JP2001167917A - R−Fe−B系永久磁石およびその製造方法 - Google Patents

R−Fe−B系永久磁石およびその製造方法

Info

Publication number
JP2001167917A
JP2001167917A JP2000276798A JP2000276798A JP2001167917A JP 2001167917 A JP2001167917 A JP 2001167917A JP 2000276798 A JP2000276798 A JP 2000276798A JP 2000276798 A JP2000276798 A JP 2000276798A JP 2001167917 A JP2001167917 A JP 2001167917A
Authority
JP
Japan
Prior art keywords
film
polyimide resin
aluminum
permanent magnet
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000276798A
Other languages
English (en)
Other versions
JP4529260B2 (ja
Inventor
Masayuki Yoshimura
吉村  公志
Takeshi Nishiuchi
武司 西内
Fumiaki Kikui
文秋 菊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2000276798A priority Critical patent/JP4529260B2/ja
Publication of JP2001167917A publication Critical patent/JP2001167917A/ja
Application granted granted Critical
Publication of JP4529260B2 publication Critical patent/JP4529260B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

(57)【要約】 【課題】 自動車モータに使用される磁石などに求めら
れる優れた耐食性・電気絶縁性・耐熱性を発揮するR−
Fe−B系永久磁石および溶液法を用いたその簡便な製
造方法を提供すること。 【解決手段】 R−Fe−B系永久磁石表面に、アルミ
ニウム被膜を有し、前記アルミニウム被膜表面に、酸化
被膜層を介して、ポリイミド樹脂被膜を有することを特
徴とする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、R−Fe−B系永
久磁石およびその製造方法に関する。より詳細には、自
動車モータに使用される磁石などに求められる優れた耐
食性・電気絶縁性・耐熱性を発揮するR−Fe−B系永
久磁石およびその簡便な製造方法に関する。
【0002】
【従来の技術】Fe−B−Nd系永久磁石に代表される
R−Fe−B系永久磁石は、Sm−Co系永久磁石に比
べて、資源的に豊富で安価な材料が用いられ、かつ、高
い磁気特性を有していることから、種々の用途で実用化
されている。しかしながら、R−Fe−B系永久磁石
は、反応性の高いRとFeを含むため、大気中で酸化腐
食されやすく、何の表面処理をも行わずに使用した場合
には、わずかな酸やアルカリや水分などの存在によって
表面から腐食が進行して錆が発生し、それに伴って、磁
石特性の劣化やばらつきを招く。さらに、錆が発生した
磁石を磁気回路などの装置に組み込んだ場合、錆が飛散
して周辺部品を汚染するおそれがある。
【0003】上記の点に鑑み、R−Fe−B系永久磁石
の耐食性を改善するため、磁石表面に無電解めっき法や
電気めっき法のような湿式めっき法によって耐食性を有
する金属めっき被膜を形成した磁石が既に提案されてい
る(特公平3−74012号公報参照)。しかしなが
ら、この方法では、めっき処理の前処理で用いられる酸
性溶液やアルカリ性溶液が磁石孔内に残留し、磁石が時
間の経過とともに腐食することがある。また、該磁石は
耐薬品性に劣るため、めっき処理時に磁石表面が腐食す
ることがある。さらに、上記のように磁石表面に金属め
っき被膜を形成しても、温度60℃×相対湿度90%の
条件下での耐食性試験を行うと、100時間後にその磁
気特性が初期値よりも10%以上劣化することがある。
【0004】また、R−Fe−B系永久磁石の表面にリ
ン酸塩被膜やクロム酸塩被膜などの耐酸化性化成被膜を
形成する方法も提案されているが(特公平4−2200
8号公報参照)、この方法で得られる被膜は磁石との密
着性の点では優れるものの、温度60℃×相対湿度90
%の条件下での耐食性試験を行うと、300時間後にそ
の磁気特性が初期値よりも10%以上劣化することがあ
る。
【0005】また、R−Fe−B系永久磁石の耐食性を
改善するために提案された、気相成長法によってアルミ
ニウム被膜を形成した後、クロム酸塩処理する方法、い
わゆるアルミ−クロメート処理方法(特公平6−661
73号公報参照)は、磁石の耐食性を著しく改善するも
のである。しかしながら、この方法に用いるクロム酸塩
処理は、環境上望ましくない六価クロムを用いるため、
廃液処理方法が複雑である。また、この方法によって得
られる被膜は、微量ながら六価クロムを含有するため、
磁石の取り扱い時における人体に対する影響も懸念され
る。
【0006】
【発明が解決しようとする課題】一方、自動車モータに
組み込まれて使用されるR−Fe−B系永久磁石には、
耐食性についてはもちろんのこと、電気絶縁性や耐熱性
についても優れた性能が求められるが、上記のアルミ−
クロメート処理方法では、優れた電気絶縁性と耐熱性を
付与することはできない。そこで、本発明においては、
自動車モータに使用される磁石などに求められる優れた
耐食性・電気絶縁性・耐熱性を発揮するR−Fe−B系
永久磁石および溶液法を用いたその簡便な製造方法を提
供することを目的としている。
【0007】
【課題を解決するための手段】本発明者らは上記の点に
鑑み鋭意検討を行った結果、R−Fe−B系永久磁石表
面にアルミニウム被膜を形成し、その上にポリイミド樹
脂被膜を形成することで、優れた耐食性に加え、優れた
電気絶縁性と耐熱性を発揮させることに想到した。R−
Fe−B系永久磁石表面にアルミニウム被膜を形成し、
その上にポリイミド樹脂被膜を形成する技術は、すで
に、特開平8−279407号公報に開示されている。
しかしながら、該技術におけるポリイミド樹脂被膜の形
成方法は、二種類の原料モノマー(芳香族カルボン酸二
無水物と芳香族ジアミン)を用いて縮合型ポリイミド樹
脂被膜を蒸着重合法によって形成するものである。この
技術はアルミニウム被膜の上に優れた性能を有するポリ
イミド樹脂被膜を形成する方法として価値あるものであ
るが、蒸着重合法を行うためには大がかりな装置が必要
である。また、清浄化などの前処理を厳格に行わなけれ
ばならない。したがって、製造コストの上昇を招き、量
産化の観点からは必ずしも満足すべきものではない。
【0008】本発明者らは上記の点に鑑みさらに鋭意検
討を行った結果、R−Fe−B系永久磁石上のアルミニ
ウム被膜表面に酸化被膜層を形成し、その上にポリイミ
ド樹脂被膜を形成すると、酸化被膜層の存在によって、
ポリイミド樹脂被膜はアルミニウム被膜表面に強固に密
着し、アルミニウム被膜とともに優れた耐食性・電気絶
縁性・耐熱性を発揮することを知見した。また、酸化被
膜層の上では、ポリイミド樹脂被膜形成反応が効率よく
進行し、溶液法によってもアルミニウム被膜表面に対し
て優れた密着性を有する被膜が得られることを知見し
た。
【0009】本発明は、かかる知見に基づきなされたも
ので、本発明の永久磁石は、請求項1記載の通り、R−
Fe−B系永久磁石表面に、アルミニウム被膜を有し、
前記アルミニウム被膜表面に、酸化被膜層を介して、ポ
リイミド樹脂被膜を有することを特徴とする。また、請
求項2記載の永久磁石は、請求項1記載の永久磁石にお
いて、ポリイミド樹脂被膜が付加型ポリイミド樹脂被膜
であることを特徴とする。また、請求項3記載の永久磁
石は、請求項2記載の永久磁石において、付加型ポリイ
ミド樹脂被膜がビスアリルナジイミドから得られる被膜
であることを特徴とする。また、請求項4記載の永久磁
石は、請求項1乃至3のいずれかに記載の永久磁石にお
いて、アルミニウム被膜の膜厚が0.01μm〜50μ
mであることを特徴とする。また、請求項5記載の永久
磁石は、請求項1乃至4のいずれかに記載の永久磁石に
おいて、酸化被膜層の膜厚が0.01μm〜2μmであ
ることを特徴とする。また、請求項6記載の永久磁石
は、請求項1乃至5のいずれかに記載の永久磁石におい
て、ポリイミド樹脂被膜の膜厚が1μm〜15μmであ
ることを特徴とする。また、本発明の永久磁石の製造方
法は、請求項7記載の通り、R−Fe−B系永久磁石表
面に、アルミニウム被膜を形成した後、前記アルミニウ
ム被膜表面に、酸素雰囲気中での酸化処理によって酸化
被膜層を形成し、前記酸化被膜層表面に、ポリイミド樹
脂被膜形成処理液を塗布し、熱処理することによってポ
リイミド樹脂被膜を形成することを特徴とする。また、
請求項8記載の製造方法は、請求項7記載の製造方法に
おいて、気相成長法によってアルミニウム被膜を形成す
ることを特徴とする。また、請求項9記載の製造方法
は、請求項8記載の製造方法において、膜厚が0.01
μm〜50μmのアルミニウム被膜を形成することを特
徴とする。また、請求項10記載の製造方法は、請求項
7記載の製造方法において、R−Fe−B系永久磁石と
アルミニウム片を処理容器内に入れ、前記処理容器内に
て、両者に振動を加え、および/または両者を攪拌する
ことによってアルミニウム被膜を形成することを特徴と
する。また、請求項11記載の製造方法は、請求項10
記載の製造方法において、膜厚が0.01μm〜1μm
のアルミニウム被膜を形成することを特徴とする。ま
た、請求項12記載の製造方法は、請求項7乃至11の
いずれかに記載の製造方法において、酸素雰囲気中での
酸化処理を、酸素濃度が0.01%〜20%の常圧下、
または酸素圧(分圧)が0.1Pa〜2×10Paの
減圧下、10℃〜500℃にて行うことを特徴とする。
また、請求項13記載の製造方法は、請求項7乃至12
のいずれかに記載の製造方法において、ポリイミド樹脂
被膜が付加型ポリイミド樹脂被膜であることを特徴とす
る。また、請求項14記載の製造方法は、請求項13記
載の製造方法において、付加型ポリイミド樹脂被膜がビ
スアリルナジイミドから得られる被膜であることを特徴
とする。
【0010】
【発明の実施の形態】本発明の永久磁石は、R−Fe−
B系永久磁石表面に、アルミニウム被膜を有し、前記ア
ルミニウム被膜表面に、酸化被膜層を介して、ポリイミ
ド樹脂被膜を有することを特徴とする。
【0011】R−Fe−B系永久磁石表面にアルミニウ
ム被膜を形成する方法は特段限定されるものではない。
しかしながら、磁石とアルミニウム被膜が酸化腐食され
やすいことに配慮すれば、以下の、気相成長法による方
法とR−Fe−B系永久磁石とアルミニウム片を処理容
器内に入れ、前記処理容器内にて、両者に振動を加え、
および/または両者を攪拌することによる方法が望まし
い方法として挙げられる。
【0012】(1)気相成長法による方法 アルミニウム被膜を形成するために採用することができ
る気相成長法としては、真空蒸着法、イオンスパッタリ
ング法、イオンプレーティング法などの公知の方法が挙
げられる。アルミニウム被膜は各方法における一般的な
条件にて形成すればよいが、形成される被膜の緻密性、
膜厚の均一性、被膜形成速度などの観点からは真空蒸着
法やイオンプレーティング法を採用することが望まし
い。なお、被膜形成前に磁石表面に対し、洗浄、脱脂、
スパッタリングなどの公知の清浄化処理を施してもよい
ことは言うまでもない。
【0013】被膜形成時における磁石の温度は、200
℃〜500℃に設定することが望ましい。該温度が20
0℃未満であると磁石表面に対して優れた密着性を有す
る被膜が形成されないおそれがあり、500℃を越える
と被膜形成後の冷却過程で被膜に亀裂が発生し、被膜が
磁石から剥離するおそれがあるからである。
【0014】アルミニウム被膜の膜厚は、0.01μm
未満であると優れた耐食性を発揮できないおそれがあ
り、50μmを越えると製造コストの上昇を招くおそれ
があるだけでなく、磁石の有効体積が小さくなるおそれ
があるので、0.01μm〜50μmが望ましいが、
0.05μm〜25μmがより望ましい。
【0015】(2)R−Fe−B系永久磁石とアルミニ
ウム片を処理容器内に入れ、前記処理容器内にて、両者
に振動を加え、および/または両者を攪拌することによ
る方法本方法において用いるアルミニウム片は、針状
(ワイヤー状)、円柱状、塊状など様々な形状のものを
用いることができるが、アルミニウム被膜の構成源とな
るアルミニウム微粉を効率よく生成させるためなどの観
点からは、末端が鋭利な針状や円柱状のものを用いるこ
とが望ましい。
【0016】アルミニウム片の大きさ(長径)は、アル
ミニウム微粉を効率よく生成させるためなどの観点か
ら、0.05mm〜10mmが望ましいが、より望まし
くは0.3mm〜5mmであり、さらに望ましくは0.
5mm〜3mmである。アルミニウム片は同一形状・同
一寸法のものを用いてもよく、異形状・異寸法のものを
混合して用いてもよい。
【0017】磁石とアルミニウム片に対する、振動およ
び/または攪拌は、両者が酸化腐食されやすいことに配
慮して、乾式的に行うことが望ましく、大気雰囲気中、
常温において行うことができる。本発明において用いう
る処理容器は、複雑な装置のものを必要とせず、たとえ
ば、バレル装置の処理室などでよい。バレル装置は回転
式、振動式、遠心式など、公知の装置を用いることがで
きる。回転式の場合、その回転数は20rpm〜50r
pmとすることが望ましい。振動式の場合、その振動数
は50Hz〜100Hz、振動振幅は0.3mm〜10
mmとすることが望ましい。遠心式の場合、その回転数
は70rpm〜200rpmとすることが望ましい。
【0018】処理容器内に入れる磁石とアルミニウム片
の量は、処理容器内容積の20vol%〜90vol%
が望ましい。20vol%未満であると処理量が少なす
ぎて実用的でなく、90vol%を越えると効率よく被
膜を形成することができないおそれがあるからである。
また、処理容器内に入れる磁石とアルミニウム片との比
率は、容積比率(磁石/アルミニウム片)にして3以下
が望ましい。容積比率が3を越えると被膜の形成に時間
を要して実用的でないおそれがあるからである。また、
処理時間は処理量にも依存するが、通常、1時間〜10
時間である。
【0019】上記の方法によって、アルミニウム片から
生成されるアルミニウム微粉を磁石表面に被着させ、ア
ルミニウム被膜を形成する。アルミニウム微粉が磁石表
面に被着する現象は、一種のメカノケミカル的反応であ
ると考えられ、アルミニウム微粉は磁石表面に強固に被
着し、得られるアルミニウム被膜は優れた耐食性を示
す。十分な耐食性を確保する観点からは、前述の通り、
その膜厚は0.01μm以上であることが望ましい。膜
厚の上限は特段制限されるものではないが、膜厚が1μ
mを越えるアルミニウム被膜を形成するには時間を要す
るので、この方法は膜厚が1μm以下のアルミニウム被
膜を形成する方法として適している。
【0020】アルミニウム被膜表面に酸化被膜層を形成
する前工程として、ショットピーニング(硬質粒子を衝
突させることによって表面を改質する方法)を行っても
よい。ショットピーニングを行うことによって、アルミ
ニウム被膜の平滑化を行い、アルミニウム被膜自体の耐
食性を向上させるとともに、均一な酸化被膜層を形成し
やすくして、薄膜でも優れた性能を有するポリイミド樹
脂被膜を形成しやすくすることができる。ショットピー
ニングに用いる粉末としては、形成したアルミニウム被
膜の硬度と同等以上の硬度のものが望ましく、たとえ
ば、スチールボールやガラスビーズなどのようなモース
硬度が3以上の球状硬質粉末が挙げられる。該粉末の平
均粒度が30μm未満であるとアルミニウム被膜に対す
る押圧力が小さくて処理に時間を要する。一方、300
0μmを越えると表面粗度が荒くなりすぎて仕上がり面
が不均一となるおそれがある。したがって、該粉末の平
均粒径は、30μm〜3000μmが望ましく、40μ
m〜2000μmがより望ましい。ショットピーニング
における噴射圧は、1.0kg/cm〜5.0kg/
cmが望ましい。噴射圧が1.0kg/cm未満で
あると金属被膜に対する押圧力が小さくて処理に時間を
要し、5.0kg/cmを越えると金属被膜に対する
押圧力が不均一になって表面粗度の悪化を招くおそれが
あるからである。ショットピーニングにおける噴射時間
は、1分〜1時間が望ましい。噴射時間が1分未満であ
ると全表面に対して均一な処理ができないおそれがあ
り、1時間を越えると表面粗度の悪化を招くおそれがあ
るからである。
【0021】磁石表面にアルミニウム被膜を形成した
後、熱処理することによって、磁石表面とアルミニウム
被膜との密着性を高めることもできる。熱処理の温度
は、200℃未満であると磁石とアルミニウム被膜との
界面反応が十分に進行せずに密着性が向上しないおそれ
があり、500℃を越えると磁石の磁気特性の劣化を招
くおそれや、アルミニウム被膜が溶解してしまうおそれ
がある。したがって、熱処理は、200℃〜500℃で
行うことが望ましいが、生産性や製造コストの観点から
は200℃〜350℃で行うことがより望ましい。な
お、後述する酸化被膜層表面にポリイミド樹脂被膜形成
処理液を塗布した後の熱処理によっても同様の効果を得
ることができる。
【0022】アルミニウム被膜表面に酸化被膜層を形成
する方法としては、たとえば、酸素雰囲気中での酸化処
理方法、水蒸気を含む雰囲気中での酸化処理方法(一般
的な水蒸気処理を含む)などが挙げられる。酸素雰囲気
中での酸化処理方法には、たとえば、処理室内で酸素濃
度と温度を制御しながら行う方法や大気中での自然酸化
などがある。処理条件としては、酸素濃度が0.01%
〜20%の常圧下、または酸素圧(分圧)が0.1Pa
〜2×10Paの減圧下、10℃〜500℃にて行う
ことが望ましい。酸素濃度が0.01%〜20%の常圧
条件は、大気自体を利用したものであってもよいし、窒
素ガスやアルゴンガスなどの不活性ガスを用いて所望す
る成分組成に調整されたものであってもよい。酸素圧
(分圧)が0.1Pa〜2×10Paの減圧条件は、
酸素圧のみで調整されたものであってもよいし、窒素ガ
スやアルゴンガスなどの不活性ガスを用いて所望する成
分組成や圧力に調整されたものであってもよい。酸化処
理を10℃〜500℃で行うことが望ましい理由は、5
00℃を超えると、磁石の磁気特性の劣化やアルミニウ
ム被膜の変形を招くおそれがあるからである。また、処
理温度が高くなるにつれて、緻密で薄い酸化被膜層を形
成することが困難となったり、酸化被膜層の表面粗度が
粗くなることによって、ポリイミド樹脂被膜の形成に悪
影響を及ぼし、結果的に優れた耐食性などの性能を有す
る磁石が得られないおそれがあるからである。上記の処
理条件にて処理室内で酸化処理を行う場合の処理時間
は、通常、5分〜48時間である。酸素雰囲気中での酸
化処理方法としては、上記のような方法の他にも、前述
のアルミニウム被膜表面に対するショットピーニング
や、ショットブラスト処理、弱電圧下でのスパッタ処理
や高周波による酸素プラズマ形成下での酸化処理などが
ある。水蒸気を含む雰囲気中での酸化処理方法(一般的
な水蒸気処理を含む)は、水蒸気濃度と温度を制御しな
がら行うものであり、その具体的な処理条件は、たとえ
ば、水蒸気濃度が0.01%〜100%、処理温度が1
0℃〜300℃である。
【0023】上記のような方法によって形成される酸化
被膜層の膜厚は、0.01μm以上であることが望まし
い。膜厚が0.01μm未満であるとアルミニウム被膜
表面へのポリイミド樹脂被膜の優れた密着性に寄与しな
いおそれがあるからである。一方、酸化被膜層の膜厚
は、2μm以下であることが望ましい。膜厚が2μmを
超えるとアルミニウム被膜表面へのポリイミド樹脂被膜
の優れた密着性を逆に阻害するおそれがあるからであ
る。さらに、磁石自体の小型化に基づく要請などを加味
すれば、酸化被膜層の膜厚は、1μm以下であることが
より望ましい。
【0024】次に、酸化被膜層表面にポリイミド樹脂被
膜を形成する方法について述べる。ポリイミド樹脂被膜
は、付加型ポリイミド樹脂被膜であっても縮合型ポリイ
ミド樹脂被膜であってもよいが、望ましくは、付加型ポ
リイミド樹脂被膜がよい。付加型ポリイミド樹脂は、樹
脂分子の末端に不飽和基を有し、付加反応やラジカル反
応による三次元架橋により得られるものであるが、硬化
に際して水が生成することがないので、磁石が酸化腐食
されやすいことを考慮すれば非常に都合のよい樹脂であ
る。付加型ポリイミド樹脂としては、無水アリルナジッ
ク酸とジアミンから合成され、脱水閉環反応が完結した
両末端にアリル基を有するイミドモノマーであるビスア
リルナジイミド(BANI:図1参照)から得られる樹
脂の他、末端ナジック酸型ポリイミド樹脂(PMR)、
ビスマレイミド型ポリイミド樹脂、末端アセチレン型ポ
リイミド樹脂など公知のものを使用することができる。
【0025】
【化1】
【0026】縮合型ポリイミド樹脂としては、ピロメリ
ット酸二無水物と4,4’−ジアミノジフェニルエーテ
ルから脱水縮合反応を経て得られるピロメリット型ポリ
イミド樹脂が挙げられる。縮合型ポリイミド樹脂は、硬
化に際して水が生成するが、酸化被膜層は、磁石表面の
いわば保護層として水が磁石表面に接触しにくくする役
割を果たすので、優れた密着性を有するポリイミド樹脂
被膜をアルミニウム被膜表面に形成することができる。
【0027】酸化被膜層表面へのポリイミド樹脂被膜の
形成は、ポリイミド樹脂被膜形成処理液を酸化被膜層表
面に塗布し、熱処理する方法(いわゆる溶液法)によっ
て行うことが、蒸着重合法と比較して簡便に行え、製造
コストの上昇を招くことなく量産化が可能となる点にお
いて望ましい。
【0028】ポリイミド樹脂被膜形成処理液は、ポリイ
ミド樹脂自体、ポリイミド樹脂の原料となるモノマーや
オリゴマーなどを必要に応じて有機溶媒に溶解して調製
すればよい。たとえば、ビスアリルナジイミドは、かさ
高い構造を有した低分子量のイミドモノマーであるの
で、脂肪族炭化水素、脂肪族アルコールを除くほとんど
の有機溶媒に可溶である。また、ピロメリット型ポリイ
ミド樹脂被膜を形成するための溶液は、たとえば、ピロ
メリット酸二無水物と4,4’−ジアミノジフェニルエ
ーテルを高極性溶媒のN−メチル−2−ピロリドンに溶
解して調製すればよい。
【0029】ポリイミド樹脂被膜形成処理液の酸化被膜
層表面への塗布方法としては、ディップコーティング
法、スプレー法、スピンコート法などを用いることがで
きる。
【0030】酸化被膜層表面にポリイミド樹脂被膜形成
処理液を塗布した後の熱処理は、200℃〜400℃で
行うことが望ましい。200℃未満であると硬化反応が
十分に進行しないおそれがあり、400℃を越えると被
膜の劣化を招くおそれがあるからである。熱処理時間
は、通常、5分〜24時間である。なお、必要に応じ
て、熱処理を行う前に、有機溶媒を除去するための乾燥
処理(たとえば、60℃〜90℃の条件下、5分〜1時
間)を行ってもよい。
【0031】酸化被膜層表面へのポリイミド樹脂被膜の
形成は、上記のポリイミド樹脂被膜形成処理液を酸化被
膜層表面に塗布し、熱処理する方法に限られるものでは
なく、蒸着重合法によって行ってもよい。たとえば、酸
化被膜層表面にピロメリット型ポリイミド樹脂被膜を蒸
着重合法によって形成する場合は、表面に酸化被膜層を
有するアルミニウム被膜付磁石を真空度1Pa〜10
−3Paの真空容器内に収容し、ピロメリット酸二無水
物と4,4’−ジアミノジフェニルエーテルを200℃
〜250℃で加熱蒸着してポリアミック酸被膜を形成し
た後、常圧下、280℃〜380℃でイミド化処理を行
う方法が挙げられる(特開平8−279407号公報を
参照)。
【0032】上記の方法によって形成されるポリイミド
樹脂被膜は、酸化被膜層を介して、アルミニウム被膜表
面に強固に密着しているので、膜厚が1μm以上であれ
ば優れた耐食性などの性能を発揮する。なお、ポリイミ
ド樹脂被膜の膜厚の上限は限定されるものではないが、
磁石自体の小型化に基づく要請から、15μm以下が望
ましく、10μm以下がより望ましい。なお、必要に応
じて、酸化被膜層表面へのポリイミド樹脂被膜形成処理
液の塗布、それに続く熱処理を複数回繰り返して行って
もよいことはいうまでもない。さらに、ポリイミド樹脂
被膜の各種性能(耐磨耗性や滑り性など)を高めるため
に、被膜中にチタンやニッケルなどの金属の微粒子、ア
ルミナやシリカなどのセラミックスや金属酸化物などの
微粒子、テフロン(登録商標)などの合成樹脂の微粒
子、その他、有機顔料や無機顔料として使用される各種
微粒子を分散させてもよい。たとえば、被膜中に粒径1
μmのテフロン球を20重量%程度分散させれば、ポリ
イミド樹脂被膜の滑り性を向上させることができる。添
加する微粒子の大きさや形状は、形成される被膜の性能
や膜厚などを考慮して適宜選択されるものであるが、通
常、粒径0.01μm〜5μmの微粒子を使用すること
ができる。
【0033】本発明において用いられるR−Fe−B系
永久磁石における希土類元素(R)は、Nd、Pr、D
y、Ho、Tb、Smのうち少なくとも1種、あるいは
さらに、La、Ce、Gd、Er、Eu、Tm、Yb、
Lu、Yのうち少なくとも1種を含むものが望ましい。
また、通常はRのうち1種をもって足りるが、実用上は
2種以上の混合物(ミッシュメタルやジジムなど)を入
手上の便宜などの理由によって用いることもできる。R
−Fe−B系永久磁石におけるRの含量は、10原子%
未満であると結晶構造がα−Feと同一構造の立方晶組
織となるため、高磁気特性、特に高い保磁力(HcJ)
が得られず、一方、30原子%を超えるとRリッチな非
磁性相が多くなり、残留磁束密度(Br)が低下して優
れた特性の永久磁石が得られないので、組成の10原子
%〜30原子%であることが望ましい。
【0034】Feの含量は、65原子%未満であるとB
rが低下し、80原子%を超えると高いHcJが得られ
ないので、65原子%〜80原子%の含有が望ましい。
また、Feの一部をCoで置換することによって、得ら
れる磁石の磁気特性を損なうことなしに温度特性を改善
することができるが、Co置換量がFeの20原子%を
超えると磁気特性が劣化するので望ましくない。Co置
換量が5原子%〜15原子%の場合、Brは置換しない
場合に比較して増加するため、高磁束密度を得るのに望
ましい。
【0035】Bの含量は、2原子%未満であると菱面体
構造が主相となり、高いHcJは得られず、28原子%
を超えるとBリッチな非磁性相が多くなり、Brが低下
して優れた特性の永久磁石が得られないので、2原子%
〜28原子%の含有が望ましい。また、磁石の製造性の
改善や低価格化のために、2.0wt%以下のP、2.
0wt%以下のSのうち、少なくとも1種、合計量で
2.0wt%以下を含有していてもよい。さらに、Bの
一部を30wt%以下のCで置換することによって、磁
石の耐食性を改善することができる。
【0036】さらに、Al、Ti、V、Cr、Mn、B
i、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、
Ni、Si、Zn、Hf、Gaのうち少なくとも1種の
添加は、保磁力や減磁曲線の角型性の改善、製造性の改
善、低価格化に効果がある。なお、その添加量は、最大
エネルギー積(BH)maxを159kJ/m以上と
するためには、Brが少なくとも0.9T以上必要とな
るので、該条件を満たす範囲で添加することが望まし
い。なお、R−Fe−B系永久磁石には、R、Fe、B
以外に工業的生産上不可避な不純物を含有するものでも
差し支えない。
【0037】また、本発明において用いられるR−Fe
−B系永久磁石の中で、平均結晶粒径が1μm〜80μ
mの範囲にある正方晶系の結晶構造を有する化合物を主
相とし、体積比で1%〜50%の非磁性相(酸化物相を
除く)を含むことを特徴とする磁石は、HcJ≧80k
A/m、Br>0.4T、(BH)max≧80kJ/
を示し、(BH)maxの最大値は199kJ/m
以上に達する。
【0038】なお、本発明のポリイミド樹脂被膜の上
に、更に別の被膜を積層形成してもよい。このような構
成を採用することによって、ポリイミド樹脂被膜の特性
を増強・補完したり、さらなる機能性を付与したりする
ことができる。
【0039】
【実施例】たとえば、米国特許4770723号公報に
記載されているようにして、公知の鋳造インゴットを粉
砕し、微粉砕後に成形、焼結、熱処理、表面加工を行う
ことによって得られた17Nd−1Pr−75Fe−7
B組成の23mm×10mm×6mm寸法の焼結磁石
(以下「磁石体試験片」と称する)を用いて以下の実験
を行った。以下の実験において、アルミニウム被膜の膜
厚、酸化被膜層の膜厚およびポリイミド樹脂被膜の膜厚
は破断面の電子顕微鏡観察によって測定した。なお、本
発明は、R−Fe−B系焼結磁石への適用に限られるも
のではなく、R−Fe−B系ボンド磁石に対しても適用
できるものである。
【0040】実験例1:真空容器内に磁石体試験片を収
容し、内部を1×10−4Pa以下に真空排気した後、
Arガス圧10Pa、バイアス電圧−400Vの条件下
で、15分スパッタリングを行い、磁石表面を清浄化し
た。次に、Arガス圧10Pa、バイアス電圧−50
V、磁石温度250℃の条件下で、ターゲットとして金
属アルミニウムを用い、20分アークイオンプレーティ
ングを行い、磁石表面にアルミニウム被膜を形成し、放
冷した。得られたアルミニウム被膜の膜厚は1.1μm
であった。上記の方法で得られた、アルミニウム被膜付
磁石を直ちに処理室内に収容し、酸素濃度5%の常圧下
(詳細は表1参照)、温度200℃で、10分酸化処理
を行い、アルミニウム被膜表面に酸化被膜層を形成し
た。形成された酸化被膜層の膜厚は0.3μmであっ
た。ポリイミド樹脂被膜形成処理液として、BANI−
M(商品名・丸善石油化学社製)を、有機溶媒としてト
ルエンを用いて20%(vol/vol)に希釈した溶
液を調製した。これを、上記の方法で得られた、表面に
酸化被膜層を有するアルミニウム被膜付磁石にスプレー
法によって塗布した。続いて、80℃にて10分乾燥し
た後、250℃にて15分熱処理を行い、酸化被膜層表
面にポリイミド樹脂被膜を形成した。形成されたポリイ
ミド樹脂被膜の膜厚は5μmであった。上記の方法で得
られた、表面にアルミニウム被膜を有し、前記アルミニ
ウム被膜表面に、酸化被膜層を介して、ポリイミド樹脂
被膜を有する磁石を、温度70℃×相対湿度90%の高
温高湿条件下に放置して耐食性加速試験を行った。その
結果、試験開始から500時間経過しても発錆や被膜剥
離などは観察されず、優れた耐食性を示した。また、電
気絶縁性を体積抵抗率(ρ)によって評価したところ、
1×1015Ω・cm以上という優れた値を示した。な
お、体積抵抗率は、サンプルに電極付けを行い、被膜表
面と磁石間の抵抗を測定し、ρ=R・S/lの数式から
求めた(R:抵抗(Ω)、S:電極面積(cm)、
l:ポリイミド樹脂被膜膜厚(cm))。耐熱性を熱変
形温度によって評価したところ、280℃以上という優
れた値を示した。なお、熱変形温度は、大気中20時間
その温度に放置して被膜の変色、亀裂などが生じる温度
とした。
【0041】実験例2:実験例1において、スプレー法
による塗布と乾燥をもう一度繰り返して行った後に熱処
理を行った以外は実験例1と同一条件で、膜厚が10μ
mのポリイミド樹脂被膜を形成した。上記の方法で得ら
れた、表面にアルミニウム被膜を有し、前記アルミニウ
ム被膜表面に、酸化被膜層を介して、ポリイミド樹脂被
膜を有する磁石に対し、実験例1と同一条件の耐食性加
速試験を行った。その結果、試験開始から500時間経
過しても発錆や被膜剥離などは観察されず、優れた耐食
性を示した。また、電気絶縁性を体積抵抗率(ρ)によ
って評価したところ、1×1015Ω・cm以上という
優れた値を示した。耐熱性を熱変形温度によって評価し
たところ、280℃以上という優れた値を示した。
【0042】実験例3:磁石体試験片に対し、実験例1
と同一条件でスパッタリングを行い、磁石表面を清浄化
した。次に、Arガス圧1Pa、電圧1.5KVの条件
下で、コーティング材料としてアルミニウムワイヤーを
用い、これを加熱蒸発させてイオン化し、2.5分イオ
ンプレーティングを行い、磁石表面にアルミニウム被膜
を形成し、放冷した。得られたアルミニウム被膜の膜厚
は2μmであった。その後、Nガスからなる加圧気体
とともに、平均粒径120μm、モース硬度6の球状ガ
ラスビーズ粉末を、噴射圧1.5kg/cmにて10
分、アルミニウム被膜表面に対して噴射して、ショット
ピーニングを施した。上記の方法で得られた、アルミニ
ウム被膜付磁石を直ちに処理室内に収容し、酸素濃度
0.1%の常圧下(詳細は表1参照)、温度250℃
で、7分酸化処理を行い、アルミニウム被膜表面に酸化
被膜層を形成した。形成された酸化被膜層の膜厚は0.
2μmであった。上記の方法で得られた、表面に酸化被
膜層を有するアルミニウム被膜付磁石に対し、実験例1
で使用したものと同じポリイミド樹脂被膜形成処理液を
使用し、実験例1と同じ条件にて、膜厚が5μmのポリ
イミド樹脂被膜を形成した。上記の方法で得られた、表
面にアルミニウム被膜を有し、前記アルミニウム被膜表
面に、酸化被膜層を介して、ポリイミド樹脂被膜を有す
る磁石に対し、実験例1と同一条件の耐食性加速試験を
行った。その結果、試験開始から500時間経過しても
発錆や被膜剥離などは観察されず、優れた耐食性を示し
た。また、電気絶縁性を体積抵抗率(ρ)によって評価
したところ、1×1015Ω・cm以上という優れた値
を示した。耐熱性を熱変形温度によって評価したとこ
ろ、280℃以上という優れた値を示した。
【0043】実験例4:実験例3において、スプレー法
による塗布と乾燥をもう一度繰り返して行った後に熱処
理を行った以外は実験例3と同一条件で、膜厚が10μ
mのポリイミド樹脂被膜を形成した。上記の方法で得ら
れた、表面にアルミニウム被膜を有し、前記アルミニウ
ム被膜表面に、酸化被膜層を介して、ポリイミド樹脂被
膜を有する磁石に対し、実験例1と同一条件の耐食性加
速試験を行った。その結果、試験開始から500時間経
過しても発錆や被膜剥離などは観察されず、優れた耐食
性を示した。また、電気絶縁性を体積抵抗率(ρ)によ
って評価したところ、1×1015Ω・cm以上という
優れた値を示した。耐熱性を熱変形温度によって評価し
たところ、280℃以上という優れた値を示した。
【0044】実験例5:100個の磁石体試験片(見か
け容量0.35リットル、重量1.1kg)と直径0.
8mm、長さ1mmの短円柱状アルミニウム片(見かけ
容量20リットル、重量100kg)を容積50リット
ルの振動バレル装置の処理室に投入し(合計投入量は処
理室内容積の30vol%)、振動数60Hz、振動振
幅1.8mmの条件にて乾式的に処理を7時間行い、磁
石表面にアルミニウム被膜を形成した。得られたアルミ
ニウム被膜の膜厚は0.2μmであった。上記の方法で
得られた、アルミニウム被膜付磁石を直ちに処理室内に
収容し、酸素濃度0.2%の常圧下(詳細は表1参
照)、温度180℃で、6分酸化処理を行い、アルミニ
ウム被膜表面に酸化被膜層を形成した。形成された酸化
被膜層の膜厚は0.1μmであった。上記の方法で得ら
れた、表面に酸化被膜層を有するアルミニウム被膜付磁
石に対し、実験例1で使用したものと同じポリイミド樹
脂被膜形成処理液を使用し、実験例1と同じ条件にて、
膜厚が5μmのポリイミド樹脂被膜を形成した。上記の
方法で得られた、表面にアルミニウム被膜を有し、前記
アルミニウム被膜表面に、酸化被膜層を介して、ポリイ
ミド樹脂被膜を有する磁石に対し、実験例1と同一条件
の耐食性加速試験を行った。その結果、試験開始から5
00時間経過しても発錆や被膜剥離などは観察されず、
優れた耐食性を示した。また、電気絶縁性を体積抵抗率
(ρ)によって評価したところ、1×1015Ω・cm
以上という優れた値を示した。耐熱性を熱変形温度によ
って評価したところ、280℃以上という優れた値を示
した。
【0045】実験例6:実験例1と同様の方法で得た、
膜厚が1.1μmのアルミニウム被膜付磁石を直ちに処
理室内に収容し、酸素圧10Paの減圧下(詳細は表1
参照)、温度220℃で、15分酸化処理を行い、アル
ミニウム被膜表面に酸化被膜層を形成した。形成された
酸化被膜層の膜厚は0.6μmであった。上記の方法で
得られた、表面に酸化被膜層を有するアルミニウム被膜
付磁石に対し、実験例1で使用したものと同じポリイミ
ド樹脂被膜形成処理液を使用し、実験例1と同じ条件に
て、膜厚が5μmのポリイミド樹脂被膜を形成した。上
記の方法で得られた、表面にアルミニウム被膜を有し、
前記アルミニウム被膜表面に、酸化被膜層を介して、ポ
リイミド樹脂被膜を有する磁石に対し、実験例1と同一
条件の耐食性加速試験を行った。その結果、試験開始か
ら500時間経過しても発錆や被膜剥離などは観察され
ず、優れた耐食性を示した。また、電気絶縁性を体積抵
抗率(ρ)によって評価したところ、1×1015Ω・
cm以上という優れた値を示した。耐熱性を熱変形温度
によって評価したところ、280℃以上という優れた値
を示した。
【0046】
【表1】
【0047】比較例1:磁石体試験片に対し、実験例1
と同一条件でスパッタリングを行い、磁石表面を清浄化
した。次に、実験例1と同一条件でアークイオンプレー
ティングを行い、磁石表面にアルミニウム被膜を形成
し、放冷した。得られたアルミニウム被膜の膜厚は1.
5μmであった。次に、アルミニウム被膜表面に酸化被
膜層を形成することなく、実験例1で使用したものと同
じポリイミド樹脂被膜形成処理液を使用し、実験例1と
同じ条件にて、膜厚が5μmのポリイミド樹脂被膜を直
接に形成した。上記の方法で得られた、表面にアルミニ
ウム被膜を有し、前記アルミニウム被膜表面に直接に、
ポリイミド樹脂被膜を有する磁石に対し、実験例1と同
一条件の耐食性加速試験を行った。その結果、試験開始
から150時間で被膜剥離が観察された。
【0048】比較例2:比較例1において、スプレー法
による塗布と乾燥をもう一度繰り返して行った後に熱処
理を行った以外は比較例と同一条件で、膜厚が10μm
のポリイミド樹脂被膜を形成した。上記の方法で得られ
た、表面にアルミニウム被膜を有し、前記アルミニウム
被膜表面に直接に、ポリイミド樹脂被膜を有する磁石に
対し、実験例1と同一条件の耐食性加速試験を行った。
その結果、試験開始から250時間で被膜剥離が観察さ
れた。
【0049】実験例7〜実験例12:実験例1〜実験例
6と同様の条件にて磁石体試験片の表面にアルミニウム
被膜を形成し、その表面に酸化被膜層を形成した後、各
実験例におけるポリイミド樹脂被膜形成処理液の調製に
用いたトルエンの代わりにトルエンと酢酸エチルとシク
ロヘキサノンの混合溶媒(容積比65:15:20)を
用いる以外は各実験例と同様の条件、膜厚にて酸化被膜
層表面にポリイミド樹脂被膜を形成した。各サンプルに
対して実験例1と同様の耐食性加速試験、電気絶縁性評
価、耐熱性評価を行ったところ、いずれのサンプルも各
実験例のサンプルと同様の結果を示した。
【0050】
【発明の効果】本発明のR−Fe−B系永久磁石表面
に、アルミニウム被膜を有し、前記アルミニウム被膜表
面に、酸化被膜層を介して、ポリイミド樹脂被膜を有す
る永久磁石は、ポリイミド樹脂被膜が、酸化被膜層の存
在によって、アルミニウム被膜表面に強固に密着してお
り、アルミニウム被膜とともに優れた耐食性・電気絶縁
性・耐熱性を発揮する。また、酸化被膜層の上では、ポ
リイミド樹脂被膜形成反応が効率よく進行するので、溶
液法によってもアルミニウム被膜表面に対して優れた密
着性を有するポリイミド樹脂被膜を形成することができ
る。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 28/00 C23C 28/00 B H01F 41/02 H01F 41/02 G

Claims (14)

    【特許請求の範囲】
  1. 【請求項1】 R−Fe−B系永久磁石表面に、アルミ
    ニウム被膜を有し、前記アルミニウム被膜表面に、酸化
    被膜層を介して、ポリイミド樹脂被膜を有することを特
    徴とする永久磁石。
  2. 【請求項2】 ポリイミド樹脂被膜が付加型ポリイミド
    樹脂被膜であることを特徴とする請求項1記載の永久磁
    石。
  3. 【請求項3】 付加型ポリイミド樹脂被膜がビスアリル
    ナジイミドから得られる被膜であることを特徴とする請
    求項2記載の永久磁石。
  4. 【請求項4】 アルミニウム被膜の膜厚が0.01μm
    〜50μmであることを特徴とする請求項1乃至3のい
    ずれかに記載の永久磁石。
  5. 【請求項5】 酸化被膜層の膜厚が0.01μm〜2μ
    mであることを特徴とする請求項1乃至4のいずれかに
    記載の永久磁石。
  6. 【請求項6】 ポリイミド樹脂被膜の膜厚が1μm〜1
    5μmであることを特徴とする請求項1乃至5のいずれ
    かに記載の永久磁石。
  7. 【請求項7】 R−Fe−B系永久磁石表面に、アルミ
    ニウム被膜を形成した後、前記アルミニウム被膜表面
    に、酸素雰囲気中での酸化処理によって酸化被膜層を形
    成し、前記酸化被膜層表面に、ポリイミド樹脂被膜形成
    処理液を塗布し、熱処理することによってポリイミド樹
    脂被膜を形成することを特徴とする永久磁石の製造方
    法。
  8. 【請求項8】 気相成長法によってアルミニウム被膜を
    形成することを特徴とする請求項7記載の製造方法。
  9. 【請求項9】 膜厚が0.01μm〜50μmのアルミ
    ニウム被膜を形成することを特徴とする請求項8記載の
    製造方法。
  10. 【請求項10】 R−Fe−B系永久磁石とアルミニウ
    ム片を処理容器内に入れ、前記処理容器内にて、両者に
    振動を加え、および/または両者を攪拌することによっ
    てアルミニウム被膜を形成することを特徴とする請求項
    7記載の製造方法。
  11. 【請求項11】 膜厚が0.01μm〜1μmのアルミ
    ニウム被膜を形成することを特徴とする請求項10記載
    の製造方法。
  12. 【請求項12】 酸素雰囲気中での酸化処理を、酸素濃
    度が0.01%〜20%の常圧下、または酸素圧(分
    圧)が0.1Pa〜2×10Paの減圧下、10℃〜
    500℃にて行うことを特徴とする請求項7乃至11の
    いずれかに記載の製造方法。
  13. 【請求項13】 ポリイミド樹脂被膜が付加型ポリイミ
    ド樹脂被膜であることを特徴とする請求項7乃至12の
    いずれかに記載の製造方法。
  14. 【請求項14】 付加型ポリイミド樹脂被膜がビスアリ
    ルナジイミドから得られる被膜であることを特徴とする
    請求項13記載の製造方法。
JP2000276798A 1999-09-27 2000-09-12 R−Fe−B系永久磁石およびその製造方法 Expired - Lifetime JP4529260B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000276798A JP4529260B2 (ja) 1999-09-27 2000-09-12 R−Fe−B系永久磁石およびその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-271895 1999-09-27
JP27189599 1999-09-27
JP2000276798A JP4529260B2 (ja) 1999-09-27 2000-09-12 R−Fe−B系永久磁石およびその製造方法

Publications (2)

Publication Number Publication Date
JP2001167917A true JP2001167917A (ja) 2001-06-22
JP4529260B2 JP4529260B2 (ja) 2010-08-25

Family

ID=26549935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000276798A Expired - Lifetime JP4529260B2 (ja) 1999-09-27 2000-09-12 R−Fe−B系永久磁石およびその製造方法

Country Status (1)

Country Link
JP (1) JP4529260B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059741A (ja) * 2001-08-10 2003-02-28 Sumitomo Special Metals Co Ltd 蒸着被膜を表面に有する希土類系永久磁石の製造方法
WO2003058648A1 (fr) * 2001-12-28 2003-07-17 Shin-Etsu Chemical Co., Ltd. Aimant fritte d'element de terre rare et procede de production d'un aimant fritte d'element de terre rare
JP2010232350A (ja) * 2009-03-26 2010-10-14 Hitachi Metals Ltd 耐塩水性に優れた希土類系永久磁石の製造方法
JP2010245394A (ja) * 2009-04-08 2010-10-28 Hitachi Metals Ltd 表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石の耐塩水性向上方法
CN102041506A (zh) * 2009-10-13 2011-05-04 北京中科三环高技术股份有限公司 永磁材料的表面处理方法
WO2011162281A1 (ja) * 2010-06-25 2011-12-29 日本電気株式会社 通信装置および、通信装置の筐体の製造方法
JP2013162664A (ja) * 2012-02-07 2013-08-19 Kayaba Ind Co Ltd 電動モータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279407A (ja) * 1995-02-07 1996-10-22 Sumitomo Special Metals Co Ltd 電気絶縁性・耐熱性・耐食性にすぐれたR−Fe−B系永久磁石とその製造方法
JPH09111182A (ja) * 1995-10-23 1997-04-28 Daido Steel Co Ltd 絶縁性塗膜を施した電子部品およびその塗装方法
JPH09246027A (ja) * 1996-03-08 1997-09-19 Sumitomo Special Metals Co Ltd 耐塩水性にすぐれたR−Fe−B系永久磁石
JPH10326552A (ja) * 1997-05-26 1998-12-08 Matsushita Electric Works Ltd 耐電圧表面処理被膜及び耐電圧表面処理被膜を備えるリレー鉄芯
JPH10340823A (ja) * 1997-06-05 1998-12-22 Sumitomo Special Metals Co Ltd 耐塩水性にすぐれたR−Fe−B系永久磁石の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279407A (ja) * 1995-02-07 1996-10-22 Sumitomo Special Metals Co Ltd 電気絶縁性・耐熱性・耐食性にすぐれたR−Fe−B系永久磁石とその製造方法
JPH09111182A (ja) * 1995-10-23 1997-04-28 Daido Steel Co Ltd 絶縁性塗膜を施した電子部品およびその塗装方法
JPH09246027A (ja) * 1996-03-08 1997-09-19 Sumitomo Special Metals Co Ltd 耐塩水性にすぐれたR−Fe−B系永久磁石
JPH10326552A (ja) * 1997-05-26 1998-12-08 Matsushita Electric Works Ltd 耐電圧表面処理被膜及び耐電圧表面処理被膜を備えるリレー鉄芯
JPH10340823A (ja) * 1997-06-05 1998-12-22 Sumitomo Special Metals Co Ltd 耐塩水性にすぐれたR−Fe−B系永久磁石の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059741A (ja) * 2001-08-10 2003-02-28 Sumitomo Special Metals Co Ltd 蒸着被膜を表面に有する希土類系永久磁石の製造方法
WO2003058648A1 (fr) * 2001-12-28 2003-07-17 Shin-Etsu Chemical Co., Ltd. Aimant fritte d'element de terre rare et procede de production d'un aimant fritte d'element de terre rare
KR100746897B1 (ko) * 2001-12-28 2007-08-07 신에쓰 가가꾸 고교 가부시끼가이샤 희토류 소결 자석 및 희토류 소결 자석의 제조 방법
US7438768B2 (en) 2001-12-28 2008-10-21 Shin-Etsu Chemical Co., Ltd. Rare earth element sintered magnet and method for producing rare earth element sintered magnet
JP2010232350A (ja) * 2009-03-26 2010-10-14 Hitachi Metals Ltd 耐塩水性に優れた希土類系永久磁石の製造方法
JP2010245394A (ja) * 2009-04-08 2010-10-28 Hitachi Metals Ltd 表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石の耐塩水性向上方法
CN102041506A (zh) * 2009-10-13 2011-05-04 北京中科三环高技术股份有限公司 永磁材料的表面处理方法
WO2011162281A1 (ja) * 2010-06-25 2011-12-29 日本電気株式会社 通信装置および、通信装置の筐体の製造方法
JPWO2011162281A1 (ja) * 2010-06-25 2013-08-22 日本電気株式会社 通信装置および、通信装置の筐体の製造方法
JP2013162664A (ja) * 2012-02-07 2013-08-19 Kayaba Ind Co Ltd 電動モータ

Also Published As

Publication number Publication date
JP4529260B2 (ja) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4525425B2 (ja) フッ化物コート膜形成処理液,フッ化物コート膜形成方法及び磁石
EP0190461B1 (en) Process for producing permanent magnets and permanent magnet
JP2008263208A (ja) 耐食性希土類磁石
JP2004304038A (ja) 超小型製品用の微小、高性能希土類磁石とその製造方法
JP4529260B2 (ja) R−Fe−B系永久磁石およびその製造方法
JP2001160508A (ja) R−Fe−B系永久磁石およびその製造方法
JP3176597B2 (ja) 耐食性永久磁石およびその製造方法
JP4495287B2 (ja) ポリイミド樹脂被膜を有する希土類系永久磁石の製造方法
JPH09289108A (ja) 密着性のすぐれた電気絶縁性被膜を有するR−Fe−B系永久磁石とその製造方法
JPH07130520A (ja) 高耐食性永久磁石とその製造方法
JP3877552B2 (ja) 金属部材の製造方法
JPH09326308A (ja) 密着性のすぐれた電気絶縁性被膜を有するR−Fe−B系永久磁石とその製造方法
JPH08279407A (ja) 電気絶縁性・耐熱性・耐食性にすぐれたR−Fe−B系永久磁石とその製造方法
JP3236813B2 (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP2003064454A (ja) 耐食性希土類磁石及びその製造方法
JPH0770382B2 (ja) 耐食性のすぐれた希土類磁石及びその製造方法
JPH0613211A (ja) 耐食性のすぐれた永久磁石及びその製造方法
JPH10340823A (ja) 耐塩水性にすぐれたR−Fe−B系永久磁石の製造方法
JP4375131B2 (ja) 磁気特性に優れた耐酸化性hddr磁石粉末の製造方法
JP3236815B2 (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JP2000232026A (ja) 耐食性皮膜を有するFe−B−R系永久磁石の製造方法
JP2006049864A (ja) 耐食性希土類磁石及びその製造方法
JPH0646603B2 (ja) 耐食性のすぐれた永久磁石及びその製造方法
JP2002260942A (ja) ボンド磁石表面への無機質被膜形成方法
JPH0569283B2 (ja)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4529260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

EXPY Cancellation because of completion of term