JP2001189204A - Magnetic material, method of manufacturing the same, and bonded magnet - Google Patents

Magnetic material, method of manufacturing the same, and bonded magnet

Info

Publication number
JP2001189204A
JP2001189204A JP37503799A JP37503799A JP2001189204A JP 2001189204 A JP2001189204 A JP 2001189204A JP 37503799 A JP37503799 A JP 37503799A JP 37503799 A JP37503799 A JP 37503799A JP 2001189204 A JP2001189204 A JP 2001189204A
Authority
JP
Japan
Prior art keywords
group
phase
represented
atomic
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37503799A
Other languages
Japanese (ja)
Other versions
JP3735502B2 (en
Inventor
Katsutoshi Nakagawa
勝利 中川
Shinya Sakurada
新哉 桜田
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP37503799A priority Critical patent/JP3735502B2/en
Publication of JP2001189204A publication Critical patent/JP2001189204A/en
Application granted granted Critical
Publication of JP3735502B2 publication Critical patent/JP3735502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Abstract

PROBLEM TO BE SOLVED: To provide a material having both high energy product and high thermal resistance, a method of manufacturing the material, and a bonded magnet. SOLUTION: The material is represented by the general formula (R1)x(R2)yT100-x-y-z-α-βMzXαAβ and is characterized by comprising a TbCu7 phase and a Th2Ni17 phase as the main phases. (where R1 represents at least one kin of rate earth elements (including Y), R2 represents at least one kind selected from among a group consisting of Ti, Zr, Hf and Nb, T represents at least one selected from among a group consisting of Fe, Co and Ni, M represents at least one selected from among a group consisting of V, Cr, Mn, Ta, Mo, W, Sn, Ga, Al, Ge and Si, X represents at least one kind selected from among a group consisting of C, N, H, O and F, A represents at least one kind selected from among a group consisting of B and P, and x, y, z, α, β are positive numbers which satisfy formulas 2<=x<=20, 0.1<=y<=20, 0<=z<=10, 0.1<=α<=20, 0<=β<=5 (atom %).).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石として有
用な磁石材料、その製造方法、およびそのような磁石材
料を用いて得たボンド磁石に関する。
[0001] The present invention relates to a magnet material useful as a permanent magnet, a method for producing the same, and a bonded magnet obtained by using such a magnet material.

【0002】[0002]

【従来の技術】高性能希土類磁石としては、従来からS
mCo系磁石、NdFeB磁石などが知られており、各
種用途に用いられている。これらの磁石にはFe、Co
が多量に含まれているが、Fe、Coは飽和磁束密度の
増大に寄与している。また、これらの磁石にはNd、S
mなどの希土類元素が含まれており、希土類元素は結晶
場中における4f電子の挙動に由来して、非常に大きな
磁気異方性をもたらす。これにより保磁力の増大が図ら
れ、高性能な磁石が実現されている。
2. Description of the Related Art As a high performance rare earth magnet, S
mCo-based magnets, NdFeB magnets, and the like are known and used for various applications. These magnets include Fe, Co
Is contained in a large amount, but Fe and Co contribute to an increase in the saturation magnetic flux density. In addition, these magnets have Nd, S
m and the like, and the rare earth element brings about a very large magnetic anisotropy due to the behavior of 4f electrons in the crystal field. Thereby, the coercive force is increased, and a high-performance magnet is realized.

【0003】このような高性能磁石は、主としてモー
タ、計測器、スピーカーなどの電子機器、電気機器に使
用されている。特に、ハードディスクドライブ用にはN
dFeB急冷粉を用いたボンド磁石が多用されている。
[0003] Such high-performance magnets are mainly used in electronic equipment such as motors, measuring instruments, and speakers, and electrical equipment. In particular, N for hard disk drives
Bond magnets using dFeB quenched powder are frequently used.

【0004】近年、各種電子機器の小型軽量化の要求が
高まり、これに対応できる大きな最大磁気エネルギー積
をもつ永久磁石の出現が求められている。
[0004] In recent years, there has been an increasing demand for smaller and lighter electronic devices, and there has been a demand for a permanent magnet having a large maximum magnetic energy product to cope with the demand.

【0005】これに対して、最近、SmFeを主体とす
る合金が開発されている。例えば、特開平6−1729
36号公報には、TbCu相からなる磁性材料が、特
開平7−66021号公報にはTbCu相とFeCo
相からなる磁性材料が、特開平8−316018号公報
にはTbCu相、Th2 Zn17相、Th2 Ni
相のいずれかとbcc相10〜60体積%からなる磁石
材料がそれぞれ開示されている。
On the other hand, recently, alloys mainly composed of SmFe have been developed. For example, JP-A-6-1729
No. 36 discloses a magnetic material comprising a TbCu 7 phase, and JP-A-7-66021 discloses a TbCu 7 phase and a FeCo
Magnetic material consisting of phases, Japanese Patent Laid-Open No. 8-316018 TbCu 7 phase, Th 2 Zn 17 phase, Th 2 Ni 1 7
Disclosed are magnet materials consisting of any one of the phases and 10 to 60% by volume of the bcc phase.

【0006】[0006]

【発明が解決しようとする課題】上述のように、SmF
eを主体とする磁性材料、磁石材料は、NdFeB急冷
粉を上回る高エネルギー積をもつ新しい磁石材料とし
て、特にボンド磁石に適したものとして開発されてき
た。しかしながら、最近の電子機器では、高密度実装に
よる熱対策が要求されており、また、車搭載用の磁石は
特に使用環境温度が高く、これらの用途には高エネルギ
ー積化に加え、磁石特性の高耐熱性、すなわち高保磁力
化が重要となっているが、上述の磁石材料は、これらの
特性をすべて満たすものではない。
As described above, SmF
Magnetic materials and magnet materials mainly composed of e have been developed as new magnet materials having a higher energy product than NdFeB quenched powder, particularly suitable for bonded magnets. However, recent electronic devices are required to take measures against heat by high-density mounting. In addition, magnets mounted on vehicles have a particularly high usage environment temperature. Although high heat resistance, that is, high coercive force is important, the above-described magnet materials do not satisfy all of these characteristics.

【0007】即ち、上記特許公報に記載されている磁性
材料は、いずれも高保磁力化および耐熱性に問題があ
る。本発明は、このような課題に対処するためになされ
たもので、高エネルギー積と高耐熱性を併せ有する磁石
材料、その製造方法、およびボンド磁石を提供すること
を目的とする。
[0007] That is, all of the magnetic materials described in the above-mentioned patent publications have problems in high coercive force and heat resistance. The present invention has been made to address such a problem, and an object of the present invention is to provide a magnet material having both high energy product and high heat resistance, a method for manufacturing the same, and a bonded magnet.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、下記一般式で表され、主相がTbCu
相と、Th2 Ni17相おとを含むことを特徴とする磁
石材料を提供する。
In order to solve the above problems, the present invention is represented by the following general formula, wherein the main phase is TbCu 7
The invention provides a magnetic material comprising a phase and a Th 2 Ni 17 phase.

【0009】(R)x(R
100−x−y−z−α−βαβ (式中、Rは、少なくとも1種以上の希土類元素(Y
を含む)、Rは、Ti、Zr、HfおよびNbからな
る群から選ばれる少なくとも1種、Tは、Fe、Coお
よびNiからなる群から選ばれる少なくとも1種、M
は、V、Cr、Mn、Ta、Mo、W、Sn、Ga、A
l、GeおよびSiからなる群から選ばれる少なくとも
1種、Xは、C、N、H、OおよびFからなる群から選
ばれる少なくとも1種、Aは、BおよびPからなる群か
ら選ばれる少なくとも1種であり、x、y、z、α、β
は、式2≦x≦20、0.1≦y≦20、0≦z≦1
0、0.1≦α≦20、0≦β≦5(原子%)を満たす
正の数である。) また、本発明は、下記一般式で表され、主相がTbCu
相と、Th2 Ni 相とを含み、更に副相としてF
eまたはFeCo相を10体積%まで含むことを特徴と
する磁石材料を提供する。
(R 1 ) x (R 2 ) y T
100-x-y-z- α-β M z X α A β ( wherein, R 1 is at least one or more rare earth elements (Y
R 2 is at least one selected from the group consisting of Ti, Zr, Hf and Nb; T is at least one selected from the group consisting of Fe, Co and Ni;
Is V, Cr, Mn, Ta, Mo, W, Sn, Ga, A
1, at least one selected from the group consisting of Ge and Si, X is at least one selected from the group consisting of C, N, H, O and F, and A is at least one selected from the group consisting of B and P X, y, z, α, β
Is represented by the formula 2 ≦ x ≦ 20, 0.1 ≦ y ≦ 20, 0 ≦ z ≦ 1
0, a positive number satisfying 0.1 ≦ α ≦ 20 and 0 ≦ β ≦ 5 (atomic%). The present invention is represented by the following general formula, wherein the main phase is TbCu.
Includes 7 and phase, the Th 2 Ni 1 7 phase, F as further subphase
Provided is a magnet material characterized by containing up to 10% by volume of an e or FeCo phase.

【0010】(R)x(R
100−x−y−z−α−βαβ (式中、Rは、少なくとも1種以上の希土類元素(Y
を含む)、Rは、Ti、Zr、HfおよびNbからな
る群から選ばれる少なくとも1種、Tは、Fe、Coお
よびNiからなる群から選ばれる少なくとも1種、M
は、V、Cr、Mn、Ta、Mo、W、Sn、Ga、A
l、GeおよびSiからなる群から選ばれる少なくとも
1種、Xは、C、N、H、OおよびFからなる群から選
ばれる少なくとも1種、Aは、BおよびPからなる群か
ら選ばれた少なくとも1種であり、x、y、z、α、β
は、式2≦x≦20、0.1≦y≦20、0≦z≦1
0、0.1≦α≦20、0≦β≦5(原子%)を満たす
正の数である。) 更に、本発明は、上述の磁石材料の粉末と樹脂との混合
物を成形してなることを特徴とするボンド磁石を提供す
る。
(R 1 ) x (R 2 ) y T
100-x-y-z- α-β M z X α A β ( wherein, R 1 is at least one or more rare earth elements (Y
R 2 is at least one selected from the group consisting of Ti, Zr, Hf and Nb; T is at least one selected from the group consisting of Fe, Co and Ni;
Is V, Cr, Mn, Ta, Mo, W, Sn, Ga, A
at least one selected from the group consisting of l, Ge and Si, X is at least one selected from the group consisting of C, N, H, O and F, and A is selected from the group consisting of B and P X, y, z, α, β
Is represented by the formula 2 ≦ x ≦ 20, 0.1 ≦ y ≦ 20, 0 ≦ z ≦ 1
0, a positive number satisfying 0.1 ≦ α ≦ 20 and 0 ≦ β ≦ 5 (atomic%). Further, the present invention provides a bonded magnet obtained by molding a mixture of the above-mentioned powder of the magnetic material and a resin.

【0011】本発明の磁石材料において、上記式中、R
は、磁性材料に大きな磁気異方性をもたらし、ひいて
は高い保磁力を与えるのに有効な元素である。La、C
e、Pr、Nd、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Lu、およびYからなる群から選ばれ
る希土類元素である。
In the magnetic material of the present invention, in the above formula, R
Numeral 1 is an element effective to bring a large magnetic anisotropy to a magnetic material and to give a high coercive force. La, C
e, Pr, Nd, Sm, Eu, Gd, Tb, Dy, H
It is a rare earth element selected from the group consisting of o, Er, Tm, Lu, and Y.

【0012】Rは、高飽和磁束密度の観点からはL
a、Ce、Pr、Nd、Smが好ましく、特に高保磁力
の点からはSmが好ましい。その量は、2原子%未満で
は磁気異方性が小さくなりすぎ、高保磁力が得られな
い。一方、20原子%を越えると飽和磁束密度が小さく
なり、高エネルギー積化が困難である。好ましくは3〜
18原子%であり、さらに好ましくは4〜16原子%で
ある。
R 1 is L from the viewpoint of high saturation magnetic flux density.
a, Ce, Pr, Nd, and Sm are preferred, and Sm is particularly preferred from the viewpoint of high coercive force. If the amount is less than 2 atomic%, the magnetic anisotropy becomes too small and a high coercive force cannot be obtained. On the other hand, if it exceeds 20 atomic%, the saturation magnetic flux density becomes small, and it is difficult to increase the energy product. Preferably 3 to
It is 18 atomic%, and more preferably 4 to 16 atomic%.

【0013】Rは、TbCu相を容易に形成させる
元素であるとともに、結晶構造の希土類サイトに入り、
Th2 Ni17相の安定化に寄与する。更に、磁気異方
性の調整を行い、特に等方性ボンド磁石材料の実現に有
効である。Rは、Zr、Hf、Ti、Nbから選ばれ
る少なくとも1種であり、特にZrが好ましい。その量
は、0.1原子%未満ではTbCu相、あるいはTh
2 Ni17相の形成が困難であり、一方20原子%を越
えると飽和磁束密度が低下してしまい、高エネルギー積
が得られにくくなる。好ましくは0.5〜18原子%で
あり、さらに好ましくは1〜16原子%である。
R 2 is an element that easily forms the TbCu 7 phase, and enters the rare earth site of the crystal structure.
It contributes to the stabilization of the Th 2 Ni 17 phase. Further, the magnetic anisotropy is adjusted, which is particularly effective for realizing an isotropic bonded magnet material. R 2 is at least one selected from Zr, Hf, Ti, and Nb, and Zr is particularly preferable. If the amount is less than 0.1 atomic%, TbCu 7 phase or Th
2 formed of Ni 17 phase is difficult, whereas causes decreases the saturation magnetic flux density exceeds 20 atomic%, it is difficult to obtain a high energy product. Preferably it is 0.5-18 atomic%, More preferably, it is 1-16 atomic%.

【0014】Tは、磁性材料の大きな飽和磁束密度を実
現するための基本元素であり、Fe、Coから選ばれる
少なくとも1種である。特に、Feを主体にすることが
好ましく、Tの中で50%以上がFeからなるのが基本
である。Coは、Feの40%までを置換することが可
能である。
T is a basic element for realizing a large saturation magnetic flux density of the magnetic material, and is at least one selected from Fe and Co. In particular, it is preferable to mainly use Fe, and basically, 50% or more of T is made of Fe. Co can replace up to 40% of Fe.

【0015】Mは、磁気特性改善に有効な元素であり、
V、Cr、Mn、Ta、Mo、W、Sn、Ga、Al、
Ge、およびSiからなる群から選ばれる少なくとも1
種である。その量が増えると飽和磁束密度が低下するた
め、10原子%以下が好ましい。さらに好ましくは8原
子%以下である。
M is an element effective for improving magnetic properties.
V, Cr, Mn, Ta, Mo, W, Sn, Ga, Al,
At least one selected from the group consisting of Ge and Si
Is a seed. If the amount increases, the saturation magnetic flux density decreases, so that it is preferably 10 atomic% or less. More preferably, it is 8 atomic% or less.

【0016】Xは、C、N、H、F、Oから選ばれる1
種以上であり、主として主相の格子間位置に存在し、主
相のキュリー温度、磁化、磁気異方性を向上させる働き
を有する。その量は、0.1原子%未満では上記効果が
十分には得られず、一方、20原子%を超えると保磁力
が低下してしまう。なお、より好ましくは1原子%以上
である。
X is 1 selected from C, N, H, F and O
Or more, and mainly exists at the interstitial position of the main phase, and has a function of improving the Curie temperature, magnetization, and magnetic anisotropy of the main phase. If the amount is less than 0.1 atomic%, the above effect cannot be sufficiently obtained, while if it exceeds 20 atomic%, the coercive force decreases. It is more preferably at least 1 atomic%.

【0017】これらの元素の中では、特にN(窒素)が
好ましく、窒素の導入にあたりH(水素)も同時に格子
間に侵入することが多い。また、Aは、急冷時のアモル
ファス化、熱処理時の微細な結晶粒析出に有効な元素で
あり、特にBが好ましい。その量は、5原子%以下であ
る。
Of these elements, N (nitrogen) is particularly preferred, and H (hydrogen) often enters the lattice at the same time as nitrogen is introduced. A is an element that is effective for amorphizing during quenching and precipitating fine crystal grains during heat treatment, and B is particularly preferable. Its amount is not more than 5 atomic%.

【0018】なお、上記式により実質的に表される磁石
材料は、酸化物などの不可避不純物を含有することを許
容する。また、Feの析出もその量によって許容され
る。その量は、X線回折で主相の主回折線の強度に対し
て20%までのFeの主回折線である。
The magnet material substantially represented by the above formula is allowed to contain unavoidable impurities such as oxides. Further, the precipitation of Fe is also permitted depending on the amount. The amount is the main diffraction line of Fe up to 20% of the intensity of the main diffraction line of the main phase in X-ray diffraction.

【0019】上記式で表される磁石材料の主相は、Tb
Cu相と、Th2 Ni17相とを含む。その割合は、
Th2 Ni17相が、0を含まず100%未満の範囲で
ある。Th2 Ni17相の割合が増えると、高い保磁力
が実現しやすくなり、耐熱性が改善される。
The main phase of the magnet material represented by the above formula is Tb
It contains a Cu 7 phase and a Th 2 Ni 17 phase. The percentage is
The Th 2 Ni17 phase is in a range of less than 100% without including 0. When the proportion of the Th 2 Ni 17 phase increases, a high coercive force is easily realized, and the heat resistance is improved.

【0020】主相の平均結晶粒径は、10〜100nm
の範囲にあることが望ましい。主相の平均結晶粒径が1
0nm未満では高保磁力が得られにくく、100nmを
超えると残留磁束密度が低下し、最大エネルギー積が低
くなる。ここで、TbCu7相とTh2 Ni17相の割
合は、TEM写真から得られる結晶粒10個以上に対し
て、個別に回折パターンをとり、区別する方法、あるい
は粉末X線回折をとり、TbCu相のみのパターンに
対してその強度比から算出する方法のいずれでもよい。
The average crystal grain size of the main phase is 10 to 100 nm.
Is desirably within the range. Average grain size of main phase is 1
If it is less than 0 nm, it is difficult to obtain a high coercive force, and if it exceeds 100 nm, the residual magnetic flux density decreases, and the maximum energy product decreases. The ratio of TbCu7 phase and Th 2 Ni 17 phase to the crystal grains 10 or more obtained from TEM photographs, taken individually diffraction pattern, taking a method or powder X-ray diffraction, distinguish, TbCu 7 Any of the methods of calculating from the intensity ratio for the pattern of only the phase may be used.

【0021】また、平均結晶粒径は、TEM写真で得ら
れた主相粒について最も大きい径と小さい径の平均をそ
の粒の粒径とし、これを10個以上とり、平均した値で
代表するか、あるいはScheererの式を用いて粉
末X線パターンの半値幅から求めてもよい。
The average crystal grain size is represented by the average of the largest and smallest diameters of the main phase grains obtained in the TEM photograph as the grain size, and 10 or more of the averaged grain sizes are represented by the average value. Alternatively, it may be determined from the half width of the powder X-ray pattern using the Scherer equation.

【0022】本発明はまた、主として希土類元素(Yを
含む)と遷移金属とを含む合金溶湯を、高速移動する冷
却体上に射出して冷却し、アモルファス相を含む金属体
を形成する工程、前記金属体を熱処理することにより、
平均結晶粒径が10〜100nmである、TbCu
と、Th2 Ni17相とを含む金属組織体を形成する工
程、および前記金属組織体に、窒素、水素、炭素、フッ
素及び炭素からなる群から選ばれた少なくとも1種を導
入する工程を具備することを特徴とする磁石材料の製造
方法を提供する。ここで、高速移動とは、典型的には、
10m/s以上の速さを意味する。
The present invention also provides a step of injecting a molten alloy mainly containing a rare earth element (including Y) and a transition metal onto a high-speed moving cooling body and cooling it to form a metal body containing an amorphous phase. By heat-treating the metal body,
A step of forming a metal structure including a TbCu 7 phase and a Th 2 Ni 17 phase having an average crystal grain size of 10 to 100 nm, and forming the metal structure from nitrogen, hydrogen, carbon, fluorine, and carbon. A method for producing a magnet material, comprising a step of introducing at least one member selected from the group. Here, high-speed movement typically means
It means a speed of 10 m / s or more.

【0023】かかる本発明の磁石材料の製造方法につい
て、以下、より詳細に説明する。上記式でXを除く(た
だしCは含んでいてもよい)合金を溶解した後、図1に
示す装置を用いて、液体急冷法(たとえば単ロール法)
により急冷し、薄帯状あるいはフレーク状の試料を作製
する。
The method for producing the magnet material of the present invention will be described below in more detail. After dissolving the alloy except X in the above formula (C may be included), a liquid quenching method (for example, a single roll method) is performed using the apparatus shown in FIG.
To produce a strip-shaped or flake-shaped sample.

【0024】即ち、誘導加熱コイル3を備えた容器2内
に合金を導入して、誘導加熱コイル3により合金を溶解
した後、容器2の下端のノズル4から、回転するロール
1上に溶解した合金を供給し急冷し、合金薄帯5を得
る。この際、50%以上をアモルファス相にするのが好
ましいが、急冷時点で50%以上微細結晶が析出してい
てもよい。
That is, the alloy was introduced into the container 2 provided with the induction heating coil 3, and the alloy was melted by the induction heating coil 3. Then, the alloy was melted from the nozzle 4 at the lower end of the container 2 onto the rotating roll 1. The alloy is supplied and quenched to obtain an alloy ribbon 5. At this time, it is preferable that 50% or more of the amorphous phase is formed, but 50% or more of fine crystals may be precipitated at the time of quenching.

【0025】図1に示す装置による単ロール法以外に
も、アトマイズ法、回転ディスク法、メカニカルアロイ
ング法、メカニカルグライディング法により、アモルフ
ァス相を含む合金組織を作製することも可能である。な
お、急速冷却の雰囲気は、不活性雰囲気または真空中で
ある。
In addition to the single roll method using the apparatus shown in FIG. 1, an alloy structure containing an amorphous phase can be produced by an atomizing method, a rotating disk method, a mechanical alloying method, or a mechanical grinding method. The rapid cooling atmosphere is an inert atmosphere or a vacuum.

【0026】次いで、この合金薄帯を熱処理し、TbC
相とTh2 Ni17相との混相組織にする。その熱
処理温度は、組成、あるいは急冷状態の結晶相の析出状
態にもよるが、700〜1000℃で10分〜10時間
程度が好ましい。
Next, this alloy ribbon is heat-treated, and TbC
to mixed-phase organization of the u 7 phase and the Th 2 Ni 17 phase. The heat treatment temperature depends on the composition or the state of precipitation of the rapidly cooled crystal phase, but is preferably from 700 to 1000 ° C. for about 10 minutes to 10 hours.

【0027】その後、熱処理された合金薄帯を、所定の
雰囲気中350〜600℃で、10分から5時間処理
し、X元素を導入する。なお、B、O、C、Pについて
は、予め合金溶解時点で導入することが可能である。
Thereafter, the heat-treated alloy ribbon is treated in a predetermined atmosphere at 350 to 600 ° C. for 10 minutes to 5 hours to introduce the element X. Note that B, O, C, and P can be introduced before melting the alloy.

【0028】Xの導入方法は、次の通りである。即ち、
得られた薄帯状あるいはフレーク状試料を粉砕し、数十
μm〜数mmの大きさの粉末とする。窒素を導入する場
合、この粉末を窒素雰囲気中、あるいはアンモニアと水
素の混合ガス中で300〜600℃の範囲で10分から
5時間、処理を行う。また、炭素を導入する場合には、
メタン、エタン、プロパンガスなどの炭素を含むガス雰
囲気中で処理する。この時、Ar或いは窒素雰囲気中で
〜5時間熱処理を追加してもよい。
The method of introducing X is as follows. That is,
The obtained ribbon-like or flake-like sample is pulverized to obtain a powder having a size of several tens μm to several mm. When introducing nitrogen, this powder is treated in a nitrogen atmosphere or a mixed gas of ammonia and hydrogen at a temperature of 300 to 600 ° C. for 10 minutes to 5 hours. Also, when introducing carbon,
The treatment is performed in a gas atmosphere containing carbon such as methane, ethane, and propane gas. At this time, heat treatment may be additionally performed in an Ar or nitrogen atmosphere for up to 5 hours.

【0029】以上のようにして得た、本発明の磁石材料
の粉末を、エポキシ系、ナイロン系などの樹脂と混合
し、成形することにより、ボンド磁石を製造することが
出来る。樹脂としてエポキシ系のような熱硬化性樹脂を
用いる場合には、圧縮成形したあとに、373〜473
K程度の温度でキュア処理をすることが望ましく、また
樹脂としてナイロン系のような熱可塑性樹脂を用いる場
合は、射出成形法を用いることが好ましい。
The powder of the magnetic material of the present invention obtained as described above is mixed with an epoxy-based or nylon-based resin and molded to produce a bonded magnet. When a thermosetting resin such as an epoxy resin is used as the resin, 373 to 473 after compression molding.
It is desirable to perform the curing treatment at a temperature of about K, and when a thermoplastic resin such as a nylon resin is used as the resin, it is preferable to use an injection molding method.

【0030】また、圧縮成形ボンド磁石を製造する場合
には、加圧時に磁場を印加して結晶方位を揃えることに
より、高磁束密度を有する永久磁石を製造することがで
きる。
When a compression-molded bonded magnet is manufactured, a permanent magnet having a high magnetic flux density can be manufactured by applying a magnetic field at the time of pressurization and aligning the crystal orientation.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施の形態として
の種々の実施例および比較例を示し、本発明について、
より具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, various examples and comparative examples as embodiments of the present invention will be shown.
This will be described more specifically.

【0032】実施例1、比較例1 図1に示す装置(ロール材質:Cu)を用い、単ロール
法により薄帯状試料を得た。即ち、高純度のSm、Z
r、Co、Fe、Bの各原料を、誘導加熱コイル3を備
えた容器2内に導入して、 Ar雰囲気中で誘導加熱コ
イル3により溶解した後、容器2の下端のノズル4か
ら、40m/sのロール周速で回転するロール1上に溶
解した合金を供給して超急冷し、合金薄帯5を得た。
Example 1, Comparative Example 1 Using the apparatus shown in FIG. 1 (roll material: Cu), a ribbon-shaped sample was obtained by a single roll method. That is, high purity Sm, Z
The raw materials of r, Co, Fe, and B are introduced into the container 2 provided with the induction heating coil 3 and melted by the induction heating coil 3 in an Ar atmosphere. The melted alloy was supplied onto the roll 1 rotating at a roll peripheral speed of / s and was rapidly quenched to obtain an alloy ribbon 5.

【0033】次いで、この合金薄帯5をX線回折により
分析したところ、アモルファス相のみであることを確認
した。得られた合金薄帯5を850℃、30分間熱処理
し、TbCu相とTh2 Ni17相の両者を析出させ
た。X線回折強度から、Th 2 Ni17相の割合は50
%であった。
Next, this alloy ribbon 5 is subjected to X-ray diffraction.
Analysis confirmed that only amorphous phase
did. Heat treatment of the obtained alloy ribbon 5 at 850 ° C. for 30 minutes
And TbCu7Phase and ThTwoNi17Deposit both phases
Was. From the X-ray diffraction intensity, Th TwoNi17The proportion of the phase is 50
%Met.

【0034】また、比較例として、Sm、Zr、Fe、
Coの各原料を、1m/sのロール周速を用いたことを
除いて、実施例1と同様の単ロール法を用い、溶解し、
冷却し、合金薄帯を得た。この合金薄帯をX線回折によ
り分析したところ、Th2 Ni17相単相であることを
確認した。
As comparative examples, Sm, Zr, Fe,
Co raw materials were melted using the same single-roll method as in Example 1 except that a roll peripheral speed of 1 m / s was used.
After cooling, an alloy ribbon was obtained. When this alloy ribbon was analyzed by X-ray diffraction, it was confirmed that the alloy ribbon was a single phase of Th 2 Ni 17 phase.

【0035】次に、以上の実施例1および比較例1によ
り得た合金薄帯を粉砕し、粒径(300μm以下)の合
金粉末とし、これを460℃で4時間、アンモニアガス
と水素ガスの流量比を1:15として窒化を行った。実
施例1の試料を試料振動型磁力計(VSM)で測定した
ところ、保磁力は15kOeで、(BH)maxは17M
GOeであった。
Next, the alloy ribbon obtained in Example 1 and Comparative Example 1 was pulverized to obtain an alloy powder having a particle size (300 μm or less). The alloy powder was subjected to ammonia gas and hydrogen gas at 460 ° C. for 4 hours. The nitriding was performed at a flow rate ratio of 1:15. When the sample of Example 1 was measured with a sample vibration magnetometer (VSM), the coercive force was 15 kOe and (BH) max was 17 M
GOe.

【0036】なお、本材料を組成分析したところ、Sm
6.0Zr2.6Fe61.1Co15.21.313.8であった。ま
た、比較例1の試料では、保磁力7.0kOe、(B
H)max10.8MGOeであった。
The composition of this material was analyzed to find that Sm
6.0 Zr 2.6 Fe 61.1 Co 15.2 B 1.3 N 13.8 . In the sample of Comparative Example 1, the coercive force was 7.0 kOe, (B
H) The maximum was 10.8 MGOe.

【0037】実施例1と比較例1をTEM観察し、平均
粒径を求めたところ、それぞれ30nm、400nmで
あった。また、実施例1のFeあるいはFeCo相の析
出量は、8体積%であり、比較例1では25体積%であ
った。
Example 1 and Comparative Example 1 were observed with a TEM to determine the average particle diameter, which was 30 nm and 400 nm, respectively. The amount of the Fe or FeCo phase deposited in Example 1 was 8% by volume, and that in Comparative Example 1 was 25% by volume.

【0038】これらの窒化した試料を平均粒径3μmま
で微粉砕し、エポキシ樹脂を2重量%添加し、混合した
後、150℃で2時間キュアし、ボンド磁石とした。得
られたボンド磁石を室温でBHトレーサーにより磁石特
性を評価したところ、実施例1の試料がHc=15.4
kOe、(BH)max=12.8MGOeであり、比較
例1の試料がHc=6.8kOe、(BH)max=7.
9MGOeであった。
These nitrided samples were pulverized to an average particle size of 3 μm, added with 2% by weight of an epoxy resin, mixed, and then cured at 150 ° C. for 2 hours to obtain a bonded magnet. When the magnet properties of the obtained bonded magnet were evaluated at room temperature using a BH tracer, the sample of Example 1 was found to have Hc = 15.4.
kOe, (BH) max = 12.8 MGOe, and the sample of Comparative Example 1 had Hc = 6.8 kOe, (BH) max = 7.
It was 9MGOe.

【0039】さらに、150℃での保磁力を測定したと
ころ、実施例1の試料が7.8kOe、比較例1の試料
が3.2kOeであり、本発明に係るボンド磁石が耐熱
性に優れていることが確認できた。
Further, when the coercive force at 150 ° C. was measured, the sample of Example 1 was 7.8 kOe and the sample of Comparative Example 1 was 3.2 kOe, and the bond magnet according to the present invention was excellent in heat resistance. Was confirmed.

【0040】実施例2〜18、比較例2,3 実施例1と同様に高純度の各原料を用い、下記表1に示
す組成の合金を作製した。ただし、Bを除くXの各元素
は、溶解、急冷、熱処理の後に導入した。急冷条件は4
0m/sとし、熱処理条件は表に記した通りである。実
施例1と同様に、ボンド磁石を作製し、BHトレーサー
で磁石特性を評価した。
Examples 2 to 18 and Comparative Examples 2 and 3 In the same manner as in Example 1, alloys having the compositions shown in Table 1 below were produced using high-purity raw materials. However, each element of X except B was introduced after melting, quenching, and heat treatment. Rapid cooling condition is 4
0 m / s, and the heat treatment conditions are as described in the table. In the same manner as in Example 1, a bonded magnet was prepared, and the magnet properties were evaluated using a BH tracer.

【0041】得られた室温での磁石特性と150℃での
保磁力を測定し、耐熱性の評価を行なったところ、下記
表1に示すような結果を得た。X線回折結果から得られ
た平均結晶粒径(Scheererの式)とTh2 Ni
17相の割合、FeあるいはFeCo相の析出割合も、
併せて表1に示した。
The obtained magnet properties at room temperature and the coercive force at 150 ° C. were measured, and the heat resistance was evaluated. The results shown in Table 1 below were obtained. Average crystal grain size (Schereer's equation) obtained from X-ray diffraction results and Th 2 Ni
The ratio of the 17 phases, the precipitation ratio of the Fe or FeCo phase,
Also shown in Table 1.

【0042】下記表から明らかなように、本発明の実施
例では高(BH)max、高保磁力、および高耐熱性のボ
ンド磁石が得られていることがわかる。
As is clear from the following table, it is understood that high (BH) max, high coercive force, and high heat resistance bonded magnets are obtained in the examples of the present invention.

【0043】また、比較として表1にあげた比較例2〜
4に係る合金についても同様の検討を行った。比較例に
ついては1m/sのロール周速で急冷し、予めTh2
相のみの状態を得た。この合金を粉砕後窒化し、
実施例1と同様にボンド磁石化した。なお、結晶粒径は
TEM評価の結果、500nmであった。
For comparison, Comparative Examples 2 to 2 shown in Table 1 were used.
The same study was performed for the alloy according to No. 4. For the comparative example, the roll was rapidly cooled at a roll peripheral speed of 1 m / s, and Th 2 N
obtaining the state of i 1 7 phase only. This alloy is pulverized and then nitrided,
A bond magnet was formed in the same manner as in Example 1. The crystal grain size was 500 nm as a result of the TEM evaluation.

【0044】比較例についても、その結果を表1に示す
が、表1から、比較例に係る合金は、残留磁束密度が低
く、高(BH)maxが達成されず、また、保磁力も不十
分であることがわかる。
The results of the comparative example are also shown in Table 1. From Table 1, it can be seen that the alloy according to the comparative example has a low residual magnetic flux density, cannot achieve a high (BH) max, and has a poor coercive force. It turns out that it is enough.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】以上説明したように、本発明によると、
高エネルギー積と高耐熱性を併せ有する磁石材料、その
製造方法、およびボンド磁石を得ることが可能であり、
工業上極めて有効である。
As described above, according to the present invention,
It is possible to obtain a magnet material having both high energy product and high heat resistance, a method for producing the same, and a bonded magnet,
It is extremely effective industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法に用いられる装置の概略を示す
図。
FIG. 1 is a diagram schematically showing an apparatus used in a method of the present invention.

【符号の説明】[Explanation of symbols]

1…ロール 2…容器 3…誘導加熱コイル 4…ノズル 5…合金薄帯 DESCRIPTION OF SYMBOLS 1 ... Roll 2 ... Container 3 ... Induction heating coil 4 ... Nozzle 5 ... Alloy ribbon

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢 孝雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5E040 AA03 AA04 AA19 BB03 BD03 CA01 HB11 NN01 NN06 NN17 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takao Sawa 1-term, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa F-term in the Toshiba R & D Center (reference) 5E040 AA03 AA04 AA19 BB03 BD03 CA01 HB11 NN01 NN06 NN17

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】下記一般式で表され、主相がTbCu
と、Th2 Ni17相とを含むことを特徴とする磁石材
料。 (R)x(R100−x−y−z−α−β
αβ (式中、Rは、少なくとも1種以上の希土類元素(Y
を含む)、Rは、Ti、Zr、HfおよびNbからな
る群から選ばれる少なくとも1種、Tは、Fe、Coお
よびNiからなる群から選ばれる少なくとも1種、M
は、V、Cr、Mn、Ta、Mo、W、Sn、Ga、A
l、GeおよびSiからなる群から選ばれる少なくとも
1種、Xは、C、N、H、OおよびFからなる群から選
ばれる少なくとも1種、Aは、BおよびPからなる群か
ら選ばれる少なくとも1種であり、x、y、z、α、β
は、式2≦x≦20、0.1≦y≦20、0≦z≦1
0、0.1≦α≦20、0≦β≦5(原子%)を満たす
正の数である。)
1. A magnet material represented by the following general formula, wherein the main phase contains a TbCu 7 phase and a Th 2 Ni 17 phase. (R 1) x (R 2 ) y T 100-x-y-z-α-β M
z X α A β (wherein, R 1 is at least one or more rare earth elements (Y
R 2 is at least one selected from the group consisting of Ti, Zr, Hf and Nb; T is at least one selected from the group consisting of Fe, Co and Ni;
Is V, Cr, Mn, Ta, Mo, W, Sn, Ga, A
1, at least one selected from the group consisting of Ge and Si, X is at least one selected from the group consisting of C, N, H, O and F, and A is at least one selected from the group consisting of B and P X, y, z, α, β
Is represented by the formula 2 ≦ x ≦ 20, 0.1 ≦ y ≦ 20, 0 ≦ z ≦ 1
0, a positive number satisfying 0.1 ≦ α ≦ 20 and 0 ≦ β ≦ 5 (atomic%). )
【請求項2】下記一般式で表され、主相がTbCu
と、Th2 Ni17相とを含み、更に副相としてFeま
たはFeCo相を10体積%まで含むことを特徴とする
磁石材料。 (R)x(R100−x−y−z−α−β
αβ (式中、Rは、少なくとも1種以上の希土類元素(Y
を含む)、Rは、Ti、Zr、HfおよびNbからな
る群から選ばれる少なくとも1種、Tは、Fe、Coお
よびNiからなる群から選ばれる少なくとも1種、M
は、V、Cr、Mn、Ta、Mo、W、Sn、Ga、A
l、GeおよびSiからなる群から選ばれる少なくとも
1種、Xは、C、N、H、OおよびFからなる群から選
ばれる少なくとも1種、Aは、BおよびPからなる群か
ら選ばれる少なくとも1種であり、x、y、z、α、β
は、式2≦x≦20、0.1≦y≦20、0≦z≦1
0、0.1≦α≦20、0≦β≦5(原子%)を満たす
正の数である。)
2. A magnetic material represented by the following general formula, wherein the main phase contains 7 phases of TbCu and 17 phases of Th 2 Ni and further contains up to 10% by volume of Fe or FeCo phase as a sub phase. . (R 1) x (R 2 ) y T 100-x-y-z-α-β M
z X α A β (wherein, R 1 is at least one or more rare earth elements (Y
R 2 is at least one selected from the group consisting of Ti, Zr, Hf and Nb; T is at least one selected from the group consisting of Fe, Co and Ni;
Is V, Cr, Mn, Ta, Mo, W, Sn, Ga, A
1, at least one selected from the group consisting of Ge and Si, X is at least one selected from the group consisting of C, N, H, O and F, and A is at least one selected from the group consisting of B and P X, y, z, α, β
Is represented by the formula 2 ≦ x ≦ 20, 0.1 ≦ y ≦ 20, 0 ≦ z ≦ 1
0, a positive number satisfying 0.1 ≦ α ≦ 20 and 0 ≦ β ≦ 5 (atomic%). )
【請求項3】平均結晶粒径が10〜100nmの範囲に
あることを特徴とする請求項1または2に記載の磁石材
料。
3. The magnetic material according to claim 1, wherein the average crystal grain size is in a range of 10 to 100 nm.
【請求項4】請求項1〜3に記載の磁石材料の粉末と樹
脂との混合物を成形してなることを特徴とするボンド磁
石。
4. A bonded magnet obtained by molding a mixture of the powder of the magnetic material according to claim 1 and a resin.
【請求項5】希土類元素(Yを含む)と遷移金属とを含
む合金溶湯を、高速移動する回転体上に射出して冷却
し、少なくとも一部にアモルファス相を含む金属体を形
成する工程、 前記金属体を熱処理することにより、平均結晶粒径が1
0〜100nmである、TbCu相と、Th2 Ni
17相および/またはTh2 Zn17相とを含む金属組
織体を形成する工程、および前記金属組織体に、窒素、
水素、炭素、フッ素及び酸素からなる群から選ばれた少
なくとも1種を導入する工程を具備することを特徴とす
る磁石材料の製造方法。
5. A step of injecting a molten alloy containing a rare earth element (including Y) and a transition metal onto a rotating body that moves at a high speed and cooling it to form a metal body containing an amorphous phase at least partially. By heat-treating the metal body, the average crystal grain size becomes 1
TbCu 7 phase and Th 2 Ni of 0-100 nm
Forming a metal structure including a 17 phase and / or a Th 2 Zn 17 phase, and adding nitrogen,
A method for producing a magnet material, comprising a step of introducing at least one selected from the group consisting of hydrogen, carbon, fluorine and oxygen.
【請求項6】前記合金溶湯は、下記一般式で表されるこ
とを特徴とする請求項5に記載の磁石材料の製造方法。 (R)x(R100−x−y−z−γ
A'γ (式中、Rは、少なくとも1種以上の希土類元素(Y
を含む)、Rは、Ti、Zr、HfおよびNbからな
る群から選ばれる少なくとも1種、Tは、Fe、Coお
よびNiからなる群から選ばれる少なくとも1種、M
は、V、Cr、Mn、Ta、Mo、W、Sn、Ga、A
l、GeおよびSiからなる群から選ばれる少なくとも
1種、Aは、B、CおよびPからなる群から選ばれる少
なくとも1種であり、x、y、z、γは、式2≦x≦2
0、0.1≦y≦20、0≦z≦10、0≦γ≦5(原
子%)を満たす正の数である。)
6. The method according to claim 5, wherein the molten alloy is represented by the following general formula. (R 1) x (R 2 ) y T 100-x-y-z-γ M
z A ′ γ (wherein, R 1 is at least one or more rare earth elements (Y
R 2 is at least one selected from the group consisting of Ti, Zr, Hf and Nb; T is at least one selected from the group consisting of Fe, Co and Ni;
Is V, Cr, Mn, Ta, Mo, W, Sn, Ga, A
A is at least one selected from the group consisting of l, Ge and Si, A is at least one selected from the group consisting of B, C and P, and x, y, z and γ are represented by the formula 2 ≦ x ≦ 2
It is a positive number satisfying 0, 0.1 ≦ y ≦ 20, 0 ≦ z ≦ 10, and 0 ≦ γ ≦ 5 (atomic%). )
【請求項7】前記合金溶湯を高速移動する回転体上に射
出して冷却することにより、アモルファス相を50%以
上含む金属体を得ることを特徴とする請求項5または6
に記載の磁石材料の製造方法。
7. A metal body containing at least 50% of an amorphous phase by injecting the molten alloy onto a rotating body that moves at a high speed and cooling it.
3. The method for producing a magnet material according to item 1.
JP37503799A 1999-12-28 1999-12-28 Manufacturing method of magnet material Expired - Fee Related JP3735502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37503799A JP3735502B2 (en) 1999-12-28 1999-12-28 Manufacturing method of magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37503799A JP3735502B2 (en) 1999-12-28 1999-12-28 Manufacturing method of magnet material

Publications (2)

Publication Number Publication Date
JP2001189204A true JP2001189204A (en) 2001-07-10
JP3735502B2 JP3735502B2 (en) 2006-01-18

Family

ID=18504863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37503799A Expired - Fee Related JP3735502B2 (en) 1999-12-28 1999-12-28 Manufacturing method of magnet material

Country Status (1)

Country Link
JP (1) JP3735502B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014600A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Rare earth magnet
WO2011068107A1 (en) * 2009-12-04 2011-06-09 株式会社日立製作所 Light rare earth magnet and magnetic device
WO2012020617A1 (en) * 2010-08-11 2012-02-16 株式会社日立製作所 Magnetic material, magnetic shaped object, and rotating machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014600A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Rare earth magnet
WO2011068107A1 (en) * 2009-12-04 2011-06-09 株式会社日立製作所 Light rare earth magnet and magnetic device
WO2012020617A1 (en) * 2010-08-11 2012-02-16 株式会社日立製作所 Magnetic material, magnetic shaped object, and rotating machine
JP2012039017A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Magnet material, magnet molding and rotary machine

Also Published As

Publication number Publication date
JP3735502B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP2001189206A (en) Permanent magnet
JPH03227502A (en) Heat-resisting bond magnet and its manufacture and pm motor
JP4055709B2 (en) Manufacturing method of nanocomposite magnet by atomizing method
JP4899254B2 (en) Isotropic powder magnet material, manufacturing method thereof, and bonded magnet
JPH118109A (en) Rare earth permanent magnet material and its manufacture
JP2002285301A (en) Iron and rare earth based permanent magnet alloy and production method therefor
US20030145910A1 (en) Permanent magnetic alloy and bonded magnet
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JP3735502B2 (en) Manufacturing method of magnet material
JP4320701B2 (en) Permanent magnet alloy and bonded magnet
JP4421185B2 (en) Magnet materials and bonded magnets using them
JPH07263210A (en) Permanent magnet, alloy powder for permanent magnet and their production
JP3469496B2 (en) Manufacturing method of magnet material
JP3370013B2 (en) Rare earth magnet material and rare earth bonded magnet using the same
JP5366000B2 (en) Rare earth permanent magnet and method for producing the same
JP2002064009A (en) Iron-based rare earth alloy magnet and method of manufacturing the same
JP4742228B2 (en) Alloy strip for rare earth magnet and manufacturing method, alloy for rare earth magnet
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet
WO2024057653A1 (en) Iron base rare earth boron-based isotropic nanocomposite magnet alloy, method for producing iron base rare earth boron-based isotropic nanocomposite magnet alloy, and method for producing resin-bonded permanent magnet
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JP2000114020A (en) Magnet material and bond magnet
JP2002343660A (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method therefor
JP2004063666A (en) Method for manufacturing isotropic rare earth magnet powder
JPH04365840A (en) Rare earth magnet material

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R151 Written notification of patent or utility model registration

Ref document number: 3735502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees