JPH0685433A - Manufacture of printed-wiring board - Google Patents

Manufacture of printed-wiring board

Info

Publication number
JPH0685433A
JPH0685433A JP23357992A JP23357992A JPH0685433A JP H0685433 A JPH0685433 A JP H0685433A JP 23357992 A JP23357992 A JP 23357992A JP 23357992 A JP23357992 A JP 23357992A JP H0685433 A JPH0685433 A JP H0685433A
Authority
JP
Japan
Prior art keywords
catalyst
plating
oxide film
catalyst nuclei
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23357992A
Other languages
Japanese (ja)
Inventor
Manabu Okumura
学 奥村
Masahito Kawade
雅人 川出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP23357992A priority Critical patent/JPH0685433A/en
Publication of JPH0685433A publication Critical patent/JPH0685433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To enhance the reliability upon the printed-wiring board by a method wherein oxide films formed around catalyst nuclei during the heat treatment for solidifying the catalyst nuclei are to be removed without fail while preventing the catalyst nuclei from falling out of a bonding agent layer. CONSTITUTION:A board having a roughened surface with a catalyst nuclei is coated with plating resist and a conductor circuit is formed by electroless plating. The board is heat-treated to solidify the catalyst nuclei after providing the catalyst nuclei but before the electroless plating. Finally, after the heat treatment, the board is treated with strong acid and then with weak acid to remove the oxide films from the surfaces of the catalyst nuclei.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプリント配線板の製造方
法に係り、特にフルアディティブ法によるプリント配線
板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a printed wiring board, and more particularly to a method for manufacturing a printed wiring board by a full additive method.

【0002】[0002]

【従来の技術】近年、電子機器の小型化、高性能化及び
多機能化が進められており、これに使用されるプリント
配線板においてもファインパターンによる高密度化及び
高信頼性が要求されている。
2. Description of the Related Art In recent years, electronic devices have been downsized, improved in performance and multifunctional, and printed wiring boards used therein have been required to have high density and high reliability by fine patterns. There is.

【0003】従来、プリント配線板に導体回路を形成す
る方法としては、絶縁基板に銅箔を積層した後、フォト
エッチングすることにより導体回路を形成するサブトラ
クティブ法が広く行われている。この方法によれば絶縁
基板との密着性に優れた導体回路を形成することができ
る。しかし、エッチングでパターンを形成する際に必要
なエッチング深さが大きいため所謂アンダーカットが生
じ、高精度のファインパターンが得難く、高密度化に対
応することが難しいという問題がある。そこでサブトラ
クティブ法に代る方法として、無電解メッキのみで導体
回路を形成するフルアディティブ法が注目されている。
Conventionally, as a method of forming a conductor circuit on a printed wiring board, a subtractive method of forming a conductor circuit by laminating a copper foil on an insulating substrate and then photoetching is widely used. According to this method, it is possible to form a conductor circuit having excellent adhesion to the insulating substrate. However, there is a problem that so-called undercut occurs because the etching depth required when forming a pattern by etching is large, it is difficult to obtain a highly accurate fine pattern, and it is difficult to cope with high density. Then, as an alternative method to the subtractive method, the full additive method, in which a conductor circuit is formed only by electroless plating, is drawing attention.

【0004】フルアディティブ法では次の各工程を経て
プリント配線板が製造される。 (a)基板の表面に形成された粗化接着剤層上に無電解
メッキ用触媒として、例えば、コロイドタイプのパラジ
ウム化合物(Pd及びSnイオンを含む)を付与する工
程。 (b)必要に応じて、触媒活性化のために、酸でSnコ
ロイドの一部を除去する工程。 (c)加熱処理して触媒の固定を行う工程。 (d)メッキレジスト用フィルム又は樹脂液を印刷又は
塗布した後、露光、現像、熱処理などの方法に基づい
て、メッキ層を形成すべき部分以外の箇所にメッキレジ
スト層を形成する工程。 (e)再び酸にて触媒活性化処理を行う工程。 (f)無電解メッキにより導体回路を形成する工程。
In the full additive method, a printed wiring board is manufactured through the following steps. (A) A step of applying, for example, a colloid type palladium compound (including Pd and Sn ions) as a catalyst for electroless plating on the roughened adhesive layer formed on the surface of the substrate. (B) A step of removing a part of the Sn colloid with an acid for catalyst activation, if necessary. (C) A step of performing heat treatment to fix the catalyst. (D) A step of printing or applying a plating resist film or a resin liquid, and then forming a plating resist layer on a portion other than the portion where the plating layer is to be formed based on a method such as exposure, development, and heat treatment. (E) A step of performing a catalyst activation treatment with an acid again. (F) A step of forming a conductor circuit by electroless plating.

【0005】[0005]

【発明が解決しようとする課題】従来方法では、触媒固
定化のための熱処理を大気中で行っているために、触媒
核の表面に酸化膜が形成される。酸化膜で覆われた触媒
核には無電解メッキ金属(例えば銅)が付き難く、析出
金属(メッキ層)の基板に対する密着性が悪くなる。そ
こで、(e)の工程で酸処理にて酸化膜の除去を行うよ
うにしている。ところが、酸化膜を溶解するのに充分な
溶解力を有する塩酸、フッ酸などの強酸を使用すると、
酸化膜だけでなくPd自身あるいはPdと接着剤層との
間に存在するスズ(Sn)が溶解して、Pdが接着剤層
から脱落する。その結果、メッキ層の密着性(ピール強
度)が低下する。又、脱落したPdがメッキレジスト表
面に付着し、不要な箇所にメッキ層が形成されるという
問題がある。又、酸化膜(PdO)のみを溶解する弱酸
を使用すると、酸化膜を完全に除去するのに長時間を要
し、実際の使用条件では酸化膜の完全な除去は不可能で
ある。その結果、触媒核は酸化膜で覆われた状態に保持
され、無電解メッキの初期活性の不足により、メッキ層
の密着性(ピール強度)が低下する。
In the conventional method, since the heat treatment for fixing the catalyst is performed in the atmosphere, an oxide film is formed on the surface of the catalyst nucleus. It is difficult for the electroless plated metal (eg, copper) to adhere to the catalyst core covered with the oxide film, and the adhesion of the deposited metal (plated layer) to the substrate deteriorates. Therefore, in the step (e), the oxide film is removed by acid treatment. However, if a strong acid such as hydrochloric acid or hydrofluoric acid having a sufficient dissolving power to dissolve the oxide film is used,
Not only the oxide film but also Pd itself or tin (Sn) existing between Pd and the adhesive layer is dissolved, and Pd is dropped from the adhesive layer. As a result, the adhesion (peel strength) of the plating layer is reduced. Further, there is a problem that the Pd that has fallen off adheres to the surface of the plating resist and a plating layer is formed at an unnecessary portion. If a weak acid that dissolves only the oxide film (PdO) is used, it takes a long time to completely remove the oxide film, and the oxide film cannot be completely removed under actual use conditions. As a result, the catalyst nuclei are kept covered with the oxide film, and the initial activity of the electroless plating is insufficient, so that the adhesion (peel strength) of the plating layer is reduced.

【0006】そこで、メッキ層の密着性(ピール強度)
を向上させるため、触媒核を過剰に付着させて、酸化膜
で覆われない状態の触媒核の量を確保することが考えら
れる。ところが、その場合は接着剤層とメッキレジスト
層の間に存在する触媒核の量が増大し、高密度の導体回
路を形成した場合その絶縁信頼性が低下するという問題
が生じる。
Therefore, the adhesion of the plating layer (peel strength)
In order to improve the above, it is conceivable to excessively attach the catalyst nuclei to secure the amount of the catalyst nuclei in a state not covered with the oxide film. However, in that case, the amount of catalyst nuclei existing between the adhesive layer and the plating resist layer increases, and when a high-density conductor circuit is formed, the insulation reliability thereof deteriorates.

【0007】本発明は前記の問題点に鑑みてなされたも
のであって、その目的は触媒核固定化のための熱処理の
際に触媒核の周囲に形成される酸化膜を、触媒核の接着
剤層からの脱落を招くことなく確実に除去することがで
き、メッキ層の接着剤層に対する密着性を向上させて、
プリント配線板の信頼性を高めることができるプリント
配線板の製造方法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to adhere an oxide film formed around a catalyst nucleus during heat treatment for immobilizing the catalyst nucleus to the catalyst nucleus. It can be surely removed without inviting it from the agent layer, improving the adhesion of the plating layer to the adhesive layer,
It is an object of the present invention to provide a method for manufacturing a printed wiring board that can enhance the reliability of the printed wiring board.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
め本発明では、基板上に形成された粗化面上に触媒核を
付与し、次いでメッキレジストを形成した後、無電解メ
ッキを施して導体回路を形成するとともに、前記触媒核
付与後、無電解メッキを施す前に触媒核固定化のために
基板の熱処理を行うプリント配線板の製造方法におい
て、前記熱処理を行った後、無電解メッキを施す前に、
強酸処理を行い次いで弱酸処理を行って触媒核の表面に
形成された酸化膜を除去する工程を設けた。
In order to achieve the above object, in the present invention, a catalyst nucleus is provided on a roughened surface formed on a substrate, and then a plating resist is formed, followed by electroless plating. In the method for manufacturing a printed wiring board, in which a conductor circuit is formed by heat treatment, and after the catalyst nucleus is applied, the substrate is heat-treated to fix the catalyst nucleus before electroless plating is performed. Before plating
A step of removing the oxide film formed on the surface of the catalyst nucleus by performing strong acid treatment and then weak acid treatment was provided.

【0009】[0009]

【作用】プリント配線板を触媒核としてパラジウムを用
いて製造する場合を例にして説明すると、粗化接着剤層
上に付与される触媒は、パラジウム(Pd)の周囲をス
ズ(Sn)が取り囲んだ状態のパラジウム・スズコロイ
ドとして接着剤層上に付与される。触媒と接着剤層との
結合は、パラジウムが直接接着剤層の表面と結合するの
ではなく、パラジウムを取り囲んでいるスズの一部が接
着剤層の表面と結合することによる。そして、活性化処
理により、次式の反応で触媒核(Pd0 )が生じる。
In the case where a printed wiring board is manufactured by using palladium as a catalyst nucleus, the catalyst provided on the roughening adhesive layer has palladium (Pd) surrounded by tin (Sn). It is applied on the adhesive layer as a palladium / tin colloid in the state of being. The bonding between the catalyst and the adhesive layer is due to the fact that palladium does not bond directly to the surface of the adhesive layer, but a part of the tin surrounding the palladium bonds to the surface of the adhesive layer. Then, due to the activation treatment, catalyst nuclei (Pd 0 ) are generated in the reaction of the following equation.

【0010】Pd2++Sn2+→Pd0 +Sn4+ そして、接着剤層上に析出したPd0 は、触媒固定化の
ために行う熱処理の際あるいは、メッキレジストの熱硬
化処理の際に、その周囲に酸化膜(PdO)が形成され
る。全てのPd0 (触媒核)が酸化膜で覆われるのでは
ないが、酸化膜で覆われた触媒核にはメッキ金属が析出
し難く、酸化膜の除去処理を行わずに無電解メッキを施
した場合は、メッキ層の密着強度が不充分となる。
[0010] Pd 2+ + Sn 2+ → Pd 0 + Sn 4+ Then, Pd 0 deposited on the adhesive layer is, during the heat treatment performed for the catalyst immobilized or during thermal curing treatment of the plating resist, An oxide film (PdO) is formed around it. Not all Pd 0 (catalyst nuclei) are covered with an oxide film, but plating metal is hard to deposit on the catalyst nuclei covered with an oxide film, and electroless plating is performed without removing the oxide film. In that case, the adhesion strength of the plating layer will be insufficient.

【0011】本発明では無電解メッキを施す前に、触媒
核の表面に形成された酸化膜が酸処理により除去され
る。酸処理はまず強酸処理が行われ、Pd0 の脱落、溶
解があまり生じない程度にPdOが除去される。次いで
弱酸により残りのわずかなPdOが除去される。すなわ
ち、PdOの皮膜が除去されてPd0 が酸に接触すると
きには、強酸ではなく弱酸に接触するため、Pd0 の脱
落、溶解が最小限に抑えられる。従って、触媒核が接着
剤層から脱落することはなく、脱落した触媒核がメッキ
層を形成すべき箇所以外に付着することに起因する不具
合が無くなる。
In the present invention, the oxide film formed on the surface of the catalyst core is removed by acid treatment before electroless plating. As the acid treatment, a strong acid treatment is first performed to remove PdO to such an extent that Pd 0 is not removed or dissolved. The weak acid then removes the traces of residual PdO. That is, when the PdO film is removed and Pd 0 comes into contact with an acid, the Pd 0 comes into contact with a weak acid instead of a strong acid, so that Pd 0 is prevented from being dropped or dissolved. Therefore, the catalyst nuclei do not drop off from the adhesive layer, and there is no problem caused by the dropped catalyst nuclei adhering to areas other than the place where the plating layer is to be formed.

【0012】又、触媒核の周囲に形成された酸化膜が確
実に除去され、かつ触媒核の脱落がないため、触媒核の
付与量を過剰にしなくても、無電解メッキの初期活性が
充分となる。その結果、無電解メッキ層の形成が支障な
く行われ、メッキ層の密着強度(ピール強度)が向上す
る。そして、触媒核の付与量を過剰にする必要がないた
め、メッキレジストと接着剤層との間に存在する触媒核
の量が少なくなり、絶縁抵抗が大きくなって絶縁信頼性
が確保される。
Further, since the oxide film formed around the catalyst nuclei is surely removed and the catalyst nuclei do not fall off, the initial activity of the electroless plating is sufficient even if the amount of the catalyst nuclei applied is not excessive. Becomes As a result, the electroless plating layer is formed without any problem, and the adhesion strength (peel strength) of the plating layer is improved. Further, since it is not necessary to make the applied amount of the catalyst nuclei excessive, the amount of the catalyst nuclei existing between the plating resist and the adhesive layer is reduced, the insulation resistance is increased, and the insulation reliability is secured.

【0013】[0013]

【実施例】以下、本発明を実施例及び比較例に基づい
て、より詳細に説明する。 (実施例1) (1) FR−4グレードの絶縁板(日立化成工業製)の表
面をバフ研磨した後、水洗乾燥して基板を得た。 (2) フェノールノボラック型エポキシ樹脂(油化シェル
製)60重量部、ビスフェノールA型エポキシ樹脂(油
化シェル製)40重量部、、イミダゾール型硬化剤(四
国化成製)5重量部、アンカー形成用の粒子としてのエ
ポキシ樹脂微粉末(東レ製、商品名:トレパールEP−
B、平均粒径5.5μm)25重量部及びエポキシ樹脂
微粉末(東レ製、商品名:トレパールEP−B、平均粒
径0.5μm)10重量部に、ブチルセロソルブアセテ
ート溶剤を添加しながら、ホモディスパー分散機で粘度
を120cps に調整し、三本ローラーで混練して接着剤
を調整した。 (3) 前記第(1) 工程で得られた基板にローラーコーター
を使用して、前記第(2)工程で得られた接着剤を塗布し
た後、100℃で1時間、さらに150℃で5時間乾燥
することにより、基板上に厚さ30μmの接着剤層を形
成した。 (4) 前記第(3) 工程の処理で得られた接着剤層を有する
基板を、クロム酸(Cr2O3)700g/l水溶液からなる
酸化剤溶液中に、70℃で15分間浸漬することにより
前記接着剤層の表面を粗化した。その後、中和液(シプ
レイ社製)に浸漬し、水洗した。 (5) 前記第(4) 工程の処理で得られた基板の接着剤層上
に、市販の化学銅メッキ核付与システム(シプレイ社
製)を用いてパラジウム触媒核の付与を行った。すなわ
ち、まず接着層表面の脱脂を目的として基板をアルキレ
ートJ(商品名)に60℃で2分間浸漬した。10秒間
のスプレー水洗を3回行った後、基板をコンディショナ
ー1160(商品名)に室温で2分間浸漬した。この処
理で接着層の表面が触媒の付与が可能な状態となる。次
に10秒間のスプレー水洗を3回行った後、基板をキャ
タプリップ404(商品名)に40℃で2分間浸漬し、
続いて10秒間のスプレー水洗を3回行った後、キャタ
ポジット44(商品名)に40℃で6分間浸漬した。こ
の処理によりパラジウム(Pd)の周囲をスズ(Sn)
が取り囲んだ状態のパラジウム・スズコロイドが接着剤
層の表面に付与される。触媒と接着剤層との結合は、パ
ラジウムが直接接着剤層の表面と結合するのではなく、
パラジウムを取り囲んでいるスズの一部が接着剤層の表
面と結合することによる。次に基板を弱酸性のアクセレ
ータ19(商品名)に室温で8分間浸漬して活性化処理
を行った。この活性化処理によりパラジウムの周りのス
ズイオンが2価から4価となって溶解し、無電解銅メッ
キの核となる金属パラジウムが露出する。その後、10
秒間のスプレー水洗を3回行った。 (6) 前記第(5) 工程の処理で得られた基板を、大気中で
高温器内にて120℃,40分間熱処理を行った。この
処理により触媒核の固定化が行われる。 (7) 前記第(6) 工程の処理で得られた基板の接着剤層上
に、ドライフィルムフォトレジストをラミネートし、露
光マスクを通して露光し、所望のパターンを焼き付けた
後、スプレー現像機で現像して厚さ50μmのメッキレ
ジストを形成した。現像液にはクロロセンに対してイソ
プロピルアルコールを10%添加した変成クロロセン溶
液を使用した。 (8) さらに、紫外線照射装置により、3J/cm2 の光
量でメッキレジストを光硬化させた後、大気中の高温器
内で150℃,30分間熱硬化を行った。この硬化処理
によりメッキレジストの耐メッキ液性が向上する。 (9) 前記第(8) 工程の処理で得られた基板を、70℃で
5分間湯洗した後、6規定の塩酸中に25℃で2分間浸
漬した。次いで、水洗した後、10%硼弗化水素酸水溶
液中に25℃で1分間浸漬し、再び水洗した。この工程
により前記第(6)及び第(8) 工程の処理の際に触媒核の
周囲に形成された酸化膜が除去される。 (10)前記第(9) 工程の処理で得られた基板を、下記に示
す組成のアディティブ法用無電解銅メッキ液中に約1時
間浸漬して、メッキ層の厚さ25μmの無電解銅メッキ
を施し、プリント配線板を製造した。
EXAMPLES The present invention will now be described in more detail based on examples and comparative examples. (Example 1) (1) The surface of an FR-4 grade insulating plate (manufactured by Hitachi Chemical Co., Ltd.) was buffed, washed with water and dried to obtain a substrate. (2) Phenol novolac type epoxy resin (made by Yuka Shell) 60 parts by weight, bisphenol A type epoxy resin (made by Yuka Shell) 40 parts by weight, imidazole type curing agent (made by Shikoku Kasei) 5 parts by weight, for anchor formation Epoxy resin powder as particles of Toray (trade name: Trepal EP-
B, average particle size 5.5 μm) 25 parts by weight and epoxy resin fine powder (manufactured by Toray, trade name: Trepearl EP-B, average particle size 0.5 μm) 10 parts by weight, while adding butyl cellosolve acetate solvent, homo The viscosity was adjusted to 120 cps with a disper disperser and kneaded with three rollers to adjust the adhesive. (3) After applying the adhesive obtained in the step (2) to the substrate obtained in the step (1) by using a roller coater, 100 ° C. for 1 hour, and 150 ° C. for 5 hours. By drying for an hour, an adhesive layer having a thickness of 30 μm was formed on the substrate. (4) The substrate having the adhesive layer obtained in the treatment of the step (3) is immersed in an oxidant solution consisting of an aqueous solution of chromic acid (Cr 2 O 3 ) 700 g / l at 70 ° C. for 15 minutes. By doing so, the surface of the adhesive layer was roughened. Then, it was immersed in a neutralizing solution (made by Shipley) and washed with water. (5) Palladium catalyst nuclei were applied onto the adhesive layer of the substrate obtained in the treatment of the step (4) using a commercially available chemical copper plating nucleation system (manufactured by Shipley). That is, first, the substrate was immersed in Alchelate J (trade name) at 60 ° C. for 2 minutes for the purpose of degreasing the surface of the adhesive layer. After washing with spray water for 10 seconds three times, the substrate was immersed in a conditioner 1160 (trade name) at room temperature for 2 minutes. By this treatment, the surface of the adhesive layer becomes in a state where the catalyst can be applied. Next, after performing 10-second spray washing with water three times, the substrate is immersed in Cataprep 404 (trade name) at 40 ° C. for 2 minutes,
Then, after performing 10 seconds of spray water washing three times, it was immersed in Cataposit 44 (trade name) at 40 ° C. for 6 minutes. By this treatment, the surroundings of palladium (Pd) are tin (Sn)
The palladium-tin colloid surrounded by is applied to the surface of the adhesive layer. The bond between the catalyst and the adhesive layer is not palladium directly bonded to the surface of the adhesive layer,
By part of the tin surrounding the palladium binding to the surface of the adhesive layer. Next, the substrate was immersed in a weakly acidic accelerator 19 (trade name) at room temperature for 8 minutes for activation treatment. By this activation treatment, tin ions around palladium are changed from divalent to tetravalent and dissolved, and metallic palladium serving as a nucleus of electroless copper plating is exposed. Then 10
The spray water washing for 2 seconds was performed 3 times. (6) The substrate obtained by the process of the above (5) step was heat-treated at 120 ° C. for 40 minutes in a high temperature chamber in the atmosphere. This treatment fixes the catalyst nucleus. (7) A dry film photoresist is laminated on the adhesive layer of the substrate obtained in the treatment of the above (6) step, exposed through an exposure mask, baked into a desired pattern, and then developed with a spray developing machine. Then, a plating resist having a thickness of 50 μm was formed. A modified chlorocene solution obtained by adding 10% of isopropyl alcohol to chlorocene was used as a developer. (8) Further, the plating resist was photo-cured with an ultraviolet irradiation device at a light amount of 3 J / cm 2 , and then heat-cured at 150 ° C. for 30 minutes in a high temperature device in the atmosphere. This hardening treatment improves the resistance of the plating resist to the plating solution. (9) The substrate obtained in the treatment of the step (8) was washed with hot water at 70 ° C. for 5 minutes and then immersed in 6N hydrochloric acid at 25 ° C. for 2 minutes. Then, after being washed with water, it was immersed in a 10% aqueous solution of borofluoric acid at 25 ° C. for 1 minute and washed again with water. By this step, the oxide film formed around the catalyst nuclei in the processing of the above (6) and (8) steps is removed. (10) The substrate obtained by the treatment of the above (9) step is immersed in an electroless copper plating solution for additive method having the composition shown below for about 1 hour to form an electroless copper layer having a plating layer thickness of 25 μm. The printed wiring board was manufactured by plating.

【0014】 硫酸銅(CuSO4・5H2O) 0.06mol/l ホルムアルデヒド(37%) 0.30mol/l 水酸化ナトリウム 0.35mol/l EDTA 0.12mol/l 添加剤 少々 メッキ温度:70〜72℃ pH:12 (比較例1) (1) 実施例1の(1) 〜(8) の各工程と同じ処理を行っ
た。 (2) 前記工程(1) の処理を経た基板を、70℃で5分間
湯洗した後、6規定の塩酸に25℃で5分間浸漬し、そ
の後、水洗を行った。 (3) 前記工程(2) の処理で得られた基板に対して、実施
例1の工程(10)の処理を行いプリント配線板を製造し
た。
Copper sulfate (CuSO 4 .5H 2 O) 0.06 mol / l formaldehyde (37%) 0.30 mol / l sodium hydroxide 0.35 mol / l EDTA 0.12 mol / l additive A little Plating temperature: 70- 72 ° C. pH: 12 (Comparative Example 1) (1) The same treatments as those in the steps (1) to (8) of Example 1 were performed. (2) The substrate subjected to the treatment in the step (1) was washed with hot water at 70 ° C. for 5 minutes, immersed in 6N hydrochloric acid at 25 ° C. for 5 minutes, and then washed with water. (3) A printed wiring board was manufactured by performing the treatment of the step (10) of Example 1 on the substrate obtained by the treatment of the step (2).

【0015】すなわち、この比較例では触媒核の周囲に
形成された酸化膜の除去処理を、溶解力の強い塩酸で行
った後、無電解銅メッキを施した。 (比較例2) (1) 実施例1の(1) 〜(8) の各工程と同じ処理を行っ
た。 (2) 前記工程(1) の処理を経た基板を、70℃で5分間
湯洗した後、10%硼弗化水素酸水溶液に25℃で所定
時間(1分、10分、30分)浸漬し、その後、水洗を
行った。 (3) 前記工程(2) の処理で得られた各基板に対して、実
施例1の工程(10)の処理を行い、プリント配線板を製造
した。
That is, in this comparative example, the oxide film formed around the catalyst nucleus was removed with hydrochloric acid having a strong dissolving power, and then electroless copper plating was performed. (Comparative Example 2) (1) The same treatments as the steps (1) to (8) of Example 1 were performed. (2) The substrate that has been subjected to the process of the above step (1) is washed with hot water at 70 ° C. for 5 minutes, and then immersed in a 10% aqueous solution of borofluoric acid at 25 ° C. for a predetermined time (1 minute, 10 minutes, 30 minutes). Then, it was washed with water. (3) The printed wiring board was manufactured by performing the process of the process (10) of Example 1 on each substrate obtained by the process of the process (2).

【0016】すなわち、この比較例では触媒核の周囲に
形成された酸化膜の除去処理を溶解力の弱い10%硼弗
化水素酸水溶液で行った後、無電解銅メッキを施した。 (比較例3)比較例1とほぼ同様な工程を経てプリント
配線板を製造した。比較例1と異なる点は、6規定の塩
酸による酸化膜の除去工程において接着剤層から触媒核
が脱落しても無電解銅メッキの初期活性に必要な量の触
媒核が残るようにした点である。すなわち、触媒核付与
工程において触媒核を多めに付与した。
That is, in this comparative example, the oxide film formed around the catalyst core was removed with a 10% borofluoric acid aqueous solution having a weak dissolving power, and then electroless copper plating was performed. (Comparative Example 3) A printed wiring board was manufactured through substantially the same steps as in Comparative Example 1. The difference from Comparative Example 1 is that even if the catalyst nuclei fall off from the adhesive layer in the process of removing the oxide film with 6N hydrochloric acid, the amount of the catalyst nuclei necessary for the initial activity of the electroless copper plating remains. Is. That is, a large amount of catalyst nuclei was applied in the catalyst nucleation process.

【0017】前記実施例1及び比較例1〜比較例3で製
造した各プリント配線板について、基板とメッキ層との
密着性を比較するため、それぞれJIS−C−6481
の方法でピール強度を測定した。又、絶縁抵抗をJIS
−C−5012の方法で放置時間を1000時間として
測定した。又、熱処理後の酸化膜除去処理を行う前後に
おける接着剤層上のパラジウム量を測定した。それらの
結果を表1に示す。なお、比較例2において10%硼弗
化水素酸水溶液への浸漬時間が1分間、10分間、30
分間のものをそれぞれ(a)、(b)、(c)とした。
Regarding the printed wiring boards manufactured in Example 1 and Comparative Examples 1 to 3, JIS-C-6481 was used to compare the adhesion between the substrate and the plating layer.
The peel strength was measured by the method. Also, the insulation resistance is JIS
It was measured by the method of C-5012 with the standing time being 1000 hours. Further, the amount of palladium on the adhesive layer was measured before and after the oxide film removal treatment after the heat treatment. The results are shown in Table 1. In Comparative Example 2, the immersion time in the 10% aqueous solution of borofluoric acid was 1 minute, 10 minutes, 30 minutes.
Minutes were designated as (a), (b), and (c), respectively.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から明らかなように、酸化膜の除去を
強酸で行った比較例1及び比較例3では、酸化膜除去処
理によりパラジウムのほぼ半分が脱落する。その結果、
酸化膜の除去処理前のパラジウム量を通常の量とした場
合(比較例1)は、ピール強度が不十分となる。又、パ
ラジウムの脱落を考慮してパラジウムを過剰に付与した
場合(比較例3)は、ピール強度は満足できる値とな
る。しかし、接着剤層とメッキ層の間に過剰なパラジウ
ムが存在するため、絶縁抵抗が小さくなる。
As is clear from Table 1, in Comparative Examples 1 and 3 in which the oxide film was removed with a strong acid, almost half of palladium was removed by the oxide film removal treatment. as a result,
When the amount of palladium before the oxide film removal treatment is a normal amount (Comparative Example 1), the peel strength is insufficient. In addition, when the palladium is added in excess in consideration of the loss of palladium (Comparative Example 3), the peel strength becomes a satisfactory value. However, since there is an excess of palladium between the adhesive layer and the plating layer, the insulation resistance becomes small.

【0020】酸化膜の除去を弱酸処理のみで行う比較例
2では処理前後でPd量に変化がなく、酸化膜除去処理
の際に触媒核の脱落はない。しかし、処理時間を30分
としても(比較例2−c)ピール強度が小さく、酸化膜
の除去が不十分であることが裏付けられる。
In Comparative Example 2 in which the oxide film is removed only by the weak acid treatment, there is no change in the Pd amount before and after the treatment, and the catalyst nuclei do not fall off during the oxide film removal treatment. However, even if the treatment time is 30 minutes (Comparative Example 2-c), the peel strength is small, which proves that the removal of the oxide film is insufficient.

【0021】一方、酸化膜の除去を強酸処理と弱酸処理
の組合せで行う実施例1の場合は、酸化膜除去処理の前
後でPd量に変化がなく、しかも比較例3と同じピール
強度が得られている。すなわち、酸化膜の除去が確実に
行われ、しかも無電解銅メッキの初期活性に必要な量の
触媒核が確実に残っていることが裏付けられる。又、パ
ラジウムの脱落を考慮してパラジウムを過剰に付与する
必要がないため、絶縁抵抗も大きくなり絶縁性が確保さ
れる。
On the other hand, in the case of Example 1 in which the oxide film is removed by the combination of the strong acid treatment and the weak acid treatment, the Pd amount does not change before and after the oxide film removal treatment, and the same peel strength as in Comparative Example 3 is obtained. Has been. That is, it is confirmed that the oxide film is surely removed, and that the amount of catalyst nucleus necessary for the initial activation of the electroless copper plating is surely left. Moreover, since it is not necessary to add palladium excessively in consideration of the loss of palladium, the insulation resistance is increased and the insulation property is secured.

【0022】なお、本発明は前記実施例に限定されるも
のではなく、例えば、触媒核固定のための熱処理をメッ
キレジストを形成した後に行ってもよい。しかし、その
場合は接着剤層とメッキレジストの間に存在するパラジ
ウムが、酸化膜で覆われていない状態となる。周囲が酸
化膜で覆われていないパラジウムは酸化膜で覆われたも
のに比較して絶縁抵抗が小さいため、結果として絶縁抵
抗が小さくなる。従って、メッキレジスト形成前に熱処
理を行うことが好ましい。又、触媒核としては一般にパ
ラジウムが使用されるが、パラジウムに限らず銀、銅な
どを使用してもよい。又、接着剤としてエポキシ樹脂溶
液とエポキシ樹脂微粒子の組合せの接着剤に代えて、ゴ
ム系接着剤や特開昭61−276875号公報に開示さ
れた接着剤等を使用してもよい。
The present invention is not limited to the above embodiment, and for example, heat treatment for fixing catalyst nuclei may be performed after forming the plating resist. However, in that case, the palladium existing between the adhesive layer and the plating resist is not covered with the oxide film. Palladium whose periphery is not covered with an oxide film has a smaller insulation resistance than that covered with an oxide film, and as a result, the insulation resistance becomes smaller. Therefore, it is preferable to perform heat treatment before forming the plating resist. Although palladium is generally used as the catalyst nucleus, silver, copper, etc. may be used instead of palladium. Further, as the adhesive, a rubber-based adhesive or the adhesive disclosed in Japanese Patent Laid-Open No. 61-276875 may be used in place of the combination of the epoxy resin solution and the epoxy resin fine particles.

【0023】[0023]

【発明の効果】以上詳述したように本発明によれば、触
媒核の周囲に形成された酸化膜が触媒核の脱落を招くこ
となく確実に除去されるので、メッキ層の基板に対する
密着性が向上する。又、触媒核を過剰に付与する必要が
なくなり、絶縁性が向上する。その結果、プリント配線
板の信頼性を高めることができる。
As described in detail above, according to the present invention, the oxide film formed around the catalyst nucleus is surely removed without causing the catalyst nucleus to fall off, so that the adhesion of the plating layer to the substrate is improved. Is improved. Further, it is not necessary to add the catalyst nucleus excessively, and the insulating property is improved. As a result, the reliability of the printed wiring board can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された粗化面上に触媒核を
付与し、次いでメッキレジストを形成した後、無電解メ
ッキを施して導体回路を形成するとともに、前記触媒核
付与後、無電解メッキを施す前に触媒核固定化のために
基板の熱処理を行うプリント配線板の製造方法におい
て、 前記熱処理を行った後、無電解メッキを施す前に、強酸
処理を行い次いで弱酸処理を行って触媒核の表面に形成
された酸化膜を除去する工程を設けたことを特徴とする
プリント配線板の製造方法。
1. A catalyst core is provided on a roughened surface formed on a substrate, a plating resist is then formed, and then electroless plating is performed to form a conductor circuit. In a method for manufacturing a printed wiring board, in which a substrate is heat-treated for immobilizing catalyst nuclei before electrolytic plating, a strong acid treatment and then a weak acid treatment are performed after the heat treatment and before electroless plating. A method of manufacturing a printed wiring board, comprising the step of removing an oxide film formed on the surface of the catalyst nuclei.
JP23357992A 1992-09-01 1992-09-01 Manufacture of printed-wiring board Pending JPH0685433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23357992A JPH0685433A (en) 1992-09-01 1992-09-01 Manufacture of printed-wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23357992A JPH0685433A (en) 1992-09-01 1992-09-01 Manufacture of printed-wiring board

Publications (1)

Publication Number Publication Date
JPH0685433A true JPH0685433A (en) 1994-03-25

Family

ID=16957286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23357992A Pending JPH0685433A (en) 1992-09-01 1992-09-01 Manufacture of printed-wiring board

Country Status (1)

Country Link
JP (1) JPH0685433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084371A1 (en) 2007-12-27 2009-07-09 Fujifilm Corporation Process for adsorbing plating catalysts, process for production of substrates provided with metal layers and plating catalyst containing fluid for use in both processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084371A1 (en) 2007-12-27 2009-07-09 Fujifilm Corporation Process for adsorbing plating catalysts, process for production of substrates provided with metal layers and plating catalyst containing fluid for use in both processes

Similar Documents

Publication Publication Date Title
US4804615A (en) Method for manufacture of printed circuit boards
EP0276276B1 (en) Method for manufacture of printed circuit boards
EP0475567A2 (en) Method for fabricating printed circuits
US4430154A (en) Method of producing printed circuit boards
JP3220350B2 (en) Manufacturing method of printed wiring board
JP3069476B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP2000313963A (en) Plating method for resin
JPH09331140A (en) Manufacture of printed-wiring board
JP2915644B2 (en) Manufacturing method of printed wiring board
JP3217477B2 (en) Manufacturing method of printed wiring board
JP3049215B2 (en) Manufacturing method of wiring board
JPH0685433A (en) Manufacture of printed-wiring board
KR100235930B1 (en) Printed wiring board and method for preparing the same
JPH05291731A (en) Manufacture of circuit board
JP3420860B2 (en) Method for roughening adhesive for electroless plating and method for manufacturing printed wiring board
JP3330410B2 (en) Manufacturing method of printed wiring board
JP2513158B2 (en) Manufacturing method of printed wiring board
JPH06177511A (en) Printed wiring board
JP2826206B2 (en) Printed wiring board
JPS60124891A (en) Method of producing printed circuit board
JPH09266375A (en) Multilayer printed interconnection board manufacturing method
JP3282850B2 (en) Manufacturing method of printed wiring board
JP3056865B2 (en) Manufacturing method of printed wiring board
JP2733375B2 (en) Printed wiring board and method of manufacturing the same
JPH09223859A (en) Printed wiring board