JPH07263210A - Permanent magnet, alloy powder for permanent magnet and their production - Google Patents

Permanent magnet, alloy powder for permanent magnet and their production

Info

Publication number
JPH07263210A
JPH07263210A JP6074465A JP7446594A JPH07263210A JP H07263210 A JPH07263210 A JP H07263210A JP 6074465 A JP6074465 A JP 6074465A JP 7446594 A JP7446594 A JP 7446594A JP H07263210 A JPH07263210 A JP H07263210A
Authority
JP
Japan
Prior art keywords
permanent magnet
compound
phase
type
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6074465A
Other languages
Japanese (ja)
Other versions
JP3411663B2 (en
Inventor
Hirokazu Kanekiyo
裕和 金清
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP07446594A priority Critical patent/JP3411663B2/en
Publication of JPH07263210A publication Critical patent/JPH07263210A/en
Application granted granted Critical
Publication of JP3411663B2 publication Critical patent/JP3411663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PURPOSE:To obtain a powder alloy of microcrystal aggregate having constitutional phases of an Fe3B type compound and alpha-iron and an Nd2Fe14B type crystal structure suitable for production of a bond magnet having a specified remanent magnetic flux density. CONSTITUTION:The powder alloy for permanent magnet has a composition represented by a formula Fe100-x-y-zBxRyMz (R represents one or two kinds of Pr and Nd, M represents one or more than one kind of Al, Si, S, Ni, Cu, Zn, Ga, Ag, Pt, Au, or Pb) where, 10<=x<=30at%, 33<=y<=5at% and 0.1<=z<=3at%. An Fe3B type compound and alpha-iron coexist with a compound having Nd2Fe14B type crystal structure in one powder particle of a microcrystal aggregate where the average crystal particle size of each constitutional phase is 1-5nm. The microcrystal aggregate has such magnetic characteristics as iHc>=3.0hOe, Br>=10kG, and (BH)max>=9MGOe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーター、スピ
ーカー用並びにメーターおよびフォーカスコンバージェ
ンスリングなどに最適なボンド磁石用合金粉末とその製
造方法に係り、希土類元素を少量含有する特定組成のF
e−B−R−M(M=Al,Si,S,Ni,Cu,Z
n,Ga,Ag,Pt,Au,Pb)合金溶湯を回転ロ
ールを用いた超急冷法、スプラット急冷法、ガスアトマ
イズ法あるいはこれらの併用法にてアモルファス組織あ
るいは微細結晶とアモルファスが混在する組織とし、特
定の熱処理にてFe3B型化合物並びにα−鉄とNd2
14B型結晶構造の構成相との微細結晶集合体からなる
合金粉末を得、これを樹脂にて結合することにより、ハ
ードフェライト磁石では得られなかった8kG以上の残
留磁束密度Brを有し、温度特性にすぐれたFe−B−
R系ボンド磁石を得ることができる永久磁石並びに永久
磁石合金粉末とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy powder for a variety of motors, speakers, and for bonded magnets, which is most suitable for meters, focus convergence rings and the like, and a method for producing the same, and it has a specific composition of F containing a small amount of a rare earth element.
e-B-R-M (M = Al, Si, S, Ni, Cu, Z
n, Ga, Ag, Pt, Au, Pb) alloy melt is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by a super quenching method using a rotating roll, a splat quenching method, a gas atomizing method or a combination thereof. Fe 3 B type compound as well as α-iron and Nd 2 F by specific heat treatment
By obtaining an alloy powder composed of a fine crystal aggregate with a constituent phase of the e 14 B type crystal structure and binding it with a resin, a residual magnetic flux density Br of 8 kG or more, which cannot be obtained with a hard ferrite magnet, is obtained. , Fe-B- with excellent temperature characteristics
The present invention relates to a permanent magnet that can obtain an R-based bonded magnet, a permanent magnet alloy powder, and a method for producing the same.

【0002】[0002]

【従来の技術】高い残留磁束密度Brを要求される分野
や高温並びに低温下での使用を要求される永久磁石に
は、主にBrが10kG以上、固有保磁力iHcが0.
5kOe〜2kOeの磁気特性を有するアルニコ磁石、
あるいはBrが8kG以上、iHcが6kOe以上のS
m−Co磁石が使用されている。
2. Description of the Related Art In fields requiring a high residual magnetic flux density Br and permanent magnets required to be used at high and low temperatures, Br is mainly 10 kG or more and an intrinsic coercive force iHc is 0.
An alnico magnet having a magnetic characteristic of 5 kOe to 2 kOe,
Or S with Br of 8 kG or more and iHc of 6 kOe or more
m-Co magnets are used.

【0003】これらの磁石は、原産国からの供給量が不
安定であり、安定的に入手し難いCoを主原料としてお
り、アルニコ磁石の場合で20〜30wt%、Sm−C
o磁石で50〜65wt%も含有している。また、Sm
−Co磁石に含有されるSmは希土類鉱物中に含まれる
量が少なく極めて高価で安定的に入手し難い問題があ
る。しかし、自動車の電装品用のモーターやスピードメ
ーターに用いられる磁石は、80℃以上の環境で使用さ
れる可能性があるため、かかる用途にはアルニコ磁石並
びにSm−Co磁石が、はるかに安価で入手できるハー
ドフェライトをしのいで主流を占めている。
These magnets are mainly made of Co, which is difficult to obtain stably because the supply amount from the country of origin is unstable. In the case of Alnico magnet, 20 to 30 wt%, Sm-C
It also contains 50 to 65 wt% of a magnet. Also, Sm
There is a problem that Sm contained in a Co magnet is extremely expensive because it is contained in a rare earth mineral in a small amount and is difficult to obtain stably. However, magnets used for motors and speedometers for automobile electrical components may be used in an environment of 80 ° C. or higher, so Alnico magnets and Sm-Co magnets are much cheaper for such applications. It occupies the mainstream over the available hard ferrites.

【0004】特に、Sm−Co磁石は今日の自動車の燃
費向上の要請から高価な磁石であるにもかかわらず、そ
の優れた磁気特性を有することから、小型高性能化が要
求される磁気回路に使用されている。そこで、CoやS
mを含有せず、磁気特性と温度特性のすぐれた永久磁石
材料が要求されているが、現在のところ大量生産が可能
で安価に提供でき、Brが8kG以上の磁石材料は、見
出されていない。
In particular, the Sm-Co magnet is an expensive magnet due to the demand for improving the fuel efficiency of today's automobiles, but has excellent magnetic characteristics, so that it is suitable for a magnetic circuit that requires a small size and high performance. It is used. So Co and S
There is a demand for a permanent magnet material that does not contain m and has excellent magnetic characteristics and temperature characteristics. At present, however, a magnetic material that can be mass-produced and can be provided at low cost and has a Br of 8 kG or more has been found. Absent.

【0005】[0005]

【発明が解決しようとする課題】CoやSmを含有しな
いNd−Fe−B系磁石において、最近、Nd4Fe77
19(at%)近傍でFe3B型化合物を主相とする磁
石材料が提案(R.Coehoorn等、J.de P
hys.,C8,1988,669〜670頁)され
た。この磁石材料はアモルファスリボンを熱処理するこ
とにより、Fe3B相とNd2Fe14B相が混在する結晶
集合組織を有する準安定構造の永久磁石材料であり、1
0kG程度のBrと2〜3kOeのiHcを有するが、
硬磁性材料になり得るための熱処理条件が狭く限定さ
れ、工業生産上実用的でない。
Recently, in an Nd-Fe-B system magnet containing no Co or Sm, Nd 4 Fe 77 was used.
A magnetic material having a Fe 3 B type compound as a main phase in the vicinity of B 19 (at%) is proposed (R. Coehorn et al., J. de P.
hys. , C8, 1988, pp. 669-670). This magnet material is a metastable structure permanent magnet material having a crystal texture in which Fe 3 B phase and Nd 2 Fe 14 B phase are mixed by heat-treating an amorphous ribbon.
Although it has Br of about 0 kG and iHc of 2 to 3 kOe,
The heat treatment conditions for becoming a hard magnetic material are narrowly limited, which is not practical in industrial production.

【0006】また、このFe3B型化合物を主相とする
Nd−Fe−B系磁石のNdの一部をDyとTbで置換
してiHcを3〜5kOeに改善する研究が発表されて
いるが、高価な元素を添加する問題のほか、添加希土類
元素はその磁気モーメントがNdやFeの磁気モーメン
トと反平行して結合するため磁化並びに減磁曲線の角形
性が減少する問題がある(R.Coehoorn、J.
Magn,Magn,Mat.、83(1990)22
8〜230頁)。
Further, a study has been published to improve iHc to 3 to 5 kOe by substituting a part of Nd of the Nd-Fe-B system magnet having the Fe 3 B type compound as a main phase with Dy and Tb. However, in addition to the problem of adding an expensive element, there is a problem that the magnetic moment of the rare earth element added is coupled antiparallel to the magnetic moments of Nd and Fe, and the squareness of the magnetization and demagnetization curve is reduced (R Coehoorn, J .;
Magn, Magn, Mat. , 83 (1990) 22
8 to 230).

【0007】いずれにしてもFe3B型Nd−Fe−B
系磁石は、超急冷法によりアモルファス化した後、熱処
理して硬磁性材料化できるが、iHcが低く、かつ前記
熱処理条件が狭く、安定した工業生産ができず、アルニ
コ磁石やSm−Co磁石の代替えとして安価に提供する
ことができない。
In any case, Fe 3 B type Nd-Fe-B
The system magnet can be made into a hard magnetic material by heat treatment after being made amorphous by the ultra-quenching method, but iHc is low and the heat treatment conditions are narrow, and stable industrial production cannot be performed. As an alternative, it cannot be provided inexpensively.

【0008】この発明は、軟磁性相と硬磁性相が同一組
織内に混在し、希土類濃度が低い鉄系永久磁石材料に着
目し、この磁石のiHcを向上させ、安定した工業生産
が可能な製造方法の確立と、10kG以上の残留磁束密
度Brを有しハードフェライト磁石に匹敵するコストパ
フォーマンスを有し、安価に提供できる永久磁石並びに
永久磁石合金粉末とその製造方法の提供を目的としてい
る。
The present invention focuses on an iron-based permanent magnet material in which a soft magnetic phase and a hard magnetic phase are mixed in the same structure and has a low rare earth concentration, and the iHc of this magnet is improved to enable stable industrial production. It is an object of the present invention to establish a manufacturing method, provide a permanent magnet and a permanent magnet alloy powder that have a residual magnetic flux density Br of 10 kG or more and have cost performance comparable to a hard ferrite magnet, and can be provided at low cost, and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】この発明は、軟磁性相と
硬磁性相が同一組織内に混在し、希土類濃度が4at%
程度と低い鉄系永久磁石のiHcを向上させ、安定した
工業生産が可能な製造方法を目的に種々検討した結果、
希土類元素の含有量が少なく、Al,Si,S,Ni,
Cu,Zn,Ga,Ag,Pt,Au,Pbの少なくと
も1種を少量添加した鉄基の特定組成の合金溶湯を超急
冷法等にてアモルファス組織あるいは微細結晶とアモル
ファスが混在する組織とし、特定の熱処理にてFe3
型化合物並びにα−鉄とNd2Fe14B型結晶構造の構
成相との微細結晶集合体からなる合金粉末を得ることに
より、アルニコ磁石やSm−Co磁石に匹敵する10k
G以上の残留磁束密度Brを有するボンド磁石に最適の
希土類磁石合金粉末が得られることを知見し、この発明
を完成した。
According to the present invention, a soft magnetic phase and a hard magnetic phase are mixed in the same structure, and the rare earth concentration is 4 at%.
As a result of various studies aimed at improving the iHc of the iron-based permanent magnet, which is as low as a degree, and enabling stable industrial production,
The content of rare earth elements is low, and Al, Si, S, Ni,
The alloy melt of the iron-based specific composition to which a small amount of at least one of Cu, Zn, Ga, Ag, Pt, Au, and Pb is added is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, etc. Heat treatment of Fe 3 B
By obtaining an alloy powder consisting of a type compound and a fine crystal aggregate of α-iron and the constituent phases of the Nd 2 Fe 14 B type crystal structure, it is possible to obtain an alloy powder of 10k which is comparable to Alnico magnets and Sm-Co magnets.
The inventors have found that an optimum rare earth magnet alloy powder can be obtained for a bonded magnet having a residual magnetic flux density Br of G or more, and completed the present invention.

【0010】この発明は、組成式をFe100-x-y-zx
yz (但しRはPrまたはNdの1種または2種、M
はAl,Si,S,Ni,Cu,Zn,Ga,Ag,P
t,Au,Pbの1種または2種以上)と表し、組成範
囲を限定する記号x、y、z、wが下記値を満足し、F
3B型化合物並びにα−鉄と、Nd2Fe14B型結晶構
造を有する化合物とが同一粉末粒子中に共存し、各構成
相の平均結晶粒径が1nm〜50nmの範囲にある微細
結晶集合体であることを特徴とする永久磁石である。 10≦x≦30at% 3≦y≦5at% 0.1≦z≦3at%
The present invention uses the composition formula Fe 100-xyz B x R
y M z (where R is one or two of Pr or Nd, M
Is Al, Si, S, Ni, Cu, Zn, Ga, Ag, P
t, Au, or Pb), and the symbols x, y, z, and w that limit the composition range satisfy the following values, and F
e 3 B type compound and α-iron, and a compound having a Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average crystal grain size of each constituent phase is a fine crystal in the range of 1 nm to 50 nm. It is a permanent magnet characterized by being an aggregate. 10 ≦ x ≦ 30 at% 3 ≦ y ≦ 5 at% 0.1 ≦ z ≦ 3 at%

【0011】この発明は、組成式をFe100-x-y-zx
yz (但しRはPrまたはNdの1種または2種、M
はAl,Si,S,Ni,Cu,Zn,Ga,Ag,P
t,Au,Pbの1種または2種以上)と表し、組成範
囲を限定する記号x、y、z、wが下記値を満足し、F
3B型化合物並びにα−鉄とNd2Fe14B型結晶構造
を有する構成相とが同一粉末粒子中に共存し、各構成相
の平均結晶粒径が1nm〜50nmの範囲にある微細結
晶集合体からなり、磁気特性がiHc≧3.0kOe、
Br≧10kG、(BH)max≧9MGOeであるこ
とを特徴とする永久磁石合金粉末である。 10≦x≦30at% 3≦y≦5at% 0.1≦z≦3at%
The present invention uses the composition formula Fe 100-xyz B x R
y M z (where R is one or two of Pr or Nd, M
Is Al, Si, S, Ni, Cu, Zn, Ga, Ag, P
t, Au, or Pb), and the symbols x, y, z, and w that limit the composition range satisfy the following values, and F
e 3 B-type compound and α-iron and a constituent phase having a Nd 2 Fe 14 B-type crystal structure coexist in the same powder particle, and fine crystals having an average crystal grain size of each constituent phase in the range of 1 nm to 50 nm. It is composed of aggregates and has magnetic characteristics of iHc ≧ 3.0 kOe,
The permanent magnet alloy powder is characterized in that Br ≧ 10 kG and (BH) max ≧ 9 MGOe. 10 ≦ x ≦ 30 at% 3 ≦ y ≦ 5 at% 0.1 ≦ z ≦ 3 at%

【0012】また、この発明は、(1)組成式をFe
100-x-y-zxyz (但しRはPrまたはNdの1種
または2種、MはAl,Si,S,Ni,Cu,Zn,
Ga,Ag,Pt,Au,Pbの1種または2種以上)
と表し、組成範囲を限定する記号x、y、zが上述の値
を満足する合金溶湯を回転ロールを用いた超急冷法、ス
プラット急冷法、ガスアトマイズ法あるいはこれらを組
み合せて急冷し、アモルファス組織あるいは微細結晶と
アモルファスが混在する組織となし、(2)さらに結晶
化が開始する温度付近から600℃〜700℃の処理温
度までの昇温速度が10℃/分〜50℃/秒になる結晶
化熱処理を施し、(3)Fe3B型化合物並びにα−鉄
と、Nd2Fe14B型結晶構造を有する化合物とが同一
粉末粒子中に共存し、各構成相の平均結晶粒径が1nm
〜50nmの範囲にある微結晶集合体を得たのち、
(4)必要に応じてこれを、平均粒径3μm〜500μ
mに粉砕して磁石合金粉末を得ることを特徴とする希土
類合金粉末の製造方法である。
Further, according to the present invention, the composition formula (1) is represented by Fe
100-xyz B x R y M z (where R is one or two of Pr or Nd, M is Al, Si, S, Ni, Cu, Zn,
One or more of Ga, Ag, Pt, Au, Pb)
And the symbols x, y, and z that limit the composition range satisfy the above-mentioned values, and the alloy melt is quenched by a super-quenching method using a rotating roll, a splat quenching method, a gas atomizing method, or a combination of these methods. (2) Crystallization in which the temperature rising rate from around the temperature at which crystallization starts to the processing temperature of 600 ° C to 700 ° C is 10 ° C / min to 50 ° C / sec. After heat treatment, (3) the Fe 3 B type compound and α-iron, and the compound having the Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average crystal grain size of each constituent phase is 1 nm.
After obtaining a microcrystalline aggregate in the range of ˜50 nm,
(4) If necessary, the average particle size is 3 μm to 500 μm.
It is a method for producing a rare earth alloy powder, which is characterized by pulverizing to m to obtain a magnet alloy powder.

【0013】組成の限定理由 希土類元素RはPrまたはNdの1種また2種を特定量
含有のときのみ、高い磁気特性が得られ、他の希土類、
例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は
磁気特性の劣化を招来するとともに磁石を高価格にする
ため好ましくない。Rは、3at%未満では3kOe以
上のiHcが得られず、また5at%を越えると10k
G以上のBrが得られないため、3〜5at%の範囲と
する。
Reasons for limiting the composition The rare earth element R has high magnetic properties only when it contains one or two of Pr or Nd in a specific amount.
For example, in the case of Ce and La, the characteristic that iHc is 2 kOe or more cannot be obtained, and medium rare earth elements and heavy rare earth elements after Sm cause deterioration of magnetic characteristics and make the magnet expensive, which is not preferable. If R is less than 3 at%, iHc of 3 kOe or more cannot be obtained, and if it exceeds 5 at%, it is 10 k.
Since Br of G or more cannot be obtained, the range is 3 to 5 at%.

【0014】Bは、10at%未満では超急冷法を用い
てもアモルファス組織が得られず、熱処理を施しても3
kOe未満のiHcしか得られない。また、30at%
を越えると減磁曲線の角形性が著しく低下し、10kG
以上のBrが得られないため、10〜30at%の範囲
とする。好ましくは、15〜20at%が良い。
If B is less than 10 at%, an amorphous structure cannot be obtained even if the ultra-quenching method is used, and even if a heat treatment is applied, it becomes 3
Only iHc less than kOe can be obtained. Also, 30 at%
If it exceeds, the squareness of the demagnetization curve will be significantly reduced and 10 kG
Since the above Br cannot be obtained, the range is 10 to 30 at%. It is preferably 15 to 20 at%.

【0015】Al、Si、S、Ni、Cu、Zn、G
a、Ag、Pt、Au、Pbは減磁曲線の角型性を改善
し、Brおよび(BH)maxを増大させる効果を有す
るが、0.1at%未満ではかかる効果が得られず、3
at%を超えると10kG以上のBrが得られないた
め、0.1〜3at%の範囲とする。好ましくは、0.
5〜1.5at%が良い。
Al, Si, S, Ni, Cu, Zn, G
Although a, Ag, Pt, Au, and Pb have the effect of improving the squareness of the demagnetization curve and increasing Br and (BH) max, if less than 0.1 at%, such an effect cannot be obtained.
If it exceeds at%, Br of 10 kG or more cannot be obtained, so the range is 0.1 to 3 at%. Preferably, 0.
5 to 1.5 at% is good.

【0016】Feは、上述の元素の含有残余を占める。Fe occupies the remaining content of the above-mentioned elements.

【0017】製造条件の限定理由 この発明において、上述の特定組成の合金溶湯を超急冷
法にてアモルファスあるいは微細結晶とアモルファスが
混在する組織となし、結晶化が開始する温度付近から6
00℃〜700℃の処理温度までの昇温速度が10℃/
分〜50℃/秒になる結晶化熱処理を施すことにより、
Fe3B型化合物並びにα−鉄と、Nd2Fe14B型結晶
構造を有する化合物相とが同一粉末中に共存し、各構成
相の平均結晶粒径が1nm〜50nmの範囲にある微結
晶集合体を得ることが最も重要であり、合金溶湯の超急
冷処理には公知の回転ロールを用いた超急冷法を採用で
きるが、実質的にアモルファスもしくは微細結晶がアモ
ルファスの混在する組織が得られれば、回転ロールを用
いた超急冷法の他にもスプラット急冷法、ガスアトマイ
ズ法あるいはこれらを組み合せた急冷方法を採用しても
よい。例えば、Cu製ロールを用いる場合は、そのロー
ル表面周速度が10〜50m/秒の範囲が好適な急冷組
織が得られるため好ましい。すなわちロール周速度が1
0m/秒未満ではアモルファス組織とならず好ましくな
い。また50m/秒を超えると、結晶化の際、良好な硬
磁気特性の得られる微細結晶集合体とならず好ましくな
い。ただし、少量のα−Fe相が急冷組織中に存在して
いても磁気特性を著しく低下させるものでなく許容され
る。
Reasons for limiting manufacturing conditions In the present invention, the molten alloy having the above-mentioned specific composition is formed into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, and the temperature is about 6 from the temperature at which crystallization starts.
The temperature rising rate from the processing temperature of 00 ° C to 700 ° C is 10 ° C /
By performing the crystallization heat treatment at a temperature of min.
Fe 3 B type compounds and α-iron, and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder, and the average crystal grain size of each constituent phase is in the range of 1 nm to 50 nm It is most important to obtain an aggregate, and a super-quenching method using a known rotating roll can be adopted for the super-quenching treatment of the molten alloy, but it is possible to obtain a structure in which amorphous or fine crystals are substantially mixed. For example, a splat quenching method, a gas atomizing method, or a quenching method combining these methods may be adopted in addition to the super quenching method using a rotating roll. For example, when a Cu roll is used, a roll surface peripheral velocity in the range of 10 to 50 m / sec is preferable because a suitable quenched structure can be obtained. That is, the roll peripheral speed is 1
When it is less than 0 m / sec, an amorphous structure is not formed, which is not preferable. On the other hand, if it exceeds 50 m / sec, it is not preferable because it does not form a fine crystal aggregate capable of obtaining good hard magnetic properties during crystallization. However, even if a small amount of α-Fe phase is present in the quenched structure, it does not significantly deteriorate the magnetic properties and is acceptable.

【0018】この発明において、上述の特定組成の合金
溶湯を超急冷法にてアモルファスあるいは微細結晶とア
モルファスが混在する組織となした後、磁気特性が最高
となる熱処理条件は組成に依存するが、熱処理温度が6
00℃未満ではNd2Fe14B相が析出しないためiH
cが発現しない。また700℃を超えると粒成長が著し
く、iHc、Brおよび減磁曲線の角形性が劣化し、上
述の磁気特性が得られないため、熱処理温度は600〜
700℃に限定する。熱処理雰囲気は酸化をふせぐた
め、Arガス、N2ガスなどの不活性ガス雰囲気中もし
くは10-2Torr以上の真空中が好ましい。磁気特性
は熱処理時間には依存しないが、6時間を越えるような
場合、若干時間の経過とともにBrが低下する傾向があ
るため、好ましくは6時間未満が良い。
In the present invention, after the molten alloy having the above-mentioned specific composition is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, the heat treatment condition that maximizes the magnetic characteristics depends on the composition. Heat treatment temperature is 6
If the temperature is less than 00 ° C, the Nd 2 Fe 14 B phase does not precipitate, so iH
c is not expressed. Further, when the temperature exceeds 700 ° C., grain growth is remarkable, iHc, Br, and the squareness of the demagnetization curve are deteriorated, and the above-mentioned magnetic properties cannot be obtained.
Limit to 700 ° C. Since the heat treatment atmosphere prevents oxidation, it is preferably in an atmosphere of an inert gas such as Ar gas or N 2 gas or in a vacuum of 10 -2 Torr or more. The magnetic characteristics do not depend on the heat treatment time, but if it exceeds 6 hours, Br tends to decrease with the passage of time, so that it is preferably less than 6 hours.

【0019】この発明において重要な特徴として、熱処
理に際して結晶化が開始する温度付近以上からの昇温速
度であり、10℃/分未満の昇温速度では、昇温中に粒
成長が起こり、良好な硬磁気特性の得られる微細結晶集
合体とならず、3kOe以上のiHcが得られず好まし
くない。また、50℃/秒を越える昇温速度では、60
0℃を通過してから生成するNd2Fe14B相の析出が
十分に行われず、iHcが低下するだけでなく、Br点
近傍の減磁曲線の第2象限に磁化の低下のある減磁曲線
となり、(BH)maxが低下するため好ましくない。
結晶化が開始する温度は本磁石組成の非晶質合金中にお
いてFe3BおよびFeが結晶化する温度であり、昇温
過程における発熱反応として、DTA、DSCなどの手
法を用いて明瞭に測定できる。なお、熱処理に際して結
晶化開始温度までの昇温速度は任意であり、急速加熱な
どを適用して処理能率を高めることができる。
An important feature of the present invention is the rate of temperature increase from around the temperature at which crystallization starts during heat treatment. At a rate of temperature increase of less than 10 ° C./minute, grain growth occurs during temperature increase, which is good. It is not preferable because it does not form a fine crystal aggregate having excellent hard magnetic properties and iHc of 3 kOe or more cannot be obtained. Further, at a temperature rising rate exceeding 50 ° C./second, 60
The Nd 2 Fe 14 B phase generated after passing 0 ° C. is not sufficiently precipitated, and not only the iHc decreases, but also the demagnetization with a decrease in the magnetization in the second quadrant of the demagnetization curve near the Br point. It becomes a curve and (BH) max decreases, which is not preferable.
The temperature at which crystallization starts is the temperature at which Fe 3 B and Fe crystallize in the amorphous alloy of the present magnet composition, and it is clearly measured using a method such as DTA or DSC as an exothermic reaction in the temperature rising process. it can. In the heat treatment, the temperature rising rate up to the crystallization start temperature is arbitrary, and rapid heating or the like can be applied to increase the processing efficiency.

【0020】結晶構造 この発明による永久磁石合金粉末の結晶相は、強磁性を
有するFe3B型化合物並びにα−鉄からなる軟磁性相
と、Nd2Fe14B型結晶構造を有する硬磁性相とが同
一粉末中に共存し、各構成相の平均結晶粒径が1nm〜
50nmの範囲の微細結晶集合体からなることを特徴と
している。この発明において、磁石合金の平均結晶粒径
が50nmを超えると、Brおよび減磁曲線の角形性が
劣化し、Br≧10kG、(BH)max≧9MGOe
の磁気特性を得ることができない。また、平均結晶粒径
は細かいほど好ましいが、1nm未満の平均結晶粒径を
得ることは工業生産上困難であるため、下限を1nmと
する。
Crystal Structure The crystal phase of the permanent magnet alloy powder according to the present invention includes a soft magnetic phase composed of a Fe 3 B type compound having ferromagnetism and α-iron and a hard magnetic phase having an Nd 2 Fe 14 B type crystal structure. Coexist in the same powder, and the average crystal grain size of each constituent phase is 1 nm to
It is characterized by comprising a fine crystal aggregate in the range of 50 nm. In the present invention, when the average crystal grain size of the magnet alloy exceeds 50 nm, the squareness of Br and the demagnetization curve deteriorates, and Br ≧ 10 kG, (BH) max ≧ 9 MGOe.
Cannot obtain the magnetic characteristics of. Further, the smaller the average crystal grain size is, the more preferable, but it is difficult to obtain the average crystal grain size of less than 1 nm in industrial production. Therefore, the lower limit is set to 1 nm.

【0021】磁石化方法 特定組成の合金溶湯を前述の超急冷法にてアモルファス
組織あるいは微細結晶とアモルファスが混在する組織と
なし、結晶化が開始する温度付近から600℃〜700
℃の処理温度までの昇温速度が10℃/分〜50℃/秒
になる結晶化熱処理を施すことにより、平均結晶粒径が
1nm〜50nmの範囲にある微結晶集合体を得たこの
発明による永久磁石合金粉末を用いて磁石化するには、
700℃以下で固化、圧密化できる公知の焼結磁石化方
法ならびにボンド磁石化方法の何れも採用することがで
き、必要な場合は、当該合金を平均結晶粒径が3〜50
0μmに粉砕したのち、公知のバインダーと混合して所
要のボンド磁石となすことにより、8kG以上の残留磁
束密度Brを有するボンド磁石を得ることができる。
Magnetization Method A molten alloy having a specific composition is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the above-mentioned ultra-quenching method, and 600 ° C. to 700 ° C. from around the temperature at which crystallization starts.
The present invention provides a fine crystal aggregate having an average crystal grain size in the range of 1 nm to 50 nm by subjecting it to a crystallization heat treatment with a temperature rising rate up to a treatment temperature of 10 ° C of 10 ° C / min to 50 ° C / sec. To magnetize using the permanent magnet alloy powder by
Any known sintered magnetizing method and bond magnetizing method capable of solidifying and compacting at 700 ° C. or less can be adopted, and if necessary, the alloy has an average crystal grain size of 3 to 50.
After crushing to 0 μm and mixing with a known binder to form a required bonded magnet, a bonded magnet having a residual magnetic flux density Br of 8 kG or more can be obtained.

【0022】[0022]

【作用】この発明は、希土類元素の含有量が少ない特定
組成のFe−B−R−M(RはPrまたはNd、MはA
l、Si、S、Ni、Cu、Zn、Ga、Ag、Pt、
Au、Pbの1種もしくは2種以上)の合金溶湯を超急
冷法にてアモルファス組織あるいは微細結晶とアモルフ
ァスが混在する組織となし、得られたリボン、フレー
ク、球状粉末を結晶化が開始する温度付近から600〜
700℃での温度処理までの昇温速度が10℃/分〜5
0℃/秒になる結晶化熱処理を施すことにより、軟磁性
を有するFe3B型化合物並びにα−鉄と、Nd2Fe14
B型結晶構造を有する硬磁性相とが同一粉末中に共存
し、各構成相の平均結晶粒径が1nm〜50nmの範囲
にある微結晶集合体を得る。この際、M(=Al、S
i、S、Ni、Cu、Zn、Ga、Ag、Pt、Au、
Pb)を加えると、Mを含まない組成に比べ約1/2〜
1/3に結晶粒が微細化する。この微細結晶化によりB
rおよび角形性の向上が得られ、iHc≧3kOe、B
r≧10kG、(BH)max≧9MGOeの磁気特性
を有する永久磁石合金粉末を得ることができる。
The present invention is characterized in that Fe-B-R-M (R is Pr or Nd, M is A) of a specific composition containing a small amount of rare earth elements.
l, Si, S, Ni, Cu, Zn, Ga, Ag, Pt,
The temperature at which crystallization of the obtained ribbons, flakes, or spherical powders is achieved by forming a molten alloy of one or more of Au and Pb) into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method. 600 ~ from the neighborhood
Temperature rising rate up to temperature treatment at 700 ° C is 10 ° C / min to 5
By performing the crystallization heat treatment at 0 ° C./sec, the Fe 3 B type compound having soft magnetism and α-iron, and Nd 2 Fe 14
A hard magnetic phase having a B-type crystal structure coexists in the same powder, and a fine crystal aggregate having an average crystal grain size of each constituent phase in the range of 1 nm to 50 nm is obtained. At this time, M (= Al, S
i, S, Ni, Cu, Zn, Ga, Ag, Pt, Au,
When Pb) is added, it is about 1/2 to 1% compared to the composition not containing M.
The crystal grains become finer to 1/3. Due to this fine crystallization, B
r and squareness are improved, iHc ≧ 3 kOe, B
It is possible to obtain a permanent magnet alloy powder having magnetic properties of r ≧ 10 kG and (BH) max ≧ 9 MGOe.

【0023】[0023]

【実施例】【Example】

実施例1 表1のNo.1〜13の組成となるように、純度99.
5%以上のFe、Al、Si、S、Ni、Cu、Zn、
Ga、Ag、Pt、Au、Pb、B、Nd、Prの金属
を用いて、総量が30grとなるように秤量し、底部に
直径0.8mmのオリフィスを有する石英るつぼ内に投
入し、圧力56cmHgのAr雰囲気中で高周波加熱に
より溶解し、溶解温度を1300℃にした後、湯面をA
rガスにより加圧してロール周速度20m/秒にて回転
する室温のCu製ロールの外周面に0.7mmの高さか
ら溶湯を噴出させて、幅2〜3mm、厚み20〜40μ
mの超急冷薄帯を作製した。得られた超急冷薄帯をCu
Kαの特性X線によりアモルファスであることを確認し
た。
Example 1 No. 1 in Table 1 Purity of 99.
5% or more of Fe, Al, Si, S, Ni, Cu, Zn,
Metals of Ga, Ag, Pt, Au, Pb, B, Nd, and Pr were weighed so that the total amount was 30 gr, put into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom, and the pressure was 56 cmHg. Melted by high frequency heating in Ar atmosphere, and the melting temperature was set to 1300 ° C.
The molten metal is jetted from a height of 0.7 mm onto the outer peripheral surface of a room temperature Cu roll that is pressurized with r gas and rotates at a roll peripheral speed of 20 m / sec, and has a width of 2 to 3 mm and a thickness of 20 to 40 μm.
An ultra-quenched ribbon of m was prepared. The obtained ultra-quenched ribbon is Cu
It was confirmed to be amorphous by the characteristic X-ray of Kα.

【0024】この超急冷薄帯をArガス中で、結晶化が
始まる580℃〜600℃以上を表1に示す昇温速度で
昇温し、表1に示す熱処理温度で7分間保持し、その後
室温まで冷却して薄帯を取り出し、幅2〜3mm、厚み
20〜40μm、長さ3〜5mmの試料を作製し、VS
Mを用いて磁気特性並びに25℃〜140℃におけるB
r及びiHcの温度係数を測定した。測定結果を表2に
示す。No.2の試料については、図1に減磁曲線(試
料形状;幅3mm、厚み30μm、長さ3mm)を示
す。なお、試料の構成相をCuKαの特性X線で調査し
た結果、α−Fe相、Fe3B相、Nd2Fe14B相が混
在する多相組織であった。なお、Al、Si、S、N
i、Cu、Zn、Ga、Ag、Pt、Au、Pbはこれ
らの各相でFeの一部を置換する。平均結晶粒径はいず
れも30nm以下であった。
The ultra-quenched ribbon was heated in Ar gas at a temperature rising rate shown in Table 1 above 580 ° C. to 600 ° C. at which crystallization begins, and held at the heat treatment temperature shown in Table 1 for 7 minutes. After cooling to room temperature, the thin strip was taken out, and a sample having a width of 2 to 3 mm, a thickness of 20 to 40 μm, and a length of 3 to 5 mm was prepared.
Magnetic property using M and B at 25 ° C to 140 ° C
The temperature coefficient of r and iHc was measured. The measurement results are shown in Table 2. No. For the sample No. 2, a demagnetization curve (sample shape; width 3 mm, thickness 30 μm, length 3 mm) is shown in FIG. As a result of investigating the constituent phases of the sample by the characteristic X-ray of CuKα, it was a multiphase structure in which the α-Fe phase, the Fe 3 B phase and the Nd 2 Fe 14 B phase were mixed. In addition, Al, Si, S, N
i, Cu, Zn, Ga, Ag, Pt, Au, and Pb replace part of Fe in each of these phases. The average crystal grain size was 30 nm or less in all cases.

【0025】比較例 表1のNo.14〜16の組成となるように純度99.
5%以上のFe、B、Rを用いて実施例1と同条件で超
急冷薄帯を作製した。得られた薄帯を実施例1と同一条
件の熱処理を施し、冷却後に実施例1と同条件で試料化
(比較例No.14〜16)してVSMを用いて磁気特
性並びに25℃〜140℃におけるBr及びiHcの温
度係数を測定した。測定結果を表2に示す。No.15
の試料については、図1に減磁曲線(試料形状;幅3m
m、厚み30μm、長さ3mm)を示す。なお、試料の
構成相はFe3B相を主相とするα−Fe相とNd2Fe
14B相の多相組織であり、平均結晶粒径は50nm前後
とNo.1〜No.13の試料に比べ粗大であった。
Comparative Example No. 1 in Table 1 Purity of 99.
An ultra-quenched ribbon was produced under the same conditions as in Example 1 using 5% or more of Fe, B, and R. The obtained ribbon was subjected to heat treatment under the same conditions as in Example 1, and after cooling, sampled under the same conditions as in Example 1 (Comparative Examples Nos. 14 to 16), and magnetic properties and 25 ° C to 140 ° C were measured using VSM. The temperature coefficient of Br and iHc in ° C was measured. The measurement results are shown in Table 2. No. 15
For the sample of Fig. 1, the demagnetization curve (sample shape; width 3 m
m, thickness 30 μm, length 3 mm). The constituent phases of the sample are α-Fe phase having Fe 3 B phase as a main phase and Nd 2 Fe phase.
14 It has a multi-phase structure of B phase, and the average crystal grain size is around 50 nm, and it is 1-No. It was coarser than the 13 samples.

【0026】実施例2 実施例1で得られた表1の組成No.2の超急冷薄帯
を、表1の熱処理後に平均粉末粒径を150μm以下に
粉砕し、エポキシ樹脂からなるバインダーを3wt%の
割合で混合したのち、12mm×12mm×8mm寸法
のボンド磁石を作成した。得られたボンド磁石の磁気特
性は、密度6.0g/cm3、iHc=3.5kOe、
Br=9.2kG、(BH)max=8.7MGOeで
あった。
Example 2 Composition No. of Table 1 obtained in Example 1 After the heat treatment of Table 1, the ultra-thin quenched ribbon of No. 2 was ground to an average powder particle size of 150 μm or less, and a binder made of an epoxy resin was mixed at a ratio of 3 wt%, and then a bond magnet having a size of 12 mm × 12 mm × 8 mm was prepared. did. The magnetic properties of the obtained bonded magnet have a density of 6.0 g / cm 3 , iHc = 3.5 kOe,
Br = 9.2 kG and (BH) max = 8.7 MGOe.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】この発明は、希土類元素の含有量が少な
い特定組成のFe−B−R−M(RはPrまたはNd、
MはAl、Si、S、Ni、Cu、Zn、Ga、Ag、
Pt、Au、Pbの1種もしくは2種以上)の合金溶湯
を超急冷法にてアモルファス組織あるいは微細結晶とア
モルファスが混在する組織となし、得られたリボン、フ
レーク、球状粉末に特定条件の熱処理を施すことによ
り、Fe3B型化合物並びにα−鉄と、Nd2Fe14B型
結晶構造を有する化合物相とが同一粉末中に共存し、各
構成相の平均結晶粒径が1nm〜50nmの範囲にある
微結晶集合体を得る。この際、M(=Al、Si、S、
Ni、Cu、Zn、Ga、Ag、Pt、Au、Pb)を
加えることで組織がMを含まない組成に比べ1/2〜1
/3に微細化されることによりBrおよび減磁曲線の角
形性が向上し、iHc≧3kOe、Br≧10kG、
(BH)max≧9MGOeの磁気特性を有する温度特
性に優れた永久磁石合金粉末を得ることができる。ま
た、この発明は、SmやCoを含まず、製造方法が簡単
で大量生産に適しているため、8kG以上の残留磁束密
度Brを有し、ハードフェライト磁石を越える磁気的性
能を有する安価なボンド磁石を安定して提供できる。
INDUSTRIAL APPLICABILITY The present invention has a specific composition of Fe-B-RM (where R is Pr or Nd,
M is Al, Si, S, Ni, Cu, Zn, Ga, Ag,
A molten alloy of Pt, Au, Pb (one or more kinds) is formed by an ultra-quenching method into an amorphous structure or a structure in which fine crystals and amorphous are mixed, and the obtained ribbons, flakes and spherical powders are heat-treated under specific conditions. The Fe 3 B type compound and α-iron and the compound phase having the Nd 2 Fe 14 B type crystal structure coexist in the same powder, and the average crystal grain size of each constituent phase is 1 nm to 50 nm. Obtain a crystallite aggregate within the range. At this time, M (= Al, Si, S,
By adding Ni, Cu, Zn, Ga, Ag, Pt, Au, Pb), the composition is 1/2 to 1 as compared with the composition not containing M.
By reducing the size to / 3, the squareness of Br and the demagnetization curve is improved, iHc ≧ 3 kOe, Br ≧ 10 kG,
A permanent magnet alloy powder having magnetic properties of (BH) max ≧ 9 MGOe and excellent temperature characteristics can be obtained. Further, the present invention does not contain Sm or Co, is simple in manufacturing method and is suitable for mass production. A magnet can be provided stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】減磁曲線を示すグラフである。FIG. 1 is a graph showing a demagnetization curve.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 組成式をFe100-x-y-zxyz (但
しRはPrまたはNdの1種または2種、MはAl,S
i,S,Ni,Cu,Zn,Ga,Ag,Pt,Au,
Pbの1種または2種以上)と表し、組成範囲を限定す
る記号x、y、zが下記値を満足し、Fe3B型化合物
並びにα−鉄と、Nd2Fe14B型結晶構造を有する化
合物相とが同一粉末粒子中に共存し、各構成相の平均結
晶粒径が1nm〜50nmの範囲にある微細結晶集合体
であることを特徴とする永久磁石。 10≦x≦30at% 3≦y≦5at% 0.1≦z≦3at%
1. The composition formula is Fe 100-xyz B x R y M z (wherein R is one or two of Pr or Nd, M is Al, S
i, S, Ni, Cu, Zn, Ga, Ag, Pt, Au,
Pb is one or two or more), and the symbols x, y, and z that limit the composition range satisfy the following values, and the Fe 3 B type compound and α-iron and the Nd 2 Fe 14 B type crystal structure are represented. A permanent magnet characterized by being a fine crystal aggregate in which the compound phase which it has coexists in the same powder particle, and the average crystal grain size of each constituent phase is in the range of 1 nm to 50 nm. 10 ≦ x ≦ 30 at% 3 ≦ y ≦ 5 at% 0.1 ≦ z ≦ 3 at%
【請求項2】 組成式をFe100-x-y-zxyz (但
しRはPrまたはNdの1種または2種、MはAl,S
i,S,Ni,Cu,Zn,Ga,Ag,Pt,Au,
Pbの1種または2種以上)と表し、組成範囲を限定す
る記号x、y、z、wが下記値を満足し、Fe3B型化
合物並びにα−鉄と、Nd2Fe14B型結晶構造を有す
る化合物とが同一粉末粒子中に共存し、各構成相の平均
結晶粒径が1nm〜50nmの範囲にある微細結晶集合
体からなり、磁気特性がiHc≧3.0kOe、Br≧
10kG、(BH)max≧9MGOeであることを特
徴とする永久磁石合金粉末。 10≦x≦30at% 3≦y≦5at% 0.1≦z≦3at%
2. The composition formula is Fe 100-xyz B x R y M z (wherein R is one or two of Pr or Nd, M is Al, S
i, S, Ni, Cu, Zn, Ga, Ag, Pt, Au,
Pb is one or more of Pb), and the symbols x, y, z, and w that limit the composition range satisfy the following values, and Fe 3 B type compounds and α-iron, and Nd 2 Fe 14 B type crystals A compound having a structure coexists in the same powder particle, and it consists of a fine crystal aggregate in which the average crystal grain size of each constituent phase is in the range of 1 nm to 50 nm, and the magnetic characteristics are iHc ≧ 3.0 kOe, Br ≧
Permanent magnet alloy powder characterized in that 10 kG and (BH) max ≧ 9 MGOe. 10 ≦ x ≦ 30 at% 3 ≦ y ≦ 5 at% 0.1 ≦ z ≦ 3 at%
【請求項3】 組成式をFe100-x-y-zxyz (但
しRはPrまたはNdの1種または2種、MはAl,S
i,S,Ni,Cu,Zn,Ga,Ag,Pt,Au,
Pbの1種または2種以上)と表し、組成範囲を限定す
る記号x、y、zが下記値を満足する合金溶湯を回転ロ
ールを用いた超急冷法、スプラット急冷法、ガスアトマ
イズ法あるいはこれらを組み合せて急冷し、アモルファ
ス組織あるいは微細結晶とアモルファスが混在する組織
となし、さらに結晶化が開始する温度付近から600℃
〜700℃の処理温度までの昇温速度が10℃/分〜5
0℃/秒になる結晶化熱処理を施し、Fe3B型化合物
並びにα−鉄と、Nd2Fe14B型結晶構造を有する化
合物とが同一粉末粒子中に共存し、各構成相の平均結晶
粒径が1nm〜50nmの範囲にある微結晶集合体を得
たのち、必要に応じてこれを平均粒径3μm〜500μ
mに粉砕して磁石合金粉末を得ることを特徴とする永久
磁石合金粉末の製造方法。 10≦x≦30at% 3≦y≦5at% 0.1≦z≦3at%
3. The composition formula is Fe 100-xyz B x R y M z (wherein R is one or two of Pr or Nd, M is Al, S
i, S, Ni, Cu, Zn, Ga, Ag, Pt, Au,
One or more of Pb) and the symbols x, y, and z for limiting the composition range satisfying the following values, an alloy melt is subjected to an ultra-quenching method using a rotating roll, a splat quenching method, a gas atomizing method, or the like. Combined and rapidly cooled to form an amorphous structure or a structure in which fine crystals and amorphous coexist, and 600 ° C from around the temperature at which crystallization starts.
The temperature rising rate up to the processing temperature of ~ 700 ° C is 10 ° C / min ~ 5
The Fe 3 B type compound and α-iron and the compound having the Nd 2 Fe 14 B type crystal structure coexist in the same powder particle after the crystallization heat treatment at 0 ° C./sec. After obtaining a microcrystalline aggregate having a particle size in the range of 1 nm to 50 nm, the average particle size is adjusted to 3 μm to 500 μ as necessary.
A method for producing a permanent magnet alloy powder, which comprises pulverizing to m to obtain a magnet alloy powder. 10 ≦ x ≦ 30 at% 3 ≦ y ≦ 5 at% 0.1 ≦ z ≦ 3 at%
JP07446594A 1994-03-18 1994-03-18 Permanent magnet alloy, permanent magnet alloy powder and method for producing the same Expired - Lifetime JP3411663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07446594A JP3411663B2 (en) 1994-03-18 1994-03-18 Permanent magnet alloy, permanent magnet alloy powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07446594A JP3411663B2 (en) 1994-03-18 1994-03-18 Permanent magnet alloy, permanent magnet alloy powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07263210A true JPH07263210A (en) 1995-10-13
JP3411663B2 JP3411663B2 (en) 2003-06-03

Family

ID=13548039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07446594A Expired - Lifetime JP3411663B2 (en) 1994-03-18 1994-03-18 Permanent magnet alloy, permanent magnet alloy powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3411663B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116715A (en) * 1997-06-26 1999-01-22 Sumitomo Special Metals Co Ltd Manufacturing method of laminated permanent magnet
JPH1126272A (en) * 1997-07-04 1999-01-29 Sumitomo Special Metals Co Ltd Manufacture of laminated permanent magnet
KR100345995B1 (en) * 1997-02-06 2002-07-24 스미토모 도큐슈 긴조쿠 가부시키가이샤 Method of manufacturing thin plate magnet having microcrystalline structrue
JP2005036302A (en) * 2002-10-25 2005-02-10 Showa Denko Kk Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
US7695574B2 (en) 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
JP4529198B2 (en) * 1999-03-19 2010-08-25 日立金属株式会社 Iron-based permanent magnet containing a small amount of rare earth metal and method for producing the same
JP2010212501A (en) * 2009-03-11 2010-09-24 Tdk Corp Exchange spring magnetic powder
CN105702402A (en) * 2014-11-25 2016-06-22 有研稀土新材料股份有限公司 Rare-earth permanent magnet powder, preparation method thereof, bonded permanent magnet and device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345995B1 (en) * 1997-02-06 2002-07-24 스미토모 도큐슈 긴조쿠 가부시키가이샤 Method of manufacturing thin plate magnet having microcrystalline structrue
JPH1116715A (en) * 1997-06-26 1999-01-22 Sumitomo Special Metals Co Ltd Manufacturing method of laminated permanent magnet
JPH1126272A (en) * 1997-07-04 1999-01-29 Sumitomo Special Metals Co Ltd Manufacture of laminated permanent magnet
JP4529198B2 (en) * 1999-03-19 2010-08-25 日立金属株式会社 Iron-based permanent magnet containing a small amount of rare earth metal and method for producing the same
JP2005036302A (en) * 2002-10-25 2005-02-10 Showa Denko Kk Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
US7695574B2 (en) 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
US8110049B2 (en) 2002-10-25 2012-02-07 Showa Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
JP2010212501A (en) * 2009-03-11 2010-09-24 Tdk Corp Exchange spring magnetic powder
CN105702402A (en) * 2014-11-25 2016-06-22 有研稀土新材料股份有限公司 Rare-earth permanent magnet powder, preparation method thereof, bonded permanent magnet and device
CN105702402B (en) * 2014-11-25 2017-11-28 有研稀土新材料股份有限公司 Rare earth permanent magnet powder, its preparation method, bonded permanent magnet and device

Also Published As

Publication number Publication date
JP3411663B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
USRE37666E1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
US5545266A (en) Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods
US6019859A (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3238779B2 (en) Rare earth magnet alloy powder and its manufacturing method
JP3519438B2 (en) Rare earth magnet alloy powder and its production method
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JPH07176417A (en) Iron based bonded magnet and its manufacture
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JP3459440B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JP3411659B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH0657311A (en) Production of rare earth alloy magnet powder
JPH0653019A (en) Rare earth magnet, rare earth magnet alloy powder and its manufacture
JPH07263211A (en) Isotropic bond magnet and its production
JPH07166206A (en) Permanent magnet alloy powder and production thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

EXPY Cancellation because of completion of term