JP2001049351A - Production of grain-oriented silicon steel sheet high in magnetic flux density - Google Patents

Production of grain-oriented silicon steel sheet high in magnetic flux density

Info

Publication number
JP2001049351A
JP2001049351A JP22733699A JP22733699A JP2001049351A JP 2001049351 A JP2001049351 A JP 2001049351A JP 22733699 A JP22733699 A JP 22733699A JP 22733699 A JP22733699 A JP 22733699A JP 2001049351 A JP2001049351 A JP 2001049351A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
magnetic flux
flux density
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22733699A
Other languages
Japanese (ja)
Other versions
JP4205816B2 (en
Inventor
Tomoji Kumano
知二 熊野
Nobunori Fujii
宣憲 藤井
Takashi Mogi
尚 茂木
Yoshifumi Ohata
喜史 大畑
Yoshiyuki Ushigami
義行 牛神
Katsuro Kuroki
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP22733699A priority Critical patent/JP4205816B2/en
Publication of JP2001049351A publication Critical patent/JP2001049351A/en
Application granted granted Critical
Publication of JP4205816B2 publication Critical patent/JP4205816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a grain-oriented silicon steel sheet high in magnetic flux density and, e.g. used for the iron core of an electric equipment. SOLUTION: In the method for producing a grain-oriented silicon steel sheet in which a silicon steel slab contg., by weight, 0.020 to 0.075% C, 2.5 to 5.0% Si, 0.05 to 0.45% Mn, <=0.015% S and/or Se, 0.01 to 0.05% acid soluble Al, and the balance N, Sn, Cr, Cu or the like by prescribed amounts is heated to <=1,280 deg.C and is thereafter hot-rolled, the hot rolled sheet is annealed, is subsequently subjected to cold rolling for one time or >= two times including process annealing in such a manner that the final cold rolling ratio is controlled to >=80% and is then subjected to decarburizing annealing, nitriding treatment and final annealing, the average grain diameter D in the steel sheet after the decarburizing annealing is controlled to the range of 23 to 40 μm, the content (ppm) of nitrogen in the steel sheet after the nitriding is controlled so as to satisfy N (ppm) >=11D-40 and 280-4R<=N (ppm)<=480-13R, and moreover, the temp. rising rate R at least in the range of 1,000 to 1,150 deg.C in the temp. rising stage in the finish annealing is controlled to the range of 3 to 10 deg.C/h.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心等
に用いる一方向性電磁鋼板の製造方法に関するもので、
特に、磁束密度の高い一方向性電磁鋼板の製造を可能に
する製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet used for an iron core of electric equipment and the like.
In particular, the present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、鋼板面が{11
0}面で、圧延方向が<100>軸を有する、いわゆる
ゴス方位(ミラー指数で{110}<001>方位を表
す)を持つ結晶粒から構成されており、軟磁性材料とし
て、変圧器および発電器用の鉄心に使用されている。こ
の電磁鋼板は、磁気特性として磁化特性と鉄損特性が良
好でなければならない。
2. Description of the Related Art A grain-oriented electrical steel sheet has a steel sheet surface of $ 11.
It is composed of crystal grains having a so-called Goss orientation (representing a {110} <001> orientation by a Miller index) having a <100> axis in the rolling direction on the 0% plane. Used in cores for generators. The magnetic steel sheet must have good magnetic properties and iron loss properties as magnetic properties.

【0003】磁化特性の良否は、かけられた一定の磁場
中で、鉄心内に誘起される磁束密度の高低で決まり、磁
束密度の高い電磁鋼板を用いると、鉄芯を小型化できる
という利点がある。磁束密度の高さは、鋼板における結
晶粒の方位を、{110}<001>に高度に揃えるこ
とによって達成できる。鉄損は、鉄心に所定の交流磁場
を与えた場合に、熱エネルギーとして消費される電力損
失であり、その良否に対しては、磁束密度、板厚、被膜
張力、不純物量、比抵抗、結晶粒の大きさ等が影響す
る。
[0003] The quality of the magnetization characteristics is determined by the level of the magnetic flux density induced in the iron core in a given applied magnetic field, and the use of an electromagnetic steel sheet having a high magnetic flux density has the advantage that the iron core can be reduced in size. is there. The height of the magnetic flux density can be achieved by highly aligning the orientation of crystal grains in the steel sheet to {110} <001>. Iron loss is a power loss that is consumed as heat energy when a predetermined AC magnetic field is applied to the iron core.The quality of the iron loss is determined by the magnetic flux density, plate thickness, coating tension, impurity amount, specific resistance, and crystal. The size of the grains and the like have an effect.

【0004】磁束密度の高い電磁鋼板では、電気機器の
鉄心を小さくでき、また、鉄損も小さくなるので望まし
く、当該技術分野では、できる限り磁束密度の高い電磁
鋼板を、安いコストで製造する方法の開発が課題であ
る。ところで、現在、工業生産に用いられている代表的
な一方向性電磁鋼板の製造方法は、3種あるが、各々に
おいて、長所および短所がある。
It is desirable to use an electromagnetic steel sheet having a high magnetic flux density because the iron core of electrical equipment can be reduced and iron loss is also reduced. In the art, a method of manufacturing an electromagnetic steel sheet having a magnetic flux density as high as possible at low cost is desired. Development is an issue. At present, there are three types of typical methods for manufacturing a grain-oriented electrical steel sheet used for industrial production, and each has its advantages and disadvantages.

【0005】第一の技術は、F.M.Littmamn
nが特公昭30−3651号公報に開示した、MnSを
用いる2回冷間圧延法である。しかし、この方法で得た
鋼板においては、その二次再結晶粒は、安定して発達し
たものであるが、高い磁束密度が得られていない。第二
の技術は、田口等が特公昭40−15644号公報に開
示した、AlN+MnSを用い最終冷間圧延率を80%
以上の強圧下率とする技術である。この技術において
は、高い磁束密度は得られるが、工業生産に際して、製
造条件の厳密なコントロ−ルが要求される。
The first technique is described in F. M. Littmamn
n is a double cold rolling method using MnS disclosed in Japanese Patent Publication No. 30-3651. However, in the steel sheet obtained by this method, although the secondary recrystallized grains are stably developed, a high magnetic flux density is not obtained. A second technology is disclosed in Japanese Patent Publication No. 40-15644 by Taguchi et al., Which uses AlN + MnS to reduce the final cold rolling reduction to 80%.
This is a technique for setting the above-mentioned strong reduction rate. In this technique, a high magnetic flux density can be obtained, but strict control of production conditions is required in industrial production.

【0006】第三の技術は、今中等が特公昭51−13
469号公報に開示した、MnS(および/またはMn
Se)+Sbを含有する珪素鋼を2回冷間圧延法によっ
て製造する技術である。この技術においては、比較的に
高い磁束密度が得られている。上記3種の技術において
は、共通して次のような問題がある。即ち、上記3種の
技術は、いずれもが、熱間圧延に先立つスラブ加熱を、
1250℃超、実際には、1300℃以上の極めて高い
温度で行ない、この高温スラブ加熱によって、粗大に析
出している析出物を一旦固溶させ、その後の熱間圧延中
に、または、熱処理中に、析出物を微細かつ均一に析出
させている。スラブ加熱温度を上げること(高温スラブ
加熱法)は、スラブ加熱時の使用エネルギーの増大、設
備損傷率の増大等の他、材質的には、スラブの結晶組織
に起因する線状の二次再結晶不良の発生等の問題を抱え
ていて、特に、薄手材、高Si材において、この問題が
顕著になってくる。
The third technology is described in Japanese Patent Publication No. 51-13 / 1972.
No. 469, MnS (and / or MnS)
This is a technique for producing a silicon steel containing Se) + Sb twice by cold rolling. In this technique, a relatively high magnetic flux density is obtained. The above three techniques have the following problems in common. That is, all of the above three techniques use slab heating prior to hot rolling,
The temperature is higher than 1250 ° C., actually 1300 ° C. or higher. By this high-temperature slab heating, the coarsely precipitated precipitates are once dissolved, and during the subsequent hot rolling or during the heat treatment. In addition, precipitates are finely and uniformly deposited. Increasing the slab heating temperature (high-temperature slab heating method) involves increasing the energy used during slab heating, increasing the damage rate to equipment, etc. In addition, in terms of material, the linear secondary reheating caused by the crystal structure of the slab There are problems such as the occurrence of crystal defects, and this problem is particularly noticeable in thin materials and high Si materials.

【0007】このような高温スラブ加熱法に対し、特開
昭62−40315号公報および特開平5−11282
7号公報には、二次再結晶に必要なインヒビターを、脱
炭焼鈍(一次再結晶)完了以降から仕上焼鈍における二
次再結晶発現以前までの間で、鋼中に造り込む技術が開
示されている。その手段は、鋼中にNを侵入させること
によって、インヒビターとして機能する(Al,Si)
Nを鋼中に形成するものである。
For such a high-temperature slab heating method, Japanese Patent Application Laid-Open No. 62-40315 and Japanese Patent Application Laid-Open No. 5-11282
No. 7 discloses a technique in which an inhibitor required for secondary recrystallization is formed in steel from the time after the completion of decarburizing annealing (primary recrystallization) to the time before the appearance of secondary recrystallization in finish annealing. ing. The means functions as an inhibitor by allowing N to penetrate into the steel (Al, Si)
N is formed in steel.

【0008】鋼中にNを侵入させる手段としては、仕上
焼鈍の昇温過程において、雰囲気ガスからNを侵入させ
る手段、もしくは、脱炭焼鈍の後段領域または脱炭焼鈍
完了後のストリツプを、連続ラインで、NH3 等の雰囲
気ガスを用いて窒化する手段がある。これらの方法によ
って、磁気特性の良好な方向性電磁鋼板が得られている
が、更なる高品質の一方向性電磁鋼板が望まれていると
ころである。
As means for injecting N into steel, means for injecting N from the atmosphere gas during the temperature rise process of the finish annealing, or a post-stage region of the decarburizing annealing or a strip after the completion of the decarburizing annealing may be used continuously. There is a means for nitriding using an atmospheric gas such as NH 3 on the line. Although grain-oriented electrical steel sheets having good magnetic properties have been obtained by these methods, even higher-quality grain-oriented electrical steel sheets have been desired.

【0009】[0009]

【発明が解決しようとする課題】一方向性電磁鋼板の品
質は主として鉄損特性で決まる。この鉄損を低くする手
段として、高磁束密度化は勿論であるが、高Si化、二
次再結晶粒の小粒化等の冶金的方法の他に、人為的に磁
区を制御する物理的、機械的、あるいは化学的方法が実
用化されていることは周知の如くである。
The quality of a grain-oriented electrical steel sheet is mainly determined by the iron loss characteristics. As a means of reducing the iron loss, not only high magnetic flux density, but also high metallurgical methods such as high Si, small secondary recrystallized grains, etc. It is well known that mechanical or chemical methods have been put to practical use.

【0010】超低鉄損特性の一方向性電磁鋼板を得るに
は、この冶金的方法と人為的磁区制御法を併用する必要
があるが、いずれにしても、高磁束密度化が大前提とな
る。低温スラブ加熱による一方向性電磁鋼板の製造方法
において高磁束密度の鋼板を得るには、脱炭焼鈍後の一
次再結晶粒の粒径、および、脱炭焼鈍後の鋼板中の窒素
量、並びに、仕上焼鈍条件の適切な組み合わせが重要で
ある。
It is necessary to use both the metallurgical method and the artificial magnetic domain control method in order to obtain a grain-oriented electrical steel sheet having ultra-low iron loss characteristics. Become. In order to obtain a steel sheet having a high magnetic flux density in the method for producing a grain-oriented electrical steel sheet by low-temperature slab heating, the grain size of primary recrystallized grains after decarburization annealing, and the amount of nitrogen in the steel sheet after decarburization annealing, and An appropriate combination of the finish annealing conditions is important.

【0011】特開平2−259020公報では、脱炭焼
鈍板の平均粒径と磁束密度B8の関係を開示している。
それによると、磁束密度B8は結晶粒径が大きくなるに
つれて高くなるが、一定の大きさ以上では二次再結晶不
良となって、急激にB8が低下している。また、特開平
2−77525公報には、脱炭焼鈍をした後、ストリッ
プを走行せしめる状態下で窒化処理をする方法が開示さ
れている。この方法により、窒化が容易になり、その量
のコントロ−ルが可能になった。
Japanese Patent Application Laid-Open No. 2-259020 discloses the relationship between the average particle size of the decarburized annealed sheet and the magnetic flux density B8.
According to this, the magnetic flux density B8 increases as the crystal grain size increases, but if it exceeds a certain size, secondary recrystallization failure occurs and B8 sharply decreases. Further, Japanese Patent Application Laid-Open No. 2-77525 discloses a method of performing a nitriding treatment in a state in which a strip is run after decarburizing annealing. This method facilitated nitridation and allowed for control of that amount.

【0012】さらに、特開平2−258929号公報に
は、同様なプロセスにおいて、仕上焼鈍の昇温過程にお
ける1000℃〜1100℃の温度域で、二次再結晶粒
を事実上完全に成長させることで高磁束密度を得る方法
が開示され、また、特開平7−310125号公報に
は、仕上焼鈍における昇温速度とその雰囲気ガスの窒素
分圧との間に一定の関係を設定することで、高磁束密度
の電磁鋼板を得る方法が開示されている。
Furthermore, Japanese Patent Application Laid-Open No. 2-258929 discloses that in a similar process, the secondary recrystallized grains can be grown substantially completely in the temperature range of 1000 ° C. to 1100 ° C. in the temperature rise process of the finish annealing. A method for obtaining a high magnetic flux density is disclosed in Japanese Patent Application Laid-Open No. Hei 7-310125. By setting a constant relationship between the temperature rise rate in finish annealing and the nitrogen partial pressure of the atmosphere gas, A method for obtaining a magnetic steel sheet having a high magnetic flux density is disclosed.

【0013】本発明は、これらの先行技術を基に検討を
行い、更なる高磁束密度の一方向性電磁鋼板を得る方法
を提供するものである。
The present invention has been studied based on these prior arts and provides a method for obtaining a further high magnetic flux density unidirectional magnetic steel sheet.

【0014】[0014]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量%で、C:0.020〜0.075%、S
i:2.5〜5.0%、Mn:0.05〜0.45%、
Sおよび/またはSe:0.015%以下、酸可溶性A
l:0.01〜0.05%、N:0.0035〜0.0
12%、Sn:0.02〜0.15%、および、Cr:
0.03〜0.20%、必要に応じてCu:0.03〜
0.30%を含有し、残部Feおよび不可避的不純物か
らなる電磁鋼スラブを、1280℃以下の温度に加熱し
た後、熱間圧延し、熱延板を焼鈍し、その後、最終圧延
率80%以上の1回または中間焼鈍を介挿する2回以上
の冷間圧延をし、次いで、脱炭焼鈍、窒化処理、仕上焼
鈍をする一方向性電磁鋼板の製造方法において、脱炭焼
鈍後の鋼板における結晶粒の平均粒径Dを23〜40μ
mの範囲に調整し、窒化後の鋼板中の窒素量(ppm)
を、N(ppm)≧11D−40、および、280−4
R≦N(ppm)≦480−13R、を満たすように調
整し、かつ、仕上焼鈍の昇温過程における少なくとも1
000〜1150℃間の昇温速度Rを3〜10℃/hの
範囲に調整することを特徴とする磁束密度の高い一方向
性電磁鋼板の製造方法である。
The gist of the present invention is that C: 0.020 to 0.075% by weight and S:
i: 2.5 to 5.0%, Mn: 0.05 to 0.45%,
S and / or Se: 0.015% or less, acid soluble A
l: 0.01-0.05%, N: 0.0035-0.0
12%, Sn: 0.02 to 0.15%, and Cr:
0.03 to 0.20%, if necessary Cu: 0.03 to
An electromagnetic steel slab containing 0.30%, the balance being Fe and unavoidable impurities, is heated to a temperature of 1280 ° C. or lower, then hot-rolled, annealed to a hot-rolled sheet, and then subjected to a final rolling reduction of 80%. In the method for producing a unidirectional magnetic steel sheet that is subjected to the above-mentioned one or two or more cold rollings with intermediate annealing, and then decarburizing annealing, nitriding treatment and finish annealing, the steel sheet after decarburizing annealing is used. The average grain size D of the crystal grains in
m, the amount of nitrogen in the steel sheet after nitriding (ppm)
With N (ppm) ≧ 11D-40 and 280-4
R ≦ N (ppm) ≦ 480-13R, and at least one in the temperature rise process of the finish annealing.
A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density, wherein a heating rate R between 000 and 1150 ° C. is adjusted within a range of 3 to 10 ° C./h.

【0015】また、本発明は、仕上焼鈍の昇温過程にお
ける700℃〜750℃までの雰囲気ガスの酸化ポテン
シャルPH2 O/PH2 を0.1〜0.5とし、かつ、
同昇温過程における900℃以上の雰囲気ガスの酸化ポ
テンシャルPH2 O/PH2を0.02以下として仕上
焼鈍を行うことも要旨とする。
Further, according to the present invention, the oxidation potential PH 2 O / PH 2 of the atmosphere gas from 700 ° C. to 750 ° C. in the temperature raising process of the finish annealing is set to 0.1 to 0.5, and
It is also essential that the finish annealing is performed by setting the oxidation potential PH 2 O / PH 2 of the atmosphere gas at 900 ° C. or higher in the temperature raising process to 0.02 or lower.

【0016】[0016]

【発明の実施の形態】本発明者らは、低温スラブ加熱に
よる一方向性電磁鋼板の製造方法において、高磁束密度
化は、一次再結晶粒の粒径を大きくして磁束密度の向
上を図り、仕上焼鈍の昇温過程における二次再結晶温
度域を徐加熱にして、二次再結晶をより確実に行わせ、
前記2つにともなう相対的なインヒビター強度の低下
を補うべく、窒化量を増加させる、という組み合わせを
ベースとして、一定の条件下で達成されると考えるに至
った。以下、本発明を実験結果に基づいて詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a grain-oriented electrical steel sheet by low-temperature slab heating, the present inventors have attempted to increase the magnetic flux density by increasing the grain size of primary recrystallized grains to improve the magnetic flux density. , By gradually heating the secondary recrystallization temperature range in the temperature rise process of finish annealing, to more reliably perform the secondary recrystallization,
It has been concluded that this can be achieved under certain conditions based on the combination of increasing the amount of nitriding to compensate for the relative decrease in inhibitor strength accompanying the above two. Hereinafter, the present invention will be described in detail based on experimental results.

【0017】重量%で、C:0.06%、Si:3.4
5%、Mn:0.10%、S:0.008%、酸可溶性
Al:0.028%、Cr:0.12%、P:0.02
%、Sn:0.05%、N:0.008%を含んだ電磁
鋼スラブを、1150℃に加熱後、熱間圧延し、2.3
mm厚の熱延板を製造した。この熱延板を、1120℃
に加熱して焼鈍し、焼鈍加熱の後、900℃までの冷却
速度を5〜10℃/秒として冷却し、900℃に短時間
保持した後、急冷した。次いで、酸洗し、0.23mm
厚の冷延板に冷間圧延した。
In weight%, C: 0.06%, Si: 3.4
5%, Mn: 0.10%, S: 0.008%, acid-soluble Al: 0.028%, Cr: 0.12%, P: 0.02
%, Sn: 0.05%, and N: 0.008% were heated to 1150 ° C. and then hot-rolled to 2.3%.
A hot-rolled sheet having a thickness of mm was manufactured. This hot rolled sheet is 1120 ° C
Then, after annealing and heating, cooling was performed at a cooling rate of 5 to 10 ° C./sec to 900 ° C., and the temperature was kept at 900 ° C. for a short time, followed by rapid cooling. Then, pickling, 0.23mm
Cold rolled into thick cold rolled sheet.

【0018】この冷延板を、湿水素、窒素雰囲気中で、
焼鈍温度を変て脱炭焼鈍し、一次再結晶粒の平均粒径
を、ほぼ22〜40μm(画像処理測定)に調整した。
この後、窒化焼鈍を、750℃で30秒間、水素、窒素
およびアンモニアの混合ガス中で行った。この時、アン
モニアの導入量を変えて、鋼板中の窒素量を、ほぼ17
0〜420ppmに調整した。
This cold rolled sheet is placed in an atmosphere of wet hydrogen and nitrogen,
The decarburizing annealing was performed while changing the annealing temperature, and the average particle size of the primary recrystallized grains was adjusted to approximately 22 to 40 μm (image processing measurement).
Thereafter, nitriding annealing was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia. At this time, the amount of nitrogen introduced into the steel sheet was changed to about 17 by changing the amount of introduced ammonia.
It was adjusted to 0 to 420 ppm.

【0019】次いで、MgO、TiO2 を主成分とする
焼鈍分離剤を塗布し、1200℃で20時間の仕上焼鈍
を行った。なお、仕上焼鈍の昇温過程において、900
℃までの昇温速度は15℃/hとし、900℃から12
00℃までの昇温速度は10℃/hとした。雰囲気ガス
は、H2 :75%とN2 :25%の混合ガスとした。仕
上焼鈍後、鋼板を酸洗して被膜を除去し、二次再結晶組
織の発達の状態を観察した。結果を図1に示す。
Next, an annealing separator containing MgO and TiO 2 as main components was applied and finish annealing was performed at 1200 ° C. for 20 hours. In addition, during the temperature rise process of the finish annealing, 900
The rate of temperature rise to 15 ° C is 15 ° C / h,
The heating rate up to 00 ° C was 10 ° C / h. The atmosphere gas was a mixed gas of H 2 : 75% and N 2 : 25%. After the finish annealing, the steel sheet was pickled to remove the coating, and the state of development of the secondary recrystallization structure was observed. The results are shown in FIG.

【0020】図1から、窒化後の鋼板中の窒素量が、N
(ppm)≧11D−40の範囲内にあると、良好な二
次再結晶組織が得られていることが判る。次に、同一成
分組成の電磁鋼スラブを用い、同様なプロセス条件で実
験を行った。熱延板を、1120℃で2.5分、焼鈍
し、900℃に2分保定した後、急冷した。次いで、酸
洗し、0.23mm厚の冷延板に冷間圧延した。この冷
延板を、湿水素、窒素雰囲気中で、脱炭焼鈍温度を変え
て焼鈍し、一次再結晶粒の平均粒径を、ほぼ23〜40
μm(画像処理測定)に調整した。この後、窒化焼鈍
を、750℃で30秒間、水素、窒素およびアンモニア
の混合ガス中で行った。この時、アンモニアの導入量を
変えて、鋼板中の窒素量を、ほぼ200〜440ppm
の範囲に調整した。次いで、MgO、TiO2 を主成分
とする焼鈍分離剤を塗布し、1200℃、20時間の仕
上焼鈍を行った。
FIG. 1 shows that the amount of nitrogen in the steel sheet after nitriding is N
(Ppm) ≧ 11D-40 indicates that a good secondary recrystallized structure is obtained. Next, an experiment was performed using electromagnetic steel slabs having the same component composition under the same process conditions. The hot-rolled sheet was annealed at 1120 ° C. for 2.5 minutes, kept at 900 ° C. for 2 minutes, and then quenched. Next, it was pickled and cold rolled into a cold rolled sheet having a thickness of 0.23 mm. This cold-rolled sheet was annealed in a wet hydrogen and nitrogen atmosphere while changing the decarburization annealing temperature, and the average particle size of the primary recrystallized grains was approximately 23 to 40.
It was adjusted to μm (image processing measurement). Thereafter, nitriding annealing was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia. At this time, the amount of nitrogen introduced in the steel sheet was changed to approximately 200 to 440 ppm by changing the amount of introduced ammonia.
Was adjusted to the range. Next, an annealing separator containing MgO and TiO 2 as main components was applied, and finish annealing was performed at 1200 ° C. for 20 hours.

【0021】この仕上焼鈍の昇温過程において、900
℃までの昇温速度を15℃/hとし、900℃から12
00℃までの昇温速度を、3℃/h、5℃/h、7.5
℃/h、および、10℃/hの4条件とした。また、雰
囲気ガスは、H2 :75%とN2 :25%の混合ガスと
し、仕上焼鈍の昇温過程において、750℃までの雰囲
気ガスの酸化ポテンシャルPH2 O/PH2 を、ほぼ
0.3とし、750〜900℃までの同PH2 O/PH
2 を、ほぼ0.02とし、さらに、900℃以上の同P
2 O/PH2 を、0.008〜0.01に調整した。
図2に、窒化後の鋼板中の窒素量(ppm)、昇温速度
(R℃/h)および磁束密度(B8(T))との関係を
示す。
In the temperature rise process of the finish annealing, 900
The rate of temperature rise to 15 ° C is 15 ° C / h,
The rate of temperature rise up to 00 ° C. was 3 ° C./h, 5 ° C./h, 7.5
4 ° C./h and 10 ° C./h. The atmosphere gas was a mixed gas of H 2 : 75% and N 2 : 25%, and the oxidation potential PH 2 O / PH 2 of the atmosphere gas up to 750 ° C. in the course of finish annealing was increased to approximately 0. 3 and the same PH 2 O / PH up to 750 to 900 ° C
2 is set to approximately 0.02, and the P
The H 2 O / PH 2, was adjusted to 0.008 to 0.01.
FIG. 2 shows the relationship among the amount of nitrogen (ppm) in the steel sheet after nitriding, the rate of temperature rise (R ° C / h), and the magnetic flux density (B8 (T)).

【0022】図2から、昇温速度3℃/hから10℃/
hの範囲においては、窒化後の鋼板中の窒素量Nが28
0−4R≦N≦480−13Rの範囲内にあると、非常
に高い磁束密度を有する鋼板が得られることが判る。次
に、本発明における電磁鋼スラブの成分組成に係る限定
理由を、以下に説明する。
From FIG. 2, it can be seen that the heating rate is 3 ° C./h to 10 ° C./h.
In the range of h, the nitrogen amount N in the steel sheet after nitriding is 28
It can be seen that a steel sheet having a very high magnetic flux density can be obtained when it is within the range of 0-4R ≦ N ≦ 480-13R. Next, the reasons for limiting the component composition of the electromagnetic steel slab in the present invention will be described below.

【0023】Cは、0.020%未満になると、二次再
結晶が不安定になり、二次再結晶した場合でも、製品の
磁束密度は、B8で1.80T程度と低いものになる。
一方、0.075%を超えて多くなりすぎると、脱炭焼
鈍時間が長くなり、生産性を損なう。好ましくは、0.
04〜0.06%がよい。Siは、2.5%未満になる
と低鉄損を得難く、一方、5.0%を超えて多くなりす
ぎると、材料の冷延性に問題が生じる。
When C is less than 0.020%, the secondary recrystallization becomes unstable, and the magnetic flux density of the product becomes as low as about 1.80 T at B8 even when the secondary recrystallization occurs.
On the other hand, when the content exceeds 0.075%, the decarburization annealing time becomes long, and the productivity is impaired. Preferably, 0.
04-0.06% is good. If the content of Si is less than 2.5%, it is difficult to obtain a low iron loss. On the other hand, if the content of Si exceeds 5.0%, a problem occurs in the cold rolling property of the material.

【0024】本発明における電磁鋼スラブの成分組成に
おける特徴の一つは、Sおよび/またはSeを0.01
5%以下にする点にある。周知の如く、SはMnSを形
成し、SeはMnSeを形成して、粒成長を抑制する作
用をする。本発明においては、二次再結晶を発現させる
に必要なインヒビターは脱炭焼鈍以降の工程で造り込む
ことを特徴としており、冷間圧延以前の工程で微細な析
出物が分散することは、一次再結晶粒の粒径を調整して
高磁束密度および低鉄損を目指す本発明においては好ま
しくない。従って、Sおよび/またはSeは0.015
%以下と限定している。なお、Sおよび/またはSeを
少なくすることは、熱間圧延時の耳割れの低減にも大き
な効果がある。
One of the characteristics of the component composition of the electromagnetic steel slab in the present invention is that S and / or Se are 0.01%.
The point is to make it 5% or less. As is well known, S forms MnS, and Se forms MnSe, and acts to suppress grain growth. In the present invention, the inhibitor required to develop secondary recrystallization is characterized in that it is built in the steps after decarburizing annealing, and the dispersion of fine precipitates in the step before cold rolling is the primary In the present invention, which aims at high magnetic flux density and low iron loss by adjusting the particle size of recrystallized grains, it is not preferable. Therefore, S and / or Se are 0.015
% Or less. It should be noted that reducing S and / or Se also has a great effect on reducing edge cracks during hot rolling.

【0025】Alは、Nと結合してAlNを形成する
が、本発明においては、後工程、即ち、一次再結晶完了
後に鋼板を窒化することにより、(Al,Si)Nを形
成せしめることを必須としているから、フリーのAlが
一定量必要である。そのために、Alを酸可溶性Alと
して、0.01〜0.05%添加する。Nは、0.00
35〜0.012%にする必要がある。0.012%を
超えると、ブリスターと呼ばれる鋼板表面の膨れが発生
する。また、一次再結晶組織の調整が困難になる。下限
は0.0035%がよい。この値未満になると二次再結
晶粒を発達させるのが困難になるからである。
Although Al combines with N to form AlN, in the present invention, it is necessary to form (Al, Si) N by nitriding the steel sheet after the completion of the primary recrystallization. Since it is essential, a certain amount of free Al is required. For this purpose, 0.01 to 0.05% of Al is added as acid-soluble Al. N is 0.00
It needs to be 35 to 0.012%. If it exceeds 0.012%, blisters on the steel sheet surface called blisters occur. In addition, it becomes difficult to adjust the primary recrystallization structure. The lower limit is preferably 0.0035%. If the value is less than this value, it becomes difficult to develop secondary recrystallized grains.

【0026】Mnは、その含有量が少なすぎると二次再
結晶が不安定となり、一方、多すぎると高い磁束密度を
持つ製品を得難くなる。適正な含有量は、0.05〜
0.45%である。Snは、脱炭焼鈍後の集合組織を改
善し、ひいては、二次再結晶粒を改善し、被膜の安定化
と相俟って、鉄損改善に効果が大きい元素である。Sn
の量は、0.02〜0.15%であるが、0.02%よ
り少ないと効果が弱く、一方、0.15%より多いと窒
化が困難になり、二次再結晶粒が発達しなくなる。好ま
しくは、0.03〜0.08%がよい。
If the content of Mn is too small, the secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The appropriate content is 0.05-
0.45%. Sn is an element that improves the texture after decarburizing annealing, and further improves secondary recrystallized grains, and is highly effective in improving iron loss in combination with stabilization of the coating film. Sn
The amount is 0.02 to 0.15%, but if it is less than 0.02%, the effect is weak, while if it is more than 0.15%, nitriding becomes difficult, and secondary recrystallized grains develop. Disappears. Preferably, 0.03 to 0.08% is good.

【0027】Crは、脱炭焼鈍時の酸化を促進する元素
であるが、Snとの複合添加で、仕上焼鈍後の被膜形成
を安定化する。Crの適量は、0.03〜0.20%で
あるが、0.03%未満では上記効果が得られなく、ま
た、0.20%を超えて添加しても合金コストが上昇す
るだけで効果はない。好ましくは0.05〜0.15%
がよい。
Cr is an element that promotes oxidation during decarburization annealing, but stabilizes film formation after finish annealing by adding it in combination with Sn. An appropriate amount of Cr is 0.03 to 0.20%. However, if the amount is less than 0.03%, the above effect cannot be obtained. No effect. Preferably 0.05 to 0.15%
Is good.

【0028】Cuは、高磁束密度を得るのに効果がある
元素である。その適量は0.03〜0.30%である。
この他、微量のP,Niを含むことは、本発明の主旨を
損なわない。次に、本発明の製造プロセスについて説明
する。電磁鋼スラブは、転炉または電気炉等の溶解炉で
溶製し、必要に応じて真空脱ガス処理し、次いで、連続
鋳造によって、または、造塊後分解圧延することによっ
て得られる。その後、電磁鋼スラブは、1280℃以下
の温度で加熱された後、所定板厚に熱間圧延される。加
熱温度が、1280℃より高いと、脱炭焼鈍時の一次再
結晶粒の粒径調整が困難になり、高磁束密度の電磁鋼板
が得られ難い。
Cu is an element effective for obtaining a high magnetic flux density. The appropriate amount is 0.03 to 0.30%.
In addition, the inclusion of trace amounts of P and Ni does not impair the gist of the present invention. Next, the manufacturing process of the present invention will be described. The electromagnetic steel slab is obtained by smelting in a melting furnace such as a converter or an electric furnace, performing vacuum degassing treatment as necessary, and then performing continuous casting or cracking and rolling after agglomeration. Thereafter, the electromagnetic steel slab is heated at a temperature of 1280 ° C. or lower and then hot-rolled to a predetermined thickness. If the heating temperature is higher than 1280 ° C., it is difficult to adjust the particle size of primary recrystallized grains during decarburizing annealing, and it is difficult to obtain an electromagnetic steel sheet having a high magnetic flux density.

【0029】熱延板焼鈍は、950℃〜1170℃の温
度で加熱後、800℃〜950℃の温度に短時間保持し
て行なう。その保持後、急冷することが望ましい。加熱
温度が950℃より低いと、金属組織の調整および一部
固溶したAlNの析出調整が不充分となり、一方、11
70℃を超えると、AlNの固溶量が多くなり、脱炭焼
鈍時の一次再結晶粒の粒径調整が困難になる。
The hot-rolled sheet annealing is performed by heating at a temperature of 950 ° C. to 1170 ° C. and then maintaining the temperature at a temperature of 800 ° C. to 950 ° C. for a short time. After the holding, rapid cooling is desirable. When the heating temperature is lower than 950 ° C., the adjustment of the metal structure and the adjustment of the precipitation of partially dissolved AlN become insufficient.
If the temperature exceeds 70 ° C., the solid solution amount of AlN increases, and it becomes difficult to adjust the particle size of primary recrystallized grains during decarburization annealing.

【0030】冷間圧延率は、高いB8を得るために80
%以上とする。脱炭焼鈍には、脱炭を行う他に、一次再
結晶粒の粒径を調整する役割と、フォルステライト被膜
形成に必要な酸化層を生成させる役割とがある。この脱
炭焼鈍は、通常、800〜900℃の温度域で、湿水
素、窒素ガス中で行う。本発明においては、一次再結晶
粒の平均粒径を23μm〜40μmの範囲に調整し、さ
らに、下記条件との組み合わせで、高磁束密度を達成す
るものである。この平均粒径は、通常より大きな値であ
るが、23μm未満では、高磁束密度が得られず、一
方、40μmを超すと二次再結晶不良となる。結晶粒径
が大きい程、高磁束密度が得られやすいが、この理由は
解明できていない。おそらく、集合組織の改善、厳密な
対応方位{(110)<001>と(111)<112
>}の選択等が要因として考えられる。
The cold rolling reduction is 80 to obtain a high B8.
% Or more. In addition to decarburization, decarburization annealing has a role of adjusting the grain size of primary recrystallized grains and a role of generating an oxide layer necessary for forming a forsterite film. This decarburization annealing is usually performed in a temperature range of 800 to 900 ° C. in wet hydrogen and nitrogen gas. In the present invention, the average particle size of the primary recrystallized grains is adjusted to a range of 23 μm to 40 μm, and a high magnetic flux density is achieved by a combination of the following conditions. The average particle size is larger than usual, but if it is less than 23 μm, a high magnetic flux density cannot be obtained, while if it exceeds 40 μm, secondary recrystallization failure occurs. The higher the crystal grain size, the easier it is to obtain a high magnetic flux density, but the reason has not been elucidated. Possibly improved texture, exact corresponding orientation {(110) <001> and (111) <112
>} May be a factor.

【0031】窒化処理は、通常、ストリップが走行して
いる状態下で、乾水素、窒素およびアンモニアの混合ガ
ス中で、650〜850℃の温度域で短時間行う。窒化
処理時間は特に限定されないが、通常、30〜60秒で
ある。窒化量は、一般に、アンモニアの混合割合で調節
するが、焼鈍時間を変えて行なっても良い。窒化後の鋼
板中の窒素量Nと、脱炭焼鈍板における結晶粒の平均粒
径Dが、N(ppm)≧11D−40の関係を満たす領
域において、良好な二次再結晶組織が得られる。つま
り、結晶粒径が大きい程、窒化量は増やす必要がある。
The nitriding treatment is usually performed for a short time in a mixed gas of dry hydrogen, nitrogen and ammonia in a temperature range of 650 to 850 ° C. while the strip is running. The nitriding time is not particularly limited, but is usually 30 to 60 seconds. The amount of nitriding is generally adjusted by the mixing ratio of ammonia, but may be changed by changing the annealing time. In a region where the nitrogen amount N in the steel sheet after nitriding and the average grain size D of the crystal grains in the decarburized annealed sheet satisfy the relationship of N (ppm) ≧ 11D-40, a good secondary recrystallized structure can be obtained. . That is, it is necessary to increase the amount of nitriding as the crystal grain size increases.

【0032】この後、MgO、TiO2 を主成分とする
スラリ−を塗布し、1150℃以上の温度で仕上焼鈍を
行う。次に、本発明の仕上焼鈍について説明する。本発
明において使用する雰囲気ガスは、H2 とN2 の混合ガ
スである。室温から700〜750℃の間の雰囲気ガス
の酸化ポテンシャルPH2 O/PH2 を、0.1〜0.
5に調整する必要がある。これは、脱炭焼鈍後に形成さ
れる酸化層の変質を防ぎ、良好なフォルステライト被膜
を得るために重要なことである。0.1未満では反応不
良となり被膜形成が悪く、一方、0.5を超えると酸化
性が強くなりすぎ、被膜が厚くなり、また、点状の金属
面が現れたりして、好ましくない。
Thereafter, a slurry containing MgO and TiO 2 as main components is applied, and finish annealing is performed at a temperature of 1150 ° C. or more. Next, the finish annealing of the present invention will be described. The atmosphere gas used in the present invention is a mixed gas of H 2 and N 2 . The oxidation potential PH 2 O / PH 2 of the atmosphere gas between room temperature and 700 to 750 ° C. is set to 0.1 to 0.
It needs to be adjusted to 5. This is important for preventing deterioration of the oxide layer formed after the decarburizing annealing and obtaining a good forsterite film. If it is less than 0.1, the reaction becomes poor and the film is poorly formed. On the other hand, if it exceeds 0.5, the oxidizing property becomes too strong, the film becomes thick, and a point-like metal surface appears.

【0033】一方、900℃以上では、PH2 O/PH
2 を0.02以下にする必要がある。0.02より大き
いと、高磁束密度鋼板が得られ難くなる上、被膜形成も
劣ってくる。なお、750℃〜900℃では、PH2
/PH2 は0.02より少し高めでも良い。次に、昇温
速度を、少なくとも1000℃から1150℃の範囲で
規制した理由について述べる。900〜1000℃が二
次再結晶開始直前の温度域であるので、1000℃を、
昇温速度変更の開始温度とした。一方、1150℃は、
二次再結晶がほぼ完了する温度である。
On the other hand, at 900 ° C. or more, PH 2 O / PH
2 needs to be 0.02 or less. If it is larger than 0.02, it becomes difficult to obtain a high magnetic flux density steel sheet, and the film formation is also inferior. At 750 ° C. to 900 ° C., PH 2 O
/ PH 2 may be slightly higher than 0.02. Next, the reason why the heating rate is restricted at least in the range of 1000 ° C. to 1150 ° C. will be described. Since 900 to 1000 ° C. is the temperature range immediately before the start of the secondary recrystallization, 1000 ° C.
The temperature at which the rate of temperature rise was changed was taken as the starting temperature. On the other hand, 1150 ° C
This is the temperature at which the secondary recrystallization is almost completed.

【0034】昇温速度は遅い方が効果的であるが、3℃
/h未満では、長時間を要し工業的でない。一方、10
℃/hを超えると、非常に高い磁束密度鋼板は得られ難
い。したがって、3℃/h〜10℃/hとした。しか
し、この場合、昇温速度Rと窒化後の鋼板の窒素量N
が、280−4R≦N≦480−13R、の関係を満た
す必要がある。昇温速度が遅くなる程、窒化量は多くす
る必要がある。なお、室温から昇温速度変更温度までの
昇温速度は特にこだわらないが、通常、15℃/h〜2
0℃/h程度である。
It is more effective to lower the heating rate,
If it is less than / h, it takes a long time and is not industrial. On the other hand, 10
When the temperature exceeds ℃ / h, it is difficult to obtain a very high magnetic flux density steel sheet. Therefore, it was set at 3 ° C./h to 10 ° C./h. However, in this case, the heating rate R and the nitrogen amount N
However, it is necessary to satisfy the relationship of 280-4R ≦ N ≦ 480-13R. It is necessary to increase the amount of nitriding as the heating rate decreases. The heating rate from the room temperature to the heating rate changing temperature is not particularly limited, but is usually 15 ° C./h to 2 ° C.
It is about 0 ° C./h.

【0035】徐加熱により高磁束密度鋼板が得られる理
由としては、二次再結晶温度域を徐加熱することにより
ゴス組織を優先成長させる場合、インヒビターの弱体化
が生じても、昇温速度にみあった窒化により、インヒビ
ターの確保が図られているものと考えられる。
The reason why a high magnetic flux density steel sheet can be obtained by slow heating is that when the Goss structure is preferentially grown by gradually heating the secondary recrystallization temperature range, even if the inhibitor weakens, the heating rate is increased. It is considered that the inhibitor was secured by the observed nitriding.

【0036】[0036]

【実施例】(実施例1)重量%で、C:0.062%、
Si:3.5%、Mn0.10%、S:0.01%、酸
可溶性Al:0.028%、N:0.008%、Cr:
0.12%、Sn:0.05%、P:0.025%を含
む電磁鋼スラブを、1150℃で加熱後、熱間圧延し、
2.3mm厚の熱延板を製造した。この熱延板を112
0℃で均熱後、一旦、900℃に冷却し、その後、その
温度に保持する焼鈍を施し、その焼鈍後、急冷却した。
(Example 1) C: 0.062% by weight,
Si: 3.5%, Mn 0.10%, S: 0.01%, acid-soluble Al: 0.028%, N: 0.008%, Cr:
An electromagnetic steel slab containing 0.12%, Sn: 0.05%, and P: 0.025% is heated at 1150 ° C., and then hot-rolled,
A hot-rolled sheet having a thickness of 2.3 mm was manufactured. This hot rolled sheet is
After soaking at 0 ° C., it was once cooled to 900 ° C., then annealed at that temperature, and rapidly cooled after the annealing.

【0037】次いで、酸洗し、その後、0.20mm厚
の冷延板に冷間圧延し、次いで、この冷延板に、焼鈍温
度を810℃と860℃とし、湿水素−窒素雰囲気中で
脱炭焼鈍を施し、一次再結晶粒の粒径を、ほぼ22μm
と26μmに調整した。この後、750℃で30秒の窒
化焼鈍を、水素、窒素およびアンモニアの混合ガス中で
行い、鋼板中の窒素量を、ほぼ210ppm、290p
pm、および、350ppmに調整した。
Next, the plate is pickled and then cold-rolled into a cold-rolled sheet having a thickness of 0.20 mm. Then, the cold-rolled sheet is subjected to annealing temperatures of 810 ° C. and 860 ° C. in a wet hydrogen-nitrogen atmosphere. After decarburizing annealing, the particle size of the primary recrystallized grains was reduced to approximately 22 μm.
Was adjusted to 26 μm. Thereafter, nitriding annealing at 750 ° C. for 30 seconds is performed in a mixed gas of hydrogen, nitrogen and ammonia to reduce the amount of nitrogen in the steel sheet to approximately 210 ppm, 290 p.
pm and 350 ppm.

【0038】次いで、MgO、TiO2 を主成分とする
スラリ−を塗布し、1200℃で20時間の仕上焼鈍を
行った。仕上焼鈍の昇温過程において、1000℃まで
は15℃/hで昇温し、1000℃から1200℃まで
を、5℃/hと10℃/hの2水準で昇温した。雰囲気
ガスは、窒素25%、水素75%の混合ガスで、700
℃までのPH2 O/PH2 を0.3とし、900℃以上
におけるPH2 O/PH2 は、ほぼ0.01とし、80
0℃〜900℃におけるPH2 O/PH2 は0.01よ
り高めに調整した。均熱時は水素100%とした。
Next, a slurry containing MgO and TiO 2 as main components was applied and finish annealing was performed at 1200 ° C. for 20 hours. In the temperature raising process of the finish annealing, the temperature was raised at 15 ° C./h up to 1000 ° C., and the temperature was raised from 1000 ° C. to 1200 ° C. at two levels of 5 ° C./h and 10 ° C./h. The atmosphere gas is a mixed gas of 25% of nitrogen and 75% of hydrogen.
The PH 2 O / PH 2 up to ° C. and 0.3, PH 2 O / PH 2 of definitive than 900 ° C. is to substantially 0.01, 80
PH 2 O / PH 2 at 0 ° C. to 900 ° C. was adjusted to be higher than 0.01. During soaking, the hydrogen content was 100%.

【0039】測定した磁気特性(磁束密度)を表1に示
す。
Table 1 shows the measured magnetic properties (magnetic flux density).

【0040】[0040]

【表1】 [Table 1]

【0041】表1中、*を付した磁束密度が、本発明の
条件のもとで得られたものである。表1から、本発明の
条件のもとでは、高い磁束密度を有する電磁鋼板が得ら
れたことがわかる。(実施例2)重量%で、C:0.0
58%、Si:3.35%、Mn0.1%、S:0.0
12%、酸可溶性Al:0.03%、N:0.0083
%、Cr:0.12%、Sn:0.05%、P:0.0
2%を含む電磁鋼スラブを、1150℃で加熱後、熱間
圧延し、2.3mm厚の熱延板を製造した。この熱延板
を、1120℃+900℃で焼鈍した後、急冷却した。
In Table 1, the magnetic flux densities marked with * are those obtained under the conditions of the present invention. Table 1 shows that an electromagnetic steel sheet having a high magnetic flux density was obtained under the conditions of the present invention. (Example 2) C: 0.0% by weight
58%, Si: 3.35%, Mn 0.1%, S: 0.0
12%, acid-soluble Al: 0.03%, N: 0.0083
%, Cr: 0.12%, Sn: 0.05%, P: 0.0
The electromagnetic steel slab containing 2% was heated at 1150 ° C. and then hot-rolled to produce a 2.3 mm-thick hot rolled sheet. This hot-rolled sheet was annealed at 1120 ° C. + 900 ° C. and then rapidly cooled.

【0042】次いで、酸洗し、その後、0.27mm厚
の冷延板に冷間圧延し、次いで、この冷延板に、湿水素
−窒素雰囲気中で焼鈍温度を変えて脱炭焼鈍を施し、一
次再結晶粒の粒径を、ほぼ28μmに調整した。この
後、750℃で30秒の窒化焼鈍を、水素、窒素および
アンモニアの混合ガス中で行い、鋼板中の窒素量を、ほ
ぼ310ppmに調整した。
Next, it is pickled and then cold-rolled into a 0.27 mm-thick cold-rolled sheet, and then the cold-rolled sheet is subjected to decarburizing annealing in a wet hydrogen-nitrogen atmosphere while changing the annealing temperature. The particle size of the primary recrystallized grains was adjusted to approximately 28 μm. Thereafter, nitriding annealing at 750 ° C. for 30 seconds was performed in a mixed gas of hydrogen, nitrogen and ammonia to adjust the amount of nitrogen in the steel sheet to approximately 310 ppm.

【0043】次いで、MgO、TiO2 を主成分とする
スラリ−を塗布し、1200℃で20時間の仕上焼鈍を
行った。仕上焼鈍の昇温過程において、950℃までは
15℃/hで昇温し、950℃から1150℃までは
7.5℃/hで昇温し、1150℃〜1200℃までは
15℃/hで昇温した。雰囲気ガスは、昇温過程では、
窒素25%と水素75%の混合ガスを用い、均熱時に
は、水素100%とした。雰囲気ガスの露点は表2に示
す3条件とした。
Next, a slurry containing MgO and TiO 2 as main components was applied, and finish annealing was performed at 1200 ° C. for 20 hours. In the temperature rise process of the finish annealing, the temperature is raised at a rate of 15 ° C./h from 950 ° C. to 7.5 ° C./h from 950 ° C. to 1150 ° C., and 15 ° C./h from 1150 ° C. to 1200 ° C. The temperature rose. Atmosphere gas, during the heating process,
A mixed gas of 25% nitrogen and 75% hydrogen was used. The dew point of the atmosphere gas was set under the three conditions shown in Table 2.

【0044】[0044]

【表2】 [Table 2]

【0045】測定した磁気特性(磁束密度)と、被膜の
形成状態を表3に示す。
Table 3 shows the measured magnetic properties (magnetic flux density) and the state of formation of the coating.

【0046】[0046]

【表3】 [Table 3]

【0047】表3中、*印を付した磁束密度が、本発明
の条件のもとで得られたものである。表3から、本発明
の条件のもとにおいて、磁気特性および被膜特性とも優
れた電磁鋼板が得られたことがわかる。
In Table 3, the magnetic flux densities marked with * are those obtained under the conditions of the present invention. Table 3 shows that under the conditions of the present invention, an electromagnetic steel sheet having excellent magnetic properties and coating properties was obtained.

【0048】[0048]

【発明の効果】以上説明したように、本発明により、特
定範囲の結晶粒径を有する脱炭焼鈍板において、窒化後
の鋼板中の窒素量と、仕上焼鈍の昇温過程における昇温
速度との関係を規制することにより、磁束密度の高い一
方向性電磁鋼板を製造することが可能となる。したがっ
て、本発明は、電気機器の鉄心の小型化も含め、電気機
器の効率化に大きく貢献する。
As described above, according to the present invention, in a decarburized annealed sheet having a crystal grain size in a specific range, the amount of nitrogen in the steel sheet after nitriding, the rate of temperature increase in the temperature increase process in finish annealing, and the like. By restricting the relationship, it is possible to manufacture a unidirectional magnetic steel sheet having a high magnetic flux density. Therefore, the present invention greatly contributes to the improvement of the efficiency of the electric device, including downsizing of the iron core of the electric device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱炭焼鈍板における平均結晶粒径、窒化後の鋼
板中の窒素量および二次再結晶の発達状態との関係を示
す図である。
FIG. 1 is a graph showing the relationship between the average crystal grain size in a decarburized annealed sheet, the amount of nitrogen in a steel sheet after nitriding, and the state of secondary recrystallization development.

【図2】窒化後の鋼板中の窒素量、仕上焼鈍の昇温過程
における昇温速度および磁束密度との関係を示す図であ
る。
FIG. 2 is a diagram showing the relationship between the amount of nitrogen in a steel sheet after nitriding, the rate of temperature rise in the temperature rise process of finish annealing, and the magnetic flux density.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/60 H01F 1/16 B (72)発明者 藤井 宣憲 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 茂木 尚 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 大畑 喜史 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 牛神 義行 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 Fターム(参考) 4K033 AA02 CA01 CA02 CA07 DA01 FA01 FA12 HA01 HA03 HA06 JA04 KA01 KA03 MA03 5E041 AA02 AA19 CA02 CA04 HB07 HB11 NN01 NN06 NN17 NN18──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/60 H01F 1/16 B (72) Inventor Noriyoshi Fujii 1-Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 1. Inside Nippon Steel Corporation Yawata Works (72) Inventor: Naoki Mogi 1-1, Tobata-cho, Tobata-ku, Kitakyushu City, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Yoshifumi Ohata Fukuoka Inside Nippon Steel Corporation Yawata Works, Kitakyushu-shi, Toba-ku, Japan (72) Inventor Yoshiyuki Ushigami 20-1, Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Katsuro Kuroki 59-46 Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka F-term in Nippon Steel Plant Design Co., Ltd. 4K033 AA02 CA01 CA02 CA07 DA01 FA01 FA12 HA01 HA03 HA06 JA04 KA01 KA03 MA03 5E041 AA02 AA19 CA02 CA04 HB07 HB11 NN01 NN06 NN17 NN18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.020〜0.075
%、Si:2.5〜5.0%、Mn:0.05〜0.4
5%、Sおよび/またはSe:0.015%以下、酸可
溶性Al:0.01〜0.05%、N:0.0035〜
0.012%、Sn:0.02〜0.15%、および、
Cr:0.03〜0.20%、を含有し、残部Feおよ
び不可避的不純物からなる電磁鋼スラブを、1280℃
以下の温度に加熱した後、熱間圧延し、熱延板を焼鈍
し、その後、最終圧延率80%以上の1回または中間焼
鈍を介挿する2回以上の冷間圧延をし、次いで、脱炭焼
鈍、窒化処理、仕上焼鈍をする一方向性電磁鋼板の製造
方法において、脱炭焼鈍後の鋼板における結晶粒の平均
粒径Dを23〜40μmの範囲に調整し、窒化後の鋼板
中の窒素量(ppm)を、 N(ppm)≧11D−40、および、 280−4R≦N(ppm)≦480−13R、を満た
すように調整し、かつ、仕上焼鈍の昇温過程における少
なくとも1000〜1150℃間の昇温速度Rを3〜1
0℃/hの範囲に調整することを特徴とする磁束密度の
高い一方向性電磁鋼板の製造方法。
1. C: 0.020 to 0.075 by weight%
%, Si: 2.5 to 5.0%, Mn: 0.05 to 0.4
5%, S and / or Se: 0.015% or less, acid-soluble Al: 0.01 to 0.05%, N: 0.0035 to
0.012%, Sn: 0.02 to 0.15%, and
An electromagnetic steel slab containing Cr: 0.03 to 0.20%, the balance being Fe and unavoidable impurities was subjected to 1280 ° C.
After heating to the following temperature, hot rolling is performed, the hot-rolled sheet is annealed, and then cold-rolled once or twice in a final rolling reduction of 80% or more through intermediate annealing, In the method for producing a grain-oriented electrical steel sheet to be subjected to decarburizing annealing, nitriding treatment and finish annealing, the average grain size D of crystal grains in the steel sheet after decarburizing annealing is adjusted to a range of 23 to 40 μm. Is adjusted so as to satisfy N (ppm) ≧ 11D-40 and 280-4R ≦ N (ppm) ≦ 480-13R, and at least 1000 in the temperature increasing process of the finish annealing. The heating rate R between -1150 ° C. and 3-1
A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density, which is adjusted to a range of 0 ° C./h.
【請求項2】 前記電磁鋼スラブが、さらに、重量%で
Cuを0.03〜0.30%含有することを特徴とする
請求項1記載の磁束密度の高い一方向性電磁鋼板の製造
方法。
2. The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to claim 1, wherein said magnetic steel slab further contains 0.03 to 0.30% by weight of Cu. .
【請求項3】 前記仕上焼鈍の昇温過程における700
℃〜750℃までの雰囲気ガスの酸化ポテンシャルPH
2 O/PH2 を0.1〜0.5とし、かつ、同昇温過程
における900℃以上の雰囲気ガスの酸化ポテンシャル
PH2 O/PH2 を0.02以下とすることを特徴とす
る請求項1または2記載の磁束密度の高い一方向性電磁
鋼板の製造方法。
3. The method according to claim 1, wherein the step of raising the temperature of the finish annealing is performed in the step of raising the temperature.
Oxidation potential PH of atmosphere gas from ℃ to 750 ℃
2 O / PH 2 is set to 0.1 to 0.5, and an oxidation potential PH 2 O / PH 2 of an atmosphere gas at 900 ° C. or more in the temperature raising process is set to 0.02 or less. Item 3. The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to Item 1 or 2.
JP22733699A 1999-08-11 1999-08-11 Method for producing unidirectional electrical steel sheet with high magnetic flux density Expired - Fee Related JP4205816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22733699A JP4205816B2 (en) 1999-08-11 1999-08-11 Method for producing unidirectional electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22733699A JP4205816B2 (en) 1999-08-11 1999-08-11 Method for producing unidirectional electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JP2001049351A true JP2001049351A (en) 2001-02-20
JP4205816B2 JP4205816B2 (en) 2009-01-07

Family

ID=16859222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22733699A Expired - Fee Related JP4205816B2 (en) 1999-08-11 1999-08-11 Method for producing unidirectional electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JP4205816B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196016A (en) * 2007-02-14 2008-08-28 Nippon Steel Corp Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density
JP2021123752A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123754A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123753A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2022250162A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196016A (en) * 2007-02-14 2008-08-28 Nippon Steel Corp Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density
JP2021123752A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123754A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123753A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2022250162A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP4205816B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH03211232A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP3368310B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3390109B2 (en) Low iron loss high magnetic flux density
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR102319831B1 (en) Method of grain oriented electrical steel sheet
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JPH11323438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH11279642A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH11269543A (en) Production of grain oriented electric steel sheet
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2000038618A (en) Production of grain oriented silicon steel sheet good in magnetic property
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees