JP2001123225A - Method for producing hot rolled silicon steel sheet high in magnetic flux density and low in core loss - Google Patents

Method for producing hot rolled silicon steel sheet high in magnetic flux density and low in core loss

Info

Publication number
JP2001123225A
JP2001123225A JP30602199A JP30602199A JP2001123225A JP 2001123225 A JP2001123225 A JP 2001123225A JP 30602199 A JP30602199 A JP 30602199A JP 30602199 A JP30602199 A JP 30602199A JP 2001123225 A JP2001123225 A JP 2001123225A
Authority
JP
Japan
Prior art keywords
rolling
hot
steel sheet
sheet
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30602199A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30602199A priority Critical patent/JP2001123225A/en
Publication of JP2001123225A publication Critical patent/JP2001123225A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inexpensively and stably producing a thin hot final hot rolled silicon steel sheet excellent in magnetic properties. SOLUTION: In the method in which steel containing specified Si and Mn is hot-rolled to produce a silicon steel sheet, finish sheet thickness is controlled to <=1.5 mm, moreover, finishing temperature in finish hot rolling is controlled to 800 to 1100 deg.C, coiling temperature is controlled to 750 to 1050 deg.C, and, self- annealing is executed for 5 min to 3 hr by the heat held in a coil itself. Moreover, in the finish hot rolling, at least in one pass, the parameter of Z shown by the hollowing inequality is >=12.10, and also, the total of the drafts in passes satisfying the above condition is controlled to >=20%: Z=Log εexp[32100/(273+ t)]}>=12.10, where ε: strain rare (1/s), and (t): rolling temperature ( deg.C).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉄損が低く、磁束密
度の高い磁性に優れた熱延珪素鋼板を製造する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a hot-rolled silicon steel sheet having a low iron loss and a high magnetic flux density and excellent magnetism.

【0002】[0002]

【従来の技術】近年、無方向性電磁鋼板がその鉄心材料
として使用される回転機においては、世界的な電力、エ
ネルギー節減、環境保全の動きの中で、高効率化の動き
が急速に広まりつつある。このため無方向性電磁鋼板に
対しても、その特性向上、すなわち高磁束密度かつ低鉄
損化への要請がますます強まってきている。また世界的
大競争時代に突入しつつある中、需要家からは低コスト
で磁気特性の優れた無方向性電磁鋼板の提供を強く求め
られている。
2. Description of the Related Art In recent years, in a rotating machine in which non-oriented electrical steel sheets are used as its core material, the trend toward higher efficiency has rapidly spread in the world of power, energy saving and environmental conservation. It is getting. For this reason, there has been an increasing demand for non-oriented electrical steel sheets to have improved properties, that is, higher magnetic flux density and lower iron loss. In the midst of the era of global competition, consumers are strongly demanding low-cost non-oriented electrical steel sheets with excellent magnetic properties.

【0003】ところで無方向性電磁鋼板においては、従
来、低鉄損化の手段として一般に、電気抵抗増大による
渦電流損低減の観点から、SiあるいはAl等の含有量
を高める方法がとられてきた。しかしこの方法では反
面、磁束密度の低下は避け得ないという問題点があっ
た。このような問題点の克服のために、熱延板結晶粒径
を粗大化することで磁束密度と鉄損の両方を改善させる
方法が行われてきた。
[0003] Meanwhile, in non-oriented electrical steel sheets, conventionally, as a means of reducing iron loss, a method of increasing the content of Si or Al or the like has been generally employed from the viewpoint of reducing eddy current loss due to an increase in electric resistance. . However, in this method, on the other hand, there is a problem that a decrease in magnetic flux density cannot be avoided. In order to overcome such problems, a method of improving both the magnetic flux density and the iron loss by increasing the crystal grain size of the hot-rolled sheet has been performed.

【0004】従来技術における無方向性電磁鋼板製造法
としては、熱間圧延後、一回の圧延工程で最終板厚とし
その後焼鈍を施して最終製品とするか、中間焼鈍を挟む
2回以上の冷間圧延により最終板厚とし、最終焼鈍を施
すフルプロセス無方向性電磁鋼板製造法か、一回の冷間
圧延後焼鈍を施し、その後10%前後のスキンパス圧延
を施すことにより最終板厚とするセミプロセス無方向性
電磁鋼板製造法に大別される。
[0004] As a conventional method for producing a non-oriented electrical steel sheet, a hot rolling is performed, and a final rolling is performed in a single rolling step, followed by annealing to obtain a final product, or two or more times of intermediate annealing. The final thickness is obtained by cold rolling, and a full process non-oriented electrical steel sheet manufacturing method in which final annealing is performed, or annealing is performed once after cold rolling, and then skin pass rolling is performed to about 10% to obtain a final thickness. Semi-process non-oriented electrical steel sheet manufacturing method.

【0005】このような従来技術による無方向性電磁鋼
板の磁性を安価に改善する技術として、特開昭59−7
4222号公報には、仕上熱延最終スタンドの圧下率を
20%以上として、熱延板の巻取温度を700℃以上と
する技術が開示されている。この公知例においては、最
終スタンド圧下率を高めて巻取温度を上昇させることに
より熱延終了後の熱延組織の再結晶および粒成長を促進
し、結果として磁気特性を改善することを狙っている。
しかしながら鋼板中のSi含有量が高い場合、この技術
では熱延板の再結晶は促進されるものの、その後の粒成
長が不十分であり、冷間圧延・最終焼鈍後の特性の改善
が不十分であった。
As a technique for inexpensively improving the magnetism of a non-oriented electrical steel sheet according to the prior art, Japanese Patent Application Laid-Open No. 59-7 / 1984 has disclosed.
Japanese Patent No. 4222 discloses a technique in which the rolling reduction temperature of a hot-rolled sheet is set to 700 ° C. or more by setting the rolling reduction of the final hot-rolled final stand to 20% or more. In this known example, the aim is to increase the final stand draft and raise the winding temperature to promote recrystallization and grain growth of the hot-rolled structure after the end of hot-rolling, thereby improving magnetic properties. I have.
However, when the Si content in the steel sheet is high, this technique promotes recrystallization of the hot-rolled sheet, but the subsequent grain growth is insufficient, and the properties after cold rolling and final annealing are insufficiently improved. Met.

【0006】また特開昭54−76422号公報には、
仕上熱延後の熱延板を700℃から1000℃の高温で
巻取り、これをコイルの保有熱で焼鈍する自己焼鈍法が
開示されている。しかしながらこの技術においては、高
温で巻き取ったコイルの自己焼鈍中の粒成長がばらつき
やすい問題点があった。さらに、冷間圧延を前提とする
無方向性電磁鋼板製造法では、冷間圧延、最終焼鈍のコ
ストが製品価格を押し上げるため、需要家のさらなるコ
ストダウンの要求には十分応じていないという問題点が
あった。
Japanese Patent Application Laid-Open No. 54-76422 discloses that
A self-annealing method is disclosed in which a hot-rolled sheet after finish hot-rolling is wound at a high temperature of 700 ° C. to 1000 ° C. and is annealed by the heat held by the coil. However, this technique has a problem that the grain growth during self-annealing of a coil wound at a high temperature tends to vary. Furthermore, in the non-oriented electrical steel sheet manufacturing method on the premise of cold rolling, the cost of cold rolling and final annealing raises the product price, so that it does not sufficiently meet the demands of customers for further cost reduction. was there.

【0007】このような課題に対して、低コスト無方向
性電磁鋼板を提供する手段として、特開平9−1949
39号公報には、粗熱間圧延後、シートバーを巻取り均
熱処理を施した後、板厚1mm以下のホットファイナル無
方向性電磁鋼板を製造する技術が開示されている。しか
しながらシートバーの巻取りによるシートバー自身の均
熱化のみで薄手熱延板を安定製造することには限界があ
り、薄手材を製造した場合に、仕上熱延の圧下率が増大
することからシートバー噛み込み時にスタンド間で上反
りが生じやすく、結果として圧延を度々停止せざるを得
なかった。
As a means for providing a low-cost non-oriented electrical steel sheet, Japanese Patent Laid-Open No. 9-1949 discloses a solution to this problem.
Japanese Patent Publication No. 39 discloses a technique for producing a hot final non-oriented electrical steel sheet having a thickness of 1 mm or less after winding a sheet bar and performing a uniform heat treatment after rough hot rolling. However, there is a limit to the stable production of thin hot rolled sheets only by soaking the sheet bar itself by winding the sheet bar, and when thin materials are manufactured, the rolling reduction of the finished hot rolling increases. When the sheet bar is bitten, warpage tends to occur between stands, and as a result, rolling has to be stopped frequently.

【0008】また、仕上熱延の圧下率低減のためにシー
トバーを薄手化すると、シートバー巻取りを行ったとし
ても、シートバーの温度むらが生じるため、成品の特性
がコイル採取位置に対して安定せず、限界があった。さ
らに、得られる製品においても従来の冷間圧延を施した
無方向性電磁鋼板に比べて大きく磁性が劣り、低コスト
ながら昨今の高効率材を求める需要家には注目されない
と言う問題点があった。この様に、薄手ホットファイナ
ル無方向性電磁鋼板の製造には大きな課題を残してい
た。
Further, if the sheet bar is made thinner to reduce the rolling reduction of the hot-rolled finish, even if the sheet bar is wound up, the temperature of the sheet bar becomes uneven. Was not stable and had limitations. Furthermore, the resulting product is also inferior in magnetism to the conventional cold-rolled non-oriented electrical steel sheet, and has a problem that it is not noticed by consumers who demand high-efficiency materials at a low cost these days. Was. Thus, the production of thin hot-final non-oriented electrical steel sheets has left a major problem.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来のコス
ト増を招く無方向性電磁鋼板製造法の問題点を解決し、
安価で磁気特性に優れる薄手ホットファイナル無方向性
電磁鋼板を安定して製造する方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional non-oriented electrical steel sheet manufacturing method which leads to an increase in cost,
An object of the present invention is to provide a method for stably producing a thin hot final non-oriented electrical steel sheet which is inexpensive and has excellent magnetic properties.

【0010】[0010]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。 (1)鋼中にSi、Mnのうち少なくとも1種を、重量
%で0.1%≦Si≦4.0%、 0.1%≦Mn≦
2.0%の範囲で含有し、残部がFeおよび不可避不純
物からなるスラブを用い、粗圧延を行いシートバーと
し、更に仕上熱間圧延した熱延板を直ちに巻取り、コイ
ル自身の保有熱で自己焼鈍を実施する熱延珪素鋼板の製
造方法において、仕上板厚1.5mm以下とすると共に、
仕上熱間圧延の終了温度を800〜1100℃とし、コ
イルの巻取り温度を750〜1050℃とし、自己焼鈍
時間を5分〜3時間とし、仕上げ熱延において少なくと
も1パスは下式(1)を満足させると共に、粗圧延後の
シートバーに対する仕上熱間圧延の圧延率のうち、下式
(1)を満足するパスの圧下率の和を20%以上とする
ことを特徴とする磁束密度が高く、鉄損の低い熱延珪素
鋼板の製造方法。
The gist of the present invention is as follows. (1) At least one of Si and Mn in steel is 0.1% ≦ Si ≦ 4.0% by weight%, 0.1% ≦ Mn ≦
Using a slab containing 2.0% and a balance of Fe and inevitable impurities, rough rolling is performed to form a sheet bar, and a hot-rolled sheet that has been subjected to finish hot rolling is immediately wound up, and the heat retained by the coil itself is used. In the method for producing a hot-rolled silicon steel sheet that performs self-annealing, the finish sheet thickness is set to 1.5 mm or less,
The finishing temperature of the finish hot rolling is set to 800 to 1100 ° C., the coil winding temperature is set to 750 to 1050 ° C., the self-annealing time is set to 5 minutes to 3 hours, and at least one pass in the finish hot rolling is represented by the following formula (1). And the sum of the rolling reductions of the passes satisfying the following equation (1) is set to 20% or more among the rolling reductions of the finish hot rolling on the sheet bar after the rough rolling. A method for producing a hot-rolled silicon steel sheet having a high iron loss.

【数式2】 [Formula 2]

【0011】(2)粗圧延後のシートバーを先行するシ
ートバーに接続し、仕上熱延を連続して行うことを特徴
とする前項(1)に記載の磁束密度が高く、鉄損の低い
熱延珪素鋼板の製造方法。 (3)更に付加的成分として、酸可溶性Alを重量%で
0.1%≦sol.Al≦2.5%を含有することを特徴と
する前項(1)または(2)に記載の磁束密度が高く、
鉄損の低い熱延珪素鋼板の製造方法。
(2) The sheet bar after the rough rolling is connected to the preceding sheet bar, and the hot rolling is continuously performed in the finish, wherein the magnetic flux density is high and the iron loss is low as described in (1) above. A method for manufacturing a hot-rolled silicon steel sheet. (3) The magnetic flux density according to the above (1) or (2), further comprising, as an additional component, 0.1% ≦ sol.Al ≦ 2.5% by weight of acid-soluble Al. Is high,
A method for producing a hot-rolled silicon steel sheet with low iron loss.

【0012】[0012]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。発明者らは、自己焼鈍を前提とする熱延珪素鋼板の
制御熱延について鋭意検討を重ねた結果、仕上熱間圧延
時の最終パス付近の圧延を適切な条件下で行うことによ
って、製品における磁気特性が安定すると共に、磁束密
度が極めて高く、鉄損が良好な(鉄損値が低い)熱延珪
素鋼板を製造することに成功した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The present inventors have conducted intensive studies on the control hot rolling of a hot-rolled silicon steel sheet on the premise of self-annealing. As a result, by performing rolling near the final pass at the time of finish hot rolling under appropriate conditions, the product It has succeeded in producing a hot-rolled silicon steel sheet having stable magnetic properties, extremely high magnetic flux density, and good iron loss (low iron loss value).

【0013】まず、本発明の成分について説明する。成
分含有量は重量%である。Siは、鋼板の固有抵抗を増
大させ渦流損を低減させ、鉄損値を改善するために添加
される。Si含有量が0.1%未満であると固有抵抗が
十分に得られないので、0.1%以上添加する必要があ
る。一方、Si含有量が4.0%を超えると熱間圧延が
困難となるので、4.0%以下とする必要がある。
First, the components of the present invention will be described. Component content is% by weight. Si is added to increase the specific resistance of the steel sheet, reduce the eddy current loss, and improve the iron loss value. If the Si content is less than 0.1%, sufficient specific resistance cannot be obtained, so it is necessary to add 0.1% or more. On the other hand, if the Si content exceeds 4.0%, hot rolling becomes difficult, so it is necessary to set the Si content to 4.0% or less.

【0014】Mnは、Al,Siと同様に鋼板の固有抵
抗を増大させ渦電流損を低減させる効果を有する。この
ため、Mn含有量は0.1%以上とする必要がある。一
方、Mn含有量が2.0%を超えると、熱延時の変形抵
抗が増加し熱延が困難となると共に、熱延後の結晶組織
が微細化しやすくなり製品の磁気特性が悪化するので、
Mn含有量は2.0%以下とする必要がある。
Mn, like Al and Si, has the effect of increasing the specific resistance of a steel sheet and reducing eddy current loss. For this reason, the Mn content needs to be 0.1% or more. On the other hand, if the Mn content exceeds 2.0%, the deformation resistance during hot rolling increases and hot rolling becomes difficult, and the crystal structure after hot rolling tends to become finer, which deteriorates the magnetic properties of the product.
The Mn content needs to be 2.0% or less.

【0015】鋼中のAlは、不純物レベルであっても何
ら問題はないが、AlはSiと同様に鋼板の固有抵抗を
増大させ渦電流損を低減させる効果を有するので、特に
低鉄損を得たい場合には0.1〜2.5%添加するのが
好ましい。過剰にAl添加した場合には磁束密度が低下
し、コスト高ともなるので、2.5%以下とする。
Al in the steel has no problem even if it is at the impurity level, but Al has the effect of increasing the specific resistance of the steel sheet and reducing the eddy current loss similarly to Si, and therefore, particularly has a low iron loss. When it is desired to obtain, it is preferable to add 0.1 to 2.5%. If Al is added excessively, the magnetic flux density decreases and the cost increases, so the content is set to 2.5% or less.

【0016】また製品の機械的特性の向上、磁気的特
性、耐錆性の向上あるいはその他の目的のために、P,
B,Ni,Cr,Sb,Sn,Cuの1種または2種以
上を鋼中に含有させても本発明の効果は損なわれない。
In order to improve the mechanical properties, magnetic properties and rust resistance of the product or for other purposes, P,
Even if one or more of B, Ni, Cr, Sb, Sn, and Cu are contained in steel, the effect of the present invention is not impaired.

【0017】C,N,S,B,Pは本発明の請求項では
規定していないが、良好な磁気特性あるいは加工性を有
する無方向性電磁鋼板の製造にあたっては、その含有量
を注意深く制御する必要があるので、以下に言及する。
Cは、磁気時効を回避し鉄損の圧下を防止するため、
0.0050%以下であれば本発明の目的を達成するこ
とが出来る。一方、Si含有量が少なく硬度が低い成分
系の熱延珪素鋼板の場合、C含有量を0.0250%程
度にすることで、打抜き性の改善を図っても良い。
Although C, N, S, B, and P are not specified in the claims of the present invention, in producing a non-oriented electrical steel sheet having good magnetic properties or workability, the content is carefully controlled. It is necessary to do so, so the following is mentioned.
C avoids magnetic aging and prevents reduction of iron loss,
If the content is 0.0050% or less, the object of the present invention can be achieved. On the other hand, in the case of a hot rolled silicon steel sheet having a low Si content and a low hardness, the punching property may be improved by setting the C content to about 0.0250%.

【0018】S,Nは、熱間圧延工程におけるスラブ加
熱中に一部再固溶し、熱間圧延中にMnS,AlN等の
析出物を形成し、仕上げ焼鈍時に再結晶粒の成長を妨げ
たり、製品が磁化されるときに磁壁の移動を妨げる、い
わゆるピニング効果を発揮し、製品の低鉄損化を妨げる
原因となる。従って、S≦0.0050%、N≦0.0
050%とすることが好ましい。
S and N partially re-dissolve during the slab heating in the hot rolling process to form precipitates such as MnS and AlN during the hot rolling, and hinder the growth of recrystallized grains during the final annealing. In addition, when the product is magnetized, it exerts a so-called pinning effect of hindering the movement of the domain wall, which hinders a reduction in iron loss of the product. Therefore, S ≦ 0.0050%, N ≦ 0.0
It is preferably set to 050%.

【0019】Bは、熱間圧延時にBNを形成させてAl
Nの微細析出を妨げ、Nを無害化させるために添加され
る。B含有量はNとの量のバランスが必要であり、その
含有量は両者の比:B%/N%が0.5から1.5の範
囲を満たすことが好ましい。
B is formed by forming BN at the time of hot rolling.
It is added to prevent fine precipitation of N and render N harmless. The B content needs to be balanced with the amount of N, and the content of the B content preferably satisfies the range of 0.5 to 1.5 with B / N%.

【0020】Pは、製品の打抜き性を良好ならしめるた
めに、0.1%までの範囲内で添加される。P≦0.2
%であれば、製品の磁気特性の観点からは問題がない。
P is added in a range of up to 0.1% in order to improve the punching property of the product. P ≦ 0.2
%, There is no problem from the viewpoint of the magnetic properties of the product.

【0021】次に、本発明のプロセス条件について説明
する。前記成分からなる鋼スラブは、転炉で溶製され連
続鋳造あるいは造塊−分塊圧延により製造される。鋼ス
ラブは公知の方法にて加熱される。このスラブに粗圧
延、仕上圧延からなる熱間圧延を施し所定の厚みとす
る。
Next, the process conditions of the present invention will be described. The steel slab composed of the above components is produced by melting in a converter and being manufactured by continuous casting or ingot-bulking rolling. The steel slab is heated by a known method. The slab is subjected to hot rolling including rough rolling and finish rolling to a predetermined thickness.

【0022】以下に本発明の仕上圧延条件を規定する理
由について述べる。仕上熱間圧延の終了温度は、800
℃未満であると熱間変形抵抗が急激に増大し圧延が困難
となるので、800℃以上とする。また1100℃超で
あると、熱延板の剛性が不足しコイルの巻取りが著しく
不安定となるので、1100℃以下とする。
The reasons for defining the finish rolling conditions of the present invention will be described below. The finish temperature of the finish hot rolling is 800
If the temperature is lower than ℃, the hot deformation resistance sharply increases and rolling becomes difficult. On the other hand, if the temperature is higher than 1100 ° C., the rigidity of the hot-rolled sheet becomes insufficient and the winding of the coil becomes extremely unstable.

【0023】コイルの巻取り温度は、750℃未満であ
ると自己焼鈍時の結晶粒成長が不十分となり、製品の磁
束密度が本発明の意図する高磁束密度が得られなくなる
ので、750℃以上と定める。また1050℃超である
と、自己焼鈍時の酸化を抑制することが困難となり、酸
洗歩留まりが低下し生産性が低下するので、1050℃
以下と定める。
If the coil winding temperature is lower than 750 ° C., the crystal grain growth during self-annealing becomes insufficient, and the magnetic flux density of the product cannot be obtained as high as intended in the present invention. Is determined. On the other hand, if the temperature is higher than 1050 ° C., it becomes difficult to suppress the oxidation during the self-annealing, and the pickling yield decreases and the productivity decreases.
It is determined as follows.

【0024】自己焼鈍時間については、5分未満である
と焼鈍による結晶粒成長が不十分であり、本発明の意図
する高磁束密度が得られないので、5分以上とする。自
己焼鈍時間が3時間超であると、自己焼鈍時の酸化を抑
制することが困難となり、酸洗歩留まりが低下し生産性
が低下するので、3時間以内と定める。
If the self-annealing time is less than 5 minutes, the crystal grain growth by annealing is insufficient, and the high magnetic flux density intended by the present invention cannot be obtained. If the self-annealing time is longer than 3 hours, it becomes difficult to suppress the oxidation during the self-annealing, and the pickling yield is reduced and the productivity is reduced.

【0025】本発明では、仕上げ熱延において少なくと
も1パスは下式(1)を満足すること、並びにその圧下
率の和が20%以上であることが必要である。下式
(1)で定めるZパラメーターの値が12.10未満で
あると、自己焼鈍時の結晶粒成長の駆動力が不足し、本
発明の意図する高磁束密度低鉄損熱延珪素鋼板が得られ
なくなるので、式(1)で定めるZパラメーターの値は
12.10以上である必要がある。
In the present invention, at least one pass in the finishing hot rolling must satisfy the following expression (1), and the sum of the rolling reductions must be 20% or more. When the value of the Z parameter defined by the following formula (1) is less than 12.10, the driving force for crystal grain growth during self-annealing is insufficient, and the high magnetic flux density and low iron loss hot rolled silicon steel sheet intended by the present invention is obtained. Therefore, the value of the Z parameter determined by the equation (1) needs to be 12.10 or more.

【0026】また、Zの値には上限を特に設けない。Z
の値は圧延温度が低くなるか、歪み速度が大きくなると
増加するが、圧延温度が低すぎると熱延時の圧延反力が
大きくなりすぎるので、その下限値は熱延機の性能によ
り自ずから決まり、歪速度の上限も圧延速度の限界から
熱延機の能力により自ずから決まるからである。
There is no particular upper limit on the value of Z. Z
The value of increases when the rolling temperature is low or the strain rate increases, but if the rolling temperature is too low, the rolling reaction force during hot rolling becomes too large, so the lower limit is naturally determined by the performance of the hot rolling machine, This is because the upper limit of the strain rate is naturally determined by the capacity of the hot rolling mill from the limit of the rolling rate.

【数式3】 [Equation 3]

【0027】さらにその際、粗圧延後のシートバーに対
する仕上熱間圧延の圧延率のうち、式(1)を満足する
パスの圧下率の和が20%未満であると、自己焼鈍時の
結晶粒成長の駆動力が不足し、本発明の意図する高磁束
密度低鉄損熱延珪素鋼板が得られなくなるので、粗圧延
後のシートバーに対する仕上熱間圧延の圧延率のうち、
式(1)を満足するパスの圧下率の和を20%以上とす
ることが必要である。
Further, at this time, if the sum of the rolling reductions of the passes satisfying the formula (1) is less than 20% among the rolling reductions of the finish hot rolling for the sheet bar after the rough rolling, the crystal during the self-annealing is obtained. The driving force for grain growth is insufficient, and the high magnetic flux density and low iron loss hot rolled silicon steel sheet intended by the present invention cannot be obtained.
It is necessary that the sum of the rolling reductions of the paths satisfying the expression (1) is 20% or more.

【0028】この時、式(1)を満足するパスの圧下率
の和とは、式(1)を満足するパスの圧下率を足して計
算した和を示して言う。ここで、Zパラメーターの値を
求めるには歪み速度を求める必要がある。その方法とし
ては諸方法があるが、本発明では下記の式(2)に従っ
て歪み速度を求めるものとする。
At this time, the sum of the rolling reductions of the paths satisfying the equation (1) indicates the sum calculated by adding the rolling reductions of the paths satisfying the equation (1). Here, in order to obtain the value of the Z parameter, it is necessary to obtain the strain rate. There are various methods as the method, but in the present invention, the strain rate is determined according to the following equation (2).

【数式4】 (Equation 4)

【0029】仕上熱延終了後、コイル自身の保有熱によ
り自己焼鈍を行う。熱延珪素鋼版の板厚を1.5mm以下
に定めたのは、板厚が1.5mm超であると、本発明が目
指す低鉄損が得られないからである。板厚の下限は特に
定めないが、熱間圧延の安定性の観点から、0.5mm以
上であることが好ましい。このようにして得られた熱延
板はその後、一回の冷間圧延と連続焼鈍により製品とす
るか、あるいはさらにスキンパス圧延工程を付加して製
品としてもよい。スキンパス圧延率は、2%未満ではそ
の鉄損改善効果が得られず、10%超ではかえって鉄損
が悪化するため、2〜10%とする。
After finishing the hot rolling, self-annealing is performed by the heat retained in the coil itself. The reason why the thickness of the hot-rolled silicon steel plate is set to 1.5 mm or less is that if the thickness exceeds 1.5 mm, the low iron loss aimed at by the present invention cannot be obtained. The lower limit of the sheet thickness is not particularly limited, but is preferably 0.5 mm or more from the viewpoint of the stability of hot rolling. The hot-rolled sheet thus obtained may be made into a product by one cold rolling and continuous annealing, or may be made into a product by further adding a skin pass rolling step. If the skin pass rolling ratio is less than 2%, the effect of improving iron loss is not obtained, and if it exceeds 10%, the iron loss is rather deteriorated.

【0030】本発明における熱延条件と磁気特性との関
係を調査するため、以下の2種類の実験を行った。まず
第1に、表1に示す成分及び残部Feと不可避不純物か
らなる鋼を転炉により溶製し、連続鋳造設備により厚さ
220mmのスラブとした。このスラブを通常の方法にて
1250℃に加熱し、粗圧延により30mmのシートバー
とした。さらに仕上熱延により1.2mmに仕上げた。実
験の際、熱延条件の指標であるZパラメーターの値を、
最終パスにおいて種々の値を取るように圧延速度、パス
スケジュール、圧延温度を調整した。
In order to investigate the relationship between the hot rolling conditions and the magnetic properties in the present invention, the following two types of experiments were performed. First, a steel consisting of the components shown in Table 1 and the balance of Fe and inevitable impurities was melted by a converter and made into a slab having a thickness of 220 mm by a continuous casting facility. The slab was heated to 1250 ° C. by a usual method and rough-rolled to form a 30 mm sheet bar. Furthermore, it was finished to 1.2 mm by hot rolling. At the time of the experiment, the value of the Z parameter, which is an index of the hot rolling conditions, was
The rolling speed, pass schedule, and rolling temperature were adjusted so as to take various values in the final pass.

【0031】仕上げ熱延終了後、800℃で巻き取っ
た。巻き取ったコイルは直ちに保熱カバー内に装入し8
00℃、1時間の自己焼鈍を行った。得られた熱延板を
酸洗後、エプスタイン試料を切り出し磁気特性を測定し
た。この時の熱延条件の指標であるZの値と、製品磁気
特性の関係を図1、図2に示す。図1、図2に示した結
果より、Zの値が12.10以上の場合において優れた
磁気特性が得られていることが分かる。このように、本
発明の熱延条件を満たす様に仕上げ熱延を実施すること
により、低鉄損かつ高磁束密度の熱延珪素鋼板を得るこ
とが可能である。
After finishing hot rolling, it was wound up at 800 ° C. The wound coil was immediately inserted into the heat insulation cover, and
Self-annealing was performed at 00 ° C. for one hour. After pickling the obtained hot-rolled sheet, an Epstein sample was cut out and its magnetic properties were measured. FIGS. 1 and 2 show the relationship between the value of Z, which is an index of the hot rolling conditions, and the product magnetic properties. From the results shown in FIGS. 1 and 2, it is understood that excellent magnetic characteristics are obtained when the value of Z is 12.10 or more. As described above, by performing finish hot rolling so as to satisfy the hot rolling conditions of the present invention, it is possible to obtain a hot rolled silicon steel sheet having low iron loss and high magnetic flux density.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【実施例】(実施例1)表2に示す成分及び残部Feと
不可避不純物からなる鋼を転炉により溶製し、連続鋳造
設備により厚さ220mmのスラブとした。このスラブを
通常の方法にて1250℃に加熱し、粗圧延により30
mmのシートバーとした。さらに6スタンドのタンデム仕
上熱延機により1.0mm厚みに仕上げた。仕上圧延の
際、熱延条件の指標であるZパラメーターの値を、最終
パスにおいて種々の値を取るように圧延速度、圧延温
度、パススケジュールを調整した。このため、熱延終了
温度は1000〜1090℃とし、本発明の構成要件で
ある800〜1100℃を満たすようにした。また、最
終パスの圧下率は20〜25%に変化させて実験を行っ
た。
(Example 1) Steel consisting of the components shown in Table 2 and the balance of Fe and unavoidable impurities was melted by a converter and made into a slab having a thickness of 220 mm by a continuous casting facility. The slab is heated to 1250 ° C. by a usual method,
mm sheet bar. Further, it was finished to a thickness of 1.0 mm by a tandem finishing hot rolling machine of 6 stands. At the time of finish rolling, the rolling speed, rolling temperature, and pass schedule were adjusted so that the value of the Z parameter, which is an index of the hot rolling conditions, takes various values in the final pass. For this reason, the hot rolling end temperature was set to 1000 to 1090 ° C., and 800 to 1100 ° C., which is a constituent requirement of the present invention, was satisfied. The experiment was performed with the rolling reduction of the final pass changed to 20 to 25%.

【0034】仕上熱延終了後、825℃で熱延板をコイ
ルに巻き取った。巻き取ったコイルは直ちに保熱カバー
内に装入し820℃、1時間の自己焼鈍を行った。得ら
れた熱延板を酸洗後、エプスタイン試料を切り出し磁気
特性を測定した。この時の熱延条件の指標である最終パ
スにおけるZパラメーターの値と、磁気測定結果の関係
を表3に示す。表3に示した結果より、Zパラメーター
の値が12.10以上の場合において優れた磁気特性が
得られていることが分かる。このように、本発明で定め
た熱延条件を満たす様に仕上げ熱延を実施することによ
り、低鉄損かつ高磁束密度の熱延珪素鋼板を得ることが
可能である。
After finishing hot rolling, the hot rolled sheet was wound around a coil at 825 ° C. The wound coil was immediately placed in a heat retaining cover and subjected to self-annealing at 820 ° C. for one hour. After pickling the obtained hot-rolled sheet, an Epstein sample was cut out and its magnetic properties were measured. Table 3 shows the relationship between the value of the Z parameter in the final pass, which is an index of the hot rolling conditions, and the result of the magnetic measurement. From the results shown in Table 3, it can be seen that excellent magnetic properties were obtained when the value of the Z parameter was 12.10 or more. Thus, by performing the finish hot rolling so as to satisfy the hot rolling conditions defined in the present invention, it is possible to obtain a hot rolled silicon steel sheet having a low iron loss and a high magnetic flux density.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】(実施例2)表4に示す成分及び残部Fe
と不可避不純物からなる鋼を転炉により溶製し、連続鋳
造設備により厚さ200mmのスラブとした。このスラブ
を通常の方法にて1250℃に加熱し、粗圧延により3
0mmのシートバーとした。さらに6スタンドのタンデム
仕上熱延機により0.8mm厚みに仕上げた。仕上圧延の
際、熱延条件の指標であるZパラメーターの値を、最終
パス付近において種々の値を取るように圧延速度、圧延
温度、パススケジュールを調整した。熱延終了温度は1
050℃とし、本発明の構成要件である800〜110
0℃を満たすようにした。また、最終パスの圧下率は2
5%に設定して実験を行った。本実験ではシートバーを
先行するシートバーに接合し、仕上熱延を連続して行っ
た。
(Example 2) The components shown in Table 4 and the balance Fe
And a steel consisting of unavoidable impurities was melted by a converter and made into a slab having a thickness of 200 mm by a continuous casting facility. This slab is heated to 1250 ° C. by a usual method, and
A sheet bar of 0 mm was used. Furthermore, it was finished to a thickness of 0.8 mm by a tandem finishing hot rolling machine with 6 stands. At the time of finish rolling, the rolling speed, rolling temperature, and pass schedule were adjusted so that the value of the Z parameter, which is an index of hot rolling conditions, takes various values near the final pass. Hot rolling end temperature is 1
050 ° C., and 800 to 110 which are the constituent requirements of the present invention.
0 ° C was satisfied. The rolling reduction of the final pass is 2
The experiment was performed at a setting of 5%. In this experiment, the sheet bar was joined to the preceding sheet bar, and finish hot rolling was continuously performed.

【0038】仕上熱延終了後、820℃で熱延板をコイ
ルに巻き取った。巻き取ったコイルは直ちに保熱カバー
内に装入し820℃、1時間の自己焼鈍を行った。得ら
れた熱延板からエプスタイン試料を切り出し磁気特性を
測定した。この時の熱延条件の指標である最終パス付近
の各パスにおけるZパラメーターの値と、磁気測定結果
の関係を表5に示す。表5に示した結果より、Zパラメ
ーターの値が12.10以上の場合において、優れた磁
気特性が得られていることが分かる。このように、本発
明で定めた熱延条件を満たす様に仕上熱延を実施するこ
とにより、低鉄損かつ高磁束密度の熱延珪素鋼板を得る
ことが可能である。
After finishing the hot rolling, the hot rolled sheet was wound around a coil at 820 ° C. The wound coil was immediately placed in a heat retaining cover and subjected to self-annealing at 820 ° C. for one hour. An Epstein sample was cut out from the obtained hot rolled sheet, and its magnetic properties were measured. Table 5 shows the relationship between the value of the Z parameter in each pass near the final pass, which is an index of the hot rolling conditions at this time, and the magnetic measurement results. From the results shown in Table 5, it can be seen that when the value of the Z parameter is 12.10 or more, excellent magnetic properties are obtained. As described above, by performing the finish hot rolling so as to satisfy the hot rolling conditions defined in the present invention, it is possible to obtain a hot rolled silicon steel sheet having a low iron loss and a high magnetic flux density.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【発明の効果】上記のように本発明によれば、自己焼鈍
法による熱延珪素鋼板の製造法において、磁束密度が高
く鉄損の低い、磁気特性の優れた熱延珪素鋼板を提供す
ることが可能である。
As described above, according to the present invention, in a method for producing a hot-rolled silicon steel sheet by a self-annealing method, a hot-rolled silicon steel sheet having high magnetic flux density, low iron loss, and excellent magnetic properties is provided. Is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁束密度とZパラメーターとの関係を示す図で
ある。
FIG. 1 is a diagram showing a relationship between a magnetic flux density and a Z parameter.

【図2】鉄損とZパラメーターとの関係を示す図であ
る。
FIG. 2 is a diagram showing a relationship between iron loss and a Z parameter.

フロントページの続き Fターム(参考) 4K033 AA01 FA03 FA05 FA10 FA14 RA03 RA10 SA01 5E041 AA02 AA19 CA04 HB11 NN01 NN17 NN18 Continued on the front page F term (reference) 4K033 AA01 FA03 FA05 FA10 FA14 RA03 RA10 SA01 5E041 AA02 AA19 CA04 HB11 NN01 NN17 NN18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼中にSi、Mnのうち少なくとも1種
を、重量%で0.1%≦Si≦4.0%、0.1%≦M
n≦2.0%の範囲で含有し、残部がFeおよび不可避
不純物からなるスラブを用い、粗圧延を行いシートバー
とし、更に仕上熱間圧延した熱延板を直ちに巻取り、コ
イル自身の保有熱で自己焼鈍を実施する熱延珪素鋼板の
製造方法において、仕上板厚を1.5mm以下とすると共
に、仕上熱間圧延の終了温度を800〜1100℃と
し、コイルの巻取り温度を750〜1050℃とし、自
己焼鈍時間を5分〜3時間とし、仕上げ熱延において少
なくとも1パスは下式(1)を満足させると共に、粗圧
延後のシートバーに対する仕上熱間圧延の圧延率のう
ち、下式(1)を満足するパスの圧下率の和を20%以
上とすることを特徴とする磁束密度が高く、鉄損の低い
熱延珪素鋼板の製造方法。 【数式1】
1. At least one of Si and Mn in steel is 0.1% ≦ Si ≦ 4.0% and 0.1% ≦ M by weight%.
Using a slab containing n ≦ 2.0% and the balance being Fe and unavoidable impurities, rough rolling is performed to form a sheet bar, and a hot-rolled sheet that has been subjected to finish hot rolling is immediately wound up, and the coil itself is retained. In the method for producing a hot-rolled silicon steel sheet in which self-annealing is performed by heat, the finish sheet thickness is set to 1.5 mm or less, the finish hot rolling end temperature is set to 800 to 1100 ° C, and the coil winding temperature is set to 750 to 750 ° C. 1050 ° C., the self-annealing time is 5 minutes to 3 hours, and at least one pass in the finish hot rolling satisfies the following expression (1), and among the rolling ratios of the finish hot rolling on the sheet bar after the rough rolling, A method of manufacturing a hot-rolled silicon steel sheet having a high magnetic flux density and a low iron loss, wherein the sum of the rolling reductions of the paths satisfying the following expression (1) is 20% or more. [Formula 1]
【請求項2】 粗圧延後のシートバーを先行するシート
バーに接続し、仕上熱延を連続して行うことを特徴とす
る請求項(1)記載の磁束密度が高く、鉄損の低い熱延
珪素鋼板の製造方法。
2. The heat treatment with high magnetic flux density and low iron loss according to claim 1, wherein the sheet bar after the rough rolling is connected to a preceding sheet bar and finish hot rolling is performed continuously. Manufacturing method of rolled silicon steel sheet.
【請求項3】 更に付加的成分として、酸可溶性Alを
重量%で0.1%≦sol.Al≦2.5%を含有するスラ
ブを用いることを特徴とする請求項(1)または(2)
に記載の磁束密度が高く、鉄損の低い熱延珪素鋼板の製
造方法。
3. A slab containing, as an additional component, 0.1% ≦ sol.Al ≦ 2.5% by weight of acid-soluble Al, wherein (1) or (2). )
3. The method for producing a hot-rolled silicon steel sheet having a high magnetic flux density and a low iron loss according to item 1.
JP30602199A 1999-10-27 1999-10-27 Method for producing hot rolled silicon steel sheet high in magnetic flux density and low in core loss Withdrawn JP2001123225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30602199A JP2001123225A (en) 1999-10-27 1999-10-27 Method for producing hot rolled silicon steel sheet high in magnetic flux density and low in core loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30602199A JP2001123225A (en) 1999-10-27 1999-10-27 Method for producing hot rolled silicon steel sheet high in magnetic flux density and low in core loss

Publications (1)

Publication Number Publication Date
JP2001123225A true JP2001123225A (en) 2001-05-08

Family

ID=17952132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30602199A Withdrawn JP2001123225A (en) 1999-10-27 1999-10-27 Method for producing hot rolled silicon steel sheet high in magnetic flux density and low in core loss

Country Status (1)

Country Link
JP (1) JP2001123225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527483A (en) * 2000-03-16 2003-09-16 ティッセンクルップ シュタール アクチェンゲゼルシャフト Manufacturing method of non-oriented electrical steel sheet
US7658807B2 (en) * 2001-10-31 2010-02-09 Thyssenkrupp Steel Ag Hot-rolled strip intended for the production of non-grain oriented electrical sheet and a method for the production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527483A (en) * 2000-03-16 2003-09-16 ティッセンクルップ シュタール アクチェンゲゼルシャフト Manufacturing method of non-oriented electrical steel sheet
US7658807B2 (en) * 2001-10-31 2010-02-09 Thyssenkrupp Steel Ag Hot-rolled strip intended for the production of non-grain oriented electrical sheet and a method for the production thereof

Similar Documents

Publication Publication Date Title
EP2470679B1 (en) Process to manufacture grain-oriented electrical steel strip
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
JP5265835B2 (en) Method for producing non-oriented electrical steel sheet
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2001123225A (en) Method for producing hot rolled silicon steel sheet high in magnetic flux density and low in core loss
JP2001181743A (en) Method for producing hot rolled silicon steel sheet excellent in magnetism
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2000297325A (en) Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JP2000309823A (en) Production of hot rolled silicon steel sheet uniform in magnetic property
JP2001172718A (en) Method for producing nonoriented silicon steel sheet uniform in magnetic property
JP2000104118A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2000096145A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JPH10273726A (en) Manufacture of grain oriented silicon steel sheet with stable magnetic property in longitudinal direction of coil
JP2000297326A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property
JP2000297324A (en) Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH10140239A (en) Production of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JPH06271996A (en) Nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109