JP2001054768A - 洗浄方法及び洗浄装置 - Google Patents

洗浄方法及び洗浄装置

Info

Publication number
JP2001054768A
JP2001054768A JP11232760A JP23276099A JP2001054768A JP 2001054768 A JP2001054768 A JP 2001054768A JP 11232760 A JP11232760 A JP 11232760A JP 23276099 A JP23276099 A JP 23276099A JP 2001054768 A JP2001054768 A JP 2001054768A
Authority
JP
Japan
Prior art keywords
cleaning
hydrofluoric acid
aqueous solution
hydrogen
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11232760A
Other languages
English (en)
Inventor
Masahiko Kogure
雅彦 木暮
Toshikazu Abe
俊和 阿部
Senri Kojima
泉里 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP11232760A priority Critical patent/JP2001054768A/ja
Publication of JP2001054768A publication Critical patent/JP2001054768A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

(57)【要約】 【課題】 洗浄中に露出した基板表面のSiを水素終端
させつつ、室温での洗浄を効果的に行う。 【解決手段】 水素ガス発生手段5から送られた水素ガ
ス7を希フッ酸水溶液8中にバブリングさせて溶解し、
洗浄対象となるSiウエハ9を洗浄バス1内の希フッ酸
水溶液8中に超音波振動を与えながら所定時間浸漬さ
せ、Siウエハ9を室温で洗浄するとともに、Siウエ
ハ9の表面のSiのダングリングボンドを水素終端化す
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、半導体装置、液晶
表示装置または電子部品の製造工程で用いられる洗浄方
法及び洗浄装置に関し、特に、半導体ウエハや液晶ガラ
ス基板などの基板に付着する鉄、銅、ニッケルなどの金
属不純物、パーティクル(微粒子)、自然酸化膜などを
洗浄除去する場合に適用して好適なものである。
【0002】
【従来の技術】近年の半導体デバイスの高集積化に伴
い、半導体基板上に形成される素子や配線のサイズがサ
ブミクロンのレベルに微細化してきている。
【0003】このような半導体デバイスを安定して製造
するためには、半導体デバイスの製造工程での基板の表
面を高清浄な状態に保つ必要がある。すなわち、有機
物、金属不純物、パーティクル、自然酸化膜等を例えば
超純水を用いて基板表面から完全に除去してから、半導
体基板を各製造プロセスに投入する必要がある。
【0004】基板表面をウエット洗浄する代表的な方法
として、RCA洗浄がある。RCA洗浄では、薬液とし
て、硫酸、水酸化アンモニウム、塩酸、硝酸、フッ化水
素酸(以下、HFと称す。)、過酸化水素などの水溶液
が用いられる。例えば、基板表面に付着しているパーテ
ィクルを除去する場合、水酸化アンモニウムと過酸化水
素と超純水とを1:1:5の割合で混合した水溶液が8
0℃前後の温度で用いられる(以下、APM、またはS
C−1と称す。)。また、シリコン基板上の自然酸化膜
や金属不純物を除去する場合、0.5〜5%の濃度のH
F水溶液(希フッ酸水溶液)が用いられる。
【0005】
【発明が解決しようとする課題】しかしながら、従来の
SC−1による洗浄方法では、洗浄が高温で行われるこ
とから、洗浄溶液から蒸気が発生する。このため、クリ
ーンルームの環境汚染を引き起こしたり、洗浄溶液から
発生する蒸気を排気するために、クリーンルームの空調
設備の負荷が大きくなるという問題があった。
【0006】また、従来の希フッ酸水溶液を用いた洗浄
では、シリコン基板上のシリコン(以下、Siと称
す。)が露出した時点でパーティクルが再付着するた
め、洗浄効果には限界があった。さらに、希フッ酸水溶
液を用いただけでは、基板表面に露出したSiのダング
リングボンドが完全に水素終端化しないため、シリコン
基板を大気中に放置すると、洗浄後のシリコン基板上に
自然酸化膜が成長するという問題があった。
【0007】そこで、本発明の目的は、室温での洗浄を
効果的に行うことが可能となるとともに、洗浄後の基板
表面のSiを水素終端させることが可能な洗浄方法及び
洗浄装置を提供することである。
【0008】
【課題を解決するための手段】上述した課題を解決する
ために、本発明によれば、水素ガスを溶解させたフッ化
水素酸の水溶液を、超音波振動を与えながら、被洗浄物
と接触させることにより、洗浄を行うことを特徴とす
る。
【0009】これによって、シリコン基板上の酸化膜を
エッチングして、シリコン基板上に付着しているパーテ
ィクルをリフトオフさせることが可能となるとともに、
超音波振動時の溶存水素ガスによるキャビテーション効
果とパーティクルの表面組成物の還元反応により、基板
表面に露出したSiへの再付着を防止することが可能と
なり、室温での洗浄を効果的に行うことが可能となる。
【0010】また、希フッ酸水溶液中に水素ガスが添加
されているので、洗浄中に基板表面に露出したSiのダ
ングリングボンドをほぼ完全に水素終端化することが可
能となる。この結果、水素終端化されたSi表面は大気
中でも安定を保つため、洗浄後にシリコン基板を大気中
に放置した場合においても、Siが露出した基板表面に
新たな自然酸化膜が形成されることを防止することが可
能となるとともに、シリコン単結晶の禁制帯内の界面準
位を減少させることが可能となり、デバイス特性を改善
することが可能となる。
【0011】本発明で使用されるフッ化水素酸水溶液の
濃度は0.001〜5重量%、好ましくは0.5重量
%、前記溶液中の水素濃度は0.1〜2.0ppm、好
ましくは1ppm以上、前記超音波振動の周波数は20
kHZ〜10MHz、好ましくは500kHZ〜2MH
zであることが好ましい。
【0012】
【発明の実施の形態】以下、本発明の実施の一形態につ
いて、図面を参照しながら説明する。図1(a)は、本
発明の一実施例に係る洗浄装置の構成を示す側面図、図
1(b)は、本発明の一実施例に係る洗浄装置の構成を
示す上面図である。図1において、洗浄装置には、2槽
構造の洗浄バス1、2が設けられ、洗浄バス1、2間の
隙間には、脱気された冷却水3が入れられている。ま
た、洗浄バス2の底には、超音波振動発生手段4が設け
られている。この実施形態における超音波振動発生手段
4は、超音波振動子である。なお、超音波振動子の発振
周波数は20kHZ〜10MHz程度に設定することが
好ましい。
【0013】洗浄バス1には、フッ化水素酸を水に溶解
させた希フッ酸水溶液8が満たされている。ここで、フ
ッ化水素酸を希釈する水は、純水または超純水であるこ
とが好ましい。なお、上記の「純水」とは、25℃換算
の電気抵抗率が15.0MΩ・cm以上、TOC(水中
に存在する有機物中の炭素)濃度50ppb以下、0.
2μm以上の微粒子数10個/ml以下の清浄度の高い
水をいい、「超純水」とは、25℃換算の電気抵抗率が
18.0MΩ・cm以上、TOC濃度5ppb以下、
0.05μm以上の微粒子数10個/ml以下の清浄度
の極めて高い水をいう。また、希フッ酸水溶液8のフッ
化水素酸の濃度は、0.001〜5重量%程度であるこ
とが好ましい。フッ化水素酸の濃度が0.001重量%
未満になると、被洗浄物表面からの金属不純物の除去効
果が十分に得られないからである。また、フッ化水素酸
の濃度が5重量%以上となっても、添加分に見合った金
属不純物の除去効果が得られないからである。
【0014】水素供給源5は水素ガス7を発生させ、こ
の水素ガス7は配管6を介して希フッ酸水溶液8内に送
られ、希フッ酸水溶液8内でバブリングしながら希フッ
酸水溶液8内に溶解する。ここで、溶液中の水素濃度
は、0.1〜2.0ppm程度であることが好ましい。
溶液中の水素濃度が0.1ppm以下では、希フッ酸水
溶液8内に水素ガス7を溶解させた場合の効果が充分で
ないからである。一方、溶液中の水素濃度が2.0pp
m以上では、これ以上は溶解しないからである。なお、
水素の溶解度は溶媒である超純水を冷却することにより
溶解度を高くすることができる。
【0015】水素ガス7は、水素ボンベからの水素ガス
7を用いることができるが、水の電気分解によって生成
した水素ガス7を用いるようにしてもよい。水素ガス7
を水の電気分解によって生成することにより、水素ボン
ベからの水素ガス7を用いた場合に比べ、水素ボンベの
交換の手間を軽減できるとともに、水素ボンベを保管す
るための設置場所を確保する必要がなくなる。
【0016】なお、希フッ酸水溶液8内に水素ガス7を
溶解させるには、水素ガス7を希フッ酸水溶液8内でバ
ブリングさせる方法のほか、水素ガス透過性を有する材
料からなる中空糸の表面に水素ガスを供給するととも
に、中空糸の内側に純水又は超純水を供給し、気液接触
により純水又は超純水に水素ガスを溶解する方法があ
る。また、純水又は超純水供給ポンプの上流側に水素ガ
スを供給し、ポンプ内の撹拌によって溶解させるように
してもよい。さらに、純水又は超純水にエジェクタを介
して水素ガスを溶解させるようにしてもよい。
【0017】なお、洗浄装置には、希フッ酸水溶液8内
に溶解している水素ガス7の濃度を検出する水素濃度検
出手段を設けるようにしてもよい。水素濃度検出手段
は、希フッ酸水溶液8内に溶解している水素ガス7の濃
度を検出すると、その検出結果を水素供給源5に伝え
る。水素供給源5は、水素濃度検出手段から送られた検
出結果に基づいて、配管6に送る水素ガス7の量を調節
し、希フッ酸水溶液8内に溶解している水素ガス7の濃
度を所定値に保持することができる。
【0018】洗浄対象となるSiウエハ9はホルダ10
に保持され、洗浄バス1内の希フッ酸水溶液8中に浸漬
される。すると、希フッ酸水溶液8の作用により、Si
ウエハ9上の自然酸化膜がエッチングされ、Siウエハ
9上に付着しているパーティクルがリフトオフされる。
また、超音波振動時の溶存水素ガス7によるキャビテー
ション効果とパーティクルの表面組成物の還元反応によ
り、パーティクルのSiウエハ9上への再付着を防止し
て、Siウエハ9を効果的に洗浄することが可能とな
る。
【0019】また、Siウエハ9の表面のSiのダング
リングボンドが水素終端化され、洗浄後にSiウエハ9
を希フッ酸水溶液8から引き上げ、Siウエハ9を大気
中にさらした場合においても、Siウエハ9の表面に新
たな自然酸化膜が形成されることを防止することが可能
となり、半導体製造プロセスに悪影響を及ぼすことを防
止することが可能となる。
【0020】なお、図1の実施例では、浸漬洗浄を行う
方法について説明したが、噴射洗浄を行うこともでき
る。噴射洗浄の場合、水素ガスが溶解された希フッ酸水
溶液に超音波振動を付与しながら、ノズル等から希フッ
酸水溶液を被洗浄物に噴射する。洗浄液に超音波振動を
付与するには、振動子を内蔵する洗浄液噴射ノズルによ
り超音波を照射することができる。また、振動子を内蔵
したバー型の音波トランスミッタ、もしくは振動子を石
英ロッドに取り付けた音波トランスミッタより超音波を
照射するようにしてもよい。また、水素ガスを添加した
超純水と希フッ酸水溶液を別々のノズル等から噴射し、
被洗浄物上で適切な濃度になるように液量をコントロー
ルしてもよい。また、バス内のウエハを左右・上下に揺
らしながら洗浄することも可能である。
【0021】次に、本発明の実施例について、他の洗浄
方法と比較しながら説明する。本発明に係る洗浄方法の
一例として、8インチのSiウエハを0.5重量%の希
フッ酸水溶液中に浸漬し、希フッ酸水溶液中の水素ガス
の濃度が1.6ppmとなるように水素ガスを希フッ酸
水溶液(超純水にフッ化水素酸を溶解させた水溶液)中
にバブリングさせ、出力が600Wで周波数が1MHz
の超音波振動(メガソニック)を与えながら、室温(2
5℃)で1分間洗浄を行い、洗浄後のSiウエハ上の1
枚当たりの微粒子数(個/枚、サイズが0.17μm以
上のもの)を求めた。以下、この洗浄方法をDHF/H
2 /MS洗浄(実施例1)と記す。
【0022】一方、比較例1〜3として、ブランク(未
洗浄のSiウエハ)、SC−1洗浄後のSiウエハ、H
2 /MS洗浄(純水中への水素ガスのバブリング+超音
波照射)後のSiウエハを用いた。
【0023】表1は、各洗浄方法での洗浄後の微粒子数
の算出結果を示す。
【0024】
【表1】 表1において、ブランク(比較例1)では微粒子数が1
5000個であるのに対し、10分間のSC−1洗浄
(比較例2)では47個、5分間のH2 /MS洗浄(比
較例3)では28個、1分間のDHF/H2 /MS洗浄
(実施例1)では3個である。従って、DHF/H2
MS洗浄では、短時間で基板表面の微粒子をほぼ完全に
除去することができ、DHF/H2 /MS洗浄による微
粒子の除去に対する有効性が示された。
【0025】次に、DHF/H2 /MS洗浄後のSiウ
エハの表面のSiの水素終端化の程度を調べた。一方、
比較例4、5として、ブランク(SiO2 表面。ただ
し、ブランクのSiO2 表面は、硫酸と過酸化水素とを
4:1の割合で混合させた溶液で10分間洗浄したも
の。)、DHF(0.5%の濃度の希フッ酸水溶液)洗
浄後のSiウエハを用いた。
【0026】表2は、各洗浄方法での洗浄後のSi−H
2 の伸縮振動スペクトルの吸光度を示す。なお、Si−
2 の伸縮振動スペクトルの吸光度は、FT−IR(F
ourier Transform Infrared
Spectrometer)で測定した。
【0027】
【表2】 表2において、ブランク(比較例4)では吸光度が0で
あるのに対し、1分間のDHF洗浄(比較例5)では
0.015、1分間のDHF/H2 /MS洗浄(実施例
1)では0.027である。従って、DHF/H2 /M
S洗浄では、DHF洗浄に比べて、Si−H2 の伸縮振
動スペクトルの吸光度が増加し、Siウエハの表面のS
iの水素終端化に対する有効性が示された。
【0028】次に、DHF/H2 /MS洗浄後のSiウ
エハの表面粗さを調べた。一方、比較例6、7として、
ブランク(SiO2 表面。ただし、ブランクのSiO2
表面は、硫酸と過酸化水素とを4:1の割合で混合させ
た溶液で10分間洗浄したもの。)、DHF(0.5%
の濃度の希フッ酸水溶液)洗浄後のSiウエハを用い
た。
【0029】表3は、各洗浄方法での洗浄後の表面粗さ
Ra(nm)を示す。なお、表面粗さRaは、AFM
(Atomic Force Microscope)
で測定した。
【0030】
【表3】 表3において、ブランク(比較例6)では表面粗さRa
が0.15であるのに対し、1分間のDHF洗浄(比較
例7)では0.12、1分間のDHF/H2 /MS洗浄
(実施例1)では0.09である。従って、DHF/H
2 /MS洗浄では、DHF洗浄に比べて表面粗さRaが
低減し、洗浄時にSiウエハを平坦化させる効果のある
ことが示された。
【0031】
【発明の効果】以上説明したように、本発明によれば、
水で希釈されたフッ化水素酸に水素ガスを添加した溶液
に超音波振動を与えながら接触させることにより、シリ
コン基板上に付着しているパーティクルをリフトオフさ
せ、パーティクルを基板表面から除去することが可能と
なるとともに、洗浄中に基板表面に露出したSiのダン
グリングボンドを完全に水素終端化することが可能とな
り、洗浄後にシリコン基板を大気中に放置した場合にお
いても、Siが露出した基板表面に新たな自然酸化膜が
形成されることを防止することが可能となる。
【図面の簡単な説明】
【図1】図1(a)は、本発明の一実施例に係る洗浄装
置の構成を示す側面図、図1(b)は、本発明の一実施
例に係る洗浄装置の構成を示す上面図である。
【符号の説明】
1、2 洗浄バス 3 冷却水 4 超音波振動発生手段 5 水素供給源 6 配管 7 水素ガス 8 希フッ酸水溶液 9 ウエハ 10 ホルダ
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 泉里 神奈川県厚木市岡田2丁目9番8号 野村 マイクロ・サイエンス株式会社内 Fターム(参考) 3B201 AA03 AB01 AB44 BB02 BB85 BB93 BB96 BB98 CB01 CC21 CD42 CD43

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 水素ガスを溶解させたフッ化水素酸の水
    溶液を、超音波振動を与えながら、被洗浄物と接触させ
    ることを特徴とする洗浄方法。
  2. 【請求項2】 前記フッ化水素酸水溶液の濃度が0.0
    01〜5重量%である請求項1記載の洗浄方法。
  3. 【請求項3】 前記水溶液中の水素濃度が0.1〜2.
    0ppmである請求項1又は2記載の洗浄方法。
  4. 【請求項4】 前記超音波振動の周波数が20kHZ〜
    10MHzであることを特徴とする請求項1から3のい
    ずれか1項記載の洗浄方法。
  5. 【請求項5】 フッ化水素酸の水溶液と被洗浄物とを接
    触させるフッ化水素酸水溶液接触手段と、 水素ガスを所定濃度となるように前記水溶液に溶解させ
    る水素ガス添加手段と、 所定の周波数の超音波振動を前記水溶液に与える超音波
    振動発生手段とを備えることを特徴とする洗浄装置。
JP11232760A 1999-08-19 1999-08-19 洗浄方法及び洗浄装置 Pending JP2001054768A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11232760A JP2001054768A (ja) 1999-08-19 1999-08-19 洗浄方法及び洗浄装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11232760A JP2001054768A (ja) 1999-08-19 1999-08-19 洗浄方法及び洗浄装置

Publications (1)

Publication Number Publication Date
JP2001054768A true JP2001054768A (ja) 2001-02-27

Family

ID=16944331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11232760A Pending JP2001054768A (ja) 1999-08-19 1999-08-19 洗浄方法及び洗浄装置

Country Status (1)

Country Link
JP (1) JP2001054768A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043751A1 (en) * 2001-11-21 2003-05-30 Agency For Science, Technology And Research An apparatus and method for cleaning glass substrates using a cool hydrogen flame
KR100475774B1 (ko) * 2002-11-27 2005-03-10 (주)울텍 초음파를 이용한 기판 표면에 생기는 기포 제거 방법 및장치
KR100527247B1 (ko) * 2004-03-24 2005-11-09 (주)울텍 습식 식각 장치
WO2007034534A1 (ja) * 2005-09-20 2007-03-29 Tadahiro Ohmi 半導体装置の製造方法及び半導体製造装置
JP2007311536A (ja) * 2006-05-18 2007-11-29 Covalent Materials Corp 半導体装置の製造方法、半導体基板の製造方法および半導体基板
CN100396390C (zh) * 2003-10-10 2008-06-25 财团法人工业技术研究院 使用气泡的基材表面处理方法及设备
CN110404897A (zh) * 2019-07-05 2019-11-05 北京无线电计量测试研究所 一种氢原子频标电离泡老化方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043751A1 (en) * 2001-11-21 2003-05-30 Agency For Science, Technology And Research An apparatus and method for cleaning glass substrates using a cool hydrogen flame
KR100475774B1 (ko) * 2002-11-27 2005-03-10 (주)울텍 초음파를 이용한 기판 표면에 생기는 기포 제거 방법 및장치
CN100396390C (zh) * 2003-10-10 2008-06-25 财团法人工业技术研究院 使用气泡的基材表面处理方法及设备
KR100527247B1 (ko) * 2004-03-24 2005-11-09 (주)울텍 습식 식각 장치
WO2007034534A1 (ja) * 2005-09-20 2007-03-29 Tadahiro Ohmi 半導体装置の製造方法及び半導体製造装置
US8030182B2 (en) 2005-09-20 2011-10-04 Tadahiro Ohmi Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP2007311536A (ja) * 2006-05-18 2007-11-29 Covalent Materials Corp 半導体装置の製造方法、半導体基板の製造方法および半導体基板
CN110404897A (zh) * 2019-07-05 2019-11-05 北京无线电计量测试研究所 一种氢原子频标电离泡老化方法

Similar Documents

Publication Publication Date Title
JP3351924B2 (ja) 洗浄方法
JP3690619B2 (ja) 洗浄方法及び洗浄装置
JP5019370B2 (ja) 基板の洗浄方法および洗浄装置
WO2021043167A1 (zh) 一种碳化硅单晶抛光片衬底的最终清洗方法
US6167891B1 (en) Temperature controlled degassification of deionized water for megasonic cleaning of semiconductor wafers
US6058945A (en) Cleaning methods of porous surface and semiconductor surface
CN101379597B (zh) 半导体装置的制造方法以及半导体表面的微粗糙度减低方法
JP4001662B2 (ja) シリコンの洗浄方法および多結晶シリコンの作製方法
KR100370312B1 (ko) 다공질표면및반도체표면의세정방법
US6295998B1 (en) Temperature controlled gassification of deionized water for megasonic cleaning of semiconductor wafers
JPH11340184A (ja) 半導体装置の製造方法
EP0936268B1 (en) Cleaning solution for electromaterials and method for using the same
US7682457B2 (en) Frontside structure damage protected megasonics clean
JP3940742B2 (ja) 洗浄方法
JP2008182188A (ja) 電子材料用洗浄液および洗浄方法
JPH08195369A (ja) 基板の洗浄方法
JP4367587B2 (ja) 洗浄方法
JP3192610B2 (ja) 多孔質表面の洗浄方法、半導体表面の洗浄方法および半導体基体の製造方法
JP2002261062A (ja) 半導体ウェハ上の粒子を除去する方法及び装置
JP2001054768A (ja) 洗浄方法及び洗浄装置
JPH1022246A (ja) 洗浄方法
JP2001345301A (ja) 電子材料の洗浄方法
JPS6072233A (ja) 半導体ウエ−ハの洗浄装置
JP2004296463A (ja) 洗浄方法および洗浄装置
JP4683314B2 (ja) 半導体用シリコン基板の洗浄方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623