP5117014B2 (en) * 2006-08-14 2013-01-09 Jx日鉱日石エネルギー株式会社 Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP2010001480A (en) * 2009-07-17 2010-01-07 Idemitsu Kosan Co Ltd Desulfurizing agent and desulfurization method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194976A (en) * 1993-12-29 1995-08-01 Tonen Corp Silica-alumina, production thereof and catalyst for hydrotreatment of light hydrocarbon oil
JPH09320622A (en) * 1996-05-30 1997-12-12 Toshiba Corp Fuel cell generating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194976A (en) * 1993-12-29 1995-08-01 Tonen Corp Silica-alumina, production thereof and catalyst for hydrotreatment of light hydrocarbon oil
JPH09320622A (en) * 1996-05-30 1997-12-12 Toshiba Corp Fuel cell generating system

Also Published As

Publication number Publication date
JP2001342464A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
EP1270069B1 (en) Use of a desulfurizing agent
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JPWO2006101079A1 (en) Desulfurization agent and desulfurization method using the same
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP4322804B2 (en) Method for desulfurizing liquid hydrocarbon and method for producing hydrogen for fuel cell
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP4079743B2 (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP2001279257A (en) Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2005146054A6 (en) Desulfurization agent and desulfurization method using the same
JP2005146054A (en) Desulfurizing agent and desulfurizing method using the same
JP4531917B2 (en) Method for producing nickel-based desulfurization agent
JP2001278602A (en) Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
JP2001276605A (en) Desulfurization agent and method of producing hydrogen for fuel cell
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP2001294874A (en) Fuel oil for kerosene-based fuel cell
JP2003290660A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it
JP2001262164A (en) Fuel oil for fuel cell
JP2001279273A (en) Kerosene-based fuel oil for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4580070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term