JP2000313963A - Plating method for resin - Google Patents

Plating method for resin

Info

Publication number
JP2000313963A
JP2000313963A JP11122571A JP12257199A JP2000313963A JP 2000313963 A JP2000313963 A JP 2000313963A JP 11122571 A JP11122571 A JP 11122571A JP 12257199 A JP12257199 A JP 12257199A JP 2000313963 A JP2000313963 A JP 2000313963A
Authority
JP
Japan
Prior art keywords
resin
resin layer
electroless plating
plating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11122571A
Other languages
Japanese (ja)
Inventor
Shigenao Tomabechi
重尚 苫米地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11122571A priority Critical patent/JP2000313963A/en
Publication of JP2000313963A publication Critical patent/JP2000313963A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remarkably improve the adhesion between a resin/metal at the time of applying electroless plating of metal (such as copper) on a resin at the time of producing a printed circuit board or the like. SOLUTION: A thermosetting resin layer is heated at a temp. lower than the hardening temp. and is half-hardened, this resin layer is applied with a catalyst for electroless plating, is next treated with a silane coupling agent soln. to adsorb silane coupling on the surface and is then applied with electroless plating, and the resin layer is heated to the temp. equal to or above the hardening temp. and is perfectly hardened. It is possible that electroplating is applied before or after the perfect hardening thereof to secure the thickness of the plating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂に無電解めっ
きまたは無電解めっきと電解めっきを併用して金属をめ
っきする方法に関する。本発明のめっき方法は、ビルト
アップ工法で製造されるMPUパッケージやプリント配
線板の製造において、導体層を形成するのに利用するこ
とができる。
The present invention relates to a method for plating a metal on a resin by electroless plating or a combination of electroless plating and electrolytic plating. The plating method of the present invention can be used to form a conductor layer in the manufacture of an MPU package or a printed wiring board manufactured by a built-up method.

【0002】本発明のめっき方法は、樹脂/金属間の密
着性が著しく高いめっき皮膜を形成することができる。
従来法に比べて、密着性確保のための樹脂層または金属
層の粗化深度を小さくできるため、樹脂層を薄くするこ
とができ、かつ金属層(めっき皮膜)が剥離しにくいの
で、特に高速化(従って、配線層の薄さ)が要求される
MPUパッケージの製造過程において、本発明方法は非
常に有効である。
The plating method of the present invention can form a plating film having extremely high adhesion between resin and metal.
Compared with the conventional method, it is possible to reduce the depth of roughening of the resin layer or metal layer for ensuring adhesion, so that the resin layer can be made thinner and the metal layer (plating film) is less likely to peel off. The method of the present invention is very effective in the manufacturing process of an MPU package which requires miniaturization (thus, a thin wiring layer).

【0003】[0003]

【従来の技術と発明が解決しようとする課題】絶縁樹脂
層と金属導体層とを交互に積み上げて製造されるビルト
アップ多層プリント配線板のように、絶縁体の樹脂層と
導体(配線)の金属層(通常は銅箔)との積層体(即
ち、樹脂/金属の積層体)からなるプリント配線板にお
いては、樹脂/金属界面の密着性の向上は非常に重要で
ある。
2. Description of the Related Art As in a built-up multilayer printed wiring board manufactured by alternately stacking an insulating resin layer and a metal conductor layer, an insulating resin layer and a conductor (wiring) are formed. In a printed wiring board composed of a laminate with a metal layer (usually a copper foil) (that is, a laminate of resin and metal), it is very important to improve the adhesion at the resin / metal interface.

【0004】従来、このような樹脂/金属の積層体の製
造には、・絶縁性樹脂層を成膜した後、樹脂層表面を粗
化 (粗面化) し、その上に無電解めっきおよび電解めっ
きにより金属層 (配線層) を形成する、または・金属層
を形成した後、黒化処理等の化学的処理により金属層表
面を粗化し、その上に絶縁性樹脂層を成膜する、といっ
た方法がとられている。
Conventionally, in order to manufacture such a resin / metal laminate, after forming an insulating resin layer, the surface of the resin layer is roughened (roughened), and electroless plating and Forming a metal layer (wiring layer) by electrolytic plating, or after forming the metal layer, roughening the metal layer surface by chemical treatment such as blackening treatment, and forming an insulating resin layer thereon. Such a method is taken.

【0005】これらの方法では、一般的に、樹脂/金属
界面の密着性は、樹脂層または金属層の粗面化によるア
ンカー効果により確保している。しかし、LSIチップ
などの駆動周波数の高速化に対応するには、配線の微細
化とともに、絶縁性樹脂層や配線層の薄膜化(厚み減
少)が要求される。また、特性インピーダンスのばらつ
きを低減するために、樹脂表面の粗化深度(粗面の凹凸
高さ)を低減させ、絶縁層厚みの変動を低減することも
求められている。
[0005] In these methods, the adhesion at the resin / metal interface is generally ensured by the anchor effect due to the roughening of the resin layer or the metal layer. However, to cope with an increase in the driving frequency of an LSI chip or the like, it is required to make the insulating resin layer and the wiring layer thinner (reduced in thickness) as well as to make the wiring finer. Further, in order to reduce the variation in the characteristic impedance, it is also required to reduce the depth of roughening of the resin surface (the height of the unevenness of the rough surface) and reduce the variation in the thickness of the insulating layer.

【0006】前記の従来法では、粗化深度を低減する
と、アンカー効果が得にくくなり、樹脂/金属界面の密
着性が低下するため、信頼性に問題を生ずることにな
る。従って、高性能な多層プリント配線板等を実現する
ために、粗化深度が低減しても、高い密着性を付与でき
るような製造方法を確立する必要がでてきた。本発明
は、このような製造方法を提供することを課題とする。
In the above-mentioned conventional method, when the depth of the roughening is reduced, it becomes difficult to obtain the anchor effect, and the adhesion at the resin / metal interface is reduced, which causes a problem in reliability. Therefore, in order to realize a high-performance multilayer printed wiring board and the like, it has been necessary to establish a manufacturing method capable of imparting high adhesion even when the depth of roughening is reduced. An object of the present invention is to provide such a manufacturing method.

【0007】樹脂/金属界面といった有機/無機界面の
密着性を高める処理剤としてシランカップリング剤が利
用されてきた。例えば、樹脂強化用のガラス繊維を予め
シランカップリング剤で表面処理して、ガラス/樹脂間
の密着性向上を図る例がその典型である。
[0007] A silane coupling agent has been used as a treatment agent for improving the adhesion at an organic / inorganic interface such as a resin / metal interface. For example, a typical example is to improve the adhesion between a glass and a resin by previously treating the surface of a glass fiber for resin reinforcement with a silane coupling agent.

【0008】樹脂/銅箔積層体の製造におけるシランカ
ップリング剤の利用に関しては、特開平4−180572号公
報に、ポリイミド樹脂層(既に硬化すみ) の表面をエッ
チングにより親水化処理した後、シランカップリング剤
で処理し、次いで触媒を付与し、無電解めっき、特に無
電解銅めっきを行うという、ポリイミド樹脂の無電解め
っき方法が提案されている。ここでのシランカップリン
グ剤処理の目的は、触媒付与を均一化して、めっきのピ
ンホール発生を抑制することであり、密着性向上につい
ては特に開示されていない。
The use of a silane coupling agent in the production of a resin / copper foil laminate is disclosed in Japanese Patent Application Laid-Open No. 4-180572, which discloses that after the surface of a polyimide resin layer (already cured) is hydrophilized by etching, silane coupling agent is used. An electroless plating method of a polyimide resin has been proposed in which a treatment is performed with a coupling agent, a catalyst is applied, and electroless plating, particularly, electroless copper plating is performed. The purpose of the silane coupling agent treatment here is to uniformize the catalyst application and suppress the generation of pinholes in plating, and there is no particular disclosure of improving adhesion.

【0009】[0009]

【課題を解決するための手段】本発明者らは、シランカ
ップリング剤を利用して上記課題を解決すべく検討を重
ねた結果、半硬化状態の熱硬化性樹脂層に触媒を付与し
た後、シランカップリング剤で処理し、次いで無電解め
っきを施してから、最後に樹脂を完全に硬化させると、
樹脂/金属界面の密着性が著しく向上し、そのため密着
性確保のために行う粗化深度の低減、即ち、樹脂層や金
属層の薄膜化が可能となることを見出した。
Means for Solving the Problems The inventors of the present invention have repeatedly studied to solve the above-mentioned problems using a silane coupling agent, and as a result, after applying a catalyst to a thermosetting resin layer in a semi-cured state. , Treated with a silane coupling agent, then subjected to electroless plating, and finally completely cured the resin,
The present inventors have found that the adhesion at the resin / metal interface is remarkably improved, and therefore, it is possible to reduce the depth of roughening performed for ensuring the adhesion, that is, to make the resin layer and the metal layer thinner.

【0010】ここに、本発明は、下記工程を順に含む、
樹脂のめっき方法である: (a) 熱硬化性樹脂を含む未硬化樹脂層を形成する工程、
(b) 樹脂層を加熱して半硬化状態にする工程、(c) 半硬
化状態の樹脂層の表面に無電解めっき用触媒を付与する
工程、(d) 触媒付与した樹脂層表面にシランカップリン
グ剤を吸着させる工程、(e) シランカップリング剤を吸
着した樹脂層に無電解めっきを施す工程、(f) 樹脂層を
完全に硬化させる工程。
Here, the present invention comprises the following steps in order:
The resin plating method is as follows: (a) a step of forming an uncured resin layer containing a thermosetting resin,
(b) a step of heating the resin layer to a semi-cured state, (c) a step of applying a catalyst for electroless plating to the surface of the resin layer in a semi-cured state, and (d) a silane cup on the surface of the resin layer with the catalyst. A step of adsorbing a ring agent, (e) a step of applying electroless plating to the resin layer adsorbing the silane coupling agent, and (f) a step of completely curing the resin layer.

【0011】無電解めっきの後に電解めっきを施す場合
には、本発明のめっき方法における工程(e) または(f)
の後に、次の工程(g) を含むことができる:(g) 電解め
っきを施すことにより、無電解めっき皮膜の上に電解め
っき皮膜を形成する工程。
When electroplating is performed after electroless plating, step (e) or (f) in the plating method of the present invention is performed.
After the step (g), a step of forming an electrolytic plating film on the electroless plating film by performing electrolytic plating.

【0012】本発明はまた、熱硬化性樹脂を含む樹脂層
からなる絶縁層の上に導体層を形成することを含むプリ
ント配線板の製造において、その導体層の形成を上記め
っき方法により行うことを特徴とする、プリント配線板
の製造方法も提供する。
The present invention also provides a method for manufacturing a printed wiring board, comprising forming a conductive layer on an insulating layer made of a resin layer containing a thermosetting resin, wherein the conductive layer is formed by the plating method. The present invention also provides a method for manufacturing a printed wiring board, characterized by the following.

【0013】[0013]

【発明の実施の形態】本発明のめっき方法について具体
的に説明する。なお、本発明は、熱硬化性樹脂が半硬化
の状態で無電解めっきを施し、無電解めっき後に樹脂を
完全硬化させること、および無電解めっきの触媒付与後
にシランカップリング剤で処理すること、の2点に特徴
がある。その他の処理工程については、従来と同様でよ
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The plating method of the present invention will be specifically described. Incidentally, the present invention is to perform electroless plating in a state where the thermosetting resin is semi-cured, to completely cure the resin after the electroless plating, and to treat with a silane coupling agent after applying a catalyst for the electroless plating, There are two features. Other processing steps may be the same as the conventional processing steps.

【0014】まず適当な支持体の上に熱硬化性樹脂を含
む未硬化の樹脂層を形成する。例えば、プリント配線板
の製造においては、支持体は絶縁基板である。絶縁基板
上の2層目以降の絶縁樹脂層を形成する場合には、その
下層の既に形成された1または2以上の絶縁性樹脂層と
1または2以上の導体配線層と絶縁基板を含めたものが
支持体となる。
First, an uncured resin layer containing a thermosetting resin is formed on a suitable support. For example, in the manufacture of a printed wiring board, the support is an insulating substrate. In the case of forming the second or later insulating resin layer on the insulating substrate, one or two or more insulating resin layers, one or more conductive wiring layers, and the insulating substrate, which have already been formed below, are included. The thing becomes the support.

【0015】本発明における熱硬化性樹脂を含む樹脂層
は、樹脂層全体が硬化すれば特に制限されるものではな
く、全体が熱硬化性樹脂からなるものでもよく、或いは
熱硬化性樹脂に他の樹脂や添加剤を含有させたものでも
よい。プリント配線板の絶縁性樹脂層の場合には、絶縁
性が良好な樹脂が選ばれる。また、後で樹脂層を露光
(フォトリソグラフィー法) によりパターン化するた
め、永久レジストのような感光性を併せ持つ熱硬化性樹
脂材料を利用することもできる。本発明で用いる熱硬化
性樹脂の例として、エポキシ樹脂、ポリイミド樹脂、フ
ェノール樹脂を例示することができるが、これに限定さ
れるものではない。
The resin layer containing a thermosetting resin in the present invention is not particularly limited as long as the entire resin layer is cured. The resin layer may be entirely made of a thermosetting resin, or may be made of another resin. May contain the above-mentioned resin and additives. In the case of an insulating resin layer of a printed wiring board, a resin having good insulating properties is selected. Also, the resin layer is exposed later
For patterning by (photolithography), a thermosetting resin material having both photosensitivity such as a permanent resist can be used. Examples of the thermosetting resin used in the present invention include, but are not limited to, epoxy resin, polyimide resin, and phenol resin.

【0016】樹脂層は常法に従って形成すればよい。一
般的にはロールコート法やスピンコート法で形成される
が、他の塗布法も利用できる。塗布後に乾燥して、溶媒
等の揮発性成分を除去し、未硬化の樹脂層を得る。ま
た、未硬化の樹脂フィルムを支持体に貼付して樹脂層を
形成することも可能である。樹脂層の厚みは目的に応じ
て設定すればよいが、前述したように、本発明では薄膜
化が可能であるので、従来より薄膜 (例えば、従来の90
〜95%程度の厚み) とすることが有利である。
The resin layer may be formed according to a conventional method. Generally, it is formed by a roll coating method or a spin coating method, but other coating methods can also be used. After application, the coating is dried to remove volatile components such as a solvent, to obtain an uncured resin layer. It is also possible to form a resin layer by attaching an uncured resin film to a support. The thickness of the resin layer may be set according to the purpose. However, as described above, the present invention can be made thinner.
About 95%).

【0017】未硬化の樹脂層を次いで半硬化させる。即
ち、硬化部と未硬化部とが混在した状態の樹脂層を形成
する。この半硬化は、樹脂層を、樹脂層中の熱硬化性樹
脂の硬化温度より低温に加熱することにより行うことが
できる。熱硬化性樹脂の硬化温度以上に加熱し、加熱時
間を短くすることで半硬化させることも可能ではある
が、完全硬化まで進み易く、硬化の制御が容易ではな
い。半硬化のための好ましい加熱温度は、熱硬化性樹脂
の硬化温度 (℃) の75〜85%程度の温度である。加熱時
間は、熱硬化に要する時間とほぼ同じでよい。半硬化の
目安としては、樹脂層を次に説明するように化学的処理
により粗面化した場合に、樹脂表全体が溶解せず、適度
な凹凸が形成されることが挙げられる。樹脂層の半硬化
は、樹脂層の湿式処理が可能となり、かつ完全硬化しな
いような硬化度となるように行えばよい。
The uncured resin layer is then semi-cured. That is, a resin layer in a state where a cured portion and an uncured portion are mixed is formed. This semi-curing can be performed by heating the resin layer to a temperature lower than the curing temperature of the thermosetting resin in the resin layer. Although it is possible to perform semi-curing by heating to a temperature equal to or higher than the curing temperature of the thermosetting resin and shortening the heating time, it is easy to proceed to complete curing and curing control is not easy. A preferred heating temperature for semi-curing is a temperature of about 75 to 85% of the curing temperature (° C.) of the thermosetting resin. The heating time may be substantially the same as the time required for thermosetting. As an indication of semi-curing, when the resin layer is roughened by a chemical treatment as described below, the entire resin table does not dissolve and moderate irregularities are formed. The resin layer may be semi-cured so that the resin layer can be wet-processed and has a degree of curing that does not completely cure the resin layer.

【0018】半硬化させた樹脂層は、所望により、従来
と同様に表面の粗化 (粗面化) 処理を行ってもよい。表
面粗化は、一般に過マンガン酸溶液処理などの化学的処
理により行われるが、ブラスト処理などの物理的手段で
行ってもよい。
If necessary, the semi-cured resin layer may be subjected to a surface roughening treatment (roughening) as in the prior art. The surface roughening is generally performed by a chemical treatment such as a permanganic acid solution treatment, but may be performed by physical means such as a blast treatment.

【0019】この表面粗化により、樹脂/金属間の密着
性を高めることができる。しかし、本発明では、従来法
より高い樹脂/金属間の密着性を確保することができる
ので、表面粗化は必ずしも必要ではない。また、表面粗
化する場合でも、粗化深度は、従来に比べて小さくする
ことが可能であり、それにより特性インピーダンスのば
らつきが低減される。粗化深度は、例えば、従来の40〜
60%程度にすることができる。前述したように、半硬化
状態で化学的に粗面化すると、未硬化部の樹脂だけが溶
解するため、粗面化による密着性向上効果が高くなる。
By this surface roughening, the adhesion between the resin and the metal can be improved. However, in the present invention, a higher resin / metal adhesion than the conventional method can be ensured, so that surface roughening is not necessarily required. Further, even when the surface is roughened, the depth of the roughening can be reduced as compared with the conventional case, thereby reducing the variation in the characteristic impedance. Roughening depth is, for example, 40 to
It can be about 60%. As described above, when the surface is chemically roughened in a semi-cured state, only the resin in the uncured portion is dissolved, and the effect of improving the adhesion by the surface roughening is enhanced.

【0020】所望によりこうして表面粗化した半硬化樹
脂層に、次に説明するように無電解めっきを施してか
ら、樹脂層を完全に硬化させる。なお、樹脂層にビア形
成等のパターン化処理を行う場合には、この無電解めっ
きに先立ってパターン化 (ビア形成) しておくことが好
ましい。例えば、樹脂層が感光性を示す場合には、樹脂
層を形成した後、半硬化させる前に、まずパターン化用
の露光と現像を利用してビアを形成する。これにより、
樹脂層の光硬化性部分が硬化し、熱硬化性部分は未硬化
のままである。次いで、上記のように加熱して、樹脂層
の熱硬化性部分を半硬化させる。樹脂層が感光性を持た
ない場合には、半硬化した樹脂層にレーザー加工を利用
してビアを形成することができる。
If necessary, the semi-cured resin layer whose surface has been roughened is subjected to electroless plating as described below, and then the resin layer is completely cured. When performing a patterning process such as via formation on the resin layer, it is preferable to perform patterning (via formation) prior to the electroless plating. For example, when the resin layer exhibits photosensitivity, after forming the resin layer and before semi-curing, first, a via is formed using exposure and development for patterning. This allows
The photocurable portion of the resin layer cures and the thermosetting portion remains uncured. Next, the resin is heated as described above to partially cure the thermosetting portion of the resin layer. When the resin layer has no photosensitivity, a via can be formed on the semi-cured resin layer by using laser processing.

【0021】半硬化状態の樹脂層に無電解めっきを施す
ため、まず無電解めっきの前処理として、触媒付与を行
う。触媒は、一般にパラジウムである。無電解めっき用
の前処理用の溶液は市販されているので、それを利用し
て実施すればよい。通常の触媒付与処理は次のように行
われるが、これに制限されるものではない。
In order to apply electroless plating to the resin layer in a semi-cured state, a catalyst is first applied as a pretreatment for electroless plating. The catalyst is generally palladium. Since a pretreatment solution for electroless plating is commercially available, the solution may be used by utilizing it. The usual catalyst application treatment is performed as follows, but is not limited thereto.

【0022】まず、Sn(II)化合物の水溶液 (センシタイ
ジング液) で処理して、被めっき材である樹脂層の表面
にSn2+イオンを吸着させ、次いでパラジウム化合物を含
有する水溶液 (活性化液) で処理すると、表面に金属パ
ラジウムが析出し、これが触媒となる。処理条件は従来
と同様でよい。
First, treatment is performed with an aqueous solution of a Sn (II) compound (sensitizing solution) to adsorb Sn 2+ ions on the surface of the resin layer as a material to be plated, and then an aqueous solution containing a palladium compound (active ), Metal palladium precipitates on the surface and serves as a catalyst. Processing conditions may be the same as in the past.

【0023】触媒付与した半硬化樹脂層を、次いでシラ
ンカップリング剤で処理して、表面にシランカップリン
グ剤を吸着させる。この処理により、樹脂/金属間の密
着性が向上する。
The catalyzed semi-cured resin layer is then treated with a silane coupling agent to adsorb the silane coupling agent on the surface. This treatment improves the adhesion between the resin and the metal.

【0024】シランカップリング剤処理により樹脂/金
属間の密着性が向上する理由は次のように推測される。
樹脂層とシランカップリング剤の間では、例えば、樹脂
層表面の官能基 (例、水酸基) とシランカップリング剤
の官能基 (例、エポキシ基)との間で化学反応が起こっ
てシランカップリング剤が樹脂表面に化学的に結合す
る。従って、上記の吸着は化学吸着であると推測され
る。一方、シランカップリング剤の加水分解で生じたシ
ラノール基 (−SiOH) は、無電解めっきにより表面に
析出した金属と化学結合する。従って、樹脂層表面とめ
っき金属がシランカップリング剤を介して化学的に結合
するため、樹脂/金属間の密着性が向上するのである。
The reason why the adhesion between the resin and the metal is improved by the silane coupling agent treatment is presumed as follows.
Between the resin layer and the silane coupling agent, for example, a chemical reaction occurs between a functional group (e.g., a hydroxyl group) on the surface of the resin layer and a functional group (e.g., an epoxy group) of the silane coupling agent, resulting in a silane coupling. The agent chemically bonds to the resin surface. Therefore, the above adsorption is presumed to be chemisorption. On the other hand, the silanol group (-SiOH) generated by the hydrolysis of the silane coupling agent chemically bonds to the metal deposited on the surface by electroless plating. Therefore, since the surface of the resin layer and the plating metal are chemically bonded via the silane coupling agent, the adhesion between the resin and the metal is improved.

【0025】シランカップリング剤としては、樹脂層の
樹脂に存在する官能基と反応性のある官能基を有するも
のを使用すればよい。例えば、熱硬化性樹脂がエポキシ
樹脂やフェノール樹脂の場合には、樹脂が水酸基を有す
るので、上記のようにエポキシ基を有するシランカップ
リング剤を使用することが好ましい。エポキシ基を有す
るシランカップリング剤の市販品の例としては、γ−グ
リシドキシプロピルトリメトキシシラン、β-(3,4-エポ
キシシクロヘキシル) エチルトリメトキシシラン等が挙
げられる。
As the silane coupling agent, one having a functional group reactive with a functional group present in the resin of the resin layer may be used. For example, when the thermosetting resin is an epoxy resin or a phenol resin, since the resin has a hydroxyl group, it is preferable to use a silane coupling agent having an epoxy group as described above. Examples of commercially available silane coupling agents having an epoxy group include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like.

【0026】特開平4−180572号に記載の方法では、
(硬化させた) 樹脂表面を親水化した後、まずシランカ
ップリング剤で処理し、次に触媒付与を行っているが、
このように触媒付与前にシランカップリング剤で処理す
ると、樹脂層表面がシランカップリング剤で覆われてし
まうので、触媒付与が不十分となる。そのため、本発明
では、最初に触媒付与を行ってから、次にシランカップ
リング剤で処理する。
In the method described in JP-A-4-180572,
After hydrophilizing the (cured) resin surface, it is first treated with a silane coupling agent, and then a catalyst is applied,
If the treatment with the silane coupling agent is performed before the application of the catalyst, the surface of the resin layer is covered with the silane coupling agent, so that the application of the catalyst becomes insufficient. Therefore, in the present invention, the catalyst is first applied, and then the treatment is performed with a silane coupling agent.

【0027】シランカップリング剤による処理は、シラ
ンカップリング剤を水、有機溶媒またはその混合溶媒に
溶解した溶液を用いて、浸漬、噴霧、ロール塗布等によ
り行うことができる。溶液濃度は特に制限されないが
0.1〜2wt%程度が好ましい。水または水の割合の多い
混合溶媒を用いた溶液 (いずれも、pHを4程度に調整)
が、より高い密着性が得られることから好ましい。これ
は、シランカップリング剤の加水分解が進み易いためと
思われる。処理温度は通常は室温で十分である。温度を
高くすると、処理液中でシランカップリング剤の加水分
解が進んで、処理液の安定性が低下する。
The treatment with the silane coupling agent can be performed by immersion, spraying, roll coating or the like using a solution in which the silane coupling agent is dissolved in water, an organic solvent or a mixed solvent thereof. Although the solution concentration is not particularly limited,
About 0.1 to 2% by weight is preferable. A solution using water or a mixed solvent with a high proportion of water (in each case, the pH is adjusted to about 4)
Is preferred because higher adhesion can be obtained. This is presumably because hydrolysis of the silane coupling agent easily proceeds. The processing temperature is usually sufficient at room temperature. When the temperature is increased, the hydrolysis of the silane coupling agent in the treatment liquid proceeds, and the stability of the treatment liquid decreases.

【0028】シランカップリング剤による処理後は、直
ぐに無電解めっきを行わずに、低温加熱または室温で表
面を乾燥することが好ましい。それにより、樹脂/金属
間の密着性がさらに向上する。これは、乾燥中に、前述
した樹脂表面とシランカップリング剤との反応や、シラ
ンカップリング剤の加水分解にるシラノール結合の生成
が進むためと考えられる。乾燥温度は70℃以下とするこ
とが好ましい。
After the treatment with the silane coupling agent, the surface is preferably dried at a low temperature or at room temperature without immediately performing electroless plating. Thereby, the adhesion between the resin and the metal is further improved. This is presumably because the reaction between the resin surface and the silane coupling agent described above and the formation of silanol bonds due to hydrolysis of the silane coupling agent proceed during drying. The drying temperature is preferably 70 ° C. or lower.

【0029】次いで、無電解めっきを行う。無電解めっ
きは、通常のように、樹脂層をめっき液中に浸漬するこ
とにより実施する。一般に、無電解めっき液は、めっき
金属化合物と錯化剤 (EDTA等) と還元剤 (例、ホルムア
ルデヒド) とを含有する水溶液である。めっき条件は特
に制限されず、従来と同様でよい。めっき種は特に制限
されないが、プリント配線板の場合は通常は銅である。
その他、ニッケル、金、銀、スズ等の金属の無電解めっ
きも行うことができる。樹脂層がビアを有する場合に
は、ビア部にも無電解めっきが施される。
Next, electroless plating is performed. Electroless plating is performed by immersing the resin layer in a plating solution as usual. Generally, an electroless plating solution is an aqueous solution containing a plating metal compound, a complexing agent (such as EDTA), and a reducing agent (eg, formaldehyde). The plating conditions are not particularly limited, and may be the same as in the related art. The plating type is not particularly limited, but is usually copper in the case of a printed wiring board.
In addition, electroless plating of metals such as nickel, gold, silver, and tin can be performed. If the resin layer has vias, the vias are also subjected to electroless plating.

【0030】無電解めっきが終了したら、樹脂層を加熱
して、樹脂層を完全に硬化させる。この加熱は、熱硬化
性樹脂の硬化温度以上で行う。当業者であれば、熱硬化
性樹脂の完全硬化に必要な加熱条件 (温度と時間) は決
定することができる。なお、完全硬化を行う前に、無電
解めっきした樹脂層を、前記の半硬化の加熱条件に類似
した条件で熱処理してもよい。この熱処理により、支持
体や樹脂層の付着水や無電解めっき皮膜中の不純物が除
去される。
After the completion of the electroless plating, the resin layer is heated to completely cure the resin layer. This heating is performed at a temperature equal to or higher than the curing temperature of the thermosetting resin. Those skilled in the art can determine the heating conditions (temperature and time) required for complete curing of the thermosetting resin. Before performing the complete curing, the electroless-plated resin layer may be heat-treated under conditions similar to the above-described semi-curing heating conditions. By this heat treatment, water adhering to the support and the resin layer and impurities in the electroless plating film are removed.

【0031】本発明では、熱硬化性樹脂が半硬化の段階
で無電解めっきを施し、その後で樹脂を完全に硬化させ
る。この硬化中に樹脂層がいくらか収縮する。この収縮
によって、金属と樹脂とのかみ合いが強固になるため、
樹脂/金属間の密着性がさらに向上する。即ち、前述し
たシランカップリング剤による効果と、この最終硬化時
の収縮効果との相乗効果によって、非常に高い密着性が
得られるのである。
In the present invention, the thermosetting resin is subjected to electroless plating at a semi-cured stage, and thereafter the resin is completely cured. During this curing, the resin layer shrinks somewhat. Due to this shrinkage, the engagement between the metal and the resin becomes stronger,
The adhesion between the resin and the metal is further improved. That is, an extremely high adhesion can be obtained by the synergistic effect of the effect of the silane coupling agent described above and the shrinkage effect at the time of final curing.

【0032】無電解めっき皮膜で、配線層に必要な数十
μmという厚みの金属層を形成するのは、非常な長時間
がかかり、生産効率とコストの両面から不利である。そ
のため、必要に応じて、無電解めっきで形成された金属
薄膜に通電することにより電解めっきを行って、所望厚
みの金属層を形成してもよい。金属層の厚みを確保する
には、無電解めっきだけより、電解めっきを併用した方
がコスト安となる。但し、コスト増にはなるが、電解め
っきの代わりに、硫酸銅めっきといった成膜速度が比較
的高い無電解めっき銅めっきを採用して、無電解めっき
だけで数十μmという金属層厚みを確保することもでき
る。
Forming a metal layer having a thickness of several tens of μm required for a wiring layer with an electroless plating film takes a very long time, which is disadvantageous in terms of both production efficiency and cost. Therefore, if necessary, the metal thin film formed by electroless plating may be energized to perform electrolytic plating to form a metal layer having a desired thickness. In order to secure the thickness of the metal layer, it is cheaper to use electrolytic plating together than to use only electroless plating. However, although the cost will increase, instead of electrolytic plating, electroless plating copper plating such as copper sulfate plating, which has a relatively high deposition rate, is adopted, and a metal layer thickness of several tens of μm is secured only by electroless plating. You can also.

【0033】この電解めっきは、無電解めっき後、熱硬
化性樹脂を完全に硬化させる前に行ってもよく、或いは
この完全硬化工程の後に電解めっきを実施してもよい。
しかし、前述した最終硬化時の収縮による密着性向上効
果を有効に利用できること、またアニール効果により銅
の物性を向上できることから、最終硬化前に電解めっき
を行うことが好ましい。無電解めっき後に前述した熱処
理を行う場合には、電解めっきはこの熱処理後に行う。
The electrolytic plating may be performed after the electroless plating and before the thermosetting resin is completely cured, or the electrolytic plating may be performed after the complete curing step.
However, it is preferable to perform electrolytic plating before final curing, since the above-mentioned effect of improving adhesion due to shrinkage during final curing can be effectively used, and physical properties of copper can be improved by an annealing effect. When performing the above-described heat treatment after the electroless plating, the electrolytic plating is performed after the heat treatment.

【0034】電解めっきは常法に従って実施すればよ
く、特に制限はない。めっき種も、無電解めっきと同じ
金属が原則であるが、別の金属種をめっきしてもよく、
2層以上の電解めっき層を形成してもよい。
Electroplating may be performed according to a conventional method, and there is no particular limitation. The plating type is basically the same metal as the electroless plating, but another metal type may be plated.
Two or more electrolytic plating layers may be formed.

【0035】本発明のめっき方法は、プリント配線板の
製造において、絶縁性樹脂層の上に導体層を形成する場
合に適用することができる。即ち、熱硬化性樹脂を含む
絶縁性樹脂層 (感光性樹脂または永久レジストでもよ
い) を半硬化状態にし、必要に応じて半硬化の前か後に
ビアを形成し、これに前述したようにして触媒付与、シ
ランカップリング剤処理、無電解めっき、完全硬化の各
工程を経て (場合により、完全硬化の前か後に電解めっ
き工程を経て) 、導体層を形成する。これを、例えば、
ビルトアップ多層プリント配線板における各導体層の形
成に利用する。
The plating method of the present invention can be applied to the case where a conductor layer is formed on an insulating resin layer in the manufacture of a printed wiring board. That is, the insulating resin layer containing a thermosetting resin (which may be a photosensitive resin or a permanent resist) is brought into a semi-cured state, and a via is formed before or after the semi-curing as necessary, and as described above, The conductor layer is formed through the steps of catalyst application, silane coupling agent treatment, electroless plating, and complete curing (in some cases, before or after the complete curing through the electrolytic plating step). For example,
It is used for forming each conductor layer in a built-up multilayer printed wiring board.

【0036】従来の導体層の形成方法に比べて絶縁性樹
脂層/配線導体層間の密着性が格段に向上するため、密
着性確保のための粗化処理が不要になるか、或いは粗化
深度を小さくすることができ、樹脂層や配線層の薄膜化
が可能となる。その結果、LSIチップの駆動周波数の
高速化に対応でき、また特性インピーダンスのバラツキ
が抑えられる。
Since the adhesion between the insulating resin layer and the wiring conductor layer is remarkably improved as compared with the conventional method for forming the conductor layer, a roughening treatment for ensuring the adhesion is not required, or the roughening depth is reduced. And the thickness of the resin layer and the wiring layer can be reduced. As a result, the driving frequency of the LSI chip can be increased, and the variation of the characteristic impedance can be suppressed.

【0037】[0037]

【実施例】(実施例1)絶縁性樹脂基板 (三菱瓦斯化学
製、BT−レジン CCL-HL820) の片面に、市販のノボラッ
ク型エポキシ樹脂系レジスト (シプレイ製「XP9500c
c」) をスピンコートにより塗布し、塗膜を乾燥させ
て、厚み40μmの未硬化のエポキシ系樹脂層を形成し
た。
Example 1 Example 1 A commercially available novolak-type epoxy resin-based resist (“XP9500c manufactured by Shipley”) was applied to one side of an insulating resin substrate (BT-Resin CCL-HL820 manufactured by Mitsubishi Gas Chemical).
c)) was applied by spin coating, and the coating film was dried to form an uncured epoxy resin layer having a thickness of 40 μm.

【0038】このレジスト中のエポキシ樹脂は、DSC 測
定から、175 ℃×1時間の硬化条件で完全硬化すること
が判明した。そこで、樹脂層を150 ℃×1時間の加熱で
半硬化させた。その後、樹脂層を有する基板を過マンガ
ン酸水溶液に浸漬して、樹脂層表面に平均粗度約0.7 μ
mの凹凸を形成した。表面粗化の通常の平均粗度は約2
〜3μm程度である。次いで、市販の無電解めっき用前
処理液 (センシタイジング液と活性化液) を用いて、樹
脂層表面に、無電解めっき用のパラジウム触媒を吸着さ
せた。
The epoxy resin in this resist was found to be completely cured under the curing conditions of 175 ° C. × 1 hour from DSC measurement. Therefore, the resin layer was semi-cured by heating at 150 ° C. × 1 hour. Then, the substrate having the resin layer is immersed in a permanganic acid aqueous solution, and the average roughness of the resin layer surface is about 0.7 μm.
m irregularities were formed. Typical average roughness of surface roughening is about 2
About 3 μm. Next, a palladium catalyst for electroless plating was adsorbed on the surface of the resin layer using a commercially available pretreatment liquid for electroless plating (sensitizing solution and activating liquid).

【0039】その後、γ−グリシドキシプロピル基を有
するシランカップリング剤 (信越化学製、KBM403、γ−
グリシドキシプロピルトリメトキシシラン) 5重量部
を、エタノール90重量部と水5重量部の混合溶媒に溶解
させた室温の溶液に、上記パラジウム触媒を付与した樹
脂層を有する基板を5分間浸漬して、樹脂層表面にシラ
ンカップリング剤を吸着させた後、50℃で10分間の乾燥
を行った。
Thereafter, a silane coupling agent having a γ-glycidoxypropyl group (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.
5 parts by weight of (glycidoxypropyltrimethoxysilane) was dissolved in a mixed solvent of 90 parts by weight of ethanol and 5 parts by weight of water, and the substrate having the resin layer provided with the palladium catalyst was immersed for 5 minutes in a room temperature solution. After adsorbing the silane coupling agent on the surface of the resin layer, drying was performed at 50 ° C. for 10 minutes.

【0040】次に、無電解めっき液 (シプレイ製、カッ
パーミックス251)により、約1μmの銅薄膜を樹脂層表
面に形成した後、150 ℃×1時間の熱処理を行った。そ
の後、同めっき液で硫酸銅めっきを行って、約30μmの
銅配線層を形成し、最後に175 ℃×1時間の熱処理を行
って、樹脂層を完全に硬化させた。
Next, a copper thin film of about 1 μm was formed on the surface of the resin layer using an electroless plating solution (manufactured by Shipley, Copper Mix 251), and then heat-treated at 150 ° C. × 1 hour. Thereafter, a copper wiring layer having a thickness of about 30 μm was formed by performing copper sulfate plating with the same plating solution, and finally, a heat treatment was performed at 175 ° C. × 1 hour to completely cure the resin layer.

【0041】得られた、表面が銅配線層で被覆された基
板を用い、JIS C6481 による銅箔の剥離強度試験を行っ
て、密着性 (剥離強度) を評価した。結果を表1に示
す。
Using the obtained substrate having the surface covered with a copper wiring layer, a peel strength test of a copper foil according to JIS C6481 was performed to evaluate the adhesion (peel strength). Table 1 shows the results.

【0042】(比較例1)実施例1においてシランカップ
リング剤で処理する工程を省略し、無電解めっきの触媒
付与前に樹脂層を完全硬化した以外は実施例1と同様に
して、絶縁基板上にレジスト樹脂層と銅配線層を形成し
た。この基板について、実施例1と同様にして銅/樹脂
間の密着性を評価した。結果をやはり表1に示す。
Comparative Example 1 An insulating substrate was prepared in the same manner as in Example 1 except that the step of treating with a silane coupling agent was omitted, and the resin layer was completely cured before applying a catalyst for electroless plating. A resist resin layer and a copper wiring layer were formed thereon. With respect to this substrate, the adhesion between copper and resin was evaluated in the same manner as in Example 1. The results are also shown in Table 1.

【0043】(比較例2)実施例1においてシランカップ
リング剤で処理する工程を省略した以外は実施例1と同
様にして、絶縁基板上にレジスト樹脂層と銅配線層を形
成した。この基板について、実施例1と同様にして銅/
樹脂間の密着性を評価した。結果をやはり表1に示す。
Comparative Example 2 A resist resin layer and a copper wiring layer were formed on an insulating substrate in the same manner as in Example 1 except that the step of treating with a silane coupling agent was omitted. About this board | substrate similarly to Example 1, copper /
The adhesion between the resins was evaluated. The results are also shown in Table 1.

【0044】(実施例2〜3)実施例1においてシランカ
ップリング剤処理した後の乾燥温度を表1に示す温度に
変更した以外は実施例1と全く同様にして、絶縁基板上
にレジスト樹脂層と銅配線層を形成した。この基板につ
いて、実施例1と同様にして銅/樹脂間の密着性を評価
した。結果をやはり表1に示す。
(Examples 2 and 3) A resist resin was formed on an insulating substrate in the same manner as in Example 1 except that the drying temperature after the treatment with the silane coupling agent was changed to the temperature shown in Table 1. A layer and a copper wiring layer were formed. With respect to this substrate, the adhesion between copper and resin was evaluated in the same manner as in Example 1. The results are also shown in Table 1.

【0045】(実施例4〜6)実施例1においてシランカ
ップリング剤処理した後の乾燥温度を表1に示す温度に
変更し、無電解めっき (Cu:1μm)の後の熱処理を同様
に行った後、この無電解めっき皮膜に通電して配線層厚
さ30μmまで電解銅めっきを行った以外は実施例1と同
様にして、絶縁基板上にレジスト樹脂層と銅配線層を形
成した。この基板について、実施例1と同様にして銅/
樹脂間の密着性を評価した。結果をやはり表1に示す。
(Examples 4 to 6) In Example 1, the drying temperature after the treatment with the silane coupling agent was changed to the temperature shown in Table 1, and the heat treatment after the electroless plating (Cu: 1 μm) was similarly performed. Thereafter, a resist resin layer and a copper wiring layer were formed on an insulating substrate in the same manner as in Example 1 except that the electroless plating film was energized to perform electrolytic copper plating to a wiring layer thickness of 30 μm. About this board | substrate similarly to Example 1, copper /
The adhesion between the resins was evaluated. The results are also shown in Table 1.

【0046】(比較例3)実施例1において樹脂層の完全
硬化を触媒付与前に行い、無電解めっき (Cu:1μm)の
後の熱処理を同様に行った後、この無電解めっき皮膜に
通電して配線層厚さ30μmまで電解銅めっきを行った以
外は実施例1と同様にして、絶縁基板上にレジスト樹脂
層と銅配線層を形成した。この基板について、実施例1
と同様にして銅/樹脂間の密着性を評価した。結果をや
はり表1に示す。
(Comparative Example 3) In Example 1, the resin layer was completely cured before applying the catalyst, heat treatment was performed after electroless plating (Cu: 1 μm) in the same manner. Then, a resist resin layer and a copper wiring layer were formed on an insulating substrate in the same manner as in Example 1 except that electrolytic copper plating was performed to a wiring layer thickness of 30 μm. Example 1 of this substrate
The adhesion between copper / resin was evaluated in the same manner as described above. The results are also shown in Table 1.

【0047】(実施例7〜9)実施例1において、シラン
カップリング剤を溶解する溶媒のエタノール/水の重量
比を表1に示すように変更(両者の合計量は95重量部で
一定、溶媒は酢酸でpH4に調整) し、無電解めっき (C
u:1μm)の後の熱処理を同様に行った後、この無電解
めっき皮膜に通電して配線層厚さ30μmまで電解銅めっ
きを行った以外は実施例1と同様にして、絶縁基板上に
レジスト樹脂層と銅配線層を形成した。この基板につい
て、実施例1と同様にして銅/樹脂間の密着性を評価し
た。結果をやはり表1に示す。
(Examples 7 to 9) In Example 1, the weight ratio of ethanol / water as the solvent for dissolving the silane coupling agent was changed as shown in Table 1 (the total amount of both was constant at 95 parts by weight, The solvent is adjusted to pH 4 with acetic acid) and electroless plating (C
u: 1 μm) after the same heat treatment was performed, and then the electroless plating film was energized to perform electrolytic copper plating to a wiring layer thickness of 30 μm. A resist resin layer and a copper wiring layer were formed. With respect to this substrate, the adhesion between copper and resin was evaluated in the same manner as in Example 1. The results are also shown in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】表1からわかるように、熱硬化性樹脂が半
硬化の状態で無電解めっきを行い、かつ無電解めっき用
の触媒を付与した後にシランカップリング剤を樹脂層表
面に吸着させるという本発明に従った工程で樹脂層と金
属層とを絶縁基板上に形成した本発明例では、銅箔 (金
属層) の剥離強度が1kgf/cm超と高くなった。一方、半
硬化状態で無電解めっき行なってもシランカップリング
剤処理をしなかった比較例2、およびシランカップリン
グ剤処理しても無電解めっきを完全硬化状態で行った比
較例3は、従来法 (シランカップリング剤処理を行わず
に、完全硬化状態で無電解めっきする) である比較例1
に比べて、密着性の向上はわずかである。従って、半硬
化状態で無電解めっきを施した後で完全硬化させること
と、触媒付与後にシランカップリング剤処理を行うこと
の両者を組合わせることにより、樹脂/金属間の密着性
向上に相乗的な効果を生ずることがわかる。
As can be seen from Table 1, electroless plating is performed in a state where the thermosetting resin is semi-cured, and a catalyst for electroless plating is applied, and then the silane coupling agent is adsorbed on the surface of the resin layer. In the present invention example in which the resin layer and the metal layer were formed on the insulating substrate in the process according to the invention, the peel strength of the copper foil (metal layer) was as high as more than 1 kgf / cm. On the other hand, Comparative Example 2 in which the silane coupling agent treatment was not performed even when the electroless plating was performed in the semi-cured state, and Comparative Example 3 in which the electroless plating was performed in the completely cured state even when the silane coupling agent treatment was performed, Comparative Example 1 which is a method (electroless plating in a completely cured state without performing a silane coupling agent treatment)
The improvement in the adhesion is slight as compared with. Therefore, by combining both the electroless plating in the semi-cured state and the complete curing after the electroless plating and the treatment with the silane coupling agent after the application of the catalyst, synergistic improvement in the adhesion between the resin and the metal is achieved. It can be seen that the following effects are produced.

【0050】[0050]

【発明の効果】本発明により、熱硬化性樹脂を完全に硬
化させる前に無電解めっきを施し、かつ無電解めっきの
触媒付与後にシランカップリング剤で処理してから無電
解めっきを施すことにより、非常に高い樹脂/金属間の
密着性 (剥離強度) を確保することが可能となる。その
結果、密着性確保のために従来行われてきた樹脂層また
は金属層の粗化処理が不要になるか、或いは粗化処理の
深度を小さくすることができ、樹脂層や配線層の薄膜化
が可能となる。それにより、LSIチップの駆動周波数
の高速化に対応が可能となり、また特性インピーダンス
のバラツキが抑えられる。本発明による樹脂のめっき方
法は、特に高速化が要求されるMPUパッケージの製造
に有用である。
According to the present invention, the electroless plating is performed before the thermosetting resin is completely cured, and the electroless plating is performed after the treatment with a silane coupling agent after the application of the electroless plating catalyst. In addition, it is possible to ensure very high adhesion between the resin and the metal (peel strength). As a result, the conventional roughening treatment of the resin layer or the metal layer for ensuring the adhesion becomes unnecessary or the depth of the roughening treatment can be reduced, and the resin layer or the wiring layer can be made thinner. Becomes possible. As a result, it is possible to cope with an increase in the driving frequency of the LSI chip, and it is possible to suppress variations in characteristic impedance. The resin plating method according to the present invention is particularly useful for manufacturing an MPU package requiring high speed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/18 H05K 3/18 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/18 H05K 3/18 H

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記工程を順に含む、樹脂のめっき方
法: (a) 熱硬化性樹脂を含む未硬化樹脂層を形成する工程、
(b) 樹脂層を加熱して半硬化状態にする工程、(c) 半硬
化状態の樹脂層の表面に無電解めっき用触媒を付与する
工程、(d) 触媒付与した樹脂層表面にシランカップリン
グ剤を吸着させる工程、(e) シランカップリング剤を吸
着した樹脂層に無電解めっきを施す工程、(f) 樹脂層を
完全に硬化させる工程。
1. A method for plating a resin, comprising the following steps in order: (a) forming an uncured resin layer containing a thermosetting resin;
(b) a step of heating the resin layer to a semi-cured state, (c) a step of applying a catalyst for electroless plating to the surface of the resin layer in a semi-cured state, and (d) a silane cup on the surface of the resin layer with the catalyst. A step of adsorbing a ring agent, (e) a step of applying electroless plating to the resin layer adsorbing the silane coupling agent, and (f) a step of completely curing the resin layer.
【請求項2】 前記工程(e) または(f) の後に、次の工
程(g) を含む、請求項1記載の方法:(g) 電解めっきを
施すことにより、無電解めっき皮膜の上に電解めっき皮
膜を形成する工程。
2. The method according to claim 1, further comprising the following step (g) after the step (e) or (f): (g) applying an electrolytic plating on the electroless plating film. Step of forming an electrolytic plating film.
【請求項3】 熱硬化性樹脂を含む樹脂層からなる絶縁
層の上に導体層を形成することを含むプリント配線板の
製造において、その導体層の形成を請求項1または2記
載のめっき方法により行うことを特徴とする、プリント
配線板の製造方法。
3. The plating method according to claim 1, wherein the conductor layer is formed in the production of a printed wiring board including forming a conductor layer on an insulating layer made of a resin layer containing a thermosetting resin. A method for manufacturing a printed wiring board.
JP11122571A 1999-04-28 1999-04-28 Plating method for resin Withdrawn JP2000313963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11122571A JP2000313963A (en) 1999-04-28 1999-04-28 Plating method for resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11122571A JP2000313963A (en) 1999-04-28 1999-04-28 Plating method for resin

Publications (1)

Publication Number Publication Date
JP2000313963A true JP2000313963A (en) 2000-11-14

Family

ID=14839209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11122571A Withdrawn JP2000313963A (en) 1999-04-28 1999-04-28 Plating method for resin

Country Status (1)

Country Link
JP (1) JP2000313963A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201585A (en) * 2001-10-30 2003-07-18 Nikko Materials Co Ltd Surface treated copper foil
JP2006316296A (en) * 2005-05-10 2006-11-24 Fuji Photo Film Co Ltd Method for forming metal film, method for forming metal pattern using the same, and metal film
JP2007043201A (en) * 2006-10-24 2007-02-15 Fujitsu Ltd Method for manufacturing multilayer wiring board
JP2007123425A (en) * 2005-10-26 2007-05-17 Seiko Epson Corp Manufacturing method of printed circuit board
JP2008085111A (en) * 2006-09-28 2008-04-10 Matsushita Electric Ind Co Ltd Wiring board and manufacturing method therefor
JP2008157833A (en) * 2006-12-26 2008-07-10 Seiko Epson Corp Method of manufacturing dial for timepiece, dial for timepiece, and timepiece
WO2010035451A1 (en) * 2008-09-24 2010-04-01 積水化学工業株式会社 Semi-cured body, cured body, multilayer body, method for producing semi-cured body, and method for producing cured body
US8043705B2 (en) 2005-03-10 2011-10-25 Nippon Mining & Metals Co., Ltd. Resin substrate material, electronic component substrate material manufactured by electroless plating on the same, and method for manufacturing electronic component substrate material
JP2012256872A (en) * 2011-05-12 2012-12-27 Rohm & Haas Electronic Materials Llc Adhesion promotion of metal to dielectric
JP2013184425A (en) * 2012-03-09 2013-09-19 National Institute Of Advanced Industrial Science & Technology Resin/copper plating laminate and method of manufacturing the same
WO2015178258A1 (en) * 2014-05-21 2015-11-26 住友電工プリントサーキット株式会社 Printed wiring board and method for manufacturing printed wiring board
JP2018071939A (en) * 2016-11-03 2018-05-10 株式会社デンソー Latent heat storage body and manufacturing method of latent heat storage body
WO2019031322A1 (en) * 2017-08-09 2019-02-14 互応化学工業株式会社 Method for producing multilayer printed wiring board, and multilayer printed wiring board

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651783B2 (en) 2001-10-30 2010-01-26 Nikko Materials Co., Ltd. Surface treated copper film
JP2003201585A (en) * 2001-10-30 2003-07-18 Nikko Materials Co Ltd Surface treated copper foil
KR101106845B1 (en) * 2005-03-10 2012-01-19 닛코킨조쿠 가부시키가이샤 Resin substrate
US8043705B2 (en) 2005-03-10 2011-10-25 Nippon Mining & Metals Co., Ltd. Resin substrate material, electronic component substrate material manufactured by electroless plating on the same, and method for manufacturing electronic component substrate material
JP4579048B2 (en) * 2005-05-10 2010-11-10 富士フイルム株式会社 Metal film forming method, metal pattern forming method using the same, and metal film
JP2006316296A (en) * 2005-05-10 2006-11-24 Fuji Photo Film Co Ltd Method for forming metal film, method for forming metal pattern using the same, and metal film
JP2007123425A (en) * 2005-10-26 2007-05-17 Seiko Epson Corp Manufacturing method of printed circuit board
JP2008085111A (en) * 2006-09-28 2008-04-10 Matsushita Electric Ind Co Ltd Wiring board and manufacturing method therefor
JP2007043201A (en) * 2006-10-24 2007-02-15 Fujitsu Ltd Method for manufacturing multilayer wiring board
JP2008157833A (en) * 2006-12-26 2008-07-10 Seiko Epson Corp Method of manufacturing dial for timepiece, dial for timepiece, and timepiece
JP4674730B2 (en) * 2008-09-24 2011-04-20 積水化学工業株式会社 Semi-cured body, cured body, laminate, method for producing semi-cured body, and method for producing cured body
WO2010035451A1 (en) * 2008-09-24 2010-04-01 積水化学工業株式会社 Semi-cured body, cured body, multilayer body, method for producing semi-cured body, and method for producing cured body
CN102164995A (en) * 2008-09-24 2011-08-24 积水化学工业株式会社 Semi-cured body, cured body, multilayer body, method for producing semi-cured body, and method for producing cured body
JP2012256872A (en) * 2011-05-12 2012-12-27 Rohm & Haas Electronic Materials Llc Adhesion promotion of metal to dielectric
JP2013184425A (en) * 2012-03-09 2013-09-19 National Institute Of Advanced Industrial Science & Technology Resin/copper plating laminate and method of manufacturing the same
JP2016001728A (en) * 2014-05-21 2016-01-07 住友電工プリントサーキット株式会社 Printed wiring board and method for manufacturing printed wiring board
WO2015178258A1 (en) * 2014-05-21 2015-11-26 住友電工プリントサーキット株式会社 Printed wiring board and method for manufacturing printed wiring board
CN106465550A (en) * 2014-05-21 2017-02-22 住友电工印刷电路株式会社 Printed wiring board and method for manufacturing printed wiring board
US9894765B2 (en) 2014-05-21 2018-02-13 Sumitomo Electric Printed Circuits, Inc. Printed wiring board and method for producing printed wiring board
CN106465550B (en) * 2014-05-21 2019-05-14 住友电工印刷电路株式会社 The manufacturing method of printed wiring board and printed wiring board
JP2018071939A (en) * 2016-11-03 2018-05-10 株式会社デンソー Latent heat storage body and manufacturing method of latent heat storage body
WO2019031322A1 (en) * 2017-08-09 2019-02-14 互応化学工業株式会社 Method for producing multilayer printed wiring board, and multilayer printed wiring board
JPWO2019031322A1 (en) * 2017-08-09 2019-11-07 互応化学工業株式会社 Multilayer printed wiring board manufacturing method and multilayer printed wiring board
KR20200035008A (en) * 2017-08-09 2020-04-01 고오 가가쿠고교 가부시키가이샤 Manufacturing method of multilayer printed wiring board and multilayer printed wiring board
CN110999554A (en) * 2017-08-09 2020-04-10 互应化学工业株式会社 Method for manufacturing multilayer printed wiring board and multilayer printed wiring board
KR102189000B1 (en) 2017-08-09 2020-12-09 고오 가가쿠고교 가부시키가이샤 Manufacturing method of multilayer printed wiring board and multilayer printed wiring board
CN110999554B (en) * 2017-08-09 2021-05-18 互应化学工业株式会社 Method for manufacturing multilayer printed wiring board and multilayer printed wiring board

Similar Documents

Publication Publication Date Title
JPH028476B2 (en)
JP2000313963A (en) Plating method for resin
JP3220350B2 (en) Manufacturing method of printed wiring board
JP4064801B2 (en) Metal film formation processing method, semiconductor device, and wiring board
JP3049215B2 (en) Manufacturing method of wiring board
JPS63293994A (en) Method of removing remaining catalyst particles
JP2915644B2 (en) Manufacturing method of printed wiring board
JPH06260756A (en) Manufacture of printed wiring board
JPS62273810A (en) Method of treating reinforced synthetic-polymer composite material
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JP2005005319A (en) Method for forming wiring and wiring board
JP2011159966A (en) Surface processing method for wiring board, and wiring board processed by the surface processing method
JPH09223859A (en) Printed wiring board
JPH09266375A (en) Multilayer printed interconnection board manufacturing method
JPH0541576A (en) Manufacture of printed circuit board
JP2001007513A (en) Printed wiring board
JP4334052B2 (en) Roughened surface forming resin composition and printed wiring board
JP3469214B2 (en) Build-up multilayer printed wiring board
JP2733375B2 (en) Printed wiring board and method of manufacturing the same
JP2004040138A (en) Build up multilayer printed circuit board
JP3330410B2 (en) Manufacturing method of printed wiring board
JPS60241291A (en) Method of producing printed circuit board
JP2581432B2 (en) Manufacturing method of printed wiring board
JPH0685433A (en) Manufacture of printed-wiring board
JPS5967692A (en) Method of producing printed circuit board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704