JP2001081412A - PHOTOCATALYTIC COATING FOR CLEANUP OF NOx AND METHOD FOR FORMING FILM THEREOF - Google Patents

PHOTOCATALYTIC COATING FOR CLEANUP OF NOx AND METHOD FOR FORMING FILM THEREOF

Info

Publication number
JP2001081412A
JP2001081412A JP26402499A JP26402499A JP2001081412A JP 2001081412 A JP2001081412 A JP 2001081412A JP 26402499 A JP26402499 A JP 26402499A JP 26402499 A JP26402499 A JP 26402499A JP 2001081412 A JP2001081412 A JP 2001081412A
Authority
JP
Japan
Prior art keywords
nox
weight
coating
parts
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26402499A
Other languages
Japanese (ja)
Inventor
Kazuhiko Mori
和彦 森
Mitsuru Nakamura
充 中村
Masayoshi Tanaka
雅能 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP26402499A priority Critical patent/JP2001081412A/en
Priority to PCT/JP2000/006327 priority patent/WO2001021716A1/en
Priority to AU73145/00A priority patent/AU7314500A/en
Publication of JP2001081412A publication Critical patent/JP2001081412A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalytic coating for cleanup of NOx which is able to form a film having good film characteristics, good NOx cleanup properties and long-term durability of catalytic ability, and also a method for forming the film. SOLUTION: An aqueous coating is prepared by adding 1 to 200 pts.wt. of a catalyst-reinforcing metal additive containing a water-soluble Pd and/or Pt compound to 40,000 pts.wt. of titanium dioxide and 1,000 to 40,000 pts.wt. of a binder, to which an alcoholic solution of 200 to 20,000 pts.wt. of an alkoxysilane is added, if necessary. A coating solution containing this coating is applied onto a substrate, and this coating solution may be directly heated and dried, or may be irradiated with a UV ray having a wavelength smaller than 400 nm to enrich a precipitated Pd and/or Pt metal at the surface portion of the coating layer, followed by heating and drying to form a photocatalytic film for cleanup of NOx.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光を利用して機能
性を発現する光触媒塗料、中でもNOx 浄化用に使用さ
れる二酸化チタン光触媒塗料、および光触媒塗膜の形成
方法に関するものである。更に詳しく述べるならば、本
発明は、道路用ガードレール、防音壁、ビル外壁、歩道
パネル、ポールなどの主として外装建材に塗布して、大
気中NOxを除去することを主たる目的とするNOx 浄
化用光触媒塗料、および光触媒塗膜の形成方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalytic coating material that exhibits functionality using light, and more particularly to a titanium dioxide photocatalytic coating material used for purifying NOx and a method for forming a photocatalytic coating film. More specifically, the present invention relates to a photocatalyst for NOx purification which is mainly applied to exterior building materials such as road guardrails, soundproof walls, building outer walls, sidewalk panels, and poles to remove atmospheric NOx. The present invention relates to a method for forming a paint and a photocatalytic coating film.

【0002】[0002]

【従来の技術】従来より有機系塗料に比較して、耐熱
性、耐摩耗性などに優れているセラミック塗料として
は、アルカリ金属けい酸塩系、りん酸塩系、シリカゾル
系、金属酸化物系などの種類が知られている。
2. Description of the Related Art Conventionally, ceramic coatings which are superior in heat resistance and abrasion resistance as compared with organic coatings include alkali metal silicates, phosphates, silica sols and metal oxides. Such types are known.

【0003】これらの塗料は、耐熱性、耐摩耗性に優れ
ているなどの、無機系塗料としての特徴を有している
が、近年、セラミック皮膜にさらに新規な機能を付与す
る試みが、金属酸化物系材料を用いることを中心にして
なされている。
[0003] These paints have characteristics as inorganic paints, such as excellent heat resistance and abrasion resistance. In recent years, attempts have been made to impart new functions to ceramic coatings. The main focus is on using oxide-based materials.

【0004】各種セラミックス材料の中でも酸化チタン
は、優れた光触媒効果を発揮することが可能であり、紫
外線の照射により高い酸化力を発揮する。近年、この効
果を環境浄化に利用しようとする試みが盛んに研究され
ている。ことに、二酸化チタン光触媒を用いてNOやN
2 などのNOx ガスを、硝酸まで酸化して大気中から
除去する方法は、電力や装置を必要とせず、しかも実用
可能な効果を有することが認められている。
[0004] Among various ceramic materials, titanium oxide can exert an excellent photocatalytic effect, and exerts a high oxidizing power upon irradiation with ultraviolet rays. In recent years, attempts to utilize this effect for environmental purification have been actively studied. In particular, NO and N using titanium dioxide photocatalyst
It has been recognized that the method of oxidizing NOx gas such as O 2 to nitric acid and removing it from the atmosphere does not require electric power or equipment and has a practical effect.

【0005】しかし、二酸化チタン光触媒は、その触媒
活性によって有機バインダーを殆ど分解してしまうた
め、バインダーの選択範囲が限定されるという問題点が
ある。また、ガスの分解性を向上させるためには、塗膜
が通気性を有することが必要であり、さらに、その粒子
径が通常の顔料に比較して、1/10〜1/1000と
いう超微粒子であるため、硬度や密着性などの物性にお
いて良好な塗膜を形成することが非常に難しいという問
題点がある。
However, since the titanium dioxide photocatalyst almost completely decomposes the organic binder due to its catalytic activity, there is a problem that the selection range of the binder is limited. Further, in order to improve the gas decomposability, it is necessary that the coating film has air permeability, and further, ultrafine particles whose particle diameter is 1/10 to 1/1000 as compared with ordinary pigments Therefore, there is a problem that it is very difficult to form a good coating film in physical properties such as hardness and adhesion.

【0006】また、NOx ガスの分解は、NOがNO2
を経由してNO3 へ酸化されるが、二酸化チタンとバイ
ンダーのみからなる塗膜では、NO2 からNO3 への酸
化速度が遅いため、酸化に供されたNOの1/2〜1/
4はNO2 までしか酸化されず、このため人体に有害な
NO2 の濃度は、かえって増加してしまうことが多いと
いう大きな問題点がある。また、初期において良好なN
Ox 分解性を示すものであっても、長期間にわたる屋外
における使用により、NOx 除去性能が著しく低下して
しまうという問題点もある。
In the decomposition of NOx gas, NO is converted to NO 2
Is oxidized to NO 3 via a coating. However, in a coating film composed of only titanium dioxide and a binder, the oxidation rate of NO 2 to NO 3 is low, and therefore, it is 1/2 to 1/1 / of the NO subjected to oxidation.
4 only is oxidized to NO 2, Therefore toxic NO 2 concentration on the human body, there is a significant problem that often increases rather. In addition, a good N
Even if it shows Ox decomposability, there is also a problem that the NOx removal performance is remarkably reduced due to long-term outdoor use.

【0007】これら問題を解決する手段として、光触媒
に活性炭を添加したものを塗膜形成に使用する方法が、
例えば特開平6−315614号公報に開示されてい
る。また、二酸化チタンにルテニウムを担持する方法が
特許公報第2563861号に開示されている。しか
し、これらの改良方法においても、長期の使用に耐える
耐久性や耐熱性などの面では、未だ十分とは言えず、こ
のため、塗料、塗膜として実用性および耐久性を備えた
ものは未だ提供されていないのである。
As a means for solving these problems, a method using a photocatalyst to which activated carbon is added for forming a coating film has been proposed.
For example, it is disclosed in JP-A-6-315614. Further, a method of supporting ruthenium on titanium dioxide is disclosed in Japanese Patent Publication No. 2563861. However, even in these improved methods, it cannot be said that the durability and heat resistance, which can withstand long-term use, are still insufficient.Therefore, paints and coatings having practicality and durability are not yet provided. It has not been provided.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来の
NOx 浄化用光触媒酸化チタン塗料および塗膜が有して
いる上記問題点を解決し、NO2 の副生が少なく、高い
NOx 浄化率が得られ、且つ外装材としての使用に耐え
る密着性と硬さを備え、これらの性能が長期にわたって
維持される、実用性の高いNOx 浄化用光触媒塗料およ
び光触媒塗膜の形成方法を提供しようとするものであ
る。
[0008] The present invention is to solve the above problems which the prior art for NOx purification photocatalytic titanium oxide coating and the coating has, by-product less of NO 2, high NOx purification rate It is intended to provide a highly practical photocatalyst paint for NOx purification and a method for forming a photocatalyst coating film having high adhesion and hardness that can withstand use as an exterior material and maintaining these properties for a long period of time. Is what you do.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するため、まず、光触媒二酸化チタンに各種金
属化合物を添加し、そのNOx 分解性への効果を実験検
討した結果、粒径約20nmの二酸化チタン光触媒と、バ
インダー、例えばシリカ粒子の分散溶液に少量のPdま
たはPtの化合物錯体を溶解させ、必要によりさらにア
ルコキシシランを添加して調製された塗料において、塗
膜物性およびNOx 除去性が大幅に向上することを見出
した。
Means for Solving the Problems In order to solve the above problems, the present inventors first added various metal compounds to photocatalytic titanium dioxide, and conducted an experimental study on the effect on NOx decomposability. In a paint prepared by dissolving a titanium dioxide photocatalyst having a diameter of about 20 nm and a small amount of a compound complex of Pd or Pt in a binder, for example, a dispersion solution of silica particles, and further adding alkoxysilane as needed, the coating film properties and NOx It has been found that the removability is greatly improved.

【0010】また、異なる粒子径の二酸化チタン光触媒
についてもNOx 分解性を試験した結果、粒子径がより
小さい5〜7nmのアナターゼ型光触媒超微粒子を使用し
た場合ではNOx 除去性能はやや向上したが、塗膜硬度
は十分とはいえず、光触媒の粒子径は10〜40nmの範
囲であることが好ましいことを確認した。次に本発明者
らは、このNOx 浄化用光触媒塗料の塗布方法について
検討し、塗布して乾燥するまでの間に、紫外線を照射す
ることによりPd,Ptの析出が促進され、これら金属
の添加量が少なくてもNOx 分解性が向上することを確
認して本発明を完成した。
As a result of testing the NOx decomposability of titanium dioxide photocatalysts having different particle diameters, when the anatase type photocatalyst ultrafine particles having a smaller particle diameter of 5 to 7 nm were used, the NOx removal performance was slightly improved. The hardness of the coating film was not sufficient, and it was confirmed that the particle diameter of the photocatalyst was preferably in the range of 10 to 40 nm. Next, the present inventors studied a method of applying the NOx purifying photocatalytic paint, and irradiating ultraviolet rays between the application and drying accelerated the precipitation of Pd and Pt, and added these metals. The inventors have confirmed that the NOx decomposability is improved even if the amount is small, and completed the present invention.

【0011】即ち本発明のNOx 浄化用光触媒塗料
(1)は、水中に、40000重量部の二酸化チタン
と、金属換算1〜200重量部の、水溶性Pd化合物及
び水溶性Pt化合物から選ばれた少なくとも1種からな
る触媒強化金属含有添加剤と、1000〜40000重
量部のバインダーとを含むことを特徴とするものであ
る。本発明のNOx 浄化用光触媒塗料(2)は、水中に
40000重量部の二酸化チタンと、1000〜400
00重量部の無機バインダーと、1〜200重量部の、
水溶性Pd化合物及び水溶性Pt化合物から選ばれた少
なくとも1種からなる触媒強化金属含有添加剤とを含む
A剤、並びに200〜2000重量部のアルコキシシラ
ンとこのアルコキシシランを溶解し得る量の液体アルコ
ールとを含むB剤からなることを特徴とするものであ
る。上記本発明のNOx 浄化用光触媒塗料(1)及び
(2)の各々において、前記二酸化チタンの平均粒径が
10〜40nmであることが好ましい。本発明のNOx 浄
化用光触媒塗膜の形成方法(1)は、前記本発明のNO
x 浄化用光触媒塗料を含む塗布液を、基材表面に塗布し
て塗布液層を形成し、この塗布液層を加熱乾燥すること
を特徴とするものである。本発明のNOx 浄化用光触媒
塗膜の形成方法(2)は、前記本発明のNOx 浄化用光
触媒塗料を含む塗布液を、基材表面に塗布して塗布液層
を形成し、この塗布液層に対し、その乾燥前に波長40
0nm未満の紫外線を含む光を照射し、その後に前記塗布
液層を加熱乾燥し、それによってPd及びPtの少なく
とも1種からなる触媒強化金属が濃化されている表面部
分を有する塗膜を形成することを特徴とするものであ
る。下記に本発明の内容を詳しく説明する。
That is, the NOx purifying photocatalyst paint (1) of the present invention is selected from 40,000 parts by weight of titanium dioxide in water and 1 to 200 parts by weight of a water-soluble Pd compound and a water-soluble Pt compound in terms of metal. It is characterized by comprising at least one kind of catalyst-reinforced metal-containing additive and 1000 to 40,000 parts by weight of a binder. The NOx purifying photocatalyst paint (2) of the present invention comprises 40000 parts by weight of titanium dioxide in water, 1000 to 400 parts by weight.
00 parts by weight of an inorganic binder and 1 to 200 parts by weight of
Agent A containing at least one kind of a catalyst-reinforced metal-containing additive selected from a water-soluble Pd compound and a water-soluble Pt compound, and 200 to 2,000 parts by weight of alkoxysilane and a liquid capable of dissolving the alkoxysilane It comprises a B agent containing alcohol. In each of the NOx purifying photocatalyst paints (1) and (2) of the present invention, the titanium dioxide preferably has an average particle size of 10 to 40 nm. The method (1) for forming a photocatalyst coating film for NOx purification of the present invention comprises
x An application liquid containing a photocatalytic coating for purification is applied to the surface of a substrate to form a coating liquid layer, and the coating liquid layer is heated and dried. In the method (2) for forming a NOx purifying photocatalytic coating film of the present invention, a coating liquid containing the NOx purifying photocatalytic coating material of the present invention is applied to a substrate surface to form a coating liquid layer. Before drying, the wavelength 40
Irradiation with light containing ultraviolet light of less than 0 nm is performed, and thereafter, the coating liquid layer is heated and dried, thereby forming a coating film having a surface portion in which the catalyst reinforcing metal composed of at least one of Pd and Pt is concentrated. It is characterized by doing. Hereinafter, the contents of the present invention will be described in detail.

【0012】[0012]

【発明の実施の形態】本発明のNOx 浄化用光触媒塗料
(1)は、水中に、40000重量部の二酸化チタン
と、1〜200重量部、好ましくは5〜50重量部の、
水溶性Pd化合物及び水溶性Pt化合物、から選ばれた
少なくとも1種からなる触媒強化金属含有添加剤と、1
000〜40000重量部、好ましくは5000〜20
000重量部のバインダーを含むものである。本発明に
使用される二酸化チタンには特に限定はないが、光触媒
活性の高いアナターゼ型又はルチル型に結晶化している
ものが好ましい。より好ましい平均粒子径は10〜40
nmでありより好ましくは12〜30nmである。
BEST MODE FOR CARRYING OUT THE INVENTION The NOx purifying photocatalyst coating material (1) of the present invention comprises, in water, 40000 parts by weight of titanium dioxide and 1 to 200 parts by weight, preferably 5 to 50 parts by weight,
A catalyst-reinforced metal-containing additive comprising at least one selected from a water-soluble Pd compound and a water-soluble Pt compound;
000-40000 parts by weight, preferably 5000-20
It contains 000 parts by weight of a binder. The titanium dioxide used in the present invention is not particularly limited, but is preferably one crystallized in an anatase type or rutile type having high photocatalytic activity. A more preferred average particle size is 10 to 40.
nm, and more preferably 12 to 30 nm.

【0013】これらの二酸化チタン粒子は、四塩化チタ
ンの燃焼による乾式法によって得られる粉体、或は四塩
化チタンや硫酸チタンの加水分解、又はチタンアルコキ
シド又はアセチルアセトネートの加水分解による湿式法
によっても製造される粉体を、ホモミキサーなどを用い
て水に分散して使用することが好ましい。
These titanium dioxide particles are obtained by powder obtained by a dry method by burning titanium tetrachloride, or by a wet method by hydrolysis of titanium tetrachloride or titanium sulfate, or hydrolysis of titanium alkoxide or acetylacetonate. It is preferable that the powder to be produced is dispersed in water using a homomixer or the like before use.

【0014】水溶性Pd化合物及び水溶性Pt化合物に
は特に限定はないが、塩化パラジウム又は塩化白金など
を用いてもよいが、Pd又はPtの、クロル−アンミン
錯体などのようにpHが中性付近のPd又はPtの錯化合
物及びPd又はPtのキレート化合物を用いることがよ
り好ましい。これらの化合物の一部が、二酸化チタン分
散液中において二酸化チタン粒子表面に吸着され、また
は二酸化チタン粒子表面上に析出することは許容され
る。
The water-soluble Pd compound and the water-soluble Pt compound are not particularly limited, but palladium chloride or platinum chloride may be used, but the pH is neutral as in the case of a chloro-ammine complex of Pd or Pt. It is more preferable to use a nearby Pd or Pt complex compound and a Pd or Pt chelate compound. It is permissible that some of these compounds are adsorbed on the titanium dioxide particle surface or precipitated on the titanium dioxide particle surface in the titanium dioxide dispersion.

【0015】これらのPd又はPt水溶性化合物の量
が、二酸化チタン40000重量部に対し、1重量部未
満であると、得られる塗膜のNOx 除去率が不十分にな
り、触媒の経時劣化が大きくなるため好ましくなく、ま
たそれが200重量部を超えると塗料が高価になるため
好ましくない。
If the amount of these water-soluble compounds of Pd or Pt is less than 1 part by weight with respect to 40,000 parts by weight of titanium dioxide, the NOx removal rate of the resulting coating film becomes insufficient, and the deterioration of the catalyst with the lapse of time is reduced. It is not preferable because it becomes large, and if it exceeds 200 parts by weight, the coating becomes expensive, which is not preferable.

【0016】本発明の塗料中に含まれるバインダーに
は、特別の限定はないが、水系シリカゾル、アルコール
系シリカゾル、アルミナゾル、ゼオライト、スメクタイ
トなどを用いることが好ましい。これらのうち、NO2
吸着効果に優れるスメクタイト、又はゼオライトを用い
ることが最も好ましい。バインダーの配合量は、二酸化
チタン40000重量部に対し1000〜40000重
量部であることが好ましい。この配合量が1000重量
部未満では得られる塗膜の密着性が低下し、またそれが
40000重量部を超えると二酸化チタンの含有率が過
小になり、触媒効果が不十分になるため好ましくない。
The binder contained in the paint of the present invention is not particularly limited, but it is preferable to use water-based silica sol, alcohol-based silica sol, alumina sol, zeolite, smectite and the like. Of these, NO 2
It is most preferable to use smectite or zeolite having an excellent adsorption effect. The compounding amount of the binder is preferably 1,000 to 40,000 parts by weight based on 40000 parts by weight of titanium dioxide. If the amount is less than 1,000 parts by weight, the adhesion of the resulting coating film will be reduced, and if it exceeds 40,000 parts by weight, the content of titanium dioxide will be too small and the catalytic effect will be insufficient, which is not preferable.

【0017】本発明のNOx 浄化用光触媒塗料は、A剤
とB剤の2液に分けて製造、保存し、使用前に両者を混
合し反応させたのち塗布することが好ましい。2液に分
ける場合の両液の組成において、A剤として、水中に4
0000重量部の二酸化チタンと、5000〜4000
0重量部、好ましくは10000〜30000重量部の
無機バインダーと、1〜200重量部、好ましくは10
〜50重量部の水溶性Pd及び水溶性Pt化合物から選
ばれた少なくとも1種からなる触媒強化金属含有添加剤
とを含むものである。その全固形分濃度としては、5〜
50%の濃度になるように水に分散したものが好まし
く、B剤に含まれるアルコキシシランとの反応速度を制
御するため、必要に応じて酸、アルカリなどのpH調整剤
を少量添加して、そのpHを3〜5又は8〜9に調整する
ことがより好ましい。
The NOx purifying photocatalyst paint of the present invention is preferably prepared and stored in two liquids of agent A and agent B, mixed and reacted before use, and then applied. In the composition of both liquids when divided into two liquids, as agent A, 4
0000 parts by weight of titanium dioxide, 5000 to 4000 parts
0 parts by weight, preferably 10,000 to 30,000 parts by weight of an inorganic binder, and 1 to 200 parts by weight, preferably 10
About 50 parts by weight of a water-soluble Pd and a water-soluble Pt compound. As the total solid concentration,
It is preferably dispersed in water so as to have a concentration of 50%. In order to control the reaction rate with the alkoxysilane contained in the agent B, if necessary, a small amount of a pH adjuster such as an acid or an alkali is added, More preferably, the pH is adjusted to 3-5 or 8-9.

【0018】また、B剤としては、二酸化チタン400
00重量部に対して、200〜2000重量部のアルコ
キシシランと、このアルコキシシランを溶解し得る量の
アルコールとを含むものである。アルコキシシランの種
類としては、メチルトリアルコキシシラン、エチルトリ
アルコキシシラン、フェニルトリエトキシシランなどで
あり、これらの中でもメチルトリアルコキシシランを用
いることが最も好ましく、このうちの一部をテトラアル
コキシシランやその部分加水分解物に置き換えてもよ
い。
As the B agent, titanium dioxide 400
200 parts by weight to 2000 parts by weight of alkoxysilane and alcohol in an amount capable of dissolving the alkoxysilane with respect to 00 parts by weight. Examples of the type of alkoxysilane include methyl trialkoxy silane, ethyl trialkoxy silane, phenyl triethoxy silane, and among them, it is most preferable to use methyl trialkoxy silane. It may be replaced with a partial hydrolyzate.

【0019】A剤とB剤の混合割合は、二酸化チタン4
0000重量部に対し、アルコキシシランの量が200
〜20000重量部、好ましくは2000〜10000
重量部であるようにする。4000〜10000重量部
の範囲がより好ましい。アルコキシシランを溶解する液
体アルコールはメタノール、エタノール、イソプロピル
アルコールのような低級アルコールから選ばれることが
好ましい。アルコキシシランはPdまたはPtイオンを
還元して析出させるため、これらの金属の添加量は二酸
化チタンの量に対して極めて微量であってもNOx 除去
効果を著しく向上させることができる。二酸化チタン4
0000重量部に対してアルコキシシランの量が200
重量部未満では得られる塗膜の硬さが不十分になって好
ましくなく、またそれが20000重量部を超えると、
得られる塗膜のNOx 除去率が低下するため好ましくな
い。
The mixing ratio of the agent A and the agent B is as follows.
The amount of the alkoxysilane is 200 with respect to 0000 parts by weight.
2020,000 parts by weight, preferably 2,000〜1010000
Parts by weight. The range of 4000 to 10000 parts by weight is more preferable. The liquid alcohol that dissolves the alkoxysilane is preferably selected from lower alcohols such as methanol, ethanol, and isopropyl alcohol. Alkoxysilane reduces and precipitates Pd or Pt ions, so that even if the amount of these metals is extremely small relative to the amount of titanium dioxide, the effect of removing NOx can be significantly improved. Titanium dioxide 4
200 parts by weight of the alkoxysilane is 200
If the amount is less than 10 parts by weight, the hardness of the obtained coating film becomes insufficient, which is not preferable.
It is not preferable because the NOx removal rate of the obtained coating film is lowered.

【0020】また、本発明のNOx 浄化用光触媒塗料
(1)又は(2)を用いた塗膜の形成方法(1)では、
本発明のNOx 浄化用光触媒塗料(1)又は(2)を基
材表面に塗布して塗布液層を形成し、この塗布液層を加
熱乾燥して塗膜を形成する。本発明の塗膜形成方法
(2)では、NOx 浄化用光触媒塗料(1)又は(2)
を含む塗布液を基材表面に塗布し、その乾燥前に波長4
00nm未満の紫外光を含む光を塗布液層に照射して、塗
膜表面にPdまたはPtの濃化層を形成する。
Further, in the method (1) of forming a coating film using the NOx purifying photocatalytic coating material (1) or (2) of the present invention,
The NOx purifying photocatalyst paint (1) or (2) of the present invention is applied to the surface of a substrate to form a coating liquid layer, and the coating liquid layer is heated and dried to form a coating film. In the coating film forming method (2) of the present invention, the photocatalytic paint for NOx purification (1) or (2)
Is applied to the surface of the substrate, and a wavelength of 4
The coating liquid layer is irradiated with light including ultraviolet light of less than 00 nm to form a Pd or Pt concentrated layer on the coating film surface.

【0021】この処理により紫外線の到達しやすい塗布
液表面部分においてPd及びPtの少なくとも1種から
なる触媒強化金属が析出し、この表面部分の触媒強化金
属の分布量を濃化するので、少量の金属添加でも高い効
果を得ることができる。照射光の波長が400nm未満の
光が存在しないと、光照射による上記効果が得られない
ため好ましくない。本発明方法(1)又は(2)におけ
る加熱乾燥は80〜400℃において行われることが好
ましく、150〜250℃がより好ましい。加熱乾燥時
間は、加熱乾燥温度により適宜に設定し得るが、一般
に、1〜30分である。
By this treatment, a catalyst-reinforced metal comprising at least one of Pd and Pt is deposited on the surface of the coating solution to which ultraviolet rays can easily reach, and the distribution amount of the catalyst-reinforced metal on the surface is concentrated. High effects can be obtained even with the addition of metal. If the light having a wavelength of less than 400 nm does not exist, the above effects due to light irradiation cannot be obtained, which is not preferable. The heating and drying in the method (1) or (2) of the present invention is preferably performed at 80 to 400 ° C, more preferably 150 to 250 ° C. The heating and drying time can be appropriately set depending on the heating and drying temperature, but is generally 1 to 30 minutes.

【0022】[0022]

【実施例】本発明を、下記実施例により具体的に説明す
るが、本発明はこれら実施例によって制約されるもので
はない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited by these examples.

【0023】実施例1〜8及び比較例1〜4 下記実施例及び比較例において、下記の材料を使用し
た。 (1)二酸化チタン 比較例1〜2、実施例1〜4、実施例7〜8では、二酸
化チタンとして、日本アエロジル(株)製P−25(ア
ナターゼ+ルチル:粒径20nm)を使用した。その他の
比較例および実施例では、石原産業(株)製ST−01
(アナターゼ:粒径7nm)を使用した。二酸化チタン約
200gを水800mlに混合し、この混合物をホモミキ
サーで分散させた。 (2)Pd化合物及びPt化合物 塩化パラジウム又は塩化白金を水に溶解し、この溶液を
アンモニア水で中和してクロル−アンミンPd又はPt
錯体溶液とし、これを二酸化チタン分散液に添加した。 (3)無機バインダー 比較例1〜3、実施例2〜3、および実施例7では、日
産化学(株)製水系シリカゾル(スノーテックスN)を
用いた。比較例4、実施例5、および実施例8では、日
産化学(株)製アルミナゾル(アルミナゾル200)を
用いた。実施例4および6では、スメクタイト(日本シ
リカ(株)製ラポナイトXGL)を使用した。
Examples 1 to 8 and Comparative Examples 1 to 4 In the following Examples and Comparative Examples, the following materials were used. (1) Titanium Dioxide In Comparative Examples 1-2, Examples 1-4, and Examples 7-8, P-25 (anatase + rutile: particle size: 20 nm) manufactured by Nippon Aerosil Co., Ltd. was used as titanium dioxide. In other comparative examples and examples, ST-01 manufactured by Ishihara Sangyo Co., Ltd. was used.
(Anatase: particle size 7 nm) was used. About 200 g of titanium dioxide was mixed with 800 ml of water, and this mixture was dispersed with a homomixer. (2) Pd compound and Pt compound Palladium chloride or platinum chloride is dissolved in water, this solution is neutralized with aqueous ammonia, and chlor-ammine Pd or Pt is dissolved.
A complex solution was prepared and added to the titanium dioxide dispersion. (3) Inorganic binder In Comparative Examples 1 to 3, Examples 2 to 3, and Example 7, water-based silica sol (Snowtex N) manufactured by Nissan Chemical Industries, Ltd. was used. In Comparative Example 4, Example 5, and Example 8, an alumina sol (alumina sol 200) manufactured by Nissan Chemical Industries, Ltd. was used. In Examples 4 and 6, smectite (Laponite XGL manufactured by Nippon Silica Co., Ltd.) was used.

【0024】Pd水溶液又はPt化合物水溶液、および
無機バインダーを二酸化チタン水分散液に添加してA剤
とし、別にアルコキシシランとしてメチルトリメトキシ
シランを用い、これをイソプロパノールにより4倍(重
量)量に希釈した液をB剤とした。両AB剤を混合し、
混合液のpHを酢酸で4〜5に調整して、1時間エージン
グさせて表1に示す組成を有する塗布液を調製した。
An aqueous solution of Pd or a Pt compound and an inorganic binder are added to an aqueous dispersion of titanium dioxide to obtain an agent A. Separately, methyltrimethoxysilane is used as an alkoxysilane, which is diluted four times (weight) with isopropanol. The solution obtained was used as agent B. Mix both AB agents,
The pH of the mixed solution was adjusted to 4 to 5 with acetic acid and aged for 1 hour to prepare a coating solution having the composition shown in Table 1.

【0025】比較例1〜4および実施例1〜8の各々で
使用された光触媒塗料のA剤とB剤との混合液からなる
塗布液の組成と塗膜性能試験の結果を表1に示す。各塗
布液における合計固形分濃度は35重量%であった。
Table 1 shows the composition of the coating solution composed of a mixture of the agent A and the agent B of the photocatalytic coating used in each of Comparative Examples 1 to 4 and Examples 1 to 8 and the results of the coating film performance test. . The total solid content in each coating solution was 35% by weight.

【0026】基材は、比較例1、比較例3、実施例1、
実施例4、および実施例7ではアルミニウム合金板にシ
リコーンプライマーを塗布し、80℃で乾燥したものを
用い、それに本発明の光触媒塗料塗布液を塗布した。比
較例2、実施例2〜3、および実施例5〜6、実施例8
では、亜鉛めっき鋼板に粉体ポリエステル塗装した板に
シリコーンプライマーを同様に塗布した板を使用した。
The base materials were Comparative Example 1, Comparative Example 3, Example 1,
In Examples 4 and 7, a silicone primer was applied to an aluminum alloy plate and dried at 80 ° C., and the photocatalyst coating solution of the present invention was applied thereto. Comparative Example 2, Examples 2-3, and Examples 5-6, Example 8
Used a plate in which a silicone primer was similarly applied to a plate obtained by applying powdered polyester to a galvanized steel plate.

【0027】試験片への塗布は、調製した塗布液(固形
分濃度35%)を、スプレーガンで膜厚が約10μmと
なるように塗布した。
For the application to the test piece, the prepared coating solution (solid content concentration: 35%) was applied using a spray gun so that the film thickness became about 10 μm.

【0028】乾燥は、乾燥用オーブンで150℃で10
分間施した。また、実施例7〜8においては、塗布後に
0.7mW/cm2 の強度のブラックライト(波長365n
m)を10分間照射したのち150℃で乾燥した。
Drying is performed at 150 ° C. in a drying oven at 10 ° C.
Minutes. In Examples 7 and 8, a black light (wavelength 365 n) having an intensity of 0.7 mW / cm 2 after coating was used.
m) for 10 minutes and then dried at 150 ° C.

【0029】塗膜性能の評価は、下記試験法および評価
基準により行った。その結果を表1に示す。 (1)塗膜硬度 乾燥後の塗膜の硬度は、JIS−K5400引っ掻き試
験用鉛筆で測定した。 (2)密着性 塗膜の密着性についてJIS−K5400碁盤目テープ
法塗膜付着性試験に準じ塗膜の密着性を判定した。コー
ティングした膜が全く剥離しないものを合格(○)、剥
離したものを不合格(×)とした。 (3)NOx 除去率 10cm角の試験片をパイレックスガラス製測定セルに入
れ、1ppm のNOガスを1.2L/min の流量で連続的
に通した。この際、上部ガラス窓からブラックライトで
365nmの波長の紫外線を連続照射し、セルを通ったガ
スを島津製作所製大気中NOx ガス分析装置でNOおよ
びNO2 濃度を測定し、NOx 除去率を算出した。 (4)屋外暴露試験 長期間屋外で使用しても性能が維持できるかどうかを確
認するため、6ケ月の屋外暴露試験を行い、暴露後の性
能を試験した。
The coating film performance was evaluated according to the following test methods and evaluation criteria. Table 1 shows the results. (1) Coating film hardness The hardness of the dried coating film was measured with a pencil for JIS-K5400 scratch test. (2) Adhesion The adhesion of the coating film was determined according to JIS-K5400 grid tape method coating film adhesion test. When the coated film did not peel at all, it was judged as acceptable (O), and when it was peeled, it was judged as unacceptable (X). (3) NOx removal rate A test piece of 10 cm square was placed in a measurement cell made of Pyrex glass, and 1 ppm of NO gas was continuously passed at a flow rate of 1.2 L / min. At this time, UV light having a wavelength of 365 nm was continuously irradiated with black light from the upper glass window, and the gas passed through the cell was measured for NO and NO 2 concentration by an atmospheric NOx gas analyzer manufactured by Shimadzu Corporation to calculate the NOx removal rate. did. (4) Outdoor exposure test In order to confirm whether or not performance could be maintained even when used outdoors for a long period of time, an outdoor exposure test was performed for 6 months, and the performance after exposure was tested.

【0030】[0030]

【表1】 [Table 1]

【0031】比較例1〜4および実施例1〜8の表1に
示された結果から明らかなように、本発明の範囲外の組
成の酸化チタンコーティング液組成を使用した比較例1
〜4では、塗膜外観、密着性、親水性、光触媒性はいず
れも不満足なものであった。一方、本発明の酸化チタン
塗料および酸化チタン塗膜の形成方法を用いた実施例1
〜8では、良好な塗膜外観、密着性、親水性、光触媒性
能が得られた。
As is clear from the results shown in Tables 1 of Comparative Examples 1 to 4 and Examples 1 to 8, Comparative Example 1 in which a titanium oxide coating liquid composition having a composition outside the scope of the present invention was used.
In Nos. To 4, the coating film appearance, adhesion, hydrophilicity, and photocatalytic properties were all unsatisfactory. On the other hand, Example 1 using the method for forming a titanium oxide paint and a titanium oxide coating film of the present invention.
In Nos. To 8, good coat appearance, adhesion, hydrophilicity, and photocatalytic performance were obtained.

【0032】[0032]

【発明の効果】本発明のNOx 浄化用光触媒塗料および
塗膜の形成方法によれば、従来では両立できなかった
「良好な塗膜物性」と「NOx 浄化率」、さらに「長期
間にわたる触媒能の保持性」を同時に実現することがで
き、NOx 浄化材料として極めて実用性の高い塗膜を得
ることができた。特にNOx 濃度の高い市街地、交差点
やその周辺などの建造物等の外面に塗布したり、屋内に
おいても壁や天井に塗布することにより煙草や暖房器具
から発生するNOx を除去できるなど用途は幅広く、生
活環境対策としてその実用的価値は大きい。
According to the photocatalytic paint for NOx purification and the method for forming a coating film of the present invention, "good coating film properties" and "NOx purification rate", which have not been compatible with each other, and "catalytic performance over a long period of time" ), And a coating film having extremely high practicality as a NOx purification material could be obtained. In particular, it can be applied to the outer surface of buildings such as urban areas with high NOx concentration, intersections and its surroundings, and even indoors to remove NOx generated from tobacco and heating equipment by applying to walls and ceilings. Its practical value is great as a measure of living environment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09D 5/00 C09D 5/00 Z (72)発明者 田中 雅能 東京都中央区日本橋1−15−1 日本パー カライジング株式会社内 Fターム(参考) 4D075 BB24Z BB46Z CA50 DC03 DC05 EA06 EB43 EB56 EC02 EC10 EC53 EC54 4G069 AA03 AA08 BA02C BA04A BA04B BA32C BA48A BB02A BC72A BC72B BC75A BC75B BE32C CA02 CA03 CA13 DA05 EA08 EB18X EC22Y FA03 FB23 FC05 FC06 4J038 EA011 HA216 JC32 KA04 KA20 NA18 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09D 5/00 C09D 5/00 Z (72) Inventor Masanobu Tanaka 1-15-1 Nihonbashi, Chuo-ku, Tokyo F-term (reference) in Nippon Parkerizing Co., Ltd. 4J038 EA011 HA216 JC32 KA04 KA20 NA18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水中に、40000重量部の二酸化チタ
ンと、金属換算1〜200重量部の、水溶性Pd化合物
及び水溶性Pt化合物から選ばれた少なくとも1種から
なる触媒強化金属含有添加剤と、1000〜40000
重量部のバインダーとを含むことを特徴とするNOx 浄
化用光触媒塗料。
1. A catalyst-reinforced metal-containing additive comprising 40000 parts by weight of titanium dioxide in water and 1 to 200 parts by weight of a metal as a metal and comprising at least one selected from the group consisting of a water-soluble Pd compound and a water-soluble Pt compound. , 1000-40000
A photocatalytic paint for purifying NOx, comprising a binder by weight.
【請求項2】 40000重量部の二酸化チタンと、1
000〜40000重量部の無機バインダーと、1〜2
00重量部の、水溶性Pd化合物及び水溶性Pt化合物
から選ばれた少なくとも1種からなる触媒強化金属含有
添加剤とを含むA剤、並びに200〜2000重量部の
アルコキシシランとこのアルコキシシランを溶解し得る
量の液体アルコールとを含むB剤からなることを特徴と
するNOx 浄化用光触媒塗料。
2. 4000 parts by weight of titanium dioxide and 1
000 to 40,000 parts by weight of an inorganic binder;
A part containing at least 00 parts by weight of a catalyst-reinforced metal-containing additive comprising at least one selected from the group consisting of a water-soluble Pd compound and a water-soluble Pt compound, and 200 to 2,000 parts by weight of an alkoxysilane and the alkoxysilane dissolved therein A photocatalytic paint for NOx purification, comprising a B agent containing a possible amount of liquid alcohol.
【請求項3】 前記二酸化チタンの平均粒径が10〜4
0nmである、請求項1又は2に記載のNOx 浄化用光触
媒塗料。
3. The titanium dioxide has an average particle size of 10 to 4.
The photocatalytic paint for NOx purification according to claim 1 or 2, which has a thickness of 0 nm.
【請求項4】 前記請求項1〜3の何れか1項に記載の
NOx 浄化用光触媒塗料を含む塗布液を、基材表面に塗
布して塗布液層を形成し、この塗布液層を加熱乾燥する
ことを特徴とするNOx 浄化用光触媒塗膜の形成方法。
4. A coating solution containing the photocatalyst coating material for NOx purification according to claim 1 is applied to the surface of a substrate to form a coating solution layer, and the coating solution layer is heated. A method for forming a NOx purification photocatalytic coating film, characterized by drying.
【請求項5】 前記請求項1〜3の何れか1項に記載の
NOx 浄化用光触媒塗料を含む塗布液を、基材表面に塗
布して塗布液層を形成し、この塗布液層に対し、その乾
燥前に波長400nm未満の紫外線を含む光を照射し、そ
の後に前記塗布液層を加熱乾燥し、それによってPd及
びPtの少なくとも1種からなる触媒強化金属が濃化さ
れている表面部分を有する塗膜を形成することを特徴と
するNOx 浄化用光触媒塗膜の形成方法。
5. A coating solution containing the photocatalyst coating material for NOx purification according to any one of claims 1 to 3, which is applied to the surface of a substrate to form a coating solution layer. Irradiating light containing ultraviolet light having a wavelength of less than 400 nm before drying, and then heating and drying the coating liquid layer, whereby the surface portion where the catalyst-reinforced metal comprising at least one of Pd and Pt is concentrated is concentrated. A method for forming a NOx purifying photocatalytic coating film, which comprises forming a coating film having:
JP26402499A 1999-09-17 1999-09-17 PHOTOCATALYTIC COATING FOR CLEANUP OF NOx AND METHOD FOR FORMING FILM THEREOF Pending JP2001081412A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26402499A JP2001081412A (en) 1999-09-17 1999-09-17 PHOTOCATALYTIC COATING FOR CLEANUP OF NOx AND METHOD FOR FORMING FILM THEREOF
PCT/JP2000/006327 WO2001021716A1 (en) 1999-09-17 2000-09-14 PHOTOCATALYST COATING MATERIAL FOR NOx REMOVAL AND METHOD OF FORMING COATING FILM OF THE SAME
AU73145/00A AU7314500A (en) 1999-09-17 2000-09-14 Photocatalyst coating material for nox removal and method of forming coating film of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26402499A JP2001081412A (en) 1999-09-17 1999-09-17 PHOTOCATALYTIC COATING FOR CLEANUP OF NOx AND METHOD FOR FORMING FILM THEREOF

Publications (1)

Publication Number Publication Date
JP2001081412A true JP2001081412A (en) 2001-03-27

Family

ID=17397502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26402499A Pending JP2001081412A (en) 1999-09-17 1999-09-17 PHOTOCATALYTIC COATING FOR CLEANUP OF NOx AND METHOD FOR FORMING FILM THEREOF

Country Status (3)

Country Link
JP (1) JP2001081412A (en)
AU (1) AU7314500A (en)
WO (1) WO2001021716A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172334A (en) * 2000-12-06 2002-06-18 Nippon Shokubai Co Ltd Photocatalyst for removing nitrogen oxide
JP2006055747A (en) * 2004-08-20 2006-03-02 Tayca Corp Photocatalyst having platinum compound carried thereon and manufacturing method therefor
WO2009038250A1 (en) * 2007-09-21 2009-03-26 Chemwelltech Co., Ltd. Photocatalytic composition for anti-reflection and the glass substrate coated with the composition
US20090162681A1 (en) * 2007-12-21 2009-06-25 Artur Kolics Activation solution for electroless plating on dielectric layers
US9382627B2 (en) 2012-02-24 2016-07-05 Lam Research Corporation Methods and materials for anchoring gapfill metals
JP2016150329A (en) * 2015-02-19 2016-08-22 フジコピアン株式会社 Organic substrate having photocatalyst layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303762B (en) * 2020-03-16 2021-10-22 佛山市明朝科技开发有限公司 Gold-imitating ceramic film coating applied to ceramic and preparation method
CN111389365B (en) * 2020-04-16 2022-11-25 郑州大学 Carbon nanotube/titanium dioxide composite film and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653212B2 (en) * 1986-10-28 1994-07-20 株式会社荏原総合研究所 Method for decomposing and removing nitrous oxide in gas mixture
JP3930591B2 (en) * 1995-12-22 2007-06-13 東陶機器株式会社 Photocatalytic hydrophilic coating composition, method for forming hydrophilic film and coated article
JPH09271731A (en) * 1996-04-08 1997-10-21 Toto Ltd Removing method of objective material
JPH1112539A (en) * 1997-06-20 1999-01-19 Nippon Parkerizing Co Ltd Functional coating material composition and method for forming functional coating film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172334A (en) * 2000-12-06 2002-06-18 Nippon Shokubai Co Ltd Photocatalyst for removing nitrogen oxide
JP2006055747A (en) * 2004-08-20 2006-03-02 Tayca Corp Photocatalyst having platinum compound carried thereon and manufacturing method therefor
JP4577682B2 (en) * 2004-08-20 2010-11-10 テイカ株式会社 Photocatalyst carrying platinum compound and method for producing the same
WO2009038250A1 (en) * 2007-09-21 2009-03-26 Chemwelltech Co., Ltd. Photocatalytic composition for anti-reflection and the glass substrate coated with the composition
US20090162681A1 (en) * 2007-12-21 2009-06-25 Artur Kolics Activation solution for electroless plating on dielectric layers
US9382627B2 (en) 2012-02-24 2016-07-05 Lam Research Corporation Methods and materials for anchoring gapfill metals
JP2016150329A (en) * 2015-02-19 2016-08-22 フジコピアン株式会社 Organic substrate having photocatalyst layer

Also Published As

Publication number Publication date
AU7314500A (en) 2001-04-24
WO2001021716A1 (en) 2001-03-29

Similar Documents

Publication Publication Date Title
JP3732247B2 (en) Titanium oxide coating film-forming liquid composition for photocatalyst and process for producing the same
JP3559892B2 (en) Photocatalytic film and method for forming the same
EP2188125B1 (en) Photocatalytic coating
EP2163304B1 (en) Coating composition comprising photocatalyst coated with apatite and radiant heating system having the same
JP6231550B2 (en) Titanium oxide dispersion, titanium oxide coating solution, and photocatalytic coating
JP5134835B2 (en) Disassembly method
JP2000001631A (en) Coating composition containing photo-catalyst
WO2011118780A1 (en) Photocatalyst-coated body and photocatalyst coating liquid
JP2004283646A (en) Photocatalyst and method for producing photocatalyst
JP2001081412A (en) PHOTOCATALYTIC COATING FOR CLEANUP OF NOx AND METHOD FOR FORMING FILM THEREOF
JP4819784B2 (en) Coating composition containing photocatalyst
JP2001081394A (en) Primer composition and photocatalytic body
JPWO2005026276A1 (en) Coating material
JP3122432B1 (en) Method for producing solution for forming titanium oxide film
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP2001181535A (en) Photocatalytic coating material for environmental cleaning
JP3806998B2 (en) PHOTOCATALYST COMPOSITION, FORMING AGENT THEREOF, AND SUBSTRATE WITH PHOTOCATALYST COMPOSITION
JP2000302422A (en) Coating composition for forming photocatalyst film
JP2004091697A (en) Liquid for forming titanium oxide film, method for forming titanium oxide film, titanium oxide film and photocatalytic member
JP2001181109A (en) Animal-repelling coating with photochemical activity
JP2006136782A (en) Photocatalyst aluminum member
JP3456587B2 (en) Deodorizing material
JP3371104B2 (en) Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and method for producing the same
JP2005281557A (en) Coating and catalyst molded product given by using the same
JP2000063733A (en) Precoated steel plate having photocatalytic function