JP2000297324A - Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss - Google Patents

Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss

Info

Publication number
JP2000297324A
JP2000297324A JP10582399A JP10582399A JP2000297324A JP 2000297324 A JP2000297324 A JP 2000297324A JP 10582399 A JP10582399 A JP 10582399A JP 10582399 A JP10582399 A JP 10582399A JP 2000297324 A JP2000297324 A JP 2000297324A
Authority
JP
Japan
Prior art keywords
less
temperature
iron loss
magnetic flux
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10582399A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takehide Senuma
武秀 瀬沼
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10582399A priority Critical patent/JP2000297324A/en
Publication of JP2000297324A publication Critical patent/JP2000297324A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method capable of improving electromagnetic properties without adding expensive alloying elements. SOLUTION: A slab, having a composition consisting of, by weight ratio, <=0.05% C, <=0.01% N, 0.1-4.0% Si, 0.1-1.5% Mn, 0.1-1.5% Al, <=0.15% P, and the balance Fe with inevitable impurities, is roughly rolled into sheet bar and then finish-hot-rolled under the condition that inequality Z=log ε exp[32100/(273+t)]}>=12.10 [where (ε) and (t) are strain rate (1/s) and rolling temperature ( deg.C), respectively] is satisfied at least at one pass. The resultant hot rolled plate, having a temperature within 100 deg.C from the hot rolling finishing temperature and between 750 and 1050 deg.C, is temporarily coiled, held for 30 sec to 60 min, uncoiled, cooled, coiled again at <=550 deg.C, and subjected to ordinary acid pickling and cold rolling, followed by recrystallization annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁束密度が高く鉄
損の低い無方向性電磁鋼板を製造する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss.

【0002】[0002]

【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄心材料として使用される回転機および中、小型
変圧器等の分野においては、世界的な電力、エネルギー
節減、さらにはフロンガス規制等の地球環境保全の動き
の中で、高効率化の動きが急速に広まりつつある。この
ため、無方向性電磁鋼板に対しても、その特性向上、す
なわち、高磁束密度かつ低鉄損化への要請がますます強
まってきている。
2. Description of the Related Art In recent years, in the fields of electric machines, especially rotating machines and medium-sized and small-sized transformers in which non-oriented electrical steel sheets are used as iron core materials, worldwide electric power and energy savings, as well as chlorofluorocarbon gas regulations. Among the movements for global environmental conservation, such as the above, the movement for higher efficiency is rapidly spreading. Therefore, there is an increasing demand for non-oriented electrical steel sheets to have improved properties, that is, high magnetic flux density and low iron loss.

【0003】ところで、無方向性電磁鋼板においては、
従来、低鉄損化の手段として一般に、電気抵抗増大によ
る渦電流損低減の観点からSiあるいはAl等の含有量
を高める方法がとられてきた。しかし、この方法では反
面、磁束密度の低下は避け得ないという問題点があっ
た。
By the way, in non-oriented electrical steel sheets,
Conventionally, as a means of reducing iron loss, a method of increasing the content of Si, Al, or the like has been generally adopted from the viewpoint of reducing eddy current loss due to an increase in electric resistance. However, this method has a problem that the magnetic flux density cannot be reduced.

【0004】また、単にSiあるいはAl等の含有量を
高めるのみではなく、特開昭61−231120号公報
に記載されているように、C,N,S,O等の低減によ
る高純度鋼化や、特開昭57−35626号公報に記載
されているような仕上げ焼鈍サイクルの工夫等の製造プ
ロセス上の処置もなされてきたが、いずれも低鉄損化は
図られても、磁束密度についてはそれほどの効果はなか
った。
[0004] In addition to simply increasing the content of Si or Al, etc., as described in JP-A-61-231120, the production of high-purity steel by reducing C, N, S, O, etc. Also, measures in the manufacturing process such as devising a finish annealing cycle as described in Japanese Patent Application Laid-Open No. 57-35626 have been taken. Was not as effective.

【0005】さらに、仕上げ焼鈍前の冷延圧下率を適正
範囲に制御すること、熱延板焼鈍を施すこと、あるいは
熱延条件の工夫等による高磁束密度化が図られてきた
が、磁束密度が高くかつ鉄損が低い無方向性電磁鋼板を
製造できるには至らず、無方向性電磁鋼板に対する前記
の要請に応えることは出来なかった。
[0005] Furthermore, high magnetic flux densities have been achieved by controlling the cold rolling reduction rate before the final annealing to an appropriate range, performing hot rolling annealing, or devising hot rolling conditions. Thus, it was not possible to produce a non-oriented electrical steel sheet having a high iron loss and a low iron loss, and it was impossible to meet the above-mentioned demand for a non-oriented electrical steel sheet.

【0006】最近、無方向性電磁鋼板の熱間圧延におい
ては製品の磁束密度向上の観点から、熱延板結晶粒径の
制御が行われてきている。これらは、熱延板すなわち冷
延前の結晶粒径を極力粗大化することに主眼がおかれて
いる。例えば特公昭57−52410号公報では、仕上
熱延終了温度を750℃以上からα相とγ相の2相域の
中間温度以下として、巻取温度を680℃以上とするこ
とで、熱延時のコイル巻取温度を高温化し熱延板の結晶
粒を粗大化させる方法が開示されている。また、特公昭
58−55210号公報では、仕上熱延終了温度を75
0℃以上からα相とγ相の2相域の中間温度以下とし
て、C含有量、Al含有量の規制を組み合わせることを
主眼とする技術が開示されている。また特開昭54−7
6422号公報、特開昭58−136718号公報に記
述されている様に高温巻取を行ったコイルの保有熱によ
り自己焼鈍を行い熱延板の結晶粒の粗大化をはかり仕上
焼鈍後の磁束密度を向上させる技術等も開示されてい
る。
In recent years, in hot rolling of non-oriented electrical steel sheets, the crystal grain size of the hot-rolled sheet has been controlled from the viewpoint of improving the magnetic flux density of the product. The main focus is on increasing the grain size of the hot rolled sheet, that is, the crystal grain before cold rolling, as much as possible. For example, in Japanese Patent Publication No. 57-52410, the finish hot rolling end temperature is set at 750 ° C. or higher to the intermediate temperature of the two-phase region of α phase and γ phase, and the winding temperature is set at 680 ° C. or higher. There is disclosed a method of increasing the coil winding temperature to coarsen the crystal grains of a hot-rolled sheet. In Japanese Patent Publication No. 58-55210, the finish hot rolling end temperature is set to 75.
A technique is disclosed in which the main purpose is to combine the regulation of the C content and the Al content from 0 ° C. or higher to the intermediate temperature of the two-phase region of the α phase and the γ phase. Japanese Patent Laid-Open No. 54-7
As described in Japanese Patent No. 6422 and Japanese Patent Application Laid-Open No. 58-136718, self-annealing is carried out by the retained heat of a coil that has been subjected to high-temperature winding, and the crystal grains of the hot-rolled sheet are coarsened to measure the magnetic flux after finish annealing. Techniques for improving the density are also disclosed.

【0007】しかし、高温のコイルは、均一に冷却する
ことが難しく、冷却時にコイル内の温度分布に不均一が
生じる結果、結晶粒が混粒になりやすく、コイル長手方
向の磁気特性に変動が生じやすくなるとともに、冷延時
に通板性が問題視されたり、製品板の形状が悪くなる欠
点がある。
However, it is difficult to cool a high-temperature coil uniformly, and as a result, the temperature distribution in the coil becomes uneven during cooling. As a result, crystal grains tend to be mixed, and the magnetic properties in the longitudinal direction of the coil fluctuate. In addition to this, there is a disadvantage that the sheet passing property is regarded as a problem at the time of cold rolling and that the shape of the product sheet is deteriorated.

【0008】[0008]

【発明が解決しようとする課題】本発明は、高価な合金
元素を添加することなしに、電磁特性を向上させる製造
方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method for improving electromagnetic characteristics without adding an expensive alloy element.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記の問題
点を解決するために熱延、巻取条件を検討した結果、条
件を特定することにより無方向性電磁鋼板の特性を顕著
に向上できることを見いだした。その原理は2つの要素
から成り立つ。1つは熱延鋼板の結晶粒径を適度な大き
さにすることによる製品板の形状を悪化せずに磁性に好
ましい集合組織を製品板で形成させることである。もう
1つは熱延板表層の酸化層であるスケール層の形成を抑
制して酸洗歩留まりを向上させるとともに、内部酸化層
の形成を抑制して鉄損の向上を図り、同時にコイル内の
磁気特性を均一化することにある。本発明はこれらの考
えに基づくもので、その要旨とするところは以下の通り
である。
Means for Solving the Problems The present inventors have studied the hot rolling and winding conditions in order to solve the above-mentioned problems, and as a result, by specifying the conditions, the characteristics of the non-oriented electrical steel sheet have been remarkably improved. I found something that could be improved. The principle consists of two elements. One is to form a texture favorable for magnetism on the product sheet without deteriorating the shape of the product sheet by making the crystal grain size of the hot-rolled steel sheet an appropriate size. The other is to improve the pickling yield by suppressing the formation of the scale layer, which is the oxide layer on the surface of the hot-rolled sheet, and to improve the iron loss by suppressing the formation of the internal oxide layer, and at the same time, to improve the magnetism in the coil. The purpose is to make the characteristics uniform. The present invention is based on these ideas, and its gist is as follows.

【0010】(1) 重量比で、C :0.05%以
下、 N :0.01%以下、Si:0.1%
以上4.0%以下、Mn:0.1%以上1.5%以下、
Al:0.1%以上1.5%以下、P :0.15%以
下を含有し、残部Fe及び不可避不純物からなるスラブ
に粗圧延を施してシートバーとし、次いで少なくとも1
パスは下記式1を満足する仕上熱間圧延を施して熱延板
とした後、熱間圧延仕上温度から100℃以内、かつ7
50℃以上1050℃以下の温度にある熱延板を一度巻
取り、30秒以上60分以下の時間保持した後に巻き戻
し、次いで冷却を施して550℃以下の温度で再び巻取
り、その後通常の酸洗、冷延をした後、再結晶焼鈍を施
すことを特徴とする磁束密度が高く鉄損の低い無方向性
電磁鋼板の製造方法。
(1) C: 0.05% or less, N: 0.01% or less, Si: 0.1% by weight
Not less than 4.0%, Mn: not less than 0.1% and not more than 1.5%,
A slab containing Al: 0.1% or more and 1.5% or less, P: 0.15% or less, and the balance of Fe and unavoidable impurities is subjected to rough rolling to form a sheet bar, and then at least 1%.
The pass is subjected to finish hot rolling that satisfies the following formula 1 to form a hot-rolled sheet, and is within 100 ° C. of the hot-rolling finish temperature and at 7 ° C.
A hot rolled sheet at a temperature of 50 ° C. or more and 1050 ° C. or less is wound once, held for 30 seconds or more and 60 minutes or less, then unwound, then cooled and wound again at a temperature of 550 ° C. or less, and thereafter, A method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, which comprises performing pickling, cold rolling, and recrystallization annealing.

【数2】 (2) 鋼成分として、さらに重量%で、 B :Nの1.5倍以下 を含むスラブを用いることを特徴とする前記(1)記載
の磁束密度が高く鉄損の低い無方向性電磁鋼板の製造方
法。(3) 鋼成分として、さらに重量%で、 Sn:0.1%以下 を含むスラブを用いることを特徴とする前記(1)又は
(2)記載の磁束密度が高く鉄損の低い無方向性電磁鋼
板の製造方法。
(Equation 2) (2) A non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss according to the above (1), wherein a slab containing B: N 1.5 times or less in weight% is further used as a steel component. Manufacturing method. (3) The non-directionality having a high magnetic flux density and a low iron loss according to the above (1) or (2), wherein a slab containing Sn: 0.1% or less by weight% is further used as a steel component. Manufacturing method of electrical steel sheet.

【0011】[0011]

【発明の実施の形態】以下に本発明を詳細に説明する。
まず、成分の限定条件について述べる。Cは鉄損の低減
のためには少ないほうが好ましいが、本発明法のプロセ
スではCが0.05%まで鉄損向上の効果が確認された
ので、Cを0.05%以下とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the conditions for limiting the components will be described. It is preferable that C is small in order to reduce iron loss. However, in the process of the present invention, C was confirmed to have an effect of improving iron loss up to 0.05%, so C was set to 0.05% or less.

【0012】Siは鋼の電気抵抗を増加させ鉄損を向上
させる目的で添加する。このため、Siは0.1%以上
添加する。また、Si含有量が4.0%を超えると、冷
間圧延が困難になるため、4.0%以下に定める。
Si is added for the purpose of increasing the electric resistance of steel and improving iron loss. For this reason, 0.1% or more of Si is added. Further, if the Si content exceeds 4.0%, cold rolling becomes difficult, so the content is set to 4.0% or less.

【0013】Nも鉄損改善のためには少ないほうがよ
く、本発明鋼では0.01%以下とした。特に、AlN
の析出を抑制して鉄損を下げる場合はBを添加してBN
を析出させることが望ましいが、B/Nが1.5を超え
ると過剰Bが磁性を悪化させるので、BをNの1.5倍
以下と定めた。
It is better that N is small in order to improve iron loss. In the steel of the present invention, N is set to 0.01% or less. In particular, AlN
To suppress the precipitation of iron and reduce iron loss, add B to add BN
Is desirably precipitated, but when B / N exceeds 1.5, excess B deteriorates the magnetism, so B is set to 1.5 times or less N.

【0014】本発明鋼でSiが少ない場合、鋼板が軟質
になり過ぎ、打ち抜き作業が難しくなるのを防ぐためP
を添加している。Pの添加は鉄損の改善にもなるが、
0.15%超の添加は熱間加工性を悪化させ、熱延割れ
などの発生する危険があるので0.15%以下とした。
If the steel of the present invention has a low content of Si, the steel sheet becomes too soft to prevent the punching operation from becoming difficult.
Is added. Although the addition of P also improves iron loss,
Addition of more than 0.15% deteriorates hot workability and may cause hot rolling cracks or the like.

【0015】Al、MnはSiと同様に鉄損改善をもた
らすので、0.1%以上添加することに定める。一方、
過度の添加は冷間圧延性を悪くすることから、その含有
量は1.5%以下に定める。
Since Al and Mn can improve iron loss similarly to Si, it is decided to add 0.1% or more. on the other hand,
Excessive addition deteriorates cold rolling properties, so the content is set to 1.5% or less.

【0016】Snも磁性を改善する元素であるので添加
してもよいが、合金添加のコスト高を抑制する意味から
0.1%以下とした。
Since Sn is also an element for improving magnetism, it may be added. However, Sn is set to 0.1% or less from the viewpoint of suppressing the cost of alloy addition.

【0017】次にプロセス条件の限定について述べる。
本発明の特徴は熱延、巻取のプロセス条件にある。基本
思想は第1回目の巻取時に適正な大きさの熱延板結晶粒
径にし、冷延、焼鈍後に磁性に好ましい集合組織を形成
することであり、第2回目の巻取を低温にすることによ
り、鋼板表層のスケール層や内部酸化層の形成を抑制
し、鉄損の改善を図るとともに、コイルを巻きほどいて
冷却することにより、コイル長手方向の磁気特性を均一
化することにある。
Next, the limitation of the process conditions will be described.
The feature of the present invention lies in the process conditions of hot rolling and winding. The basic idea is to make the hot-rolled sheet crystal grain size of an appropriate size at the first winding, to form a texture favorable for magnetism after cold rolling and annealing, and to lower the temperature at the second winding. Thus, the formation of a scale layer and an internal oxide layer on the surface of the steel sheet is suppressed, iron loss is improved, and the coil is unwound and cooled to uniform the magnetic properties in the longitudinal direction of the coil.

【0018】本発明では仕上げ熱延において少なくとも
1パスは式(1)を満足することが必要である。式
(1)で定めるZパラメーターの値が12.10未満で
あると、高温巻取時の結晶粒成長の駆動力が不足し、本
発明が意図する高磁束密度低鉄損無方向性電磁鋼板が得
られなくなるので式(1)で定めるZパラメーターの値
は12.10以上である必要がある。また、Zの値には
上限を特に設けない。しかしながら、Zの値は圧延温度
が低くなるか、歪み速度が大きくなると増加するが、圧
延機の歪速度の上限、圧延温度の下限の観点から、1
6.0以下であることが好ましい。
In the present invention, it is necessary that at least one pass in the finishing hot rolling satisfies the expression (1). If the value of the Z parameter defined by the formula (1) is less than 12.10, the driving force for crystal grain growth during high-temperature winding is insufficient, and the high magnetic flux density and low iron loss non-oriented electrical steel sheet intended by the present invention are intended. Cannot be obtained, so the value of the Z parameter defined by the equation (1) needs to be 12.10 or more. There is no particular upper limit on the value of Z. However, the value of Z increases as the rolling temperature decreases or the strain rate increases, but from the viewpoint of the upper limit of the strain rate of the rolling mill and the lower limit of the rolling temperature, 1
It is preferably 6.0 or less.

【0019】[0019]

【数3】 (Equation 3)

【0020】ここで、Zパラメーターの値を求めるには
歪み速度を求める必要がある。その方法としては諸方法
があるが、本発明では下記の式(2)に従って歪み速度
を求めるものとする。
Here, to find the value of the Z parameter, it is necessary to find the strain rate. There are various methods as the method, but in the present invention, the strain rate is determined according to the following equation (2).

【0021】[0021]

【数4】 (Equation 4)

【0022】1回目の巻取温度と仕上温度の差が100
℃以下かつ、1050℃以下、750℃以上の温度で一
度巻き取り、30秒以上、60分以下の時間保持すると
いう条件は上記の適正な熱延板粒径を得るのに必要な限
定条件である。巻取温度と仕上温度の差を100℃以下
としたのは、仕上温度が高いほど再結晶粒径が大きくな
り、粒成長に必要な駆動力が小さくなるため、高い温度
で巻取り、粒成長を促進させてやる必要があるためであ
る。1回目の巻取温度ならびに保持時間の上限を限定し
たのは、熱延板結晶粒が大きくなり過ぎて製品板の形状
を悪化させないためである。また、1回目の巻取温度な
らびに保持時間の下限を定めたのは、これ以下では熱延
板の粒径が小さく、製品板の磁性が十分改善されないた
めである。
The difference between the first winding temperature and the finishing temperature is 100
The condition that the film is wound once at a temperature of 750 ° C. or lower and 1050 ° C. or lower and held for a period of 30 seconds or longer and 60 minutes or shorter is a limiting condition necessary for obtaining an appropriate hot-rolled sheet particle size as described above. is there. The reason why the difference between the winding temperature and the finishing temperature is 100 ° C. or less is that the higher the finishing temperature, the larger the recrystallized grain size and the smaller the driving force required for grain growth. It is because it is necessary to promote. The first winding temperature and the upper limit of the holding time are limited so that the crystal grains of the hot-rolled sheet do not become too large to deteriorate the shape of the product sheet. In addition, the lower limit of the first winding temperature and the holding time is set below this because the grain size of the hot rolled sheet is small and the magnetism of the product sheet is not sufficiently improved.

【0023】第2回目の巻取温度を550℃以下の温度
と限定したのは、これ以下の温度で鋼板の酸化が抑制さ
れるためである。
The reason why the second winding temperature is limited to a temperature of 550 ° C. or less is that oxidation of the steel sheet is suppressed at a temperature below this temperature.

【0024】このような熱延、巻取プロセスは仕上圧延
機に比較的近接したコイラーで巻き取り、それからRO
T(Run−out−Table)へ巻戻し、再び従来
のコイラーで巻き取ることで実現する。本プロセスは、
本発明鋼の電磁特性を改善するだけでなく、従来の高温
巻取時の問題点であったスケールが厚くなるという欠点
も回避することができる。
[0024] Such a hot rolling and winding process is performed by a coiler relatively close to a finishing mill, and then the RO is rolled.
This is realized by rewinding to a T (Run-out-Table) and winding again with a conventional coiler. This process is
In addition to improving the electromagnetic characteristics of the steel of the present invention, it is possible to avoid the disadvantage that the scale becomes thick, which is a problem at the time of conventional high-temperature winding.

【0025】[0025]

【実施例】次に、本発明の実施例について述べる。 [実施例1]表1に示す成分及び残部Fe及び不可避不
純物からなる鋼を転炉により溶製し連続鋳造設備により
厚さ220mmのスラブとした。このスラブを通常の方法
にて1250℃に加熱し、粗圧延により55mmのシート
バーとした。さらに7スタンドのタンデム仕上熱延機に
より成分1の鋼は2.7mm、成分2の鋼は3.0mm厚み
に仕上げた。仕上圧延の際、熱延条件の指標であるZパ
ラメーターの値を、最終パスにおいて種々の値を取るよ
うに圧延速度、圧延温度、パススケジュールを調整し
た。このため、熱延終了温度は1000℃〜1090℃
とした。
Next, an embodiment of the present invention will be described. Example 1 Steel consisting of the components shown in Table 1 and the balance of Fe and unavoidable impurities was melted by a converter and made into a slab having a thickness of 220 mm by a continuous casting facility. The slab was heated to 1250 ° C. by a usual method, and rough-rolled into a 55 mm sheet bar. Further, the steel of the component 1 was finished to a thickness of 2.7 mm and the steel of the component 2 was finished to a thickness of 3.0 mm by a tandem finishing hot rolling machine of 7 stands. At the time of finish rolling, the rolling speed, rolling temperature, and pass schedule were adjusted so that the value of the Z parameter, which is an index of hot rolling conditions, takes various values in the final pass. Therefore, the hot rolling end temperature is 1000 ° C. to 1090 ° C.
And

【0026】仕上げ熱延終了後、一回目のコイルへの巻
取りを950℃から990℃の範囲でかつ、熱延終了温
度との差が100℃以内の温度で行った。巻き取ったコ
イルは直ちに保熱カバー内に装入し820℃、60分の
保熱を行った。その後、このコイルを巻きほどいて冷却
を施し、500℃で二回目の巻取を行った。得られた熱
延板を酸洗後、冷間圧延により0.50mmに仕上げ、連
続焼鈍炉で成分1は800℃、30秒、成分2は950
℃、30秒の焼鈍を施し磁気特性を測定した。
After finishing hot rolling, the first coiling was performed at a temperature in the range of 950 ° C. to 990 ° C. and a difference from the hot rolling end temperature within 100 ° C. The wound coil was immediately placed in a heat retention cover and kept at 820 ° C. for 60 minutes. Thereafter, the coil was unwound and cooled, and a second winding was performed at 500 ° C. After pickling the obtained hot-rolled sheet, it is finished to 0.50 mm by cold rolling, and in a continuous annealing furnace, component 1 is 800 ° C. for 30 seconds, and component 2 is 950.
Annealing was performed at 30 ° C. for 30 seconds, and the magnetic properties were measured.

【0027】この時の熱延条件の指標である最終パスに
おけるZパラメータの値と、磁気測定結果の関係を表
2、表3に示す。表2、表3に示した結果より、Zパラ
メータの値が12.10以上の場合において優れた磁気
特性が得られていることが分かる。このように本発明で
定めた熱延条件を満たす様に仕上げ熱延を実施すること
により、低鉄損かつ高磁束密度の無方向性電磁鋼板を得
ることが可能である。
Tables 2 and 3 show the relationship between the value of the Z parameter in the final pass, which is an index of the hot rolling conditions, and the results of the magnetic measurement. From the results shown in Tables 2 and 3, it can be seen that excellent magnetic properties were obtained when the value of the Z parameter was 12.10 or more. By performing finish hot rolling so as to satisfy the hot rolling conditions defined in the present invention, a non-oriented electrical steel sheet having low iron loss and high magnetic flux density can be obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[実施例2]実施例1で得られた成分1の
熱延鋼板を酸洗後、冷間圧延により0.55mmに仕上
げ、連続焼鈍炉で780℃、20秒の焼鈍を施した。さ
らにこれをスキンパス圧延により0.50mmに圧下し、
750℃2時間の磁性焼鈍を施した後、磁気特性を測定
した。
Example 2 The hot-rolled steel sheet of component 1 obtained in Example 1 was pickled, finished to 0.55 mm by cold rolling, and annealed at 780 ° C. for 20 seconds in a continuous annealing furnace. . This is further reduced to 0.50 mm by skin pass rolling,
After magnetic annealing at 750 ° C. for 2 hours, the magnetic properties were measured.

【0032】この時の熱延条件の指標である最終パスに
おけるZパラメータの値と、磁気測定結果の関係を表4
に示す。表4に示した結果より、Zパラメータの値が1
2.10以上の場合において優れた磁気特性が得られて
いることが分かる。このように本発明で定めた熱延条件
を満たす様に仕上げ熱延を実施することにより、セミプ
ロセス無方向性電磁鋼板においても低鉄損かつ高磁束密
度の無方向性電磁鋼板を得ることが可能である。
Table 4 shows the relationship between the value of the Z parameter in the final pass, which is an index of the hot rolling conditions, and the result of the magnetic measurement.
Shown in From the results shown in Table 4, the value of the Z parameter is 1
It can be seen that excellent magnetic properties are obtained in the case of 2.10 or more. By performing finish hot rolling so as to satisfy the hot rolling conditions defined in the present invention, it is possible to obtain a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density even in a semi-process non-oriented electrical steel sheet. It is possible.

【0033】[0033]

【表4】 [Table 4]

【0034】[実施例3]表5に示す成分及び残部Fe
及び不可避不純物からなる鋼を転炉により溶製し連続鋳
造設備により厚さ220mmのスラブとした。このスラブ
を通常の方法にて1250℃に加熱し、粗圧延により5
5mmのシートバーとした。さらに6スタンドのタンデム
仕上熱延機により2.7mm厚みに仕上げた。仕上圧延の
際、熱延条件の指標であるZパラメーターの値を、最終
パス付近において種々の値を取るように圧延速度、圧延
温度、パススケジュールを調整した。熱延終了温度は1
050℃とし、また、最終パスの圧下率は20%に設定
して実験を行った。
Example 3 The components shown in Table 5 and the balance Fe
A steel consisting of unavoidable impurities was melted by a converter and made into a slab having a thickness of 220 mm by a continuous casting facility. This slab is heated to 1250 ° C. by a usual method, and
The sheet bar was 5 mm. Furthermore, it was finished to a thickness of 2.7 mm by a tandem finishing hot rolling machine with 6 stands. At the time of finish rolling, the rolling speed, rolling temperature, and pass schedule were adjusted so that the value of the Z parameter, which is an index of the hot rolling condition, takes various values near the final pass. Hot rolling end temperature is 1
The experiment was performed at 050 ° C., and the rolling reduction in the final pass was set to 20%.

【0035】仕上げ熱延終了後、一回目の巻取を960
℃で行った。巻き取ったコイルは直ちに保熱カバー内に
装入し820℃、60分間保持した。その後このコイル
を巻きほどいて冷却を施し、再度450℃で巻き取っ
た。得られた熱延板を酸洗後、冷間圧延により0.50
mmに仕上げ、連続焼鈍炉で成分1は850℃、15秒の
焼鈍を施し磁気特性を測定した。この時の熱延条件の指
標である最終パス付近の各パスにおけるZパラメータの
値と、磁気測定結果の関係を表6に示す。
After finishing hot rolling, the first winding is performed at 960.
C. was performed. The wound coil was immediately placed in a heat retaining cover and kept at 820 ° C. for 60 minutes. Thereafter, the coil was unwound and cooled, and then wound again at 450 ° C. After pickling the obtained hot rolled sheet, 0.50
mm, the component 1 was annealed at 850 ° C. for 15 seconds in a continuous annealing furnace, and the magnetic properties were measured. Table 6 shows the relationship between the value of the Z parameter in each pass near the final pass, which is an index of the hot rolling conditions, and the result of the magnetic measurement.

【0036】表6に示した結果より、Zパラメータの値
が12.10以上の場合において優れた磁気特性が得ら
れていることが分かる。このように本発明で定めた熱延
条件を満たす様に仕上げ熱延を実施することにより、低
鉄損かつ高磁束密度の無方向性電磁鋼板を得ることが可
能である。
From the results shown in Table 6, it can be seen that excellent magnetic characteristics were obtained when the value of the Z parameter was 12.10 or more. By performing finish hot rolling so as to satisfy the hot rolling conditions defined in the present invention, a non-oriented electrical steel sheet having low iron loss and high magnetic flux density can be obtained.

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【発明の効果】このように本発明によれば、無方向性電
磁鋼板の製造法において、磁束密度が高く鉄損の低い、
磁気特性の優れた無方向性電磁鋼板を提供することが可
能である。
As described above, according to the present invention, in the method for producing a non-oriented electrical steel sheet, the magnetic flux density is high and the iron loss is low.
It is possible to provide a non-oriented electrical steel sheet having excellent magnetic properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 猛 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K033 AA01 CA02 CA06 CA08 CA09 DA02 FA10 FA11 RA03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takeshi Kubota 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division of Nippon Steel Corporation (reference) 4K033 AA01 CA02 CA06 CA08 CA09 DA02 FA10 FA11 RA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 C :0.05%以下、 N :0.01%以下、 Si:0.1%以上4.0%以下、 Mn:0.1%以上1.5%以下、 Al:0.1%以上1.5%以下、 P :0.15%以下 を含有し、残部Fe及び不可避不純物からなるスラブに
粗圧延を施してシートバーとし、次いで少なくとも1パ
スは下記式1を満足する仕上熱間圧延を施して熱延板と
した後、熱間圧延仕上温度から100℃以内、かつ75
0℃以上1050℃以下の温度にある熱延板を一度巻取
り、30秒以上60分以下の時間保持した後に巻き戻
し、次いで冷却を施して550℃以下の温度で再び巻取
り、その後通常の酸洗、冷延をした後、再結晶焼鈍を施
すことを特徴とする磁束密度が高く鉄損の低い無方向性
電磁鋼板の製造方法。 【数1】
1. C: 0.05% or less, N: 0.01% or less, Si: 0.1% or more and 4.0% or less, Mn: 0.1% or more and 1.5% or less by weight ratio , Al: 0.1% or more and 1.5% or less, P: 0.15% or less, a slab comprising the balance of Fe and unavoidable impurities is subjected to rough rolling to form a sheet bar, and then at least one pass is represented by the following formula: After performing hot rolling to finish hot rolling that satisfies No. 1 within 100 ° C. from the hot rolling finishing temperature and 75%
A hot rolled sheet at a temperature of 0 ° C. or more and 1050 ° C. or less is wound once, held for 30 seconds or more and 60 minutes or less, then unwound, cooled, and then wound again at a temperature of 550 ° C. or less, and thereafter, A method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, which comprises performing pickling, cold rolling, and recrystallization annealing. (Equation 1)
【請求項2】 鋼成分として、さらに重量%で、 B :Nの1.5倍以下 を含むスラブを用いることを特徴とする請求項1記載の
磁束密度が高く鉄損の低い無方向性電磁鋼板の製造方
法。
2. The non-directional electromagnetic member having a high magnetic flux density and a low iron loss according to claim 1, wherein a slab containing B: N 1.5 times or less in weight% is further used as a steel component. Steel plate manufacturing method.
【請求項3】 鋼成分として、さらに重量%で、 Sn:0.1%以下 を含むスラブを用いることを特徴とする請求項1又は2
記載の磁束密度が高く鉄損の低い無方向性電磁鋼板の製
造方法。
3. A slab containing Sn: 0.1% or less by weight as a steel component.
A method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss.
JP10582399A 1999-04-13 1999-04-13 Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss Withdrawn JP2000297324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10582399A JP2000297324A (en) 1999-04-13 1999-04-13 Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10582399A JP2000297324A (en) 1999-04-13 1999-04-13 Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss

Publications (1)

Publication Number Publication Date
JP2000297324A true JP2000297324A (en) 2000-10-24

Family

ID=14417795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10582399A Withdrawn JP2000297324A (en) 1999-04-13 1999-04-13 Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss

Country Status (1)

Country Link
JP (1) JP2000297324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513273A (en) * 2011-03-03 2014-05-29 アールエルエス メリルナ テニカ ディー.オー.オー. Manufacturing method of magnetic substrate for encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513273A (en) * 2011-03-03 2014-05-29 アールエルエス メリルナ テニカ ディー.オー.オー. Manufacturing method of magnetic substrate for encoder

Similar Documents

Publication Publication Date Title
JP5423629B2 (en) Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH11335793A (en) Nonoriented silicon steel sheet high in magnetic flux density and low in core loss, and its production
JPH11286725A (en) Manufacture of non-oriented silicon steel sheet excellent in magnetism
JP2001181743A (en) Method for producing hot rolled silicon steel sheet excellent in magnetism
JP2000297324A (en) Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3319898B2 (en) Method for producing non-oriented electrical steel strip with uniform magnetic properties in coil
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP2001049403A (en) Nonoriented silicon steel sheet good in high frequency characteristic and its production
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP2000297326A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property
JP2000104118A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JP3379058B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP2001123225A (en) Method for producing hot rolled silicon steel sheet high in magnetic flux density and low in core loss
JP2001172718A (en) Method for producing nonoriented silicon steel sheet uniform in magnetic property
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JP3845887B2 (en) Manufacturing method of hot rolled electrical steel sheet with excellent magnetic properties
JP2000297325A (en) Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704