JP4191806B2 - Method for producing non-oriented electrical steel sheet - Google Patents

Method for producing non-oriented electrical steel sheet Download PDF

Info

Publication number
JP4191806B2
JP4191806B2 JP21809696A JP21809696A JP4191806B2 JP 4191806 B2 JP4191806 B2 JP 4191806B2 JP 21809696 A JP21809696 A JP 21809696A JP 21809696 A JP21809696 A JP 21809696A JP 4191806 B2 JP4191806 B2 JP 4191806B2
Authority
JP
Japan
Prior art keywords
rolling
hot
steel sheet
oriented electrical
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21809696A
Other languages
Japanese (ja)
Other versions
JPH09217117A (en
Inventor
竜太郎 川又
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21809696A priority Critical patent/JP4191806B2/en
Priority to PCT/JP1996/003570 priority patent/WO1997020956A1/en
Priority to AU14363/97A priority patent/AU700333B2/en
Priority to KR1019980704203A priority patent/KR19990071916A/en
Priority to CN96198854A priority patent/CN1203635A/en
Priority to EP96941184A priority patent/EP0875586A1/en
Publication of JPH09217117A publication Critical patent/JPH09217117A/en
Application granted granted Critical
Publication of JP4191806B2 publication Critical patent/JP4191806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器の鉄心材料として用いられる、磁束密度が高く、鉄損が低い優れた磁気特性を有する無方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、電気機器、特に無方向性電磁鋼板がその鉄心材料として使用される回転機および中、小型変圧器等の分野においては、世界的な電力、エネルギー節減、さらにはフロンガス規制等の地球環境保全の動きの中で、高効率化の動きが急速に広まりつつある。このため、無方向性電磁鋼板に対しても、その特性向上、すなわち、高磁束密度かつ低鉄損化への要請がますます強まってきている。
【0003】
ところで、無方向性電磁鋼板においては、従来、低鉄損化の手段として一般に、電気抵抗増大による渦電流損低減の観点からSiあるいはAl等の含有量を高める方法がとられてきた。しかし、この方法では反面、磁束密度の低下は避け得ないという問題点があった。このような問題点の克服のために、熱延板結晶粒径を粗大化することで磁束密度と鉄損の両方を改善させる方法が行われてきた。
【0004】
従来、Si含有量が高い非変態系の無方向性電磁鋼板においては、仕上熱延後の結晶組織の成長が不十分であり、高磁束密度低鉄損の材料を提供するためには、仕上熱延終了後、箱焼鈍あるいは連続焼鈍による熱延板焼鈍を施し、結晶組織の粗大化を図ることが必須とされてきた。しかしながら熱延板焼鈍を施すことはコストアップとなり成品の価格を押し上げる原因となるので、良好な特性の高Si系無方向性電磁鋼板を安価に提供することには限界があった。
【0005】
このような無方向性電磁鋼板の冷延前結晶組織を安価に粗大化する技術として、仕上熱延後の熱延板を700℃から1000℃の高温で巻取り、これをコイルの保有熱で焼鈍する自己焼鈍法が特開昭54−76422号公報に開示されている。しかしながらこの技術においてはコイルを高温で巻き取ることによるコイル内温度不均一によるコイル長手方向の磁気特性の変動、また長時間の自己焼鈍中に生じる内部酸化層の発生により仕上焼鈍時の結晶粒成長が不十分となり、結果として鉄損が悪化するという問題点があった。
【0006】
また、再結晶および粒成長の進行の緩慢な高Si系成分のハイグレード無方向性電磁鋼板の磁気特性を制御熱延により改善する技術として、特開昭59−74222号公報には、仕上熱延最終スタンドの圧下率を20%以上として、熱延板の巻取温度を700℃以上とする技術が開示されている。この先願においては、最終スタンド圧下率を高めて巻取温度を上昇させることにより熱延終了後の熱延組織の再結晶および粒成長を促進し、結果として磁気特性を改善することを狙っている。しかしながら鋼板中のSi含有量が高い場合、この技術では熱延板の再結晶は促進されるものの、その後の粒成長が不十分であり、粒成長を十分に進行させるためには巻取後のコイルを長時間高温で保持する必要があり、この高温での保持中に内部酸化が進行し鉄損が悪化する。このため先願の技術をもってしてもSi含有量の高いハイグレード無方向性電磁鋼板における高磁束密度と低鉄損の両立は困難であった。
【0007】
一方で、鉄損低減の為に、単にSiあるいはAl等の含有量を高めるのみではなく、鋼を高純度化する技術として、Si含有量が2.5%〜4.0%である鋼において、特開昭59−74258号公報にはS≦15ppm 、O≦20ppm 、N≦25ppm の高純度鋼化を図る方法が、特開昭59−74257号公報にはS≦15ppm 、O≦20ppm 、N≦25ppm に加えてTi+Zr+Ce+Ca≦150ppm とする方法が、特開昭59−74223号公報にはS≦15ppm 、O≦20ppm 、N≦25ppm に加えて仕上焼鈍時の昇温速度を300℃/S以上とする技術が、特開昭59−74224号公報には一回冷延法においてS≦15ppm 、O≦20ppm 、N≦25ppm に制限する規定に加えて熱延板焼鈍条件を規定しかつ冷間圧延率を65%以上に規定する技術が、特開昭59−74225号公報には二回冷延法においてS≦15ppm 、O≦20ppm 、N≦25ppm の規定に加えて中間焼鈍条件を規定しかつ二回目の冷間圧延率を70%以上に規定する技術がそれぞれ開示されている。
【0008】
これらの先願のようにS,O,Nの低減を中心とした技術では、Si含有量の高いハイグレード無方向性電磁鋼板の制御熱延による冷延前結晶組織粗大化が不十分であるという欠点があった。このため、これらの先願においては一回法では熱延板焼鈍、二回法では一回目と二回目の冷延の間に中間焼鈍を実施し、冷延前結晶粒径の粗大化をはかる必要があった。
【0009】
また、特開昭59−74256号公報にはSi含有量が2.5%〜4.0%である鋼において、1μm以上の大きさの鋼中介在物の数量を120個/mm2 以下にする技術が開示されているが、これもS,O,Nの低減を技術の中核とする先願と同様に、制御熱延による冷延前結晶組織粗大化が不十分であり、低鉄損かつ磁束密度の高い無方向性電磁鋼板の実現は困難であった。
【0010】
このように鋼の高純化を中心とする方法では冷延前結晶組織粗大化の限界を打破することが出来ず、Si含有量の高いハイグレード無方向性電磁鋼板において磁束密度が高くかつ鉄損が低い無方向性電磁鋼板を製造できるには至らず、無方向性電磁鋼板に対する前記の要請に応えることは出来なかった。
【0011】
【発明が解決しようとする課題】
本発明は、従来行われてきた仕上熱延時の再結晶促進を中心とする技術思想とは全く異なり、制御熱延時の平均摩擦係数を低減することにより意図的に回復組織を形成させ、結果として熱延結晶組織の実質粒径を粗大化することをその技術思想としている。これにより、従来技術では困難であった、Si含有量の高いハイグレード無方向性電磁鋼板において、高磁束密度かつ低鉄損を達成する安価な製造法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明は、無方性電磁鋼板の鋼成分として鋼中に質量%で、1.0%≦Si≦4.0%0.10%≦Mn≦1.0%C≦0.0050%N≦0.0050%S≦0.0050%を含有し、残部がFeおよび不可避的不純物からなるスラブを粗圧延後、熱間圧延の仕上げ圧延時に熱延ロールと鋼板の平均摩擦係数を0.19以下で熱間圧延して熱延板とし、次いで1回の冷間圧延後仕上げ焼鈍を施すことにより無方向性電磁鋼板の製造方法を第一の要旨とするものであり、また、本発明は、無方向性電磁鋼板の鋼成分として鋼中に質量%で、1.0%≦Si≦4.0%0.10%≦Mn≦1.0%0.10%≦Al≦2.0%C≦0.0050%N≦0.0050%S≦0.0050%を含有し、残部がFeおよび不可避的不純物からなるスラブを粗圧延後、熱間圧延の仕上げ圧延時に熱延ロールと鋼板の平均摩擦係数を0.19以下で熱間圧延して熱延板とし、次いで1回の冷間圧延後仕上げ焼鈍を施すことにより無方向性電磁鋼板の製造方法を第二の要旨とするものである。更に、本発明は、前記1回目の冷間圧延後、仕上げ焼鈍を施し、次いで2〜20%のスキンパス圧延を施すことを第三の要旨とし、加えて、熱間圧延の仕上げ圧延時に、上記平均摩擦係数0.19以下を達成するために潤滑剤として熱延ロール冷却水に0.5〜20%の油脂をエマルジョン状態で混入することを第四の要旨とするものである。
なお、上記粗圧延の実施に際しては、粗圧延後のシートバーを熱間圧延の仕上げ圧延前に先行する粗圧延されたシートバーに接合し、当該シートバーを連続して仕上熱延に供してもよい。
【0013】
【発明の実施の形態】
以下に、本発明を詳細に説明する。発明者らは、低鉄損と高磁束密度を同時に達成すべく従来技術における問題点を鋭意検討を重ねた結果、量%でSiを1.0%を上廻り4.0%、Mnを0.1%〜1.0%、およびこれに加えてAlを0.1%〜2.0%含有する鋼にあって、仕上熱間圧延時の熱延ロールと鋼板との平均摩擦係数が0.19以下とすることにより熱延結晶組織を粗大化し、磁束密度が高く鉄損の低い無方向性電磁鋼板を製造できることが可能であることを見出し発明の完成に至った。
【0014】
無方向性電磁鋼板の磁気特性は冷延前結晶組織を粗大化することで改善することが可能である。しかしながらSi含有量が1.0%以上の高Si成分系の無方向性電磁鋼板においては、通常の熱延終了温度である800℃〜950℃付近では熱延終了温度を上昇させても、冷延前粒径の粗大化には限度があった。このため従来高Si系無方向性電磁鋼板では熱延終了後、連続焼鈍炉もしくは箱焼鈍炉において熱延板焼鈍を施し冷延前結晶組織の粗大化を図ることが一般に行われてきた。しかしながらこのような付加的工程を含むことにより高Si系無方向性電磁鋼板の製造コストを押し上げる原因ともなっていた。一方で、熱延板焼鈍を省略し低コストで高機能な高Si系無方向性電磁鋼板を製造する技術としては、特開昭59−74222号公報に開示されたように、熱延のパススケジュールを調整して熱延終了直前の鋼板に加えられる歪量を増加させ、かつ高温で巻き取って再結晶、粒成長を促進する方法があった。また、同じ技術思想で鋼を高純化することが行われてきた。
【0015】
また、従来技術では熱延板焼鈍を施さず冷延、焼鈍を行うプロセスにおいては、熱延終了後の再結晶、粒成長を促進させるために、熱延終了温度を高めに維持しなければならず、スラブ加熱温度を上げる必要があった。しかしながらスラブ加熱温度を上昇させることは、加熱中にMnS,AlN等の析出物の鋼中への再固溶を促進し、これが熱延時に微細に析出するため、熱延板焼鈍、仕上焼鈍時の結晶粒成長を妨げ、鉄損が悪化するということがあった。このような試みは、Si添加量を増加させて電機抵抗率を上昇させ、鉄損を低減するという高Si成分系無方向性電磁鋼板の成分設計の思想を損なうものである。
【0016】
発明者等はこのようなSi含有量の高い無方向性電磁鋼板の制御熱延の限界を打破すべ鋭意検討を進めた結果、Siを1.0%を上廻り4.0%以下、Mnを0.1%〜1.0%、Alを0.1%〜2.0%含有する鋼にあって、仕上熱間圧延時の熱延ロールと鋼板との平均摩擦係数が0.19以下とすることにより、熱延結晶組織の再結晶が遅延し、鋼板の全厚にわたって粗大な回復組織が得られることを見出した。しかもこの回復組織は従来の摩擦係数の高い熱延方法で得られた熱延板中心層にみられるような回復組織よりも粗大な組織であり、結果として板厚全厚にわたり実質的に粗大な結晶組織が得られるという全く新規な知見を見出した。このように本発明における技術思想は、回復組織の形成を積極的に促し実質粒径の粗大化を図るという従来とは全く異なる発想によるものである。このような方法により得られた熱延板を出発材とすることにより、仕上げ焼鈍後の製品における磁束密度が極めて高く、鉄損が良好な(鉄損値が低い)無方向性電磁鋼板を製造することに成功した。
【0017】
まず、成分について説明すると、Siは鋼板の固有抵抗を増大させ渦流損を低減させ、鉄損値を改善するために添加される。Si含有量が1.0%以下であると本発明が目的とする低鉄損無方向性電磁鋼板に必要な固有抵抗が十分に得られないので1.0%を上廻る量を添加する必要がある。一方、Si含有量が4.0%を越えると圧延時の耳割れが著しく増加し、圧延が困難になるので4.0%以下とする必要がある。
【0018】
Alも、Siと同様に、鋼板の固有抵抗を増大させ渦電流損を低減させる効果を有する。本発明が目的とする低鉄損高磁束密度無方向性電磁鋼板を得るためには、0.1%以上添加する必要がある。一方、Al含有量が2.0%を越えると、磁束密度が低下し、コスト高ともなるので2.0%以下とする。また、鋼中のAl含有量が0.10%未満であっても本発明の効果はなんら損なわれるものではない。
【0019】
Mnは、Al,Siと同様に鋼板の固有抵抗を増大させ渦電流損を低減させる効果を有する。この目的のため、Mn含有量は0.10%以上とする必要がある。一方、Mn含有量が1.0%を越えると熱延時の変形抵抗が増加し熱延が困難となるとともに、熱延後の結晶組織が微細化しやすくなり、製品の磁気特性が悪化するので、Mn含有量は1.0%以下とする必要がある。
【0020】
また、Mn添加量は仕上げ熱延前の高温のシートバー接合部の強度確保の点からもきわめて重要である。なぜなら、低融点の硫化物が結晶粒界に存在することによるシートバー接合部の熱間脆化を防止するために、MnとSとの重量濃度の比であるMn/Sの値を20以上とすることが必要であるからである。本発明に規定する成分範囲では、Mn含有量が0.1%以上であり、S含有量は0.005%以下であるので、Mn/Sの値は20以上に保たれ、この観点からは問題がない。
【0021】
また、製品の機械的特性の向上、磁気的特性、耐錆性の向上あるいはその他の目的のために、P,B,Ni,Cr,Sb,Sn,Cuの1種または2種以上を鋼中に含有させても本発明の効果は損なわれない。C含有量が0.0050%を越えると使用中の磁気時効により鉄損が悪化して使用時のエネルギーロスが増加するため、0.0050%以下に制御することが必要である。
【0022】
S,Nは熱間圧延工程におけるスラブ加熱中に一部再固溶し、熱間圧延中にMnS等の硫化物、AlN等の窒化物を形成する。これらが存在することにより熱延組織の粒成長を妨げるとともに仕上げ焼鈍時の結晶粒成長を妨げ鉄損が悪化するのでSは0.0050%、Nは0.0050%以下にする必要がある。次に本発明のプロセス条件について説明する。
【0023】
仕上熱延時の熱延ロールと鋼板との平均摩擦係数の成品磁気特性に対する影響を調査するため下記の様な実験を行った。表1に示す成分の鋼を溶製し仕上げ熱延を実施した。
【0024】
【表1】

Figure 0004191806
【0025】
仕上熱延時の平均摩擦係数をロール冷却水中の油脂含有量を変化させることにより0.1以下から0.3以上まで変化させた。平均摩擦係数は各スタンドにおける実測の先進率より計算し、その平均値により求めた。仕上熱延終了温度は860℃で一定とし、2.0mm厚に仕上げた。これを酸洗、冷延し0.35mm厚とし、脱脂した後、900℃、30秒焼鈍しエプスタイン試料を切断して磁気特性を測定した。
【0026】
仕上熱延時の平均摩擦係数に対する製品磁束密度の依存性を図1に示した。平均摩擦係数として仕上熱延機の各スタンドの実測値の平均を用いた。仕上熱延時の平均摩擦係数が0.19以下であると製品磁束密度が上昇することがわかる。このような現象の理由を明らかにすることを目的に成分1の熱延板の金属組織の観察を光学顕微鏡で行った。その結果を図2に示す。図2に示されるとおり、平均摩擦係数が0.19の本発明の熱延板では板厚表層、中心とも延伸粒からなる粗大組織となっている。これに対し、平均摩擦係数が0.35の比較例の熱延板では、表層から板厚の10分の1付近までの深さにおいて再結晶組織からなる等軸粒組織が見られ、結晶組織が細粒化し、板厚中心付近の回復組織も平均摩擦係数が低い場合ではみられなかった再結晶粒が見られ、粒界密度が高くなっていることがわかる。
【0027】
このような熱延結晶組織の変化は、仕上熱延時の平均摩擦係数を低減することにより、鋼板内に生じる剪断歪が減少し、低圧延率で熱延したのと同様の効果が得られ、鋼板内の格子欠陥密度が減少したため、結晶組織は再結晶にいたらず粗大な延伸粒からなる回復組織が得られ、熱延組織の粒径を実質的に増加させる効果が得られたことがその原因であると推察される。
【0028】
このように発明者等は、仕上熱延時の鋼板とロールとの平均摩擦係数を低減するという手段により、熱延結晶組織の再結晶を抑制し、実質粒界を増加させると言うこれまでの再結晶促進とは全く異なる技術思想により、高Si系無方向性電磁鋼板の磁気特性、特に磁束密度を向上する手段を開発することに成功した。以上の実験から示されるように、仕上熱延の圧延ロールと鋼板との間の平均摩擦係数の値は、仕上熱延全スタンドの平均値が0.19以下であれば良い。0.19超では前述のように再結晶粒の発生により特に熱延板表層付近の結晶組織が細粒化して製品磁束密度が低下する。
【0029】
前記成分からなる鋼スラブは、転炉で溶製され連続鋳造あるいは造塊−分塊圧延により製造される。鋼スラブは公知の方法にて加熱される。このスラブに熱間圧延を施し所定の厚みとする。この際、仕上げ熱延の終了温度は800℃以上であることが好ましい。仕上熱延時にロール冷却水に混入する油脂の量は体積比で0.5%以上20%以下とする。油脂と冷却水が分離することを防止するために必要に応じ界面活性剤を加える。ロール冷却水中の油脂量が0.5%未満ではその効果が得られず、20%以上ではその効果が飽和し、不経済であるので20%未満とする。
【0030】
このようにして得られた熱延板は一回の冷間圧延と連続焼鈍により製品とする。またさらにスキンパス圧延工程を付加して製品としてもよい。スキンパス圧延率は2%未満ではその効果が得られず、20%以上では磁気特性が悪化するため2%から20%とする。
【0031】
【実施例】
次に、本発明の実施例について述べる。
<実施例1>
表2に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み40mmの粗バーに仕上げ、その後、仕上げ熱延機により2.0mmに仕上げた。
【0032】
【表2】
Figure 0004191806
【0033】
仕上げ熱延機のロール冷却水に油脂をエマルジョン状態で混入し、その混入量を変えることにより摩擦係数を調整した。平均摩擦係数は各スタンドにおける実測の先進率より計算し、その平均値により求めた。この時、熱延仕上げ温度は860℃とした。また、従来技術である熱延板焼鈍を前提とする一回法として、熱延仕上げ温度を860℃とした。
【0034】
その後、酸洗を施し、冷間圧延により0.50mmに仕上げた。これを連続焼鈍炉にて900℃で30秒間焼鈍した。その後、エプスタイン試料に切断し、磁気特性を測定した。表3に本発明と比較例の成分と磁気測定結果をあわせて示す。
【0035】
【表3】
Figure 0004191806
【0036】
このように仕上げ熱延時の平均摩擦係数を低減すれば、磁束密度の値が高く、鉄損値の低い磁気特性の優れた無方向性電磁鋼板を得ることが可能である。
<実施例2>
表4に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延機により厚み40mmの粗バーに仕上げ、その後、仕上げ熱延機により2.0mmに仕上げた。
【0037】
【表4】
Figure 0004191806
【0038】
仕上げ熱延機のロール冷却水に油脂をエマルジョン状態で混入し、その混入量を変えることにより摩擦係数を調整した。平均摩擦係数は各スタンドにおける実測の先進率より計算し、その平均値により求めた。また、仕上熱間圧延時に鋼板とワークロール間にスリップが生じ鋼板の表面に疵が形成されることを防止するために、粗圧延後のシートバーを先行するシートバーに溶接し、仕上熱間圧延を連続して行った。この時、熱延仕上げ温度は860℃とした。
【0039】
その後、酸洗を施し、冷間圧延により0.35mmに仕上げた。これを連続焼鈍炉にて900℃で30秒間焼鈍した。その後、エプスタイン試料に切断し、磁気特性を測定した。表5に本発明と比較例の成分と磁気測定結果をあわせて示す。
【0040】
【表5】
Figure 0004191806
【0041】
このように仕上げ熱延時の平均摩擦係数を低減すれば、磁束密度の値が高く、鉄損値の低い磁気特性の優れた無方向性電磁鋼板を得ることが可能である。
【0042】
【発明の効果】
このように本願発明によれば、磁束密度が高く鉄損の低い、磁気特性の優れた無方向性電磁鋼板を製造することが可能である。
【図面の簡単な説明】
【図1】 仕上げ熱延時の平均摩擦係数に対する磁束密度の依存性を示す図である。
【図2】 光学顕微鏡による本発明による無方向性電磁鋼板用熱延板の金属組織写真を示す図であり、(a)は本発明による平均摩擦係数:0.19の場合の熱延板表層部の組織を示し、(b)は本発明による平均摩擦係数:0.19の場合の熱延板中心層の組織を示し、(c)は比較例で平均摩擦係数:0.35の場合の熱延板表層部の組織を示し、(d)は比較例で平均摩擦係数:0.35の場合の熱延板中心層の組織を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, which has a high magnetic flux density and a low iron loss, and is used as an iron core material for electrical equipment.
[0002]
[Prior art]
In recent years, in the fields of electrical machinery, especially rotating machines where non-oriented electrical steel sheets are used as iron core materials, and in the fields of medium and small transformers, global power conservation, energy conservation, and global environmental conservation such as CFC regulations Among these trends, the trend toward higher efficiency is spreading rapidly. For this reason, there is an increasing demand for non-oriented electrical steel sheets to improve their characteristics, that is, to achieve high magnetic flux density and low iron loss.
[0003]
By the way, in a non-oriented electrical steel sheet, conventionally, as a means for reducing iron loss, a method of increasing the content of Si, Al, or the like from the viewpoint of reducing eddy current loss due to increased electrical resistance has been taken. However, this method has a problem that a decrease in magnetic flux density is inevitable. In order to overcome such problems, methods for improving both the magnetic flux density and the iron loss have been performed by increasing the crystal grain size of the hot rolled sheet.
[0004]
Conventionally, in non-transformed non-oriented electrical steel sheets with high Si content, the growth of the crystal structure after finish hot rolling is insufficient, and in order to provide a material with high magnetic flux density and low iron loss, After hot rolling, it has been essential to increase the crystal structure by hot-rolled sheet annealing by box annealing or continuous annealing. However, since the hot-rolled sheet annealing increases the cost and increases the price of the product, there is a limit to providing a high-Si non-oriented electrical steel sheet with good characteristics at a low cost.
[0005]
As a technique for inexpensively coarsening the crystal structure before cold rolling of such a non-oriented electrical steel sheet, the hot rolled sheet after finish hot rolling is wound at a high temperature of 700 ° C. to 1000 ° C. A self-annealing method for annealing is disclosed in Japanese Patent Laid-Open No. 54-76422. However, in this technique, the grain growth during finish annealing is caused by the fluctuation of the magnetic characteristics in the longitudinal direction of the coil due to the non-uniform temperature inside the coil due to the coil being wound at a high temperature, and the generation of an internal oxide layer that occurs during long-time self-annealing. As a result, the iron loss deteriorated.
[0006]
JP-A-59-74222 discloses a technique for improving the magnetic properties of high-grade non-oriented electrical steel sheets having a high Si-based component with slow progress of recrystallization and grain growth by controlled hot rolling. A technique is disclosed in which the rolling reduction of the final rolled stand is 20% or more, and the winding temperature of the hot-rolled sheet is 700 ° C. or higher. In this prior application, the final stand reduction ratio is increased to raise the coiling temperature, thereby promoting the recrystallization and grain growth of the hot rolled structure after the completion of hot rolling, and as a result, improving the magnetic properties. . However, when the Si content in the steel sheet is high, this technique promotes recrystallization of hot-rolled sheets, but the subsequent grain growth is insufficient. It is necessary to hold the coil at a high temperature for a long time, and internal oxidation proceeds during the holding at this high temperature, resulting in deterioration of iron loss. For this reason, even with the technology of the prior application, it was difficult to achieve both high magnetic flux density and low iron loss in a high grade non-oriented electrical steel sheet having a high Si content.
[0007]
On the other hand, in order to reduce iron loss, not only simply increasing the content of Si or Al, but also as a technique for purifying steel, in steels with a Si content of 2.5% to 4.0%. JP-A-59-74258 discloses a method for achieving high-purity steel with S ≦ 15 ppm, O ≦ 20 ppm, and N ≦ 25 ppm, and JP-A-59-74257 discloses S ≦ 15 ppm, O ≦ 20 ppm, In addition to N ≦ 25 ppm, the method of Ti + Zr + Ce + Ca ≦ 150 ppm is disclosed in JP-A-59-74223 in which S ≦ 15 ppm, O ≦ 20 ppm, N ≦ 25 ppm, and the heating rate during finish annealing is 300 ° C./S Japanese Patent Application Laid-Open No. 59-74224 discloses hot rolling sheet annealing conditions in addition to the provisions for limiting S ≦ 15 ppm, O ≦ 20 ppm, and N ≦ 25 ppm in the single cold rolling method. Technology that regulates the rolling ratio to 65% or more However, Japanese Patent Laid-Open No. 59-74225 discloses that in the second cold rolling method, in addition to the definitions of S ≦ 15 ppm, O ≦ 20 ppm and N ≦ 25 ppm, the intermediate annealing conditions are specified and the second cold rolling ratio is 70 Each of the technologies specified in% is disclosed.
[0008]
As in these prior applications, the technology centered on the reduction of S, O, N is not sufficient for coarsening of the crystal structure before cold rolling by controlled hot rolling of high-grade non-oriented electrical steel sheets with high Si content. There was a drawback. For this reason, in these prior applications, hot rolling is annealed in the first method, and intermediate annealing is performed between the first and second cold rolling in the second method to increase the crystal grain size before cold rolling. There was a need.
[0009]
Japanese Patent Application Laid-Open No. 59-74256 discloses that in steel having a Si content of 2.5% to 4.0%, the number of inclusions in the steel having a size of 1 μm or more is 120 pieces / mm 2 or less. This technology is also disclosed, but as with the prior application whose main component is the reduction of S, O, and N, the coarsening of the crystal structure before cold rolling by controlled hot rolling is insufficient, resulting in low iron loss. Moreover, it has been difficult to realize a non-oriented electrical steel sheet having a high magnetic flux density.
[0010]
In this way, the method centered on the high purity of steel cannot overcome the limit of coarsening of crystal structure before cold rolling, and in high-grade non-oriented electrical steel sheets with high Si content, the magnetic flux density is high and the iron loss. However, it was not possible to produce a low-oriented non-oriented electrical steel sheet, and could not meet the above-mentioned demand for the non-oriented electrical steel sheet.
[0011]
[Problems to be solved by the invention]
The present invention is completely different from the technical idea centered on the promotion of recrystallization during finish hot rolling that has been conventionally performed, and as a result, a recovery structure is intentionally formed by reducing the average friction coefficient during controlled hot rolling. The technical idea is to increase the grain size of the hot rolled crystal structure. Accordingly, an object of the present invention is to provide an inexpensive manufacturing method that achieves a high magnetic flux density and a low iron loss in a high-grade non-oriented electrical steel sheet having a high Si content, which has been difficult in the prior art. .
[0012]
[Means for Solving the Problems]
In the present invention, the steel component of the anisotropic electrical steel sheet is 1.0% ≦ Si ≦ 4.0% , 0.10% ≦ Mn ≦ 1.0% , C ≦ 0.0050% in mass % in the steel. , N ≦ 0.0050%, contain S ≦ 0.0050%, after rough rolling slabs the balance being Fe and unavoidable impurities, the average friction coefficient of the hot-rolled roll and the steel sheet during finish rolling of hot rolling Hot rolling at 0.19 or less to make a hot rolled sheet, then the first summary of the method for producing a non-oriented electrical steel sheet by performing finish annealing after one cold rolling, In the present invention, the steel component of the non-oriented electrical steel sheet is 1.0% ≦ Si ≦ 4.0% , 0.10% ≦ Mn ≦ 1.0% , 0.10% ≦ Al in mass % in the steel. ≦ 2.0%, C ≦ 0.0050% , N ≦ 0.0050%, contain S ≦ 0.0050%, your balance Fe After rough rolling slabs of microcrystal unavoidable impurities, the average friction coefficient of the hot-rolled roll and the steel sheet during finish rolling of hot rolling and hot rolled at 0.19 or less and hot-rolled sheet, and then between one cold The second gist is a method for producing a non-oriented electrical steel sheet by performing finish annealing after rolling. Furthermore, the present invention has a third aspect that after the first cold rolling, finish annealing is performed, and then 2 to 20% skin pass rolling is performed. In order to achieve an average friction coefficient of 0.19 or less , the fourth gist is to mix 0.5 to 20% of fats and oils in hot rolled roll cooling water as a lubricant in an emulsion state.
When performing the rough rolling, the sheet bar after the rough rolling is joined to the preceding rough rolled sheet bar before the hot rolling finish rolling, and the sheet bar is continuously subjected to finish hot rolling. Also good.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. The present inventors have made intensive studies the problems in the prior art to achieve low core loss and high magnetic flux density at the same time, in mass%, 4.0% Uwamawari 1.0% of Si, In steel containing 0.1% to 1.0% Mn and 0.1% to 2.0% Al in addition to this, the average friction between the hot-rolled roll and the steel plate during finish hot rolling It has been found that a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss can be produced by making the hot rolled crystal structure coarse by setting the coefficient to 0.19 or less, and the present invention has been completed.
[0014]
The magnetic properties of non-oriented electrical steel sheets can be improved by coarsening the crystal structure before cold rolling. However, in a non-oriented electrical steel sheet having a high Si component system with a Si content of 1.0% or more, even if the hot rolling end temperature is increased in the vicinity of 800 ° C. to 950 ° C., which is a normal hot rolling end temperature, There was a limit to the coarsening of the particle diameter before rolling. For this reason, in conventional high-Si non-oriented electrical steel sheets, after the hot rolling is completed, it has been generally practiced to perform hot rolling sheet annealing in a continuous annealing furnace or a box annealing furnace to increase the crystal structure before cold rolling. However, including such an additional step has been a cause of increasing the manufacturing cost of the high-Si non-oriented electrical steel sheet. On the other hand, as a technique for manufacturing a high-si non-oriented electrical steel sheet having high functionality at low cost by omitting hot-rolled sheet annealing, as disclosed in Japanese Patent Laid-Open No. 59-74222, a hot rolling path There was a method of adjusting the schedule to increase the amount of strain applied to the steel plate immediately before the end of hot rolling, and rewinding and promoting grain growth by winding at a high temperature. In addition, steel has been refined with the same technical idea.
[0015]
Also, in the conventional technology, in the process of performing cold rolling and annealing without performing hot rolling sheet annealing, the hot rolling end temperature must be kept high in order to promote recrystallization and grain growth after the end of hot rolling. Therefore, it was necessary to raise the slab heating temperature. However, increasing the slab heating temperature promotes the re-solution of precipitates such as MnS and AlN into the steel during heating, and this precipitates finely during hot rolling, so during hot rolling sheet annealing and finish annealing. In some cases, the crystal grain growth was hindered and the iron loss deteriorated. Such an attempt impairs the concept of component design of a high Si component non-oriented electrical steel sheet that increases the electrical resistivity by increasing the Si addition amount and reduces iron loss.
[0016]
As a result of diligent research to overcome the limitations of control hot rolling of such a non-oriented electrical steel sheet having a high Si content, the present inventors have made Si more than 1.0% and 4.0% or less, Mn In the steel containing 0.1% to 1.0% and Al 0.1% to 2.0%, and the average friction coefficient between the hot-rolling roll and the steel sheet during finish hot rolling is 0.19 or less. As a result, it was found that recrystallization of the hot rolled crystal structure was delayed, and a coarse recovery structure was obtained over the entire thickness of the steel sheet. Moreover, this recovery structure is coarser than the recovery structure as seen in the hot-rolled sheet center layer obtained by the conventional hot rolling method with a high friction coefficient, and as a result, it is substantially coarse over the entire thickness of the sheet. We found a completely new finding that a crystal structure can be obtained. As described above, the technical idea of the present invention is based on a completely different idea from that of actively promoting the formation of a recovery structure and increasing the grain size. By using hot-rolled sheets obtained by such a method as a starting material, non-oriented electrical steel sheets with extremely high magnetic flux density and good iron loss (low iron loss value) in products after finish annealing are manufactured. Succeeded in doing.
[0017]
First, the components will be described. Si is added to increase the specific resistance of the steel sheet, reduce the eddy current loss, and improve the iron loss value. If the Si content is 1.0% or less, the specific resistance necessary for the low iron loss non-oriented electrical steel sheet intended by the present invention cannot be sufficiently obtained, so an amount exceeding 1.0% must be added. There is. On the other hand, if the Si content exceeds 4.0%, the ear cracks during rolling increase remarkably and rolling becomes difficult, so 4.0% or less is necessary.
[0018]
Al, like Si, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. In order to obtain the low iron loss high magnetic flux density non-oriented electrical steel sheet aimed at by the present invention, it is necessary to add 0.1% or more. On the other hand, if the Al content exceeds 2.0%, the magnetic flux density is lowered and the cost is increased. Moreover, even if Al content in steel is less than 0.10%, the effect of this invention is not impaired at all.
[0019]
Mn, like Al and Si, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. For this purpose, the Mn content needs to be 0.10% or more. On the other hand, if the Mn content exceeds 1.0%, the deformation resistance at the time of hot rolling increases and hot rolling becomes difficult, and the crystal structure after hot rolling is easily refined, and the magnetic properties of the product deteriorate. The Mn content needs to be 1.0% or less.
[0020]
The amount of Mn added is also extremely important from the viewpoint of securing the strength of the high-temperature sheet bar joint before hot rolling. This is because the value of Mn / S, which is the ratio of the weight concentration of Mn and S, is 20 or more in order to prevent hot embrittlement of the sheet bar joint due to the presence of low melting point sulfides at the grain boundaries. This is because it is necessary. In the component range defined in the present invention, since the Mn content is 0.1% or more and the S content is 0.005% or less, the value of Mn / S is kept at 20 or more. there is no problem.
[0021]
In addition, one or more of P, B, Ni, Cr, Sb, Sn, and Cu are contained in steel for the purpose of improving the mechanical properties, magnetic properties, rust resistance of products, and other purposes. Even if it is made to contain, the effect of this invention is not impaired. If the C content exceeds 0.0050%, the iron loss deteriorates due to magnetic aging during use and the energy loss during use increases, so it is necessary to control it to 0.0050% or less.
[0022]
S and N partly re-dissolve during slab heating in the hot rolling process, and form sulfides such as MnS and nitrides such as AlN during hot rolling. The presence of these hinders the grain growth of the hot-rolled structure and also hinders the crystal grain growth during the finish annealing and deteriorates the iron loss. Therefore, S must be 0.0050% and N must be 0.0050% or less. Next, the process conditions of the present invention will be described.
[0023]
The following experiment was conducted to investigate the influence of the average friction coefficient between the hot-rolling roll and the steel sheet during finish hot rolling on the product magnetic properties. Steels having the components shown in Table 1 were melted and subjected to finish hot rolling.
[0024]
[Table 1]
Figure 0004191806
[0025]
The average friction coefficient at the time of finish hot rolling was changed from 0.1 or less to 0.3 or more by changing the oil content in the roll cooling water. The average friction coefficient was calculated from the measured advanced rate at each stand, and the average value was obtained. The finish hot rolling finish temperature was constant at 860 ° C. and finished to a thickness of 2.0 mm. This was pickled, cold-rolled to a thickness of 0.35 mm, degreased, annealed at 900 ° C. for 30 seconds, cut an Epstein sample, and measured for magnetic properties.
[0026]
The dependence of the product magnetic flux density on the average friction coefficient during finish hot rolling is shown in FIG. The average of the measured values of each stand of the finishing hot rolling machine was used as the average friction coefficient. It can be seen that the product magnetic flux density increases when the average friction coefficient during finish hot rolling is 0.19 or less . In order to clarify the reason for such a phenomenon, the metal structure of the hot rolled sheet of component 1 was observed with an optical microscope. The result is shown in FIG. As shown in FIG. 2, the hot-rolled sheet of the present invention having an average friction coefficient of 0.19 has a coarse structure composed of stretched grains at both the plate thickness surface layer and the center. On the other hand, in the hot rolled sheet of the comparative example having an average friction coefficient of 0.35, an equiaxed grain structure composed of a recrystallized structure is observed at a depth from the surface layer to about 1/10 of the sheet thickness. It can be seen that recrystallized grains that were not seen when the average friction coefficient was low in the recovery structure near the center of the plate thickness were observed and the grain boundary density was increased.
[0027]
Such a change in the hot-rolled crystal structure reduces the average friction coefficient during finish hot rolling, thereby reducing the shear strain generated in the steel sheet and obtaining the same effect as hot rolling at a low rolling rate. Since the lattice defect density in the steel sheet was reduced, the crystal structure was not recrystallized, but a recovery structure consisting of coarse drawn grains was obtained, and the effect of substantially increasing the grain size of the hot rolled structure was obtained. Inferred to be the cause.
[0028]
In this way, the present inventors have said that the means of reducing the average friction coefficient between the steel sheet and the roll during finish hot rolling suppresses recrystallization of the hot rolled crystal structure and increases the substantial grain boundary. We have succeeded in developing a means for improving the magnetic properties of high-Si non-oriented electrical steel sheets, in particular the magnetic flux density, using a completely different technical idea from recrystallization promotion. As shown from the above experiments, the average value of the coefficient of friction between the finishing hot-rolling roll and the steel sheet may be 0.19 or less for the average value of all the finishing hot-rolling stands. If it exceeds 0.19 , as described above, the crystal structure near the surface layer of the hot-rolled sheet becomes finer due to the generation of recrystallized grains, and the product magnetic flux density decreases.
[0029]
The steel slab composed of the above components is melted in a converter and manufactured by continuous casting or ingot-bundling rolling. The steel slab is heated by a known method. The slab is hot rolled to a predetermined thickness. At this time, the finish hot rolling finish temperature is preferably 800 ° C. or higher. The amount of fats and oils mixed in the roll cooling water during finish hot rolling is 0.5% to 20% by volume. A surfactant is added as necessary in order to prevent the oil and fat and cooling water from separating. If the amount of fats and oils in the roll cooling water is less than 0.5%, the effect cannot be obtained, and if it is 20% or more, the effect is saturated and uneconomical.
[0030]
The hot-rolled sheet thus obtained is made into a product by one cold rolling and continuous annealing. Furthermore, a skin pass rolling process may be added to obtain a product. If the skin pass rolling rate is less than 2%, the effect cannot be obtained. If the skin pass rolling rate is 20% or more, the magnetic properties deteriorate, so the rate is set from 2% to 20%.
[0031]
【Example】
Next, examples of the present invention will be described.
<Example 1>
A slab for non-oriented electrical steel having the components shown in Table 2 was heated by a usual method, finished to a coarse bar having a thickness of 40 mm by a rough rolling mill, and then finished to 2.0 mm by a finish hot rolling machine.
[0032]
[Table 2]
Figure 0004191806
[0033]
The oil and fat was mixed in the roll cooling water of the finishing hot rolling machine in an emulsion state, and the friction coefficient was adjusted by changing the mixing amount. The average friction coefficient was calculated from the measured advanced rate at each stand, and the average value was obtained. At this time, the hot rolling finishing temperature was 860 ° C. Moreover, the hot-rolling finishing temperature was set to 860 ° C. as a one-time method based on hot-rolled sheet annealing, which is a conventional technique.
[0034]
Then, pickling was performed and it finished to 0.50 mm by cold rolling. This was annealed at 900 ° C. for 30 seconds in a continuous annealing furnace. Then, it cut | disconnected to the Epstein sample and measured the magnetic characteristic. Table 3 shows the components of the present invention and comparative examples and the magnetic measurement results.
[0035]
[Table 3]
Figure 0004191806
[0036]
Thus, if the average friction coefficient at the time of finish hot rolling is reduced, it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density value and a low iron loss value and excellent magnetic properties.
<Example 2>
The slab for non-oriented electrical steel having the components shown in Table 4 was heated by a usual method, finished to a coarse bar having a thickness of 40 mm by a rough rolling mill, and then finished to 2.0 mm by a finish hot rolling machine.
[0037]
[Table 4]
Figure 0004191806
[0038]
The oil and fat was mixed in the roll cooling water of the finishing hot rolling machine in an emulsion state, and the friction coefficient was adjusted by changing the mixing amount. The average friction coefficient was calculated from the measured advanced rate at each stand, and the average value was obtained. In addition, in order to prevent slippage between the steel sheet and the work roll during finish hot rolling and the formation of wrinkles on the surface of the steel sheet, the sheet bar after rough rolling is welded to the preceding sheet bar, Rolling was performed continuously. At this time, the hot rolling finishing temperature was 860 ° C.
[0039]
Then, pickling was performed and it finished to 0.35 mm by cold rolling. This was annealed at 900 ° C. for 30 seconds in a continuous annealing furnace. Then, it cut | disconnected to the Epstein sample and measured the magnetic characteristic. Table 5 shows the components of the present invention and comparative examples and the magnetic measurement results.
[0040]
[Table 5]
Figure 0004191806
[0041]
Thus, if the average friction coefficient at the time of finish hot rolling is reduced, it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density value and a low iron loss value and excellent magnetic properties.
[0042]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a non-oriented electrical steel sheet having a high magnetic flux density and low iron loss and excellent magnetic properties.
[Brief description of the drawings]
FIG. 1 is a graph showing the dependence of magnetic flux density on the average friction coefficient during finish hot rolling.
FIG. 2 is a view showing a metallographic photograph of a hot-rolled sheet for non-oriented electrical steel sheets according to the present invention by an optical microscope, (a) is a hot-rolled sheet surface layer when the average friction coefficient is 0.19 according to the present invention. (B) shows the structure of the hot-rolled sheet central layer when the average friction coefficient is 0.19 according to the present invention, and (c) is the comparative example when the average friction coefficient is 0.35. The structure of a hot-rolled sheet surface layer part is shown, (d) is a figure which shows the structure | tissue of a hot-rolled sheet center layer in the case of an average friction coefficient: 0.35 by a comparative example.

Claims (4)

鋼中に質量%で、1.0%≦Si≦4.0%0.10%≦Mn≦1.0%C≦0.0050%N≦0.0050%S≦0.0050%を含有し、残部がFeおよび不可避的不純物からなるスラブを粗圧延後、熱間圧延の仕上げ圧延時に熱延ロールと鋼板の平均摩擦係数を0.19以下で熱間圧延して熱延板とし、次いで1回の冷間圧延後仕上げ焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法。1.0% ≦ Si ≦ 4.0% , 0.10% ≦ Mn ≦ 1.0% , C ≦ 0.0050% , N ≦ 0.0050% , S ≦ 0.0050 by mass % in steel. Slab containing Fe and the inevitable impurities in the balance, and then hot-rolled by hot rolling at an average friction coefficient of 0.19 or less between the hot-rolled roll and the steel plate during hot rolling finish rolling. And then performing a single annealing after cold rolling and a non-oriented electrical steel sheet manufacturing method. 鋼中に質量%で、1.0%≦Si≦4.0%0.10%≦Mn≦1.0%0.10%≦Al≦2.0%C≦0.0050%N≦0.0050%S≦0.0050%を含有し、残部がFeおよび不可避的不純物からなるスラブを粗圧延後、熱間圧延の仕上げ圧延時に熱延ロールと鋼板の平均摩擦係数を0.19以下で熱間圧延して熱延板とし、次いで1回の冷間圧延後仕上げ焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法。1.0% ≦ Si ≦ 4.0% , 0.10% ≦ Mn ≦ 1.0% , 0.10% ≦ Al ≦ 2.0% , C ≦ 0.0050% in mass % in the steel , After rough rolling a slab containing N ≦ 0.0050% and S ≦ 0.0050%, the balance being Fe and inevitable impurities, the average coefficient of friction between the hot-rolling roll and the steel sheet is 0 during the finish rolling of hot rolling. A method for producing a non-oriented electrical steel sheet, characterized in that it is hot-rolled at 19 or less to form a hot-rolled sheet, and then subjected to finish annealing after one cold rolling. 1回目の冷間圧延後、仕上げ焼鈍を施し、さらに2〜20%のスキンパス圧延を施すことを特徴とする請求項1または2記載の無方向性電磁鋼板の製造方法。  3. The method for producing a non-oriented electrical steel sheet according to claim 1, wherein after the first cold rolling, finish annealing is performed, and further, skin pass rolling of 2 to 20% is performed. 熱間圧延の仕上げ圧延時に、潤滑剤として熱延ロール冷却水に0.5〜20%の油脂をエマルジョン状態で混入することを特徴とする請求項1、2または3に記載の無方向性電磁鋼板の製造方法。  4. The non-directional electromagnetic according to claim 1, wherein 0.5 to 20% of fats and oils are mixed in a hot-rolled roll cooling water as a lubricant in an emulsion state during finish rolling in hot rolling. A method of manufacturing a steel sheet.
JP21809696A 1995-12-05 1996-08-01 Method for producing non-oriented electrical steel sheet Expired - Lifetime JP4191806B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP21809696A JP4191806B2 (en) 1995-12-08 1996-08-01 Method for producing non-oriented electrical steel sheet
PCT/JP1996/003570 WO1997020956A1 (en) 1995-12-05 1996-12-05 Process for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
AU14363/97A AU700333B2 (en) 1995-12-05 1996-12-05 A method for producing non-oriented electrical steel sheet with high flux density and low watt loss
KR1019980704203A KR19990071916A (en) 1995-12-05 1996-12-05 A method for producing a non-oriented electromagnetic steel sheet having a high magnetic flux density and a low iron loss
CN96198854A CN1203635A (en) 1995-12-05 1996-12-05 Process for producing non-oriented electromagnetic steel sheet having high magnetic flux density and low iron loss
EP96941184A EP0875586A1 (en) 1995-12-05 1996-12-05 Process for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34504495 1995-12-08
JP7-345044 1995-12-08
JP21809696A JP4191806B2 (en) 1995-12-08 1996-08-01 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH09217117A JPH09217117A (en) 1997-08-19
JP4191806B2 true JP4191806B2 (en) 2008-12-03

Family

ID=26522391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21809696A Expired - Lifetime JP4191806B2 (en) 1995-12-05 1996-08-01 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4191806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334673B2 (en) * 2019-05-15 2023-08-29 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09217117A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
JP2000219917A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP2008156741A (en) Method for manufacturing non-oriented electromagnetic steel sheet with high magnetic flux density
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP3388119B2 (en) Method of manufacturing low-grade non-oriented electrical steel sheet with high magnetic flux density
JP4616427B2 (en) Silicon-containing hot-rolled sheet
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
KR19990071916A (en) A method for producing a non-oriented electromagnetic steel sheet having a high magnetic flux density and a low iron loss
JP4091673B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH11229096A (en) Nonoriented silicon steel sheet and its production
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3379622B2 (en) Manufacturing method of hot final non-oriented electrical steel sheet with high magnetic flux density
JP2001181743A (en) Method for producing hot rolled silicon steel sheet excellent in magnetism
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JPH1036912A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3379058B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JP2001172718A (en) Method for producing nonoriented silicon steel sheet uniform in magnetic property
JPH10298649A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density and low iron loss and minimal in anisotropy
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
JP2000309823A (en) Production of hot rolled silicon steel sheet uniform in magnetic property
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term