JP2006117921A - Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system - Google Patents

Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system Download PDF

Info

Publication number
JP2006117921A
JP2006117921A JP2005270644A JP2005270644A JP2006117921A JP 2006117921 A JP2006117921 A JP 2006117921A JP 2005270644 A JP2005270644 A JP 2005270644A JP 2005270644 A JP2005270644 A JP 2005270644A JP 2006117921 A JP2006117921 A JP 2006117921A
Authority
JP
Japan
Prior art keywords
sulfur
liquid fuel
fuel
oil
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005270644A
Other languages
Japanese (ja)
Inventor
Toshimasa Uko
俊匡 宇高
Kazuhito Saito
一仁 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005270644A priority Critical patent/JP2006117921A/en
Publication of JP2006117921A publication Critical patent/JP2006117921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing sulfur from a liquid fuel, by which sulfur contents, especially thiophene compounds which contain each one or more benzene rings and are slightly removable sulfur components, in the liquid fuel containing organic sulfur compounds can efficiently be removed down to an extremely low concentration at a temperature of ≤80°C, and to provide a fuel battery system using hydrogen produced by reforming the obtained desulfurized fuel. <P>SOLUTION: This method for removing the sulfur from the liquid fuel is characterized by desulfurizing the liquid fuel with a desulfurizing agent prepared by carrying at least one active metal component selected from the groups 9, 10 and 11 in the periodic table on a carrier. Thereby, sulfur contents, especially thiophene compounds having each one or more benzene rings, in the sulfur compound-containing liquid fuels can efficiently be removed down to an extremely low sulfur concentration at a temperature of ≤80°C. And, the fuel battery system using hydrogen produced by reforming the liquid fuel desulfurized by the desulfurization method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液体燃料の硫黄除去方法及び水素の製造方法と燃料電池システムに関する。詳しくは、液体燃料中の硫黄分を80℃以下の温度で極めて低濃度まで効率よく、長期間にわたって除去することができる脱硫方法、及びこの脱硫方法を用いて脱硫処理された液体燃料を改質処理し水素を製造し、この水素を燃料電池の原料に利用するシステムに関する。   The present invention relates to a method for removing sulfur from liquid fuel, a method for producing hydrogen, and a fuel cell system. Specifically, a desulfurization method capable of efficiently removing sulfur content in liquid fuel to a very low concentration at a temperature of 80 ° C. or less over a long period of time, and reforming liquid fuel desulfurized using this desulfurization method The present invention relates to a system that processes hydrogen to produce hydrogen and uses the hydrogen as a raw material for fuel cells.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のナフサや灯油などの炭化水素油の使用が研究されている。   In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like. For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and carbonization of petroleum naphtha and kerosene, etc. The use of hydrogen oil has been studied.

燃料電池を民生用や自動車用などに利用する場合、上記炭化水素油は常温常圧で液状であって、保管及び取扱いが容易である上、特に石油系のものはガソリンスタンドや販売店など、供給システムが整備されていることから、水素源として有利である。しかしながら、このような炭化水素油は、メタノールや天然ガス系のものに比べて、硫黄分の含有量が多いという問題がある。この炭化水素油を用いて水素を製造する場合、一般に、該炭化水素油を、改質触媒の存在下に水蒸気改質、オートサーマル改質又は部分酸化改質処理する方法が用いられる。このような改質処理においては、上記改質触媒は、炭化水素油中の硫黄分により被毒されるため、触媒寿命の点から、該炭化水素油に脱硫処理を施し、硫黄分含有量を長時間にわたり0.2質量ppm以下に低減させることが必要である。
また、自動車に直接水素を搭載する場合、安全面から水素に付臭物を添加することが検討されており、原料油に存在する硫黄化合物からなる付臭物を極力低濃度にすることも同様に肝要である。
When the fuel cell is used for consumer use or automobile use, the hydrocarbon oil is liquid at room temperature and normal pressure, and is easy to store and handle. Since the supply system is maintained, it is advantageous as a hydrogen source. However, such hydrocarbon oil has a problem that the content of sulfur is higher than that of methanol or natural gas. When hydrogen is produced using this hydrocarbon oil, generally, a method of subjecting the hydrocarbon oil to steam reforming, autothermal reforming or partial oxidation reforming in the presence of a reforming catalyst is used. In such reforming treatment, the reforming catalyst is poisoned by the sulfur content in the hydrocarbon oil. Therefore, from the viewpoint of catalyst life, the hydrocarbon oil is subjected to desulfurization treatment to reduce the sulfur content. It is necessary to reduce it to 0.2 mass ppm or less over a long period of time.
In addition, when hydrogen is directly mounted on an automobile, it has been studied to add an odorant to hydrogen from the viewpoint of safety, and it is also possible to reduce the concentration of an odorant consisting of sulfur compounds present in feedstock as much as possible. It is important to.

石油系炭化水素の脱硫方法としては、これまで多くの研究がなされており、例えばCo−Mo/アルミナやNi−Mo/アルミナなどの水素化脱硫触媒とZnOなどの硫化水素吸着剤を用い、常圧〜5MPa・Gの圧力下、200〜400℃の温度で水素化脱硫する方法が知られている。この方法は厳しい条件下で水素化脱硫を行い、硫黄分を硫化水素にして除去する方法であり、小規模の分散型燃料電池用としては、安全・環境上の配慮、高圧ガス取締法等の関連法規との関係上好ましくない。すなわち燃料電池用としては、1MPa・G未満の条件で長時間燃料を脱硫することのできる脱硫剤が望まれている。
一方、燃料油中の硫黄分を、温和な条件で吸着除去する脱硫剤として、ニッケル系の吸着剤が提案されている(例えば特許文献1〜12参照)。またこれを改良したニッケル−銅系の吸着剤が提案されているが、250〜450℃の高温条件である(例えば特許文献11又は13参照)。
As a desulfurization method for petroleum hydrocarbons, many studies have been made so far. For example, a hydrodesulfurization catalyst such as Co-Mo / alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO are usually used. A method of hydrodesulfurizing at a temperature of 200 to 400 ° C. under a pressure of 5 MPa · G is known. This method performs hydrodesulfurization under harsh conditions and removes sulfur by converting it to hydrogen sulfide. For small-scale distributed fuel cells, safety and environmental considerations, high-pressure gas control methods, etc. It is not preferable in relation to related laws and regulations. That is, for fuel cells, a desulfurization agent that can desulfurize fuel for a long time under a condition of less than 1 MPa · G is desired.
On the other hand, nickel-based adsorbents have been proposed as desulfurization agents that adsorb and remove sulfur content in fuel oil under mild conditions (see, for example, Patent Documents 1 to 12). Moreover, although the nickel-copper type adsorbent which improved this is proposed, it is a high temperature condition of 250-450 degreeC (for example, refer patent document 11 or 13).

有機硫黄化合物の脱硫では銀/アルミナ、銀/シリカ‐アルミナなどが知られている(特許文献14)。また、有機硫黄化合物含有液体燃料油の100℃以下での脱硫では活性炭に酸化ニッケル、酸化亜鉛を担持した脱硫剤(特許文献15)、銅−塩素/アルミナ、パラジウム‐塩素/アルミナ(特許文献16)が知られている。
しかし、高温で液体燃料の脱硫を行う場合、電気ヒーターや燃料の燃焼などによる加熱が必要となり効率が悪い。上記の従来技術では、80℃以下の温度では脱硫に対して実用的なレベルではない。
Silver / alumina, silver / silica-alumina, etc. are known for desulfurization of organic sulfur compounds (Patent Document 14). In addition, in desulfurization of organic sulfur compound-containing liquid fuel oil at 100 ° C. or less, desulfurization agent having nickel oxide and zinc oxide supported on activated carbon (patent document 15), copper-chlorine / alumina, palladium-chlorine / alumina (patent document 16). )It has been known.
However, when desulfurization of liquid fuel is performed at a high temperature, heating by an electric heater or fuel combustion is required, which is inefficient. In the above prior art, a temperature of 80 ° C. or lower is not a practical level for desulfurization.

特公平6−65602号公報Japanese Examined Patent Publication No. 6-65602 特公平7−115842号公報Japanese Patent Publication No.7-115842 特開平1−188405号公報Japanese Patent Laid-Open No. 1-188405 特公平7−115843号公報Japanese Patent Publication No.7-115843 特開平2−275701号公報JP-A-2-275701 特開平2−204301号公報JP-A-2-204301 特開平5−70780号公報Japanese Patent Laid-Open No. 5-70780 特開平6−80972号公報Japanese Patent Laid-Open No. 6-80972 特開平6−91173号公報JP-A-6-91173 特開平6−228570号公報JP-A-6-228570 特開2001−279259号公報JP 2001-279259 A 特開2001−342465号公報JP 2001-342465 A 特開平6−315628号公報JP-A-6-315628 特開2001−316043JP2001-316043 特開2003−144930JP 2003-144930 A 特開2002−294256JP 2002-294256 A

本発明の課題は、水蒸気改質、オートサーマル改質又は部分酸化改質処理によって水素を製造でき、該改質触媒の被毒を抑制できるように、有機硫黄化合物含有液体燃料中の硫黄分、特に難脱硫成分であるベンゼン環を一つ以上含むチオフェン類、を80℃以下の温度で極めて低濃度まで効率よく脱硫出来る方法を提供することである。さらに、こうして得られる脱硫処理燃料を改質して水素を製造し、その水素を利用した燃料電池システムを提供するものである。   An object of the present invention is to produce hydrogen by steam reforming, autothermal reforming or partial oxidation reforming treatment, so that poisoning of the reforming catalyst can be suppressed, sulfur content in the organic sulfur compound-containing liquid fuel, In particular, it is to provide a method capable of efficiently desulfurizing a thiophene containing at least one benzene ring, which is a difficult desulfurization component, to a very low concentration at a temperature of 80 ° C. or lower. Furthermore, the desulfurized fuel thus obtained is reformed to produce hydrogen, and a fuel cell system using the hydrogen is provided.

本発明者らは、上記目的を達成すべく種々の研究を重ねた結果、既存の脱硫剤は80℃以下では充分な性能を有していないことに着目し、ある種の脱硫剤を用いることにより有機硫黄化合物含有液体燃料中の硫黄分を80℃以下の温度で極めて低濃度まで効率よく脱硫出来ることを見出し、本発明を完成するに至った。
すなわち本発明は、
(1)担体に、周期表9族、10族及び12族から選ばれる少なくとも1種の活性金属成分を担持してなる脱硫剤を用いて、硫黄化合物含有液体燃料を80℃以下の温度で脱硫することを特徴とする液体燃料の硫黄除去方法、
(2)硫黄化合物含有液体燃料が、アルコール、エーテル、ナフサ、ガソリン、灯油、軽油、重油、アスファルテン油、オイルサンド油、石炭液化油、シェールオイル油、GTL(Gas to Liquidの略、気体燃料を液体燃料に転換した油の総称である)、廃プラスチック油及びバイオフューエルから選ばれる少なくとも1種である上記(1)の硫黄除去方法、
(3)担体がアルミニウムを含むものである上記(1)又は(2)の硫黄除去方法、
(4)活性金属成分がニッケル、コバルト及び亜鉛から選ばれる少なくとも1種を含むものである(1)〜(3)のいずれかの硫黄除去方法、
(5)上記(1)〜(4)のいずれかの硫黄除去方法における前段もしくは後段に、多孔質担体もしくは金属を担持した多孔質担体からなる脱硫剤から選ばれる少なくとも1種を組み合わせて硫黄化合物含有液体燃料の硫黄除去を行う硫黄除去方法、
(6)上記(1)〜(5)のいずれかの方法で、硫黄化合物含有液体燃料の硫黄除去後、クリーンアップ脱硫剤を用いてさらに硫黄除去を行う硫黄除去方法、
(7)上記(1)〜(6)のいずれかの方法で、硫黄化合物含有液体燃料の硫黄除去後、この脱硫処理燃料を部分改質、オートサーマル改質又は水蒸気改質することを特徴とする水素の製造方法、
(8)部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒が、ルテニウム系触媒又はニッケル系触媒である上記(7)の水素の製造方法及び
(9)上記(7)又は(8)の製造方法によって得られる水素を原料とする燃料電池システム
を提供するものである。
As a result of various studies to achieve the above object, the present inventors have paid attention to the fact that existing desulfurization agents do not have sufficient performance at 80 ° C. or lower, and use certain desulfurization agents. As a result, it was found that the sulfur content in the organic sulfur compound-containing liquid fuel can be efficiently desulfurized to a very low concentration at a temperature of 80 ° C. or less, and the present invention has been completed.
That is, the present invention
(1) Desulfurization of a sulfur compound-containing liquid fuel at a temperature of 80 ° C. or lower using a desulfurization agent that carries at least one active metal component selected from Group 9, Group 10 and Group 12 on the carrier. A method for removing sulfur from liquid fuel,
(2) The sulfur compound-containing liquid fuel is alcohol, ether, naphtha, gasoline, kerosene, light oil, heavy oil, asphaltene oil, oil sand oil, coal liquefied oil, shale oil oil, GTL (Gas to Liquid, short for gas fuel) (It is a general term for oil converted into liquid fuel), the sulfur removal method of (1) above, which is at least one selected from waste plastic oil and biofuel,
(3) The sulfur removal method of (1) or (2) above, wherein the support contains aluminum,
(4) The sulfur removal method according to any one of (1) to (3), wherein the active metal component includes at least one selected from nickel, cobalt, and zinc.
(5) A sulfur compound obtained by combining at least one selected from a desulfurization agent comprising a porous carrier or a metal-supported porous carrier before or after the sulfur removal method of any one of (1) to (4) above A sulfur removal method for removing sulfur from contained liquid fuel,
(6) A sulfur removal method for further removing sulfur using a cleanup desulfurization agent after removing sulfur from the sulfur compound-containing liquid fuel by any one of the methods (1) to (5),
(7) The method according to any one of (1) to (6) above, wherein after the sulfur removal of the sulfur compound-containing liquid fuel, the desulfurized fuel is partially reformed, autothermally reformed, or steam reformed. A method for producing hydrogen,
(8) The method for producing hydrogen of (7) above, wherein the partial oxidation reforming catalyst, autothermal reforming catalyst or steam reforming catalyst is a ruthenium catalyst or nickel catalyst, and (9) (7) or (8 The fuel cell system using hydrogen obtained by the production method as a raw material is provided.

本発明の硫黄除去方法(以下脱硫方法と称することがある)によれば、有機硫黄化合物含有液体燃料中の硫黄分、特にベンゼン環を一つ以上含むチオフェン類を温度80℃以下で効率よく除去できる。液体燃料から水素を製造するための改質の原料にこの脱硫方法を適用することによって、該改質触媒を有効に機能させ、かつ寿命を延長させることができる。かくして得られる水素は燃料電池のために効率よく利用できる。   According to the sulfur removal method of the present invention (hereinafter sometimes referred to as a desulfurization method), sulfur content in an organic sulfur compound-containing liquid fuel, particularly thiophenes containing one or more benzene rings, is efficiently removed at a temperature of 80 ° C. or less. it can. By applying this desulfurization method to a reforming raw material for producing hydrogen from liquid fuel, the reforming catalyst can function effectively and its life can be extended. The hydrogen thus obtained can be used efficiently for fuel cells.

本発明の脱硫方法に用いる脱硫剤は、担体上に周期表9族、10族及び12族から選ばれる少なくとも1種の活性金属成分を含むことを特徴とする。活性金属成分としては、ニッケル、コバルト、亜鉛から選ばれる少なくとも1種を含むものが好ましい。金属成分担持量は0.5〜80質量%が好ましく、さらに5〜70質量%が好ましい。ただし、含浸法においては、金属成分担持量が50質量%以下の場合には、担持した金属成分の粒子の分散性を維持でき、充分な脱硫性能が得られるので好ましい。
ニッケル成分としては、通常酸化ニッケル、これを還元して得られる金属ニッケル、その他、炭酸ニッケル、硝酸ニッケル、塩化ニッケル、硫酸ニッケル、酢酸ニッケル等が挙げられる。コバルト成分としては、炭酸コバルト、硝酸コバルト、塩化コバルト、硫酸コバルト、酢酸コバルト等が挙げられる。亜鉛成分としては、炭酸亜鉛、硝酸亜鉛、塩化亜鉛、硫酸亜鉛、酢酸亜鉛等が挙げられる。
The desulfurization agent used in the desulfurization method of the present invention is characterized in that it contains at least one active metal component selected from Group 9, Group 10 and Group 12 on the support. As an active metal component, what contains at least 1 sort (s) chosen from nickel, cobalt, and zinc is preferable. The metal component loading is preferably 0.5 to 80% by mass, more preferably 5 to 70% by mass. However, in the impregnation method, when the metal component loading is 50% by mass or less, the dispersibility of the supported metal component particles can be maintained, and sufficient desulfurization performance can be obtained.
Examples of the nickel component include nickel oxide, metallic nickel obtained by reducing the nickel oxide, nickel carbonate, nickel nitrate, nickel chloride, nickel sulfate, nickel acetate and the like. Examples of the cobalt component include cobalt carbonate, cobalt nitrate, cobalt chloride, cobalt sulfate, and cobalt acetate. Examples of the zinc component include zinc carbonate, zinc nitrate, zinc chloride, zinc sulfate, and zinc acetate.

また、本発明に係る脱硫剤の担体は多孔質の無機酸化物であることが好ましく、シリカ、アルミナ、シリカ‐アルミナ、ゼオライト、チタニア、ジルコニア、マグネシア、シリカ‐マグネシア、酸化亜鉛、白土、粘土、珪藻土、ALPO(Alminophosphate)、SAPO(Silicoaluminophosphate)、MCM(Mobil‘s composition of Matter)又は活性炭が好ましい。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。アルミナ、シリカ‐アルミナなどアルミニウムを主成分とするものがさらに好ましい。   The carrier of the desulfurizing agent according to the present invention is preferably a porous inorganic oxide, silica, alumina, silica-alumina, zeolite, titania, zirconia, magnesia, silica-magnesia, zinc oxide, clay, clay, Diatomaceous earth, ALPO (Alminophosphate), SAPO (Silicoaluminophosphate), MCM (Mobile's composition of Matter) or activated carbon is preferable. These may be used alone or in combination of two or more. More preferred are those containing aluminum as the main component, such as alumina and silica-alumina.

金属成分を担持させる方法としては、特に制限はなく、含浸法、共沈法、混練法、物理混合法、蒸着法、イオン交換法などの公知の任意の方法を採用することができる。特に、含浸法、共沈法、イオン交換法が好ましい。   There is no restriction | limiting in particular as a method to carry | support a metal component, Well-known arbitrary methods, such as an impregnation method, a coprecipitation method, a kneading method, a physical mixing method, a vapor deposition method, an ion exchange method, are employable. In particular, an impregnation method, a coprecipitation method, and an ion exchange method are preferable.

含浸法では、金属の塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩等及びこれらの水和物の溶液を担体に含浸させ、80〜150℃程度の温度で一晩程度乾燥し、好ましくは200〜1000℃程度の温度において焼成することにより、所望の脱硫剤が得られる。金属がコバルトにおいては、600〜1200℃で焼成するのが好ましく、さらに800〜1000℃が好ましい。金属が亜鉛においては、400〜1000℃で焼成するのが好ましく、さらに600〜800℃が好ましい。
共沈法の一例として金属担持したシリカ‐アルミナの場合で説明すると、先ず、金属源とアルミニウム源の酸性水溶液又は分散液と、ケイ素源及び無機塩基を含む塩基性水溶液を調製する。前者の金属源には上記の含浸法で示した塩類及びこれらの水和物が利用できる。アルミニウム源として、硝酸アルミニウム、擬ベーマイト、ベーマイトアルミナ、バイヤライト、ジブサイトなどのアルミナ水和物や、γ‐アルミナなども利用できる。一方、シリカ‐アルミナ担体のためのケイ素源としては、アルカリ水溶液に可溶であって、焼成によりシリカになるものであればよく、特に制限されず、例えばオルトケイ酸、メタケイ酸及びそれらのナトリウム塩やカリウム塩、水ガラスなどが挙げられる。また、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが挙げられる。次に、このようにして調製した酸性の水溶液又は水分散液と塩基性水溶液をそれぞれ50〜90℃程度に加温して、両者を混合し、さらに50〜90℃程度の温度に保持して反応を完結させる。次に、生成した固形物を充分に洗浄したのち固液分離するか、あるいは生成した固形物を固液分離したのち充分に洗浄し、次いで、この固形物を公知の方法により80〜150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200〜1000℃の範囲の温度において焼成することにより、シリカ‐アルミナ担体上に金属成分が担持された脱硫剤が得られる。
In the impregnation method, a metal chloride, nitrate, sulfate, acetate, carbonate, etc. and a solution of these hydrates are impregnated into a support and dried at a temperature of about 80 to 150 ° C. overnight, preferably By baking at a temperature of about 200 to 1000 ° C., a desired desulfurizing agent is obtained. When the metal is cobalt, it is preferably fired at 600 to 1200 ° C, more preferably 800 to 1000 ° C. When the metal is zinc, it is preferably fired at 400 to 1000 ° C, more preferably 600 to 800 ° C.
In the case of silica-alumina loaded with metal as an example of the coprecipitation method, first, an acidic aqueous solution or dispersion of a metal source and an aluminum source, and a basic aqueous solution containing a silicon source and an inorganic base are prepared. For the former metal source, the salts shown in the above impregnation method and hydrates thereof can be used. As the aluminum source, alumina hydrates such as aluminum nitrate, pseudoboehmite, boehmite alumina, bayerite, dibsite, and γ-alumina can be used. On the other hand, the silicon source for the silica-alumina carrier is not particularly limited as long as it is soluble in an aqueous alkali solution and becomes silica upon firing, and examples thereof include orthosilicic acid, metasilicic acid and sodium salts thereof. And potassium salts and water glass. Examples of the inorganic base include alkali metal carbonates and hydroxides. Next, the acidic aqueous solution or aqueous dispersion thus prepared and the basic aqueous solution are each heated to about 50 to 90 ° C., mixed together, and further maintained at a temperature of about 50 to 90 ° C. Complete the reaction. Next, the produced solid is sufficiently washed and separated into solid and liquid, or the produced solid is separated into solid and liquid and washed sufficiently, and then this solid is obtained at a temperature of about 80 to 150 ° C. by a known method. Dry at a temperature of A desulfurization agent in which a metal component is supported on a silica-alumina carrier is obtained by firing the dried product thus obtained, preferably at a temperature in the range of 200 to 1000 ° C.

脱硫剤の形状は、粉末状、破砕状、ペレット状、錠剤状、ハニカム状又は粉末を他のハニカムにコーティングした状態が好ましい。   The shape of the desulfurizing agent is preferably powder, crushed, pellet, tablet, honeycomb, or a state where powder is coated on another honeycomb.

担体として、シリカ‐アルミナ以外の担体を用いる場合も、適宜上記の方法に準じて行うことができる。また、上記方法で得られた脱硫剤を更に還元処理して、金属成分の還元度(金属成分中の金属状態の質量割合)を上げるには、当業界において通常用いられる方法が適宜用いられる。該還元処理は、燃料電池用水素の製造においては、その脱硫処理工程の直前に行うか、あるいは脱硫剤製造工程終了後に行う。脱硫処理工程の直前に行う場合には、例えば、水素下300〜800℃程度で数時間還元する。脱硫剤製造後に還元を行う場合には、空気、希釈酸素、二酸化炭素などを用いて脱硫剤の安定化処理を行うことが好ましい。この安定化処理脱硫剤を用いる場合には、脱硫反応器に充填した後、再度還元処理を行うことが必要である。還元処理を行った後は不活性ガス、脱硫灯油で封入するとよい。   When a carrier other than silica-alumina is used as the carrier, it can be carried out according to the above method as appropriate. In order to further reduce the desulfurizing agent obtained by the above method to increase the reduction degree of the metal component (mass ratio of the metal state in the metal component), a method usually used in this field is appropriately used. In the production of hydrogen for a fuel cell, the reduction treatment is performed immediately before the desulfurization treatment step or after the completion of the desulfurization agent production step. When it is performed immediately before the desulfurization treatment step, for example, it is reduced for several hours at about 300 to 800 ° C. under hydrogen. When the reduction is performed after the production of the desulfurizing agent, it is preferable that the desulfurizing agent is stabilized using air, diluted oxygen, carbon dioxide, or the like. When this stabilizing treatment desulfurizing agent is used, it is necessary to perform reduction treatment again after filling the desulfurization reactor. After performing the reduction treatment, it may be sealed with an inert gas or desulfurized kerosene.

本発明において、前記脱硫剤を用いて脱硫する硫黄化合物含有液体燃料としては、特に限定されるものではないが、例えばアルコール、エーテル、ナフサ、ガソリン、灯油、軽油、重油、アスファルテン油、オイルサンド油、石炭液化油、シェールオイル油、GTL、廃プラスチック油及びバイオフューエル(バイオマス燃料)等から選ばれる1種、もしくはこれらの混合物が挙げられる。これらのうち、本発明に係る脱硫剤を適用するのに好適な燃料としては灯油が好ましく、特に硫黄分含有量が80質量ppm以下のJIS1号灯油が好ましい。このJIS1号灯油は、原油を常圧蒸留して得た粗灯油を脱硫することにより得られるもので、該粗灯油は、通常硫黄分が多く、そのままではJIS1号灯油とはならず、硫黄分を低減させる必要がある。この硫黄分を低減させる方法としては、一般に工業的に実施されている水素化精製法で脱硫処理するのが好ましい。この場合、脱硫触媒として、通常ニッケル、コバルト、モリブデン、タングステンなどの遷移金属を適当な割合で混合したものを金属、酸化物、硫化物などの形態でアルミナを主成分とする担体に担持させたものが用いられる。反応条件は、例えば反応温度250〜400℃、圧力2〜10MPa・G、水素/油モル比2〜10、液時空間速度(LHSV)1〜5hr-1などの条件が用いられる。 In the present invention, the sulfur compound-containing liquid fuel to be desulfurized using the desulfurizing agent is not particularly limited. For example, alcohol, ether, naphtha, gasoline, kerosene, light oil, heavy oil, asphaltene oil, oil sand oil , One kind selected from coal liquefied oil, shale oil oil, GTL, waste plastic oil, biofuel (biomass fuel), or a mixture thereof. Among these, kerosene is preferable as a fuel suitable for applying the desulfurizing agent according to the present invention, and JIS No. 1 kerosene having a sulfur content of 80 mass ppm or less is particularly preferable. This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by atmospheric distillation of crude oil. The crude kerosene usually has a high sulfur content, and as such, it does not become JIS No. 1 kerosene, Need to be reduced. As a method for reducing the sulfur content, it is preferable to perform a desulfurization treatment by a hydrorefining method which is generally carried out industrially. In this case, as a desulfurization catalyst, usually a mixture of transition metals such as nickel, cobalt, molybdenum, tungsten, etc., mixed at an appropriate ratio is supported on a carrier mainly composed of alumina in the form of metal, oxide, sulfide or the like. Things are used. As the reaction conditions, for example, the reaction temperature is 250 to 400 ° C., the pressure is 2 to 10 MPa · G, the hydrogen / oil molar ratio is 2 to 10, and the liquid hourly space velocity (LHSV) is 1 to 5 hr −1 .

本発明に係る脱硫剤を用いて、有機硫黄化合物含有液体燃料を脱硫する方法としては、脱硫剤に有機硫黄化合物含有液体燃料を流通させる方法、脱硫剤を内部に固定したタンクなどの容器に有機硫黄化合物含有液体燃料を静置又は撹拌する方法が好ましい。本発明においては、脱硫温度は80℃以下である。この脱硫温度が80℃以下であればエネルギーコストが低く、経済的に有利である。脱硫温度の下限については特に制限はなく、脱硫すべき液体燃料の流動性及び脱硫剤の脱硫活性などを考慮して、適宜選定される。脱硫すべき液体燃料が灯油である場合、流動性の点から−40℃程度であり、好ましい脱硫温度は−30〜60℃、特に室温近辺である。
また、温度以外の脱硫条件については、特に制限はなく、脱硫すべき液体燃料の性状に応じて適宜選択することができる。具体的には、燃料として炭化水素、例えばJIS1号灯油を、液相で本発明に係る脱硫剤を充填した脱硫塔中を上向き又は下向きの流れで通過させて脱硫する場合には、温度は室温程度、圧力常圧〜1MPa・G程度、LHSV2hr-1以下程度の条件で脱硫処理することが好ましい。この際、必要により、少量の水素を共存させてもよい。脱硫条件を上記範囲で適当に選択することにより、例えば硫黄分1ppm以下の炭化水素を得ることができる。
Examples of a method for desulfurizing an organic sulfur compound-containing liquid fuel using the desulfurizing agent according to the present invention include a method of circulating an organic sulfur compound-containing liquid fuel in a desulfurizing agent, a container such as a tank having a desulfurizing agent fixed therein, A method of standing or stirring the sulfur compound-containing liquid fuel is preferred. In the present invention, the desulfurization temperature is 80 ° C. or less. If this desulfurization temperature is 80 degrees C or less, energy cost is low and it is economically advantageous. The lower limit of the desulfurization temperature is not particularly limited, and is appropriately selected in consideration of the fluidity of the liquid fuel to be desulfurized and the desulfurization activity of the desulfurizing agent. When the liquid fuel to be desulfurized is kerosene, it is about −40 ° C. from the viewpoint of fluidity, and a preferable desulfurization temperature is −30 to 60 ° C., particularly around room temperature.
Further, desulfurization conditions other than temperature are not particularly limited, and can be appropriately selected according to the properties of the liquid fuel to be desulfurized. Specifically, when a hydrocarbon such as JIS No. 1 kerosene as a fuel is passed through a desulfurization tower filled with the desulfurization agent according to the present invention in a liquid phase in an upward or downward flow, the temperature is room temperature. Desulfurization treatment is preferably performed under conditions of about normal pressure to about 1 MPa · G and about LHSV 2 hr −1 or less. At this time, if necessary, a small amount of hydrogen may coexist. By appropriately selecting the desulfurization conditions within the above range, for example, a hydrocarbon having a sulfur content of 1 ppm or less can be obtained.

前記本発明の脱硫方法における脱硫剤と、その前段もしくは後段に多孔質担体もしくは金属を担持した多孔質担体からなる脱硫剤から選ばれる少なくとも1種(第2脱硫剤)を組み合わせて硫黄化合物含有液体燃料の硫黄除去を行うことができる。すなわち、本発明の脱硫剤を第2脱硫剤と併用して用いることにより、有機硫黄化合物含有液体燃料の吸着脱硫を効率的に行うことができ、破過時間の延長が可能である。第2脱硫剤としては特に制限はなく別の吸着脱硫剤又は水素化脱硫触媒などを用いてよい。このうち別の吸着剤としては、銀、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、パラジウム、イリジウム、白金の少なくとも1種を多孔質担体に担持した触媒が好ましい。特に銀又は鉄を含む触媒が好ましい。銀をのぞくこれらの触媒は予め水素還元することにより、脱硫性能を向上させることができる。特に一度300℃以上で焼成した後に300℃以上で還元することが好ましい。また、水素化脱硫触媒を第2脱硫剤として使用する場合には、水素を少量添加してもよい。   A sulfur compound-containing liquid comprising a combination of a desulfurization agent in the desulfurization method of the present invention and at least one selected from a desulfurization agent comprising a porous carrier or a porous carrier carrying a metal in the former stage or the latter stage (second desulfurization agent) Fuel sulfur can be removed. That is, by using the desulfurizing agent of the present invention in combination with the second desulfurizing agent, the adsorption and desulfurization of the organic sulfur compound-containing liquid fuel can be efficiently performed, and the breakthrough time can be extended. There is no restriction | limiting in particular as a 2nd desulfurization agent, You may use another adsorption desulfurization agent or a hydrodesulfurization catalyst. Of these, another adsorbent is preferably a catalyst in which at least one of silver, chromium, manganese, iron, cobalt, nickel, copper, zinc, palladium, iridium, and platinum is supported on a porous carrier. A catalyst containing silver or iron is particularly preferable. These catalysts excluding silver can be improved in desulfurization performance by hydrogen reduction in advance. In particular, it is preferable to reduce the temperature at 300 ° C. or higher after firing at 300 ° C. or higher. Moreover, when using a hydrodesulfurization catalyst as a 2nd desulfurization agent, you may add a small amount of hydrogen.

また、前述の本発明の脱硫方法で液体燃料の硫黄除去後、クリーンアップ脱硫剤を用いて0.5質量ppm以下まで硫黄除去を行うことにより、有機硫黄化合物含有液体燃料の吸着脱硫を効率的に行うことができ、硫黄化合物による後段の改質触媒への被毒を極力抑制し、長期間安定に機能することができる。クリーンアップ脱硫剤として、硫黄化合物を0.5ppm以下まで低減できれば、特に制限はなく、別の吸着脱硫剤又は水素化脱硫触媒などを用いてもよい。このうち別の吸着剤としては、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛の少なくとも1種を含む触媒が好ましい。特にニッケルを含む触媒が好ましい。これらの触媒は予め水素還元することにより、脱硫性能を向上させることができる。また、水素化脱硫触媒を使用する場合には、水素を少量添加してもよい。   In addition, after removing sulfur from the liquid fuel by the above-described desulfurization method of the present invention, the sulfur removal is performed to 0.5 ppm by mass or less using a clean-up desulfurization agent, thereby efficiently performing the adsorption desulfurization of the liquid fuel containing the organic sulfur compound. It is possible to suppress the poisoning of the subsequent reforming catalyst by the sulfur compound as much as possible and to function stably for a long period of time. As the clean-up desulfurization agent, there is no particular limitation as long as the sulfur compound can be reduced to 0.5 ppm or less, and another adsorptive desulfurization agent or hydrodesulfurization catalyst may be used. Of these, another adsorbent is preferably a catalyst containing at least one of chromium, manganese, iron, cobalt, nickel, copper, and zinc. A catalyst containing nickel is particularly preferable. These catalysts can improve the desulfurization performance by hydrogen reduction in advance. When a hydrodesulfurization catalyst is used, a small amount of hydrogen may be added.

次に本発明の製造方法は、上記のようにして脱硫処理した燃料を、水蒸気改質、部分酸化改質又はオートサーマル改質を行って、より具体的には水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒と接触させることにより、燃料電池用水素を製造するものである。
ここで用いられる改質触媒としては特に制限はなく、従来から炭化水素の改質触媒として知られている公知のものの中から任意のものを適宜選択して用いることができる。このような改質触媒としては、例えば適当な担体にニッケルやジルコニウム、あるいはルテニウム、ロジウム、白金などの貴金属を担持したものを挙げることができる。上記担持金属は一種でもよく、二種以上を組み合わせてもよい。これらの触媒の中で、ニッケルを担持させたもの(以下、ニッケル系触媒という)とルテニウムを担持させたもの(以下、ルテニウム系触媒という)が好ましく、これらは、水蒸気改質処理、部分酸化改質処理又はオートサーマル改質処理中の炭素析出を抑制する効果が大きい。
上記改質触媒を担持させる担体には、酸化マンガン、酸化セリウム、酸化ジルコニウム等が含まれていることが好ましく、特にこれらのうち少なくとも1種を含む担体が特に好ましい。
Next, in the production method of the present invention, the fuel desulfurized as described above is subjected to steam reforming, partial oxidation reforming or autothermal reforming, more specifically, a steam reforming catalyst, partial oxidation reforming. Hydrogen for a fuel cell is produced by contacting with a catalyst or an autothermal reforming catalyst.
There is no restriction | limiting in particular as a reforming catalyst used here, Arbitrary things can be suitably selected and used from the well-known things conventionally known as a hydrocarbon reforming catalyst. As such a reforming catalyst, for example, a catalyst in which noble metal such as nickel, zirconium, ruthenium, rhodium or platinum is supported on a suitable carrier can be exemplified. The supported metal may be one kind or a combination of two or more kinds. Of these catalysts, nickel-supported catalysts (hereinafter referred to as nickel-based catalysts) and ruthenium-supported catalysts (hereinafter referred to as ruthenium-based catalysts) are preferable. The effect of suppressing carbon deposition during quality treatment or autothermal reforming treatment is great.
The carrier for supporting the reforming catalyst preferably contains manganese oxide, cerium oxide, zirconium oxide or the like, and particularly preferably a carrier containing at least one of these.

ニッケル系触媒の場合、ニッケルの担持量は担体基準で3〜60質量%の範囲が好ましい。この担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに、経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ニッケルのより好ましい担持量は5〜50質量%であり、特に10〜30質量%の範囲が好ましい。
また、ルテニウム系触媒の場合、ルテニウムの担持量は担体基準で0.05〜20質量%の範囲が好ましい。ルテニウムの担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ルテニウムのより好ましい担持量は0.05〜15質量%であり、特に0.1〜2質量%の範囲が好ましい。
In the case of a nickel-based catalyst, the supported amount of nickel is preferably in the range of 3 to 60% by mass based on the carrier. When the supported amount is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited, and it is economically advantageous. In view of catalyst activity and economy, the more preferable amount of nickel is 5 to 50% by mass, and particularly preferably 10 to 30% by mass.
In the case of a ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by mass based on the carrier. When the supported amount of ruthenium is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited and it is economically advantageous. Considering catalytic activity and economic efficiency, the more preferable loading of ruthenium is 0.05 to 15% by mass, and particularly preferably 0.1 to 2% by mass.

水蒸気改質処理における反応条件としては、水蒸気と燃料油に由来する炭素との比であるスチーム/カーボン(モル比)は、通常1.5〜10の範囲で選定される。スチーム/カーボン(モル比)が1.5以上であると水素の生成量が十分であり、10以下であると過剰の水蒸気を必要としないため、熱ロスが小さく、水素製造が効率的に行える。上記観点から、スチーム/カーボン(モル比)は1.5〜5の範囲であることが好ましく、さらには2〜4の範囲であることが好ましい。
また、水蒸気改質触媒層の入口温度を630℃以下に保って水蒸気改質を行うのが好ましい。入口温度が630℃以下であると、燃料油の熱分解が起こらないため、炭素ラジカルを経由した触媒あるいは反応管壁への炭素析出が生じにくい。以上の観点から、さらに水蒸気改質触媒層の入口温度は600℃以下であることが好ましい。なお、触媒層出口温度は特に制限はないが、650〜800℃の範囲が好ましい。650℃以上であると水素の生成量が十分であり、800℃以下であると、反応装置を耐熱材料で構成する必要がなく、経済的に好ましい。
As a reaction condition in the steam reforming treatment, steam / carbon (molar ratio), which is a ratio of steam and carbon derived from fuel oil, is usually selected in the range of 1.5 to 10. When the steam / carbon (molar ratio) is 1.5 or more, the amount of hydrogen generated is sufficient, and when it is 10 or less, excess water vapor is not required, so heat loss is small and hydrogen production can be performed efficiently. . From the above viewpoint, the steam / carbon (molar ratio) is preferably in the range of 1.5 to 5, and more preferably in the range of 2 to 4.
Moreover, it is preferable to perform steam reforming while maintaining the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower. If the inlet temperature is 630 ° C. or lower, thermal decomposition of the fuel oil does not occur, so that carbon deposition on the catalyst or reaction tube wall via the carbon radical is unlikely to occur. From the above viewpoint, the inlet temperature of the steam reforming catalyst layer is preferably 600 ° C. or lower. The catalyst layer outlet temperature is not particularly limited, but is preferably in the range of 650 to 800 ° C. When the temperature is 650 ° C. or higher, the amount of hydrogen generated is sufficient, and when it is 800 ° C. or lower, the reaction apparatus does not need to be made of a heat-resistant material, which is economically preferable.

部分酸化改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、酸素(O2)/カーボン(モル比)は0.2〜0.8、液時空間速度(LHSV)は0.1〜100hr-1の条件が採用される。
また、オートサーマル改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、スチーム/カーボン(モル比)は0.1〜10、酸素(O2)/カーボン(モル比)は0.1〜1、液時空間速度(LHSV)は0.1〜2hr-1、ガス時空間速度(GHSV)は1000〜100000hr-1の条件が採用される。
なお、上記水蒸気改質、部分酸化改質又はオートサーマル改質により得られるCOが水素生成に悪影響を及ぼすため、COを反応によりCO2に変換して除くことが好ましい。このように、本発明の方法によれば、燃料電池用水素を効率よく製造することができる。
液体燃料を使用する燃料電池システムは、通常、燃料供給装置、脱硫装置、改質装置、燃料電池から構成され、上記本発明の方法によって製造された水素は燃料電池に供給される。
As reaction conditions in the partial oxidation reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the oxygen (O 2 ) / carbon (molar ratio) is 0.2 to 0.8, and the liquid The space-time velocity (LHSV) is 0.1 to 100 hr −1 .
As reaction conditions in the autothermal reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the steam / carbon (molar ratio) is 0.1 to 10, and oxygen (O 2 ). / Carbon (molar ratio) is 0.1 to 1, liquid hourly space velocity (LHSV) is 0.1 to 2 hr −1 , and gas hourly space velocity (GHSV) is 1000 to 100,000 hr −1 .
In addition, since CO obtained by the steam reforming, partial oxidation reforming or autothermal reforming adversely affects hydrogen generation, it is preferable to convert CO to CO 2 by reaction and remove it. Thus, according to the method of the present invention, hydrogen for fuel cells can be produced efficiently.
A fuel cell system using a liquid fuel is usually composed of a fuel supply device, a desulfurization device, a reforming device, and a fuel cell, and the hydrogen produced by the method of the present invention is supplied to the fuel cell.

本発明はまた、前記製造方法で得られた水素を用いる燃料電池システムを提供する。以下に本発明の燃料電池システムについて添付図1に従い説明する。
図1は本発明の燃料電池システムの一例を示す概略フロー図である。図1によれば、燃料タンク21内の燃料は、燃料ポンプ22を経て脱硫器23に流入する。脱硫器内には本発明に係る硫黄化合物除去用吸着剤が充填されている。脱硫器23で脱硫された燃料は水タンクから水ポンプ24を経た水と混合した後、気化器1に導入されて気化され、次いで空気ブロアー35から送り出された空気と混合され改質器31に送り込まれる。
改質器31の内部には前述の改質触媒が充填されており、改質器31に送り込まれた燃料混合物(水蒸気、酸素及び脱硫処理液体燃料を含む混合気体)から、前述した改質反応のいずれかによって水素又は合成ガスが製造される。
The present invention also provides a fuel cell system using hydrogen obtained by the production method. The fuel cell system of the present invention will be described below with reference to FIG.
FIG. 1 is a schematic flowchart showing an example of the fuel cell system of the present invention. According to FIG. 1, the fuel in the fuel tank 21 flows into the desulfurizer 23 via the fuel pump 22. The desulfurizer is filled with the sulfur compound removing adsorbent according to the present invention. The fuel desulfurized in the desulfurizer 23 is mixed with water from the water tank through the water pump 24, then introduced into the vaporizer 1, vaporized, and then mixed with the air sent out from the air blower 35 to the reformer 31. It is sent.
The reformer 31 is filled with the above-described reforming catalyst, and the above-described reforming reaction is performed from the fuel mixture (a mixed gas containing water vapor, oxygen, and desulfurized liquid fuel) fed into the reformer 31. Either of these produces hydrogen or synthesis gas.

このようにして製造された水素又は合成ガスはCO変成器32、CO選択酸化器33を通じてそのCO濃度が燃料電池の特性に影響を及ぼさない程度まで低減される。これらの反応器に用いる触媒の例としては、CO変成器32では、鉄―クロム系触媒、銅―亜鉛系触媒あるいは貴金属系触媒を、CO選択酸化器33では、ルテニウム系触媒、白金系触媒あるいはそれらの混合物等を挙げることができる。
燃料電池34は負極34Aと正極34Bとの間に高分子電解質34Cを備えた固体高分子型燃料電池である。負極側には上記の方法で得られた水素リッチガスが、正極側には空気ブロワー35から送られる空気が、それぞれ必要に応じて適当な加湿処理を行った後(加湿装置は図示せず)導入される。
このとき負極側では水素ガスがプロトンとなり電子を放出する反応が進行し、正極側では酸素ガスが電子とプロトンを得て水となる反応が進行し、両極34A、34B間に直流電流が発生する。負極には、白金黒、活性炭担持のPt触媒あるいはPt−Ru合金触媒などが、正極には白金黒、活性炭担持のPt触媒などが用いられる。
The hydrogen or synthesis gas thus produced is reduced through the CO converter 32 and the CO selective oxidizer 33 to such an extent that the CO concentration does not affect the characteristics of the fuel cell. Examples of catalysts used in these reactors include an iron-chromium catalyst, a copper-zinc catalyst or a noble metal catalyst in the CO converter 32, and a ruthenium catalyst, a platinum catalyst, or a noble metal catalyst in the CO selective oxidizer 33. The mixture etc. can be mentioned.
The fuel cell 34 is a solid polymer fuel cell having a polymer electrolyte 34C between a negative electrode 34A and a positive electrode 34B. The hydrogen-rich gas obtained by the above method is introduced into the negative electrode side, and the air sent from the air blower 35 is introduced into the positive electrode side after performing appropriate humidification treatment as necessary (humidifier not shown). Is done.
At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds on the negative electrode side, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds on the positive electrode side, and a direct current is generated between both electrodes 34A and 34B. . Platinum black, activated carbon-supported Pt catalyst or Pt-Ru alloy catalyst is used for the negative electrode, and platinum black, Pt catalyst supported on activated carbon is used for the positive electrode.

負極34A側に改質器31のバーナ31Aを接続して余った水素を燃料とすることができる。また、正極34B側に接続された気水分離器36において、正極34B側に供給された空気中の酸素と水素との結合により生じた水と排気ガスとを分離し、水は水蒸気の生成に利用することができる。
なお、燃料電池34では、発電に伴って熱が発生するため、排熱回収装置37を付設してこの熱を回収して有効利用することができる。排熱回収装置37は、反応時に生じた熱を奪う熱交換機37Aと、この熱交換器37Aで奪った熱を水と熱交換するための熱交換器37Bと、冷却器37Cと、これら熱交換器37A、37B及び冷却器37Cへ冷媒を循環させるポンプ37Dとを備え、熱交換器37Bにおいて得られた温水は、他の設備などで有効利用することができる。
The surplus hydrogen can be used as fuel by connecting the burner 31A of the reformer 31 to the negative electrode 34A side. Further, in the steam separator 36 connected to the positive electrode 34B side, water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side are separated, and the water is used to generate water vapor. Can be used.
In the fuel cell 34, since heat is generated with power generation, an exhaust heat recovery device 37 can be attached to recover the heat for effective use. The exhaust heat recovery device 37 includes a heat exchanger 37A that takes away the heat generated during the reaction, a heat exchanger 37B that exchanges heat taken by the heat exchanger 37A with water, a cooler 37C, and these heat exchanges. The hot water obtained in the heat exchanger 37B can be effectively used in other facilities. The pumps 37A and 37B and the pump 37D circulate the refrigerant to the cooler 37C.

[実施例A] 実施例として脱硫剤1〜脱硫剤5を製造した。
<脱硫剤1>アルミナ担持ニッケルの製造
硝酸ニッケル六水和物25gを水20mLに溶解し、アルミナ担体45gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、空気下400℃で3時間焼成した。反応前に水素下300℃で3時間還元することで脱硫剤1を得た。この時のニッケル担持量は10質量%であった。
[Example A] Desulfurizing agents 1 to 5 were produced as examples.
<Desulfurization agent 1> Manufacture of alumina-supported nickel 25 g of nickel nitrate hexahydrate was dissolved in 20 mL of water and impregnated in 45 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, it was baked at 400 ° C. for 3 hours in an air using an electric furnace. Before the reaction, desulfurization agent 1 was obtained by reduction at 300 ° C. for 3 hours under hydrogen. The amount of nickel supported at this time was 10% by mass.

<脱硫剤2>ニッケル‐銅‐シリカ‐アルミナの製造
硫酸ニッケル六水和物360g、硫酸銅五水和物85g、擬ベーマイト7gを水4Lに溶解し、別に炭酸ナトリウム300g、水ガラス94gを水4Lに溶解し、両溶液の共沈法により調製した。沈殿物を濾過・水洗後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、空気下350℃で3時間焼成した。反応前に水素下300℃で3時間還元することで脱硫剤2を得た。この時のニッケル担持量は50質量%、銅担持量は13質量%であった。
<Desulfurizing agent 2> Production of nickel-copper-silica-alumina Dissolve 360 g of nickel sulfate hexahydrate, 85 g of copper sulfate pentahydrate and 7 g of pseudoboehmite in 4 L of water, and separately add 300 g of sodium carbonate and 94 g of water glass to water. It melt | dissolved in 4L and prepared by the coprecipitation method of both solutions. The precipitate was filtered and washed with water, and then dried at 110 ° C. overnight. After the drying, it was baked at 350 ° C. for 3 hours in an air using an electric furnace. Before the reaction, desulfurization agent 2 was obtained by reduction at 300 ° C. for 3 hours under hydrogen. At this time, the amount of nickel supported was 50% by mass, and the amount of copper supported was 13% by mass.

<脱硫剤3>シリカ‐アルミナ担持ニッケルの製造
硝酸ニッケル六水和物25gを水46mLに溶解し、シリカ‐アルミナ担体45gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、空気下400℃で3時間焼成した。反応前に水素下300℃で3時間還元することで脱硫剤3を得た。この時のニッケル担持量は10質量%であった。
<Desulfurization agent 3> Production of silica-alumina supported nickel 25 g of nickel nitrate hexahydrate was dissolved in 46 mL of water and impregnated in 45 g of a silica-alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, it was baked at 400 ° C. for 3 hours in an air using an electric furnace. Before the reaction, desulfurization agent 3 was obtained by reduction at 300 ° C. for 3 hours under hydrogen. The amount of nickel supported at this time was 10% by mass.

<脱硫剤4>アルミナ担持コバルトの製造
硝酸コバルト六水和物15gを水12mLに溶解し、アルミナ担体27gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、空気下400℃で3時間焼成した。反応前に水素下450℃で3時間還元することで脱硫剤4を得た。この時のコバルト担持量は10質量%であった。
<Desulfurizing agent 4> Production of alumina-supported cobalt 15 g of cobalt nitrate hexahydrate was dissolved in 12 mL of water and impregnated in 27 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, it was baked at 400 ° C. for 3 hours in an air using an electric furnace. Prior to the reaction, desulfurization agent 4 was obtained by reduction at 450 ° C. for 3 hours under hydrogen. The amount of cobalt supported at this time was 10% by mass.

<脱硫剤5>アルミナ担持亜鉛の製造
硝酸亜鉛六水和物14gを水12mLに溶解し、アルミナ担体27gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、空気下400℃で3時間焼成した。反応前に水素下450℃で3時間還元することで脱硫剤5を得た。この時の亜鉛担持量は10質量%であった。
<Desulfurizing agent 5> Production of alumina-supported zinc 14 g of zinc nitrate hexahydrate was dissolved in 12 mL of water and impregnated in 27 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, it was baked at 400 ° C. for 3 hours in an air using an electric furnace. Before the reaction, desulfurization agent 5 was obtained by reduction at 450 ° C. for 3 hours under hydrogen. The amount of zinc supported at this time was 10% by mass.

[比較例] 比較例として脱硫剤6を製造し、市販の脱硫剤7〜8を購入した。
<脱硫剤6>アルミナ担持銀の製造
硝酸銀9gを水15mLに溶解し、アルミナ担体50gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、空気下400℃で3時間焼成し脱硫剤6を得た。この時の銀担持量は10質量%であった。
[Comparative Example] A desulfurizing agent 6 was produced as a comparative example, and commercially available desulfurizing agents 7 to 8 were purchased.
<Desulfurizing agent 6> Production of alumina-supported silver 9 g of silver nitrate was dissolved in 15 mL of water and impregnated in 50 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the completion of drying, the desulfurization agent 6 was obtained by firing at 400 ° C. for 3 hours in the air using an electric furnace. The amount of silver supported at this time was 10% by mass.

<脱硫剤7>シリカ‐アルミナ担体
触媒化成工業製。
<Desulfurizing agent 7> Silica-alumina carrier manufactured by Catalyst Kasei Kogyo.

<脱硫剤8>アルミナ担体
触媒化成工業製。
<Desulfurizing agent 8> Alumina carrier manufactured by Catalyst Kasei Kogyo.

[性能試験方法A]
脱硫剤1〜8のそれぞれについて、脱硫剤2.5mLにJIS‐1号灯油を室温、液空間速度(LHSV)20hr-1で通油した。用いたJIS−1号灯油の硫黄分と蒸留性状は表1の通りである。
[Performance test method A]
For each of the desulfurizing agents 1-8, JIS-1 kerosene was passed through 2.5 mL of the desulfurizing agent at room temperature and a liquid hourly space velocity (LHSV) of 20 hr- 1 . Table 1 shows the sulfur content and distillation properties of the JIS-1 kerosene used.

Figure 2006117921
Figure 2006117921

[性能試験結果A]
脱硫剤1〜8にそれぞれ通油し、流出した灯油中の硫黄濃度を表2に示す。また、JIS‐1号灯油中及び脱硫剤1と脱硫剤6に通油後の脱硫灯油中の硫黄化合物の分析結果を図2に示す。なお、この分析には、硫黄化合物のみを選択的に検出する化学発光検出器を組み合わせたガスクロマトグラフを用いた。本発明に係るニッケル、コバルト、亜鉛系脱硫剤は80℃以下での脱硫性能に優れていることがわかる。
[Performance test result A]
Table 2 shows the sulfur concentration in the kerosene that passed through the desulfurization agents 1 to 8 and flowed out. Moreover, the analysis result of the sulfur compound in the desulfurized kerosene after passing through the desulfurizing agent 1 and the desulfurizing agent 6 in JIS-1 kerosene is shown in FIG. In addition, the gas chromatograph which combined the chemiluminescence detector which selectively detects only a sulfur compound was used for this analysis. It can be seen that the nickel, cobalt and zinc-based desulfurization agents according to the present invention are excellent in desulfurization performance at 80 ° C. or less.

Figure 2006117921
Figure 2006117921

[実施例B] 実施例として脱硫剤9〜脱硫剤23を製造した。  [Example B] Desulfurizing agent 9 to desulfurizing agent 23 were produced as examples.

<脱硫剤9−12>アルミナ担持ニッケルの製造
硝酸ニッケル六水和物25gを水20mLに溶解し、アルミナ担体45gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、各々空気下400℃、600℃、800℃、1000℃で3時間焼成した。反応前に水素下600℃で3時間還元することで脱硫剤9−12を得た。この時のニッケル担持量は10wt%であった。
<Desulfurization agent 9-12> Production of alumina-supported nickel 25 g of nickel nitrate hexahydrate was dissolved in 20 mL of water and impregnated in 45 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, using an electric furnace, firing was performed at 400 ° C., 600 ° C., 800 ° C., and 1000 ° C. for 3 hours under air. Before the reaction, desulfurization agent 9-12 was obtained by reduction at 600 ° C. for 3 hours under hydrogen. At this time, the amount of nickel supported was 10 wt%.

<脱硫剤13>アルミナ担持ニッケルの製造
硝酸ニッケル六水和物25gを水20mLに溶解し、アルミナ担体45gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、焼成は行わず、反応前に水素下600℃で3時間還元することで脱硫剤13を得た。この時のニッケル担持量は10wt%であった。
<Desulfurizing agent 13> Production of alumina-supported nickel 25 g of nickel nitrate hexahydrate was dissolved in 20 mL of water and impregnated in 45 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After completion of drying, no calcination was performed, and desulfurization agent 13 was obtained by reduction at 600 ° C. under hydrogen for 3 hours before the reaction. At this time, the amount of nickel supported was 10 wt%.

<脱硫剤14−17>アルミナ担持コバルトの製造
硝酸コバルト六水和物15gを水12mLに溶解し、アルミナ担体27gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、各々空気下400℃、600℃、800℃、1000℃で3時間焼成した。反応前に水素下600℃で3時間還元することで脱硫剤14−17を得た。この時のコバルト担持量は10wt%であった。
<Desulfurization agent 14-17> Production of alumina-supported cobalt 15 g of cobalt nitrate hexahydrate was dissolved in 12 mL of water and impregnated in 27 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, using an electric furnace, firing was performed at 400 ° C., 600 ° C., 800 ° C., and 1000 ° C. for 3 hours under air. Before the reaction, desulfurization agent 14-17 was obtained by reduction at 600 ° C. for 3 hours under hydrogen. The amount of cobalt supported at this time was 10 wt%.

<脱硫剤18>アルミナ担持コバルトの製造
硝酸コバルト六水和物15gを水12mLに溶解し、アルミナ担体27gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、焼成は行わず、反応前に水素下600℃で3時間還元することで脱硫剤18を得た。この時のコバルト担持量は10wt%であった。
<Desulfurization agent 18> Production of alumina-supported cobalt 15 g of cobalt nitrate hexahydrate was dissolved in 12 mL of water and impregnated in 27 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying was completed, no calcination was performed, and desulfurization agent 18 was obtained by reduction at 600 ° C. under hydrogen for 3 hours before the reaction. The amount of cobalt supported at this time was 10 wt%.

<脱硫剤19−22>アルミナ担持亜鉛の製造
硝酸亜鉛六水和物14gを水12mLに溶解し、アルミナ担体27gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、各々空気下400℃、600℃、800℃、1000℃で3時間焼成した。反応前に水素下600℃で3時間還元することで脱硫剤19−22を得た。この時の亜鉛担持量は10wt%であった。
<Desulfurization agent 19-22> Production of alumina-supported zinc 14 g of zinc nitrate hexahydrate was dissolved in 12 mL of water and impregnated in 27 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, using an electric furnace, firing was performed at 400 ° C., 600 ° C., 800 ° C., and 1000 ° C. for 3 hours under air. Before the reaction, desulfurization agent 19-22 was obtained by reduction at 600 ° C. for 3 hours under hydrogen. The amount of zinc supported at this time was 10 wt%.

<脱硫剤23>アルミナ担持亜鉛の製造
硝酸亜鉛六水和物14gを水12mLに溶解し、アルミナ担体27gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、焼成は行わず、反応前に水素下600℃で3時間還元することで脱硫剤23を得た。この時の亜鉛担持量は10wt%であった。
<Desulfurizing agent 23> Production of alumina-supported zinc 14 g of zinc nitrate hexahydrate was dissolved in 12 mL of water and impregnated in 27 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After completion of the drying, no calcination was performed, and desulfurization agent 23 was obtained by reduction at 600 ° C. under hydrogen for 3 hours before the reaction. The amount of zinc supported at this time was 10 wt%.

<脱硫剤24>アルミナ担持ニッケルの製造
硝酸ニッケル六水和物25gを水20mLに溶解し、アルミナ担体45gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、空気下800℃で3時間焼成した。反応前に水素下800℃で3時間還元することで脱硫剤24を得た。この時のニッケル担持量は10wt%であった。
<Desulfurizing agent 24> Production of alumina-supported nickel 25 g of nickel nitrate hexahydrate was dissolved in 20 mL of water and impregnated in 45 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, it was baked for 3 hours at 800 ° C. in an air using an electric furnace. Before the reaction, desulfurization agent 24 was obtained by reduction at 800 ° C. for 3 hours under hydrogen. At this time, the amount of nickel supported was 10 wt%.

<脱硫剤25>アルミナ担持コバルトの製造
硝酸コバルト六水和物15gを水12mLに溶解し、アルミナ担体27gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、空気下800℃で3時間焼成した。反応前に水素下800℃で3時間還元することで脱硫剤25を得た。この時のコバルト担持量は10wt%であった。
<Desulfurizing agent 25> Production of alumina-supported cobalt 15 g of cobalt nitrate hexahydrate was dissolved in 12 mL of water and impregnated in 27 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, it was baked for 3 hours at 800 ° C. in an air using an electric furnace. Before the reaction, desulfurization agent 25 was obtained by reduction at 800 ° C. for 3 hours under hydrogen. The amount of cobalt supported at this time was 10 wt%.

<脱硫剤26>アルミナ担持亜鉛の製造
硝酸亜鉛六水和物14gを水12mLに溶解し、アルミナ担体27gに含浸した。60℃の乾燥器内で2時間乾燥した後、110℃で一晩乾燥した。乾燥終了後、電気炉を用いて、空気下800℃で3時間焼成した。反応前に水素下800℃で3時間還元することで脱硫剤26を得た。この時の亜鉛担持量は10wt%であった。
<Desulfurization agent 26> Production of alumina-supported zinc 14 g of zinc nitrate hexahydrate was dissolved in 12 mL of water and impregnated in 27 g of an alumina carrier. After drying for 2 hours in a dryer at 60 ° C., it was dried overnight at 110 ° C. After the drying, it was baked for 3 hours at 800 ° C. in an air using an electric furnace. Before the reaction, desulfurization agent 26 was obtained by reduction at 800 ° C. for 3 hours under hydrogen. The amount of zinc supported at this time was 10 wt%.

[性能試験方法B]
脱硫剤9〜26のそれぞれについて、脱硫剤2.5mLにJIS‐1号灯油を室温、液空間速度(LHSV)20hr-1で通油した。用いたJIS−1号灯油の硫黄分と蒸留性状は前記の表1と同じである。流出した灯油中の硫黄濃度を下記のように濃度に応じて2種類の方法で測定した。
[Performance test method B]
For each of the desulfurizing agents 9 to 26, JIS-1 kerosene was passed through 2.5 mL of the desulfurizing agent at room temperature and a liquid hourly space velocity (LHSV) of 20 hr- 1 . The sulfur content and distillation properties of the JIS-1 kerosene used are the same as in Table 1 above. The sulfur concentration in the spilled kerosene was measured by two methods according to the concentration as follows.

1.硫黄分測定 その1
0.2wtppm以上の硫黄分は、JIS K 2541−2に規定する微量電量滴定式酸化法に準拠し、三菱化学社製のTS−03装置を用いて定量した。検量線は、ジブチルスルフィド(純度99%以上)のトルエン溶液を測定して作製した。試料は検量線用溶液と同様に測定し、検量線から求めた硫黄量(μg)と試料注入量(mg)から試料中の硫黄分(wtppm)を算出した。
1. Sulfur content measurement 1
The sulfur content of 0.2 wtppm or more was quantified using a TS-03 apparatus manufactured by Mitsubishi Chemical Corporation in accordance with a microcoulometric titration method defined in JIS K 2541-2. The calibration curve was prepared by measuring a toluene solution of dibutyl sulfide (purity 99% or more). The sample was measured in the same manner as the calibration curve solution, and the sulfur content (wtppm) in the sample was calculated from the sulfur amount (μg) obtained from the calibration curve and the sample injection amount (mg).

2.硫黄分測定 その2
0.2wtppm以下の硫黄分は、ASTM D 1045 Hydrogenolysis and Rateometric Colorimetry法に準拠し、Houston Atlas社の856/825D装置を用いて定量した。検量線は、ジブチルスルフィド(純度99%以上)のイソオクタン溶液を測定して作製した。試料は検量線用溶液と同様に測定し、検量線から求めた硫黄量(ng)と試料注入量(mg)から試料中の硫黄分(wtppb)を算出した。
2. Sulfur content measurement 2
The sulfur content of 0.2 wtppm or less was quantified using a 856 / 825D apparatus manufactured by Houston Atlas in accordance with ASTM D 1045 Hydrogenolysis and Rateometric Colorimetry. The calibration curve was prepared by measuring an isooctane solution of dibutyl sulfide (purity 99% or more). The sample was measured in the same manner as the calibration curve solution, and the sulfur content (wtppb) in the sample was calculated from the sulfur amount (ng) obtained from the calibration curve and the sample injection amount (mg).

[性能試験結果B]
脱硫剤9〜26にそれぞれ通油し、流出した灯油中の硫黄濃度を表3に示す。本発明に係るニッケル、コバルト及び亜鉛系脱硫剤はいずれも80℃以下での脱硫性能に優れていることがわかる。さらに、金属が亜鉛又はコバルトの場合には高温焼成でしかも高温還元によって脱硫性能が向上することが見出された。
[Performance test result B]
Table 3 shows the sulfur concentration in the kerosene that was passed through the desulfurization agents 9 to 26 and flowed out. It can be seen that the nickel, cobalt and zinc-based desulfurization agents according to the present invention are all excellent in desulfurization performance at 80 ° C. or less. Furthermore, it has been found that when the metal is zinc or cobalt, the desulfurization performance is improved by high-temperature firing and high-temperature reduction.

Figure 2006117921
Figure 2006117921

本発明の液体燃料の硫黄除去方法は、ある種の脱硫剤を用いることにより、80℃以下の温度で、硫黄化合物含有液体燃料を効率的に脱硫処理することができ、エネルギーコストを低減させることができる。
また、前記方法で得られた脱硫処理燃料を改質処理することにより、燃料電池用水素を効率よく製造することができる。
The method for removing sulfur from a liquid fuel according to the present invention can efficiently desulfurize a sulfur compound-containing liquid fuel at a temperature of 80 ° C. or lower by using a certain type of desulfurizing agent, thereby reducing energy costs. Can do.
Moreover, hydrogen for fuel cells can be produced efficiently by reforming the desulfurized fuel obtained by the above method.

本発明の燃料電池システムの一例を示す概略フロー図である。It is a schematic flowchart which shows an example of the fuel cell system of this invention. JIS−1号灯油及び脱硫剤1と6を流通後の灯油中の硫黄化合物Sulfur compounds in kerosene after distribution of JIS-1 kerosene and desulfurizing agents 1 and 6

符号の説明Explanation of symbols

1: 気化器
2: 燃料電池システム
20: 水素製造システム
21: 燃料タンク
23: 脱硫器
31: 改質器
31A:ボイラー
32: CO変成器
33: CO選択酸化器
34: 燃料電池
34A:負極
34B:正極
34C:高分子電解質
36: 気水分離器
37: 排熱回収装置
37A:熱交換機
37B:熱交換器
37C:冷却器
1: Vaporizer 2: Fuel cell system 20: Hydrogen production system 21: Fuel tank 23: Desulfurizer 31: Reformer 31A: Boiler 32: CO converter 33: CO selective oxidizer 34: Fuel cell 34A: Negative electrode 34B: Cathode 34C: Polymer electrolyte 36: Steam separator 37: Waste heat recovery device 37A: Heat exchanger 37B: Heat exchanger 37C: Cooler

Claims (9)

担体に、周期表9族、10族及び12族から選ばれる少なくとも1種の活性金属成分を担持してなる脱硫剤を用いて、硫黄化合物含有液体燃料を80℃以下の温度で脱硫することを特徴とする液体燃料の硫黄除去方法。   Using a desulfurizing agent that supports at least one active metal component selected from Group 9, Group 10 and Group 12 of the periodic table on the carrier, the sulfur compound-containing liquid fuel is desulfurized at a temperature of 80 ° C. or less. A method for removing sulfur from liquid fuel. 硫黄化合物含有液体燃料が、アルコール、エーテル、ナフサ、ガソリン、灯油、軽油、重油、アスファルテン油、オイルサンド油、石炭液化油、シェールオイル油、GTL、廃プラスチック油及びバイオフューエルから選ばれる少なくとも1種である請求項1記載の硫黄除去方法。   Sulfur compound-containing liquid fuel is at least one selected from alcohol, ether, naphtha, gasoline, kerosene, light oil, heavy oil, asphaltene oil, oil sand oil, coal liquefied oil, shale oil oil, GTL, waste plastic oil and biofuel The method for removing sulfur according to claim 1. 担体がアルミニウムを含むものである請求項1又は2記載の硫黄除去方法。   The sulfur removal method according to claim 1 or 2, wherein the support contains aluminum. 活性金属成分がニッケル、コバルト及び亜鉛から選ばれる少なくとも1種を含むものである請求項1〜3のいずれかに記載の硫黄除去方法。   The sulfur removal method according to any one of claims 1 to 3, wherein the active metal component contains at least one selected from nickel, cobalt and zinc. 請求項1〜4のいずれかに記載の硫黄除去方法における前段もしくは後段に、多孔質担体もしくは金属を担持した多孔質担体からなる脱硫剤から選ばれる少なくとも1種を組み合わせて硫黄化合物含有液体燃料の硫黄除去を行う硫黄除去方法。   A sulfur compound-containing liquid fuel comprising a combination of at least one selected from a desulfurization agent comprising a porous carrier or a porous carrier carrying a metal, in the former stage or the latter stage in the sulfur removal method according to any one of claims 1 to 4. A sulfur removal method for removing sulfur. 請求項1〜5のいずれかに記載の方法で、硫黄化合物含有液体燃料の硫黄除去後、クリーンアップ脱硫剤を用いてさらに硫黄除去を行う硫黄除去方法。   The sulfur removal method which further performs sulfur removal using a cleanup desulfurization agent after the sulfur removal of a sulfur compound containing liquid fuel by the method in any one of Claims 1-5. 請求項1〜6のいずれかに記載の方法で、硫黄化合物含有液体燃料の硫黄除去後、この脱硫処理燃料を部分改質、オートサーマル改質又は水蒸気改質することを特徴とする水素の製造方法。   The method according to any one of claims 1 to 6, wherein the sulfur-containing liquid fuel is subjected to sulfur removal, and then the desulfurized fuel is subjected to partial reforming, autothermal reforming, or steam reforming. Method. 部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒が、ルテニウム系触媒又はニッケル系触媒である請求項7記載の水素の製造方法。   The method for producing hydrogen according to claim 7, wherein the partial oxidation reforming catalyst, the autothermal reforming catalyst, or the steam reforming catalyst is a ruthenium catalyst or a nickel catalyst. 請求項7又は8に記載の製造方法によって得られる水素を原料とする燃料電池システム。   A fuel cell system using hydrogen obtained by the production method according to claim 7 as a raw material.
JP2005270644A 2004-09-22 2005-09-16 Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system Pending JP2006117921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270644A JP2006117921A (en) 2004-09-22 2005-09-16 Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004274597 2004-09-22
JP2005270644A JP2006117921A (en) 2004-09-22 2005-09-16 Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system

Publications (1)

Publication Number Publication Date
JP2006117921A true JP2006117921A (en) 2006-05-11

Family

ID=36536092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270644A Pending JP2006117921A (en) 2004-09-22 2005-09-16 Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system

Country Status (1)

Country Link
JP (1) JP2006117921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046626A (en) * 2007-08-22 2009-03-05 Idemitsu Kosan Co Ltd Desulfurization agent for liquid fuel and desulfurization method of liquid fuel
WO2010071172A1 (en) * 2008-12-17 2010-06-24 新日本石油株式会社 Hydrocarbon desulfurizing agent and manufacturing method thereof, kerosene desulfurization method, and fuel cell system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278602A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
JP2002249787A (en) * 2001-02-26 2002-09-06 Catalysts & Chem Ind Co Ltd Method for removing impurity in fuel oil and treatment agent for fuel oil
JP2003017109A (en) * 2001-03-28 2003-01-17 Osaka Gas Co Ltd Polymer electrolyte fuel cell power generating system, and power generating method of polymer electrolyte fuel cell
JP2003049172A (en) * 2001-08-08 2003-02-21 Corona Corp Desulfurization of liquid hydrocarbon fuel
JP2003144930A (en) * 2001-11-09 2003-05-20 Nippon Oil Corp Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
WO2004009735A1 (en) * 2002-07-22 2004-01-29 Idemitsu Kosan Co., Ltd. Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
WO2004060840A2 (en) * 2002-12-24 2004-07-22 Sud-Chemie Inc. Multicomponent sorption bed for the desulfurization of hydrocarbons

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278602A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
JP2002249787A (en) * 2001-02-26 2002-09-06 Catalysts & Chem Ind Co Ltd Method for removing impurity in fuel oil and treatment agent for fuel oil
JP2003017109A (en) * 2001-03-28 2003-01-17 Osaka Gas Co Ltd Polymer electrolyte fuel cell power generating system, and power generating method of polymer electrolyte fuel cell
JP2003049172A (en) * 2001-08-08 2003-02-21 Corona Corp Desulfurization of liquid hydrocarbon fuel
JP2003144930A (en) * 2001-11-09 2003-05-20 Nippon Oil Corp Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
WO2004009735A1 (en) * 2002-07-22 2004-01-29 Idemitsu Kosan Co., Ltd. Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
WO2004060840A2 (en) * 2002-12-24 2004-07-22 Sud-Chemie Inc. Multicomponent sorption bed for the desulfurization of hydrocarbons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046626A (en) * 2007-08-22 2009-03-05 Idemitsu Kosan Co Ltd Desulfurization agent for liquid fuel and desulfurization method of liquid fuel
WO2010071172A1 (en) * 2008-12-17 2010-06-24 新日本石油株式会社 Hydrocarbon desulfurizing agent and manufacturing method thereof, kerosene desulfurization method, and fuel cell system
JP2010142715A (en) * 2008-12-17 2010-07-01 Nippon Oil Corp Desulfurizing agent for hydrocarbons and method for manufacturing the same, method for desulfurizing kerosene, and fuel battery system

Similar Documents

Publication Publication Date Title
CA2601124C (en) Desulfurizing agent and method of desulfurization with the same
EP1839743A1 (en) Desulfurizing agent for organosulfur compound-containing fuel oil, and process for producing hydrogen for fuel cell
US7556872B2 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP2004168648A (en) Metal ion-exchange zeolite, its manufacturing method, and adsorbent containing the metal ion-exchange zeolite for removing sulfur compound
EP2660915A1 (en) Desulfurization system for fuel cell, hydrogen production system for fuel cell, fuel cell system, desulfurization method for hydrocarbon fuel, and method for producing hydrogen
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP2006117921A (en) Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system
JP5324205B2 (en) Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
WO2006068069A1 (en) Liquid fuel for fuel cell and method of desulfurization
JP2005146054A (en) Desulfurizing agent and desulfurizing method using the same
JP5782400B2 (en) Desulfurization system, hydrogen production system, fuel cell system, fuel desulfurization method, and hydrogen production method
JP2005146054A6 (en) Desulfurization agent and desulfurization method using the same
JP2009046626A (en) Desulfurization agent for liquid fuel and desulfurization method of liquid fuel
JP2001172651A (en) Fuel oil for fuel cell
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP2009057421A (en) Desulfurization agent for liquid fuel and desulfurization method for liquid fuel
JP2006274206A (en) Liquefied petroleum gas for lp gas fuel cell
JP2003290659A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using the same
JP2006290941A (en) Liquefied petroleum gas for lp gas fuel cell
JP2003290660A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it
JP2011208065A (en) Process for producing desulfurizer for hydrocarbon, process for desulfurizing hydrocarbon, process for producing fuel gas, and fuel cell system
JP2005146055A (en) Desulfurizing method and manufacturing method of hydrogen for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719