JP2001254185A - Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method - Google Patents

Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method

Info

Publication number
JP2001254185A
JP2001254185A JP2000069129A JP2000069129A JP2001254185A JP 2001254185 A JP2001254185 A JP 2001254185A JP 2000069129 A JP2000069129 A JP 2000069129A JP 2000069129 A JP2000069129 A JP 2000069129A JP 2001254185 A JP2001254185 A JP 2001254185A
Authority
JP
Japan
Prior art keywords
conductive metal
thin film
dispersion
electrically conductive
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000069129A
Other languages
Japanese (ja)
Inventor
Kutouruku Aarippu
アーリップ・クトゥルク
Hiroshi Iwashige
央 岩重
Masaaki Oda
正明 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP2000069129A priority Critical patent/JP2001254185A/en
Publication of JP2001254185A publication Critical patent/JP2001254185A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for depositing an electrically conductive metallic thin film at a low cost by burying electrically conductive metal even to a sub strate having the recessed parts of fine pores or fine grooves with a high aspect ratio without generating voids on the recessed parts and reducing the number of process steps, and to provide a metallic hyperfine particle-dispersed material used for the method. SOLUTION: The atmosphere in which a process of a applying an electrically conductive metallic hyperfine particle-dispersed material to a substrate having fine pores or fine grooves with an aspect ration of >=1, thereafter heating the same to remove volatile substance in the dispersed material and baking the electrically conductive metal is first controlled to the evacuated one and is thereafter controlled to the one containing inert gas under the atmospheric pressure (gauge pressure) of 0.1 to 10, and the process is performed. The dispersed material is composed in such a manner that metallic hyperfine particles of 5 to 70 wt.% are dispersed into a dispersion medium essentially consisting of an organic liquid with the boiling point of >=150 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に導電性金
属薄膜を形成する方法およびその方法に用いる導電性金
属超微粒子分散物に関し、特にLSI基板等の半導体基
板上に金(Au)、銀(Ag)、銅(Cu)等の導電性金属の
超微粒子分散物を利用して導電性金属薄膜を形成する方
法およびその方法に用いる導電性金属超微粒子分散物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a conductive metal thin film on a substrate and a conductive metal ultrafine particle dispersion used for the method, and more particularly to a method for forming a conductive metal thin film on a semiconductor substrate such as an LSI substrate. The present invention relates to a method of forming a conductive metal thin film using a dispersion of ultrafine particles of a conductive metal such as silver (Ag) and copper (Cu) and a dispersion of ultrafine conductive metal used in the method.

【0002】[0002]

【従来の技術】最近の半導体産業におけるLSIの高集
積化および高速化により、半導体基板の配線の微細化と
多層化が進み、配線ピッチが狭まることによって配線間
容量や配線抵抗による信号遅延の問題が生じている。こ
れを避けるために、抵抗率の低い配線材料と誘電率の低
い層間絶縁膜を用いる必要に迫られ、配線材として、従
来のAl合金等の代わりに抵抗率の低いかつエレクトロ
マイグレーション(EM)耐性のあるCuがすでに実用
化され始めている。Cu薄膜の形成法には、スパッタ
法、CVD法、メッキ法等によりCu膜を配線溝、ビア
ホール、コンタクトホール等に堆積させ、次いでCMP
(Chemical-mechanical polishing)処理するいわゆるダ
マシン法が開発されている。
2. Description of the Related Art With the recent high integration and high speed of LSIs in the semiconductor industry, finer wiring and multi-layering of semiconductor substrates have been advanced, and the wiring pitch has been narrowed. Has occurred. In order to avoid this, it is necessary to use a wiring material having a low resistivity and an interlayer insulating film having a low dielectric constant. As a wiring material, instead of a conventional Al alloy or the like, a low resistivity and electromigration (EM) resistance are used. Cu with some properties has already begun to be put to practical use. For forming a Cu thin film, a Cu film is deposited in a wiring groove, a via hole, a contact hole, or the like by a sputtering method, a CVD method, a plating method, and the like, and then the CMP method
A so-called damascene method for performing (Chemical-mechanical polishing) processing has been developed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
従来技術のCu薄膜の形成法においては、次のような問
題があった。Cu薄膜の堆積法のうち、スパッタ法の場
合は、一般に、ステップカバレッジに限界があり、リフ
ロー法と併用するとしても、低誘電率膜との整合性のた
めにリフロー温度の低温化という制約があり、リフロー
によって微小溝部への埋め込みを促進することは困難で
ある。また、プロセスコストも高いという問題がある。
CVD法の場合は、原料コストが高く、成膜速度が遅
く、プロセスコストが高いという問題がある。また、メ
ッキ法の場合は、バリヤ層の上にいわゆるシード層とし
てのCuの薄膜を設けることが必要であり、ボイド中へ
のメッキ液の残留等の問題がある。上記いずれの成膜法
もCu薄膜の形成法としては満足すべきものではない。
更に、これらいずれの成膜法も高いアスペクト比の場合
に、配線溝等への満足すべき埋め込み性能が得られてい
ない。
However, the conventional method for forming a Cu thin film has the following problems. Of the Cu thin film deposition methods, in the case of the sputtering method, there is generally a limit in the step coverage, and even when used in combination with the reflow method, there is a restriction that the reflow temperature is lowered for consistency with the low dielectric constant film. Therefore, it is difficult to promote the embedding into the minute grooves by reflow. There is also a problem that the process cost is high.
In the case of the CVD method, there are problems that the raw material cost is high, the film formation rate is low, and the process cost is high. In the case of the plating method, it is necessary to provide a thin film of Cu as a so-called seed layer on the barrier layer, and there is a problem that a plating solution remains in voids. Neither of the above film forming methods is satisfactory as a method of forming a Cu thin film.
Further, none of these film forming methods has achieved satisfactory filling performance in wiring grooves or the like when the aspect ratio is high.

【0004】また、金属超微粒子分散液を用いた先行技
術(特願平11−226463号)においては、より高
いアスペクト比のトレンチやビアホール等に薄膜を形成
するには、金属超微粒子分散液の半導体基板への塗布と
それに続く焼成という過程を数回繰り返す必要性があ
り、プロセスコストの低減が必要であった。
In a prior art using a metal ultrafine particle dispersion (Japanese Patent Application No. 11-226463), a thin film is formed in a trench or a via hole having a higher aspect ratio by using the metal ultrafine particle dispersion. The process of application to the semiconductor substrate and subsequent baking has to be repeated several times, which has required a reduction in process cost.

【0005】本発明は、このような従来技術の問題点を
解決するためになされたものであり、アスペクト比の大
きい細孔、細溝(配線溝、ビアホールやコンタクトホー
ル等)の凹部を有する基板に対しても、該凹部にボイド
(空洞)を生じることなく導電性金属を埋め込み、プロ
セステップ数を少なくして、低プロセスコストで導電性
金属薄膜を形成する方法およびその方法に使用する導電
性金属超微粒子分散物を提供することを課題としてい
る。
SUMMARY OF THE INVENTION The present invention has been made to solve such problems of the prior art, and has a substrate having a fine hole (a wiring groove, a via hole, a contact hole, etc.) having a large aspect ratio. Also, a method of forming a conductive metal thin film at low process cost by burying a conductive metal in the concave portion without generating voids (cavities) and reducing the number of process steps, and a method of forming a conductive metal used in the method. It is an object to provide a dispersion of ultrafine metal particles.

【0006】[0006]

【課題を解決するための手段】本発明の導電性金属薄膜
の形成方法は、アスペクト比1以上の細孔、細溝(配線
溝、ビアホール、コンタクトホール等)を有する基板上
に導電性金属超微粒子独立分散物を塗布し、これを加熱
して、該分散物中の揮発性物質を除去し、導電性金属を
焼成して該細孔、細溝の凹部内に導電性金属薄膜を形成
する方法において、該加熱による揮発性物質除去、導電
性金属焼成の工程を行う雰囲気を、まず真空排気した雰
囲気にした後に、0.1〜10気圧(ゲージ圧)の不活
性ガス含有雰囲気にして、該工程を行うことからなる。
このようにして金属薄膜が形成された後、通常、該凹部
以外の基板上にある余分の金属薄膜を除去して平坦化
し、該凹部内に金属薄膜を形成する。
According to the method of forming a conductive metal thin film of the present invention, a conductive metal thin film is formed on a substrate having pores and fine grooves (wiring grooves, via holes, contact holes, etc.) having an aspect ratio of 1 or more. A fine particle independent dispersion is applied, heated to remove volatile substances in the dispersion, and baked with a conductive metal to form a conductive metal thin film in the concave portions of the pores and narrow grooves. In the method, the atmosphere in which the steps of removing volatile substances by heating and sintering the conductive metal are performed is first evacuated to atmosphere, and then to an inert gas-containing atmosphere of 0.1 to 10 atm (gauge pressure). Performing this step.
After the metal thin film is formed in this manner, usually, the excess metal thin film on the substrate other than the concave portion is removed and flattened, and the metal thin film is formed in the concave portion.

【0007】本発明は更に、加熱処理中に不活性ガス雰
囲気による加圧効果を利用することで、より高濃度の金
属超微粒子分散物(以下、金属超微粒子分散液と称する
こともある。)を用いて、アスペクト比が1以上である
配線溝、ビアホール、コンタクトホール等の凹部を埋め
込むことを可能にし、半導体基板上に良質な金属薄膜を
形成することからなる。加熱処理中の不活性ガスによる
加圧は、塗布液が乾燥するに従って体積収縮するのを補
うように、配線溝等の直上およびその周辺の塗膜層から
の凹部内への流動埋め込みを行う効果がある。その効果
は0.1気圧(ゲージ圧)以上で顕著になるが、10気
圧(ゲージ圧)を超えると通常の半導体製造プロセスと
しては安全上等の理由で望ましくない。加熱処理中の不
活性ガス雰囲気の圧力は0.5〜2気圧(ゲージ圧)付
近にするのが好ましい。このような不活性ガスによる加
圧効果で凹部周辺の塗膜層からの凹部内への流動を促進
して埋め込むことをねらっているので、塗布する厚みは
細孔、細溝の深さの所定の倍数とすることが好ましい。
使用する不活性ガスは、例えばヘリウム(He)、アル
ゴン(Ar)、またはキセノン(Xe)等が好ましい。
[0007] The present invention further utilizes a pressurizing effect of an inert gas atmosphere during the heat treatment to further increase the concentration of the ultrafine metal particle dispersion (hereinafter sometimes referred to as a metal ultrafine particle dispersion). This makes it possible to bury recesses such as wiring grooves, via holes, and contact holes having an aspect ratio of 1 or more, and to form a high-quality metal thin film on a semiconductor substrate. Pressurization with an inert gas during the heat treatment has the effect of performing fluid embedding into the recesses from the coating layer immediately above and around the wiring groove so as to compensate for the volume contraction as the coating liquid dries. There is. The effect becomes remarkable at 0.1 atm (gauge pressure) or more. However, when the pressure exceeds 10 atm (gauge pressure), it is not desirable as a normal semiconductor manufacturing process for safety reasons. The pressure of the inert gas atmosphere during the heat treatment is preferably around 0.5 to 2 atm (gauge pressure). Since the pressurizing effect of such an inert gas is intended to promote the flow from the coating layer around the concave portion into the concave portion and to embed the concave portion, the thickness to be applied is determined by the predetermined depth of the pores and narrow grooves. Is preferably a multiple of.
The inert gas used is preferably, for example, helium (He), argon (Ar), xenon (Xe), or the like.

【0008】使用する導電性金属超微粒子分散物の濃度
は、塗布時の粘度等の流動性に密接な関係がある。この
分散物は導電性金属超微粒子と分散媒とを有し、その金
属微粒子の含有量は5〜70重量%、好ましくは10〜
60重量%であり、残部の分散媒は沸点150℃以上の
有機液体を主成分とするものである。下限の5重量%
は、最終的に金属膜になるまでに細孔、細溝を埋め込む
ために流し込まなければならない量が過大とならない用
にする最低限であり、上限の70重量%は、塗布液の粘
度が実用上過大とならない限度である。分散媒の沸点以
下で多少の加熱をする等の塗布方法をとっても、金属超
微粒子含有量が70重量%を超える濃度ではスピンコー
トができるほどの低い粘度は得られない。
The concentration of the conductive metal ultrafine particle dispersion used is closely related to fluidity such as viscosity during coating. This dispersion has conductive metal ultrafine particles and a dispersion medium, and the content of the metal fine particles is 5 to 70% by weight, preferably 10 to 70% by weight.
60% by weight, and the remainder of the dispersion medium is mainly composed of an organic liquid having a boiling point of 150 ° C. or higher. 5% by weight of lower limit
Is the minimum amount for which the amount that has to be poured in order to fill the pores and narrow grooves until the metal film is finally formed does not become excessively large. It is a limit that does not become excessive. Even if a coating method such as slightly heating below the boiling point of the dispersion medium is used, if the content of the ultrafine metal particles exceeds 70% by weight, a viscosity low enough to allow spin coating cannot be obtained.

【0009】前記焼成を不活性ガス含有雰囲気中で行う
際に、Au、Ag、Cu等のような低酸素分圧下で加熱
することで金属に還元されるような金属の場合は、加熱
焼成時に生じることのある炭素残渣をなくすために、微
量のO2の存在下又はH2OやCO2の存在下で行うこと
が望ましく、150〜500℃で、好ましくは10分〜
1時間の間行われる。この加熱焼成温度は、Cu以外に
Au、Ag、Ag合金等のほかの更に低温度で焼結する
低抵抗金属を使っても、200℃未満では結晶化が不十
分であるという問題があり、また、この焼成温度は、1
50℃未満だと分散媒が十分に除去されないという問題
がある。さらに、500℃を超えると半導体素子に熱的
ダメージを与えるという問題がある。前記焼成の後、焼
成雰囲気と同じ雰囲気中で、しかし300〜500℃
で、好ましくは15〜30分の間加熱すれば、金属薄膜
の結晶化、および該金属薄膜の該凹部の内側表面への密
着性を向上せしめることができる。
When the calcination is performed in an atmosphere containing an inert gas, if the metal is reduced to a metal by heating under a low oxygen partial pressure, such as Au, Ag, Cu, etc. In order to eliminate a carbon residue that may be generated, the reaction is preferably performed in the presence of a trace amount of O 2 or in the presence of H 2 O or CO 2 , at 150 to 500 ° C., preferably for 10 minutes to
It takes place for one hour. Even if a low-resistance metal other than Cu, such as Au, Ag, or an Ag alloy, which sinters at a lower temperature is used, there is a problem that crystallization is insufficient at less than 200 ° C. The firing temperature is 1
If the temperature is lower than 50 ° C., there is a problem that the dispersion medium is not sufficiently removed. Further, when the temperature exceeds 500 ° C., there is a problem that the semiconductor element is thermally damaged. After the firing, in the same atmosphere as the firing atmosphere, but at 300-500 ° C
By heating for preferably 15 to 30 minutes, the crystallization of the metal thin film and the adhesion of the metal thin film to the inner surface of the concave portion can be improved.

【0010】金属超微粒子の粒子サイズは0.1μm以
下が望ましい。本発明が半導体基板上の微細な溝、ビア
ホールやコンタクトホールの中に導電性金属を埋め込む
ことを目的としており、半導体分野でこれらの溝、ビア
ホールやコンタクトホールはすでに0.25μm以下の
時代であるので、これら溝、孔の凹部内に金属をスムー
スに埋め込むには、金属粒子の粒度分布を十分小さくし
た上でもなお0.1μm以下が必要条件であり、望まし
くは0.01μm以下がよい。
The ultrafine metal particles preferably have a particle size of 0.1 μm or less. An object of the present invention is to embed a conductive metal in fine grooves, via holes and contact holes on a semiconductor substrate, and these grooves, via holes and contact holes are already in the era of 0.25 μm or less in the semiconductor field. Therefore, in order to smoothly embed the metal in the recesses of the grooves and holes, even if the particle size distribution of the metal particles is sufficiently reduced, the condition is still 0.1 μm or less, and preferably 0.01 μm or less.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0012】本発明の導電性金属薄膜の形成方法では、
導電性金属超微粒子分散物を塗布する厚みは細孔、細溝
の深さの0.1〜20倍とすることが好ましい。下限の
0.1倍では細孔、細溝の深さを全て埋めきることはで
きないが、凹部内に緻密な密着のよい導電性金属膜をつ
くれるので、この値でも十分応用が可能な範囲である。
そして、前記したような金属超微粒子分散物の濃度にも
依存するが、該厚みを1〜5倍とすることが望ましく、
このとき細孔、細溝の深さいっぱいにCu等の導電性金
属を充填することができる。20倍を超えると、後工程
としてのCMP(化学的機械的研磨)処理による研磨作
業が過大になってしまい、プロセスコスト高くつく。
In the method for forming a conductive metal thin film according to the present invention,
The thickness at which the conductive metal ultrafine particle dispersion is applied is preferably 0.1 to 20 times the depth of the pores and narrow grooves. At 0.1 times the lower limit, it is not possible to completely fill the pores and the depths of the narrow grooves, but it is possible to make a conductive metal film with good adhesion in the recesses, so that this value is within the range that can be sufficiently applied. is there.
And, depending on the concentration of the metal ultrafine particle dispersion as described above, the thickness is desirably 1 to 5 times,
At this time, a conductive metal such as Cu can be filled to the entire depth of the pores and the narrow grooves. If it exceeds 20 times, the polishing operation by the CMP (Chemical Mechanical Polishing) process as a post-process becomes excessive, and the process cost increases.

【0013】前記金属超微粒子分散物の塗布方法には制
限はなく、通常の塗布方法であればよく、例えば、スピ
ンコーティング、浸漬、スプレーによる塗装等の方法が
用いられる。前記平坦化工程は、例えばいわゆるCMP
処理を用いたダマシン法により行われ、焼成後に塗膜表
面に残存する過剰の金属層が除去される。
The method for applying the ultrafine metal particle dispersion is not limited, and any ordinary application method may be used. For example, methods such as spin coating, dipping, and spray coating are used. The flattening step is performed, for example, by so-called CMP.
It is performed by a damascene method using a treatment, and an excessive metal layer remaining on the coating film surface after firing is removed.

【0014】本発明の金属薄膜の形成方法では、その前
処理として、配線溝、ビアホール、コンタクトホール等
の凹部の内表面を含む基板表面に、指向性スパッタのよ
うなスパッタ又はCVDによりTiN、Ta、TaN、
WN等のバリヤ膜を形成し、次いでその上に指向性スパ
ッタのようなスパッタ又はCVDでシード膜を形成して
もよい。
In the method of forming a metal thin film according to the present invention, as a pretreatment, TiN, Ta is deposited on the substrate surface including the inner surfaces of the recesses such as wiring grooves, via holes and contact holes by sputtering such as directional sputtering or CVD. , TaN,
A barrier film such as WN may be formed, and then a seed film may be formed thereon by sputtering such as directional sputtering or CVD.

【0015】以下、導電性金属としてCuを用いる例を
代表として説明する。
Hereinafter, an example in which Cu is used as the conductive metal will be described as a representative.

【0016】本発明の導電性金属薄膜の形成方法で用い
ることのできる金属超微粒子独立分散物は、例えば、半
導体基板上に金属配線を形成する際の乾燥・焼成工程で
蒸発するような有機溶媒、好ましくは150℃以上で蒸
発する有機溶媒と、粒径0.1μm以下、好ましくは
0.01μm以下のCu金属含有超微粒子とを混合して
なり、該金属超微粒子の表面が該有機溶媒で覆われて個
々に独立して分散している粘度が20℃で100cP以
下の分散液であることが好ましい。
The metal ultrafine particle independent dispersion which can be used in the method for forming a conductive metal thin film of the present invention is, for example, an organic solvent which evaporates in a drying / firing step when forming metal wiring on a semiconductor substrate. An organic solvent that preferably evaporates at 150 ° C. or higher, and a Cu metal-containing ultrafine particle having a particle size of 0.1 μm or less, preferably 0.01 μm or less are mixed, and the surface of the metal ultrafine particle is mixed with the organic solvent. It is preferable that the dispersion liquid has a viscosity of 100 cP or less at 20 ° C. which is covered and independently dispersed.

【0017】前記有機溶媒としては、α−テルピネオー
ル、ミネラルスピリット、トリデカン、ドデシルベンゼ
ン又はそれらの混合物等を使用することが好ましく、前
記Cu金属含有超微粒子として、Cu、CuO又は該C
uとCuOとの混合物からなる超微粒子を使用して、C
u金属含有分散液を調整することができる。また、前記
Cu金属含有超微粒子の濃度は、1〜70重量%、好ま
しくは15〜50重量%である。該粒子の濃度が70重
量%を超えると、粘度が高くなりすぎ、また、該粒子の
濃度が1重量%未満だと膜厚が小さすぎるという問題が
ある。前記Cu金属含有超微粒子は、Cu金属元素以外
にCuへの溶解度が低く、かつ半導体基板の基材と反応
しやすい金属又はこれらの金属を含む化合物を少なくと
も一種含有していてもよく、これにより基材との密着性
が向上されうる。このCu金属元素以外の具体的な例と
しては、例えば、Mg、Al、B、Ta、NbおよびV
から選ばれる金属又はこれら金属を含む化合物が挙げら
れる。これらの金属を含む化合物には、例えば(C17
35COO)2Mg、(C1735COO)3Alが挙げられ
る。これらの金属又は化合物のCu超微粒子への添加量
は、超微粒子の全重量基準で、好ましくは0.5〜5重
量%である。本発明で用いるCu超微粒子独立分散液の
粘度は20℃で100cP以下、好ましくは10cP以
下であれば、Cu金属含有超微粒子は、該Cu超微粒子
独立分散液の形態で、半導体基板上の1以上、好ましく
は1〜30のようなアスペクト比の大きい配線溝、ビア
ホール、コンタクトホール等の凹部に対して何らの問題
もなく入り込み、完全にこれらの凹部を埋設して、基板
表面に平坦な液膜を形成する。そして、所定の雰囲気
中、所定の温度・時間で加熱することにより、該分散液
の分散媒が蒸発し、Cu等の金属超微粒子同士が融着し
て凹部に隙間なく埋設され、半導体基板に金属薄膜が形
成される。また、かかる分散液を適用するCu薄膜形成
方法ではほとんど金属原料のロスもなく、また、この形
成方法では真空装置を用いてもよいが基本的には真空装
置を必要としない。
As the organic solvent, α-terpineol, mineral spirit, tridecane, dodecylbenzene or a mixture thereof is preferably used. As the Cu metal-containing ultrafine particles, Cu, CuO or C
Using ultrafine particles consisting of a mixture of u and CuO, C
The u-metal-containing dispersion can be prepared. The concentration of the Cu metal-containing ultrafine particles is 1 to 70% by weight, preferably 15 to 50% by weight. When the concentration of the particles exceeds 70% by weight, the viscosity becomes too high, and when the concentration of the particles is less than 1% by weight, the film thickness becomes too small. The Cu metal-containing ultrafine particles have a low solubility in Cu other than the Cu metal element, and may contain at least one metal or a compound containing these metals that easily reacts with the substrate of the semiconductor substrate. Adhesion with the substrate can be improved. Specific examples other than the Cu metal element include, for example, Mg, Al, B, Ta, Nb and V
Or a compound containing these metals. Compounds containing these metals include, for example, (C 17 H
35 COO) 2 Mg and (C 17 H 35 COO) 3 Al. The amount of these metals or compounds added to the ultrafine Cu particles is preferably 0.5 to 5% by weight based on the total weight of the ultrafine particles. When the viscosity of the Cu ultrafine particle independent dispersion used in the present invention is 100 cP or less at 20 ° C., and preferably 10 cP or less, the Cu metal-containing ultrafine particles are in the form of the Cu ultrafine particle independent dispersion on the semiconductor substrate. As described above, it is preferable to enter the recesses such as wiring grooves, via holes, and contact holes having a large aspect ratio such as 1 to 30 without any problem, completely bury these recesses, and form a flat liquid on the substrate surface. Form a film. Then, by heating in a predetermined atmosphere at a predetermined temperature and for a predetermined time, the dispersion medium of the dispersion liquid evaporates, the metal ultrafine particles of Cu or the like are fused and buried in the concave portions without gaps, and are embedded in the semiconductor substrate. A metal thin film is formed. In addition, in the method of forming a Cu thin film using such a dispersion, there is almost no loss of the metal raw material. In this method of forming a vacuum, a vacuum device may be used, but basically no vacuum device is required.

【0018】[0018]

【実施例】以下、本発明の実施例を説明する。 (実施例1)ヘリウム圧力0.5Torrの条件下でC
uを蒸発させ、ガス中蒸発法によりCuの超微粒子を生
成する際に、生成過程のCu超微粒子にα−テルピネオ
ールの蒸気を接触させて冷却回収し、α−テルピネオー
ル溶媒中に独立した状態で分散している平均粒子径0.
008μmのCu超微粒子を40wt%含有するCu超
微粒子独立分散液を作製した。この分散液は粘度が室温
で100cP、150℃で3cPであった。
Embodiments of the present invention will be described below. (Example 1) C under the condition of helium pressure 0.5 Torr
When evaporating u and producing ultrafine particles of Cu by an in-gas evaporation method, the vapor of α-terpineol is brought into contact with the ultrafine particles of Cu in the course of the production and cooled and recovered, and in an independent state in an α-terpineol solvent. Average dispersed particle diameter
A Cu ultrafine particle independent dispersion containing 40 wt% of 008 μm Cu ultrafine particles was prepared. This dispersion had a viscosity of 100 cP at room temperature and 3 cP at 150 ° C.

【0019】次いで、上記Cu超微粒子独立分散液を用
いて、Si基板上に設けられたビアホールを処理した。
このSi基板に形成されている絶縁膜としてのSiO2
膜には孔径0.15μm(アスペクト比5)、0.25
μm(アスペクト比4)のビアホールが開けられてお
り、ビアホールの内表面を含む基板の表面にはスパッタ
により、TaNのバリヤ膜が厚さ0.02μmで形成さ
れており、またこのバリヤ膜の表面にはスパッタにより
Cuのシード膜が形成されている。
Next, the via holes provided on the Si substrate were treated using the above-mentioned independent dispersion liquid of Cu ultrafine particles.
SiO 2 as an insulating film formed on the Si substrate
The membrane has a pore size of 0.15 μm (aspect ratio 5), 0.25
A via hole of μm (aspect ratio 4) is opened, and a TaN barrier film having a thickness of 0.02 μm is formed on the surface of the substrate including the inner surface of the via hole by sputtering. Is formed with a Cu seed film by sputtering.

【0020】上記の基板をスピンコータにセットして2
000rpmで回転させ、その上方から加熱した状態の
上記Cu超微粒子独立分散液を滴下することによって、
乾燥後の膜厚が1.0μmになるよう、スピンコーティ
ングした。50℃以上に加熱した状態でスピンコーティ
ングすることにより、ビアホール内にはCu超微粒子独
立分散液が充填され、基板の表面には平坦な該分散液の
液膜が形成された。この状態の基板を初めは真空排気し
た雰囲気中で、次いで不活性ガス(He)雰囲気中、2
00℃の温度で、2分間加熱して有機溶媒を蒸発させ、
その後温度を300℃に上げて、Heガス0.05、
0.1、0.3、0.5、1.0、5.0、10.0気
圧(ゲージ圧)のそれぞれの雰囲気中で微量の酸素ガス
の存在下(酸素分圧:10-9Torr)、60分間焼成
した。さらに、温度を400℃に上げて、酸素を除去し
た不活性ガス中で30分間焼成した。0.05気圧(ゲ
ージ圧)では空洞を埋め切れなかったが、0.1〜1
0.0気圧(ゲージ圧)でCu超微粒子が相互に融着し
て、ビアホール内がCuで空洞なく埋め込まれ、縮みや
割れのないCu薄膜が形成された。次いで、該ビアホー
ルの内部以外のCu膜をCMP処理したところ、基板表
面の余分なCu膜が除去され、ビアホール内に平坦な表
面を有するCu薄膜が形成された。その比抵抗は2.0
μΩcmであった。 (実施例2)実施例1におけるCu超微粒子独立分散液
の代わりに、ヘリウムガス中に0.01TorrのO2
ガスを混合した雰囲気中でCuを蒸発させ、有機溶媒に
ミネラルスピリットを用いて粒子径0.01μmのCu
O超微粒子独立分散液を作製した。この分散液の粘度は
20℃で5cPであった。
The above substrate was set on a spin coater and 2
By rotating at 000 rpm and dropping the above Cu ultrafine particle independent dispersion in a heated state from above,
Spin coating was performed so that the film thickness after drying was 1.0 μm. By spin coating at a temperature of 50 ° C. or higher, the via holes were filled with the Cu ultrafine particle independent dispersion, and a flat liquid film of the dispersion was formed on the surface of the substrate. The substrate in this state is initially evacuated to an atmosphere and then to an inert gas (He) atmosphere.
Heating at a temperature of 00 ° C. for 2 minutes to evaporate the organic solvent,
After that, the temperature was raised to 300 ° C., and He gas 0.05,
0.1, 0.3, 0.5, 1.0, 5.0, 10.0 atmospheres (gauge pressure) in the presence of a trace amount of oxygen gas (oxygen partial pressure: 10 -9 Torr) ) And baked for 60 minutes. Further, the temperature was increased to 400 ° C., and the mixture was baked for 30 minutes in an inert gas from which oxygen had been removed. At 0.05 atm (gauge pressure), the cavity could not be filled, but 0.1 to 1
At 0.0 atm (gauge pressure), the Cu ultrafine particles were fused to each other, and the inside of the via hole was filled with Cu without any voids, and a Cu thin film without shrinkage or cracking was formed. Next, when the Cu film other than the inside of the via hole was subjected to the CMP treatment, the excess Cu film on the substrate surface was removed, and a Cu thin film having a flat surface was formed in the via hole. Its specific resistance is 2.0
μΩcm. (Example 2) Instead of the Cu ultrafine particle independent dispersion liquid in Example 1, 0.01 Torr of O 2 was contained in helium gas.
Cu is evaporated in an atmosphere in which gas is mixed, and Cu having a particle size of 0.01 μm is used as an organic solvent using mineral spirits.
O ultrafine particle independent dispersion was prepared. The viscosity of this dispersion was 5 cP at 20 ° C.

【0021】次いで、上記分散液を用いて、不活性ガス
としてHeの代わりにArの0.5気圧(ゲージ圧)雰
囲気で、分散液を加熱せずに基板のビアホールを埋め込
み、その後実施例1と同様にしてCu膜を形成したとこ
ろ、得られた薄膜は、焼結後も縮みや割れが生じること
もなく、その比抵抗は2.0μΩcmであった。
Then, via holes were buried in the substrate using the above dispersion liquid in an atmosphere of 0.5 atm (gauge pressure) of Ar instead of He as an inert gas without heating the dispersion liquid. When a Cu film was formed in the same manner as described above, the obtained thin film did not shrink or crack even after sintering, and had a specific resistance of 2.0 μΩcm.

【0022】低酸素分圧下で加熱処理したことにより酸
化が進んだCu超微粒子から出発したこの実施例でも導
電性金属が形成できることが確かめられた。 (実施例3)実施例1におけるCu超微粒子独立分散液
の代わりに、有機溶媒としてトリデカンを用いて作製し
たCu超微粒子独立分散液にMg、Al、B、Ta、N
b又はVの有機化合物の添加されたものを、また、A
u、Ag超微粒子分散液を、不活性ガス雰囲気をHe
0.5気圧(ゲージ圧)とした以外は実施例1と同様に
して作製した。得られた分散液の粘度はいずれも20℃
で10cPであった。
It has been confirmed that a conductive metal can be formed in this embodiment starting from ultrafine Cu particles oxidized by heat treatment under a low oxygen partial pressure. Example 3 Instead of the Cu ultrafine particle independent dispersion in Example 1, Mg, Al, B, Ta, and N were added to the Cu ultrafine particle independent dispersion prepared using tridecane as an organic solvent.
A compound to which an organic compound of b or V is added,
u, Ag ultrafine particle dispersion, and inert gas atmosphere
It was produced in the same manner as in Example 1 except that the pressure was changed to 0.5 atm (gauge pressure). The viscosity of each of the resulting dispersions was 20 ° C.
Was 10 cP.

【0023】次いで、これらの分散液を用いて、TaN
バリア膜とCuシード膜とを形成する工程を省き、ヘリ
ウム雰囲気の加圧を0.5気圧(ゲージ圧)とした以外
は実施例1と同様にして基板のビアホールを埋め込み、
Cu膜を形成したところ、得られた薄膜は、焼結後もま
たCMPによる平坦化処理工程中も縮みや割れが生じる
こともなく、基板との密着性も良好であり、その比抵抗
は2.1μΩcmであった。 (実施例4)実施例1のCu超微粒子独立分散液と実施
例2のCuO超微粒子独立分散液とを混合して、粘度5
0cP(20℃)の混合分散液を作製し、これを用いて
Si基板上に配線パターンを形成した。このSi基板上
に形成されている絶縁膜としてのSiO2 膜には幅0.
25μm、深さ1μm(アスペクト比4)の溝がパター
ン状に形成されており、溝の内表面を含む基板の表面に
はスパッタにより、TaNバリヤ膜が厚さ0.02μm
で形成されており、またこのバリヤ膜の表面にはスパッ
タによりCuのシード膜が形成されている。
Next, using these dispersions, TaN
A via hole of the substrate was buried in the same manner as in Example 1 except that the step of forming the barrier film and the Cu seed film was omitted, and the pressure of the helium atmosphere was changed to 0.5 atm (gauge pressure).
When the Cu film was formed, the obtained thin film did not shrink or crack even after sintering and during the planarization process by CMP, had good adhesion to the substrate, and had a specific resistance of 2 .1 μΩcm. (Example 4) The Cu ultrafine particle independent dispersion of Example 1 and the CuO ultrafine particle independent dispersion of Example 2 were mixed to obtain a viscosity of 5
A mixed dispersion of 0 cP (20 ° C.) was prepared and used to form a wiring pattern on a Si substrate. The SiO 2 film as an insulating film formed on the Si substrate has a width of 0.1 mm.
A groove having a thickness of 25 μm and a depth of 1 μm (aspect ratio 4) is formed in a pattern, and a TaN barrier film having a thickness of 0.02 μm is formed on the surface of the substrate including the inner surface of the groove by sputtering.
A Cu seed film is formed on the surface of the barrier film by sputtering.

【0024】上記の基板をスピンコータにセットして3
000rpmで回転させ、その上方から上記の混合分散
液を滴下することによって、スピンコーティングした。
パターン状の溝内にはこの分散液が充填され、基板の表
面には平坦な該分散液の液膜が形成された。この状態の
基板を1気圧(ゲージ圧)のヘリウム雰囲気中、200
℃の温度で、2分間加熱して有機溶媒を蒸発させ、次い
で温度を300℃に上げて、不活性ガス雰囲気中で、更
にH2Oガスを添加(H2O分圧:10Torr)して、60
分間焼成した。更に、温度を400℃に上げて、H2
ガスを除去した不活性ガス中で30分間焼成した。かく
して、Cu超微粒子が相互に融着して、溝内がCuで空
洞なく埋め込まれ、縮みや割れのないCu薄膜が形成さ
れた。次いで、該溝の内部以外のCu膜をCMP処理し
たところ、基板表面の余分なCu膜が除去され、溝内に
平坦な表面を有するCu薄膜が形成され、その比抵抗は
2.0μΩcmであった。
The above substrate was set on a spin coater and 3
The mixture was rotated at 000 rpm, and the above mixed dispersion was dropped from above to perform spin coating.
The dispersion liquid was filled in the pattern-shaped grooves, and a flat liquid film of the dispersion liquid was formed on the surface of the substrate. The substrate in this state is placed in a helium atmosphere at 1 atm (gauge pressure) for 200 hours.
The organic solvent was evaporated by heating at a temperature of 2 ° C. for 2 minutes, then the temperature was raised to 300 ° C., and further H 2 O gas was added in an inert gas atmosphere (H 2 O partial pressure: 10 Torr). , 60
Bake for a minute. Further, the temperature is raised to 400 ° C. and H 2 O
Firing was performed for 30 minutes in an inert gas from which the gas had been removed. Thus, the Cu ultrafine particles were fused to each other, the grooves were filled with Cu without any voids, and a Cu thin film without shrinkage or cracking was formed. Next, when the Cu film other than the inside of the groove was subjected to the CMP treatment, the excess Cu film on the substrate surface was removed, and a Cu thin film having a flat surface was formed in the groove, and the specific resistance was 2.0 μΩcm. Was.

【0025】[0025]

【発明の効果】本発明の導電性金属薄膜形成方法によれ
ば、LSI基板のアスペクト比の大きい微細な配線溝、
ビアホール、コンタクトホール等の凹部をも、ボイドを
生じることなく完全に導電性金属で埋設することがで
き、導電性の均一な微細パターンを形成することができ
る。この際、本発明の導電性金属超微粒子を使用すれば
良好な前記効果が得られる。
According to the method for forming a conductive metal thin film of the present invention, fine wiring grooves having a large aspect ratio on an LSI substrate can be obtained.
Concave portions such as via holes and contact holes can be completely buried with conductive metal without generating voids, and a fine pattern with uniform conductivity can be formed. In this case, if the conductive metal ultrafine particles of the present invention are used, the above-mentioned advantageous effects can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/3205 H01L 21/88 R B Fターム(参考) 4D075 BB24Z BB28Z BB56Z BB93Z DA06 DA32 DC21 EC02 EC10 EC53 EC54 4K044 AA11 AB10 BA06 BA08 BA12 BB10 BC14 CA24 CA29 CA53 4M104 BB04 BB08 BB09 BB32 DD51 DD79 5F033 HH11 HH13 HH14 HH32 HH35 MM01 MM12 MM13 PP15 PP26 QQ48 QQ73 RR04 WW00 WW01 WW03 WW05 XX02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/3205 H01L 21/88 RBF term (Reference) 4D075 BB24Z BB28Z BB56Z BB93Z DA06 DA32 DC21 EC02 EC10 EC53 EC54 4K044 AA11 AB10 BA06 BA08 BA12 BB10 BC14 CA24 CA29 CA53 4M104 BB04 BB08 BB09 BB32 DD51 DD79 5F033 HH11 HH13 HH14 HH32 HH35 MM01 MM12 MM13 PP15 PP26 QQ48 QQ73 RR04 WW00 WW01 WW03 WW03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アスペクト比1以上の細孔、細溝を有す
る基板上に導電性金属超微粒子分散物を塗布し、これを
加熱して、該分散物中の揮発性物質を除去し、導電性金
属を焼成して該細孔、細溝の凹部内に導電性金属薄膜を
形成する方法において、該加熱による揮発性物質除去、
導電性金属焼成の工程を行う雰囲気を、まず真空排気し
た雰囲気にした後に、0.1〜10気圧(ゲージ圧)の
不活性ガス含有雰囲気にして、該工程を行うことを特徴
とする導電性金属薄膜の形成方法。
1. A method for applying a conductive metal ultrafine particle dispersion on a substrate having pores and fine grooves having an aspect ratio of 1 or more, heating the dispersion, and removing volatile substances in the dispersion to obtain a conductive material. In the method of forming a conductive metal thin film in the pores, the recesses of the narrow grooves by firing a conductive metal, removing volatile substances by the heating,
The conductive metal firing step is performed by first setting the atmosphere to be evacuated and then setting the atmosphere to an inert gas-containing atmosphere of 0.1 to 10 atm (gauge pressure) to perform the step. A method for forming a metal thin film.
【請求項2】 請求項1において、該不活性ガス含有雰
囲気で用いる不活性ガスが、ヘリウム、アルゴン、また
はキセノンであることを特徴とする導電性金属薄膜の形
成方法。
2. The method according to claim 1, wherein the inert gas used in the inert gas-containing atmosphere is helium, argon, or xenon.
【請求項3】 請求項1または2において、該金属超微
粒子は、金、銀、銅およびそれら金属の合金ならびにそ
れら金属を主成分とする合金、ならびにそれら金属とそ
の酸化物との混合物から選ばれる少なくとも一種の超微
粒子であることを特徴とする導電性金属薄膜の形成方
法。
3. The metal ultrafine particle according to claim 1, wherein the ultrafine metal particles are selected from gold, silver, copper, alloys of these metals, alloys containing these metals as main components, and mixtures of these metals and their oxides. At least one kind of ultrafine particles.
【請求項4】 請求項1〜3のいずれかにおいて、該金
属超微粒子の粒径は0.1μm以下であることを特徴と
する導電性金属薄膜の形成方法。
4. The method for forming a conductive metal thin film according to claim 1, wherein the ultrafine metal particles have a particle size of 0.1 μm or less.
【請求項5】 請求項1〜4のいずれかで使用される導
電性金属超微粒子分散物であって、該金属超微粒子の含
有量が5〜70重量%であり、残部の分散媒が沸点15
0℃以上の有機液体を主成分とするものであることを特
徴とする導電性金属超微粒子分散物。
5. The dispersion of conductive metal ultrafine particles used in any one of claims 1 to 4, wherein the content of the metal ultrafine particles is 5 to 70% by weight, and the balance of the dispersion medium is a boiling point. Fifteen
A conductive metal ultrafine particle dispersion characterized by containing an organic liquid at 0 ° C. or higher as a main component.
JP2000069129A 2000-03-13 2000-03-13 Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method Withdrawn JP2001254185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069129A JP2001254185A (en) 2000-03-13 2000-03-13 Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000069129A JP2001254185A (en) 2000-03-13 2000-03-13 Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method

Publications (1)

Publication Number Publication Date
JP2001254185A true JP2001254185A (en) 2001-09-18

Family

ID=18588077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069129A Withdrawn JP2001254185A (en) 2000-03-13 2000-03-13 Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method

Country Status (1)

Country Link
JP (1) JP2001254185A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141351A (en) * 2000-10-31 2002-05-17 Japan Science & Technology Corp Circuit board and method of forming metal wiring
JP2003257890A (en) * 2002-03-07 2003-09-12 Seiko Epson Corp Method for filling substance, method for forming film, device and its fabricating method
WO2004034456A1 (en) * 2002-10-11 2004-04-22 Tokyo Electron Limited Method of forming wiring
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2009041254A1 (en) 2007-09-26 2009-04-02 Idemitsu Kosan Co., Ltd. Organic thin film transistor
US7535626B2 (en) 2006-06-06 2009-05-19 Konica Minolta Opto, Inc. Shape-variable optical element, optical device and image pickup apparatus
US7674401B2 (en) * 2001-12-18 2010-03-09 Asahi Kasei Kabushiki Kaisha Method of producing a thin conductive metal film
CN105845567A (en) * 2016-04-07 2016-08-10 上海大学 Process for preparing nanometer schottky structure through utilizing physical method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141351A (en) * 2000-10-31 2002-05-17 Japan Science & Technology Corp Circuit board and method of forming metal wiring
US7674401B2 (en) * 2001-12-18 2010-03-09 Asahi Kasei Kabushiki Kaisha Method of producing a thin conductive metal film
JP2003257890A (en) * 2002-03-07 2003-09-12 Seiko Epson Corp Method for filling substance, method for forming film, device and its fabricating method
WO2004034456A1 (en) * 2002-10-11 2004-04-22 Tokyo Electron Limited Method of forming wiring
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US7535626B2 (en) 2006-06-06 2009-05-19 Konica Minolta Opto, Inc. Shape-variable optical element, optical device and image pickup apparatus
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2009041254A1 (en) 2007-09-26 2009-04-02 Idemitsu Kosan Co., Ltd. Organic thin film transistor
CN105845567A (en) * 2016-04-07 2016-08-10 上海大学 Process for preparing nanometer schottky structure through utilizing physical method
CN105845567B (en) * 2016-04-07 2019-02-22 上海大学 Utilize the technique of physical method preparation nanometer Schottky junction structure

Similar Documents

Publication Publication Date Title
JP4362170B2 (en) Silver ultrafine particle independent dispersion
US7737028B2 (en) Selective ruthenium deposition on copper materials
US6214259B1 (en) Dispersion containing Cu ultrafine particles individually dispersed therein
JP3631392B2 (en) Method for forming wiring film
JPH11135504A (en) Manufacture of semiconductor device
US6613686B2 (en) Method of etching silicon nitride film and method of producing semiconductor device
JP2001254185A (en) Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method
JP4362173B2 (en) Cu ultrafine particle independent dispersion
JP2023182638A (en) Seed layers for copper interconnection
JP2000269334A (en) Method for forming wiring film
KR100407681B1 (en) Method of forming a metal line in a semiconductor device
EP0980094B1 (en) Method for forming Cu-thin film
JP2000124157A (en) FORMATION OF Cu THIN FILM
JP3953237B2 (en) Method for forming metal thin film and method for producing metal fine particle dispersion
JPH10125783A (en) Manufacturing method of semiconductor device
JP2001053028A (en) Formation method of cu thin film
JP2001035814A (en) Method of forming silver wiring pattern
JP2005038999A (en) Method of manufacturing semiconductor device
TWI397126B (en) Semiconductor device and method of manufacturing same
JP4751496B2 (en) (Cu-C) Seed Layer Formation Method
JP2000306912A (en) Metal thin-film forming method
JP2000223491A (en) Cu film forming method
JP2001110808A (en) Manufacturing method of semiconductor device
JP3435061B2 (en) Method of forming metal wiring film
JP7449790B2 (en) Metal wiring formation method and metal wiring structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605