JP4653266B2 - Manufacturing method of unidirectional electrical steel sheet - Google Patents

Manufacturing method of unidirectional electrical steel sheet Download PDF

Info

Publication number
JP4653266B2
JP4653266B2 JP30093098A JP30093098A JP4653266B2 JP 4653266 B2 JP4653266 B2 JP 4653266B2 JP 30093098 A JP30093098 A JP 30093098A JP 30093098 A JP30093098 A JP 30093098A JP 4653266 B2 JP4653266 B2 JP 4653266B2
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
rolled
nitriding
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30093098A
Other languages
Japanese (ja)
Other versions
JP2000129352A (en
Inventor
知二 熊野
宣憲 藤井
克郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP30093098A priority Critical patent/JP4653266B2/en
Publication of JP2000129352A publication Critical patent/JP2000129352A/en
Application granted granted Critical
Publication of JP4653266B2 publication Critical patent/JP4653266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気機器の鉄心に用いられる高磁束密度一方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
一方向性電磁鋼板は、鋼板面が{110}面で、圧延方向が<100>軸を有するいわゆるゴス方位をもつ結晶粒から構成されており、軟磁性材料として変圧器及び発電機用の鉄心に利用される。この鋼板は磁気特性として磁化特性と鉄損特性が良好でなければならない。磁化特性の良否は、付与された一定の磁場中で鉄心内に誘起される磁束密度の高低で決まり、磁束密度の高い製品では鉄心を小型化できる。磁束密度の高さは鋼板結晶粒の方位を{110}<001>に高度に揃えることによって達成できる。
【0003】
鉄損は、鉄心に所定の交流磁場を与えた場合に熱エネルギ−として消費される電力損失であり、その良否に対して磁束密度、板厚、不純物量、比抵抗、結晶粒の大きさ等が影響する。磁束密度の高い鋼板は電気機器の鉄心を小さくでき、又鉄損も小さくなるので望ましく、当該技術分野ではできる限り磁束密度の高い製品を安いコストで製造する方法の開発が課題である。
【0004】
現在、工業的に生産されている代表的な一方向性電磁鋼板の製造方法としては、特公昭30−3651号広報に示されたMnSを用いた二回冷延プロセスの他に、AlN+MnSを用いた高冷延プロセスの特公昭40−15644号公報、MnSe+Sbを用いた二回冷延プロセスである特公昭51−13469号公報等がある。
【0005】
これらの技術はいずれも析出物を微細、均一に制御する技術として熱延に先立つスラブ加熱温度を、1250℃超、実際には1300℃以上と極めて高い温度にすることによって、粗大に析出している析出物を一旦固溶させ、その後の熱延中、或いは熱処理によって、析出させる。スラブ加熱温度を上げることはスラブ加熱時の使用エネルギの増大、設備損傷率の増大等のほか材質的にはスラブの結晶組織に起因する線状の二次再結晶不良が発生する。
【0006】
このような高温スラブ加熱に対して比較的低い加熱温度で製造可能な例えば、特開昭62−40315号公報に開示されている技術、即ち二次再結晶に必要なインヒビタ−は、脱炭焼鈍完了以降から仕上げ焼鈍における二次再結晶発現以前までに造り込む方法がある。
【0007】
その手段としては、鋼中にNを侵入させることによって、インヒビタ−として機能する(Al,Si)Nを形成させるものである。鋼中にNを侵入させる手段としては、仕上げ焼鈍昇温過程での雰囲気ガスからのNの侵入を利用するか、脱炭焼鈍後段領域或いは脱炭焼鈍完了後のストリップを連続ラインでNH3 等の窒化源となる雰囲気ガスを用いて行う方法が知られている。
【0008】
【発明が解決しようとする課題】
この製造方法においては脱炭焼鈍後の一次再結晶粒の粒径及びその集合組織が二次再結晶粒の発達並びに磁気特性を大きく左右する(例えば特開平2−25020号公報)ことは勿論であるが、加えて仕上げ焼鈍昇温過程(二次再結晶開始温度域)におけるインヒビタ−の熱的安定性が重要である。因みに、本プロセスの二次再結晶温度は従来の高温スラブ加熱法に比べて、ほぼ100℃高くなっている。
【0009】
特開平1−283324号公報には上記技術思想に基づいたプロセスにおいて、微量のBを添加することによって高磁束密度一方向性電磁鋼板が得られることを開示している。しかしこの場合、脱炭焼鈍温度の適正領域では高磁束密度鋼板が得られるが、Bを添加することによって、一次再結晶粒径変化が脱炭焼鈍温度に対して敏感になる現象が起こり,その適性範囲が狭くなり、工業生産には不利になってくる。加えて、窒化を窒化能のある焼鈍分離剤を用いて仕上げ焼鈍中に行うため、窒化量が不均一になり易い上に、皮膜の形成も不安定になり工業生産が難しくなっている。
【0010】
【課題を解決するための手段】
本発明者らは上述した問題点を解決するため種々検討して次のような手段を見出した。
【0011】
質量%で、C:0.020〜0.075%、
Si:2.5〜4.5%、
Mn:0.05〜0.45%、
S或いはSeを単独又は複合で≦0.015%、
酸可溶性Al:0.010〜0.050%、
B:0.0005〜0.0030%、かつ0.0076+7/10・B ≦ N ≦0.0110%
Cr:0.03〜0.20%、
Sn:0.02〜0.15%を含有し
残部Fe及び不可避的不純物からなる電磁鋼スラブを、1280℃以下の温度に加熱した後熱延し、熱延板焼鈍をし、80%以上の冷間圧延をし、次いで行う脱炭焼鈍において一次再結晶平均粒径を20〜27μmに調整した後、ストリップを走行せしめる状態下で、水素、窒素、アンモニアの混合ガス中で窒化後の鋼板の窒素量が120ppm以上となるように窒化処理を行い、その後仕上げ焼鈍を行うことを特徴とするものである。
【0013】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0014】
まず、本発明において出発材とする電磁鋼スラブの成分組成の限定理由は、以下の通りである。
【0015】
C:Cは0.020〜0.075%とした。0.020未満では高磁束密度鋼板が得られ難く、一方、0.075%を超えても良好な特性は得られず、加えて脱炭焼鈍時間も長くなる。
【0016】
Si:Siはその含有量が2.5%未満になると、良好な鉄損が得られない。
また、4.5%を超えると、脆性のために冷延が困難になる。
【0017】
S及びSe:S及びSeは、0.015%以下がよい。S及びSeはMnS或いはMnSeを生成する。本プロセスにおいては脱炭焼鈍において、一次再結晶粒径を一定の大きさにコントロ−ルすることが重要である。このためMnS,MnSe等が多量に存在することは一次再結晶粒の成長を妨げるので好ましくない。
【0018】
Al:AlはNと結合してAlNを形成するが、本発明においては、後工程即ち一次再結晶完了後に鋼を窒化することにより、(Al,Si)Nを形成せしめことを必須としているから、フリ−のAlが一定量以上必要である。そのため、酸可溶性Alとして、0.010〜0.050%添加する。
【0019】
N:(0.0076+7/10・B)%≦N(Max 0.0110%)にする必要がある。NはBN形成に必要なN相当分多く添加するが、この増量分については実験結果に基づいて後述する。
【0020】
Nは下限より少ないと二次再結晶が不安定になり、一方、上限より多いとブリスタ−と称する鋼板に膨れが発生する。
【0021】
Mn:Mnは、その含有量が少なすぎると二次再結晶が不安定になり、一方、多すぎると高い磁束密度をもつ製品を得難くなる。
【0022】
Cr:Crは脱炭焼鈍時の酸化を促進する元素であるが、さらにSnとの複合添加で仕上げ焼鈍後の皮膜形成が安定化する。このCrの適量は0.03〜0.45%、好ましくは0.05〜0.15%である。
【0023】
Sn:Snは脱炭焼鈍後の集合組織を改善し、ひいては二次再結晶を改善し皮膜の安定化と相俟って鉄損改善に効果が大きい。Snの適量は0.02〜0.15%である。0.02%より少ないと効果が弱く、一方、0.15%より多いと窒化が困難になり二次再結晶粒が発達し難くなる。
【0024】
なお、特許請求の範囲には規定しないが、Cuを添加すると良好な皮膜を形成し、磁束密度の向上に有効である。0.03%未満では効果がなく0.30%を超えると酸洗性が悪くなる。
【0025】
次にBとNの添加量との関係について実験結果に基づいて述べる。
【0026】
C:0.054%,Si:3.2%,Mn:0.10%,S:0.007%,酸可溶性Al:0.028%,Cr:0.12%,P:0.025%,Sn:0.05%を基本成分とし、これにBとNを表1に示した如く添加した鋼塊を造った。
【0027】
【表1】

Figure 0004653266
このような鋼塊を1150℃で加熱熱延し、2.3mmの熱延板を造った。これを1120℃に加熱、均熱後900℃に保持する焼鈍をした後急冷却した。次いで酸洗し0.23mmに冷延し、これを830℃の温度で90秒間の脱炭焼鈍を湿水素、窒素雰囲気中で行った。この後窒化処理を750℃の温度で30秒間水素、窒素、アンモニア混合ガス中で行い、鋼板の窒素量をほぼ200〜220ppmに調整した。次いでMgO,TiO2 を主成分とする焼鈍分離剤を塗布し1200℃の温度で20時間の仕上げ焼鈍を行った。この後、水洗し所定の処理をして磁気特性を測定した。結果を図1に示す。
【0028】
図1から分かるように、質量%で、N=0.0076+7/10・B以上において高いB8 値が得られている。Bの含有量に伴いN量を増加させると高い磁束密度が得られる理由としてはおそらく、B添加量が増す程溶鋼中の窒素添加も増やして脱炭焼鈍時の一次再結晶粒成長挙動を揃え二次再結晶の安定化を図るとともに、生成したBNは(Al,Si)Nとともに二次再結晶時のインヒビタ−として働き高磁束密度鋼板を得るものと考えている。逆に十分なNがない場合、最終冷延以前までの工程でBNを形成してFreeNが減少することで、AlNの析出状態(サイズ、量)が変化し、一次再結晶粒の成長抑制力に影響を及ぼしているものと考えられる。
【0029】
次に、本発明の製造プロセスについて説明する。
【0030】
転炉、電気炉、等で得られた電磁鋼スラブはスラブ加熱炉で1280℃以下の温度でで加熱した後、熱延をして所定の板厚の熱延板とする。このスラブ加熱温度が1280℃を超えると、一次再結晶粒の粒径コントロ−ルが困難になり好ましくない。好ましくは1100℃〜1200℃である。この後熱延板は公知の方法で焼鈍した後急冷却する。冷間圧延率は80%以上必要である。これより低いと高磁束密度鋼板が得られない。この冷間圧延において150℃〜300℃の温間圧延をするとより好ましい。
【0031】
脱炭焼鈍は公知の方法で行う。通常、湿水素、窒素混合ガス中で800℃〜870℃程度の温度で行う。脱炭焼鈍後の一次再結晶粒の平均粒径は20〜27μmとする。20μmより小さいと高磁束密度が得られず27μmより大きいと二次再結晶しなくなる。
【0032】
窒化は通常、乾水素、窒素、アンモニア混合ガス中で750℃〜850℃の温度域でおこなう。鋼板の窒素量は少なくとも120ppm以上好ましくは150ppm以上必要である。120ppmより少ないと二次再結晶の発達が悪くなる。
【0033】
この後MgO,TiO2 を主成分とするスラリを塗布し1100℃以上の温度で仕上げ焼鈍をおこなう。
参考例1>
C:0.060%,Si:3.5%,Mn:0.10%,S:0.010%,P:0.025%,Cr:12%,酸可溶性Al:0.028%,Sn:0.05%,BとNを表2に示す如く添加したスラブを1150℃で加熱熱延し2.6mmの熱延板を造った。これを1120℃に加熱、均熱後900℃に保持する焼鈍をした後急冷却した。この後酸洗し0.27mmに冷間圧延した。この冷延に際し200℃のパス間エ−ジングを行った。
【0034】
これを840℃の温度で120秒の脱炭焼鈍を湿水素、窒素、の混合ガス中で行った。この後750℃の温度で30秒の窒化処理を水素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素量をほぼ220ppmに調整した。次いでMgO,TiO2 を主成分とする焼鈍分離剤を塗布し1200℃の温度で20時間の仕上げ焼鈍を行った。この後所定の処理をして磁気特性を測定した。結果を表3に示す。
【0035】
【表2】
Figure 0004653266
【0036】
【表3】
Figure 0004653266
N:AlNを形成するための有効N)
この結果から、単純にBを添加試料2、5ではAlと結合する有効Nが減少するため一次再結晶粒径が、28μm、29μmと大きくなり二次再結晶不良となる。7/10・BのNを追加添加した試料3,4,7において良好な磁気特性が得られている。
参考例2>C:0.055%,Si:3.25%,Mn:0.10%,S:0.0070%,P:0.020%,Cr:12%,酸可溶性Al:0.026%,Sn:0.05%,N:0.0090,B:0.0025%、を含んだ溶鋼にCuを無添加、0.10%、0.20%添加したスラブを1150℃で加熱熱延し2.3mmの熱延板を造った。これを1120℃に加熱、均熱後900℃に保持する焼鈍をした後急冷却した。この後酸洗し0.23mmに冷間圧延した。この冷延に際し200℃のパス間エ−ジングを行った。これを840℃の温度で90秒の脱炭焼鈍を湿水素、窒素の混合ガス中で行った。この後750℃の温度で30秒の窒化処理を水素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素量を220ppmに調整した。次いで、MgO,TiO2 を主成分とする焼鈍分離剤を塗布し1200℃の温度で20時間の仕上げ焼鈍を行った。結果を表4に示す。
【0037】
Cu添加により磁束密度が更に向上することが分かる。
【0038】
【表4】
Figure 0004653266
【0039】
【発明の効果】
本発明のように一方向性電磁鋼板の成分におけるBとNの関係を規定することにより、インヒビターが強化され磁束密度の高い一方向性電磁鋼板を得ることができる。
【図面の簡単な説明】
【図1】一方向性電磁鋼板の磁気特性に対する鋼中B量とN量の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high magnetic flux density unidirectional electrical steel sheet used for an iron core of an electrical device.
[0002]
[Prior art]
The unidirectional electrical steel sheet is composed of crystal grains having a so-called goth orientation in which the steel sheet surface is the {110} plane and the rolling direction is the <100> axis, and iron cores for transformers and generators are used as soft magnetic materials. Used for This steel sheet must have good magnetic properties and iron loss properties as magnetic properties. The quality of the magnetization characteristics is determined by the level of magnetic flux density induced in the iron core in a given magnetic field, and the core can be miniaturized in products with high magnetic flux density. The high magnetic flux density can be achieved by highly aligning the orientation of the steel plate crystal grains to {110} <001>.
[0003]
Iron loss is a power loss that is consumed as thermal energy when a predetermined alternating magnetic field is applied to the iron core. Magnetic flux density, plate thickness, impurity amount, specific resistance, crystal grain size, etc. Affects. A steel plate having a high magnetic flux density is desirable because it can reduce the iron core of electric equipment and iron loss, and development of a method for manufacturing a product having a magnetic flux density as high as possible at a low cost is an issue in this technical field.
[0004]
At present, as a typical method of manufacturing industrially produced unidirectional electrical steel sheets, AlN + MnS is used in addition to the two-time cold rolling process using MnS disclosed in Japanese Patent Publication No. 30-3651. Japanese Patent Publication No. 40-15644, which is a high cold rolling process, and Japanese Patent Publication No. 51-13469, which is a two-time cold rolling process using MnSe + Sb.
[0005]
All of these techniques allow the precipitates to be coarsely deposited by setting the slab heating temperature prior to hot rolling to a very high temperature of over 1250 ° C., actually 1300 ° C. or higher, as a technique for finely and uniformly controlling the precipitates. The deposited precipitate is once dissolved, and then precipitated during subsequent hot rolling or heat treatment. Increasing the slab heating temperature increases the energy used during slab heating, increases the equipment damage rate, and other materials, and causes linear secondary recrystallization defects due to the crystal structure of the slab.
[0006]
For example, the technique disclosed in Japanese Patent Application Laid-Open No. Sho 62-40315, that is, the inhibitor necessary for secondary recrystallization, can be manufactured at a relatively low heating temperature for such high temperature slab heating. There is a method of building from after completion until before secondary recrystallization occurs in finish annealing.
[0007]
As the means, (Al, Si) N functioning as an inhibitor is formed by allowing N to penetrate into the steel. As means for intruding N into the steel, use of N intrusion from atmospheric gas in the finish annealing temperature rising process, or NH 3 or the like in the post-decarburization annealing post-stage region or strip after completion of decarburization annealing, etc. A method is known that uses an atmospheric gas as a nitriding source.
[0008]
[Problems to be solved by the invention]
In this manufacturing method, the grain size and texture of primary recrystallized grains after decarburization annealing greatly influence the development and magnetic properties of secondary recrystallized grains (for example, JP-A-2-25020). In addition, the thermal stability of the inhibitor in the finish annealing temperature raising process (secondary recrystallization start temperature range) is important. Incidentally, the secondary recrystallization temperature of this process is approximately 100 ° C. higher than that of the conventional high-temperature slab heating method.
[0009]
JP-A-1-283324 discloses that a high magnetic flux density unidirectional electrical steel sheet can be obtained by adding a small amount of B in a process based on the above technical idea. However, in this case, a high magnetic flux density steel sheet can be obtained in an appropriate region of the decarburization annealing temperature, but by adding B, a phenomenon occurs in which the primary recrystallization grain size change becomes sensitive to the decarburization annealing temperature. The aptitude range is narrowed, which is disadvantageous for industrial production. In addition, since nitriding is performed during finish annealing using an annealing separator having nitriding ability, the amount of nitriding tends to be non-uniform, and the formation of the film becomes unstable, making industrial production difficult.
[0010]
[Means for Solving the Problems]
The present inventors have made various studies in order to solve the above problems and have found the following means.
[0011]
% By mass , C: 0.020 to 0.075%,
Si: 2.5-4.5%,
Mn: 0.05 to 0.45%,
S or Se alone or in combination ≦ 0.015%,
Acid-soluble Al: 0.010 to 0.050%
B: 0.0005 to 0.0030%, and 0.0076 +7/10 · B ≦ N ≦ 0.0110 %,
Cr: 0.03 to 0.20%,
Sn: 0.02 to 0.15% is contained ,
The steel slab composed of the remaining Fe and inevitable impurities is heated to a temperature of 1280 ° C. or less, then hot-rolled, hot-rolled sheet annealed, cold-rolled 80% or more, and then primary in decarburization annealing. After adjusting the recrystallized average grain size to 20 to 27 μm, under the condition that the strip is running, nitriding is performed so that the nitrogen content of the steel sheet after nitriding in a mixed gas of hydrogen, nitrogen and ammonia is 120 ppm or more. Then, finish annealing is performed .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0014]
First, the reasons for limiting the component composition of the electromagnetic steel slab used as a starting material in the present invention are as follows.
[0015]
C: C was 0.020 to 0.075%. If it is less than 0.020, it is difficult to obtain a high magnetic flux density steel sheet. On the other hand, even if it exceeds 0.075%, good characteristics cannot be obtained, and in addition, the decarburization annealing time becomes long.
[0016]
If the content of Si: Si is less than 2.5%, good iron loss cannot be obtained.
If it exceeds 4.5%, cold rolling becomes difficult due to brittleness.
[0017]
S and Se: S and Se are preferably 0.015% or less. S and Se generate MnS or MnSe. In this process, it is important to control the primary recrystallized grain size to a certain size in the decarburization annealing. Therefore, the presence of a large amount of MnS, MnSe, etc. is not preferable because it hinders the growth of primary recrystallized grains.
[0018]
Al: Al combines with N to form AlN. In the present invention, however, it is essential to form (Al, Si) N by nitriding steel after the completion of the subsequent step, that is, primary recrystallization. A certain amount or more of free Al is required. Therefore, 0.010 to 0.050% is added as acid-soluble Al.
[0019]
N: ( 0.0076 + 7/10 · B)% ≦ N (Max 0.0110%) is required. N is added in an amount corresponding to N necessary for BN formation, and this increased amount will be described later based on experimental results.
[0020]
When N is less than the lower limit, secondary recrystallization becomes unstable. On the other hand, when N is more than the upper limit, swelling occurs in a steel plate called a blister.
[0021]
Mn: When the content of Mn is too small, secondary recrystallization becomes unstable, while when it is too much, it becomes difficult to obtain a product having a high magnetic flux density.
[0022]
Cr: Cr is an element that promotes oxidation during decarburization annealing. Furthermore, composite formation with Sn stabilizes film formation after finish annealing. The appropriate amount of Cr is 0.03 to 0.45%, preferably 0.05 to 0.15%.
[0023]
Sn: Sn improves the texture after decarburization annealing, and consequently improves secondary recrystallization, and is effective in improving iron loss in combination with the stabilization of the coating. A suitable amount of Sn is 0.02 to 0.15%. If the content is less than 0.02%, the effect is weak. On the other hand, if the content is more than 0.15%, nitriding becomes difficult and secondary recrystallized grains hardly develop.
[0024]
Although not specified in the claims, the addition of Cu forms a good film and is effective in improving the magnetic flux density. If it is less than 0.03%, there is no effect, and if it exceeds 0.30%, the pickling property becomes worse.
[0025]
Next, the relationship between the amount of addition of B and N will be described based on experimental results.
[0026]
C: 0.054%, Si: 3.2%, Mn: 0.10%, S: 0.007%, acid-soluble Al: 0.028%, Cr: 0.12%, P: 0.025% , Sn: 0.05% steel ingot, and B and N were added as shown in Table 1 to make a steel ingot.
[0027]
[Table 1]
Figure 0004653266
Such a steel ingot was heated and hot rolled at 1150 ° C. to produce a 2.3 mm hot rolled sheet. This was heated to 1120 ° C., annealed to maintain 900 ° C. after soaking, and then cooled rapidly. Next, it was pickled and cold-rolled to 0.23 mm, and this was decarburized and annealed at a temperature of 830 ° C. for 90 seconds in a wet hydrogen and nitrogen atmosphere. Thereafter, nitriding was performed in a mixed gas of hydrogen, nitrogen and ammonia at a temperature of 750 ° C. for 30 seconds, and the nitrogen content of the steel sheet was adjusted to approximately 200 to 220 ppm. Next, an annealing separator mainly composed of MgO and TiO 2 was applied, and finish annealing was performed at a temperature of 1200 ° C. for 20 hours. Thereafter, the magnetic properties were measured by washing with water and performing a predetermined treatment. The results are shown in FIG.
[0028]
As can be seen from FIG. 1, a high B8 value is obtained at N % 0.0076 + 7 / 10.multidot.B or more in mass% . Probably the reason why high magnetic flux density can be obtained by increasing the N content with the B content is to increase the primary recrystallized grain growth behavior during decarburization annealing by increasing the nitrogen addition in the molten steel as the B content increases. While stabilizing secondary recrystallization, the produced BN and (Al, Si) N act as an inhibitor during secondary recrystallization and are considered to obtain a high magnetic flux density steel sheet. Conversely, when there is not enough N, BN is formed in the process before the final cold rolling and FreeN is reduced, so that the precipitation state (size, amount) of AlN is changed, and the growth inhibiting ability of primary recrystallized grains It is thought that this has an influence.
[0029]
Next, the manufacturing process of the present invention will be described.
[0030]
The electromagnetic steel slab obtained in a converter, electric furnace, etc. is heated at a temperature of 1280 ° C. or less in a slab heating furnace, and then hot rolled to obtain a hot rolled sheet having a predetermined thickness. If the slab heating temperature exceeds 1280 ° C., it is not preferable because it becomes difficult to control the grain size of the primary recrystallized grains. Preferably it is 1100 degreeC-1200 degreeC. Thereafter, the hot-rolled sheet is annealed by a known method and then rapidly cooled. The cold rolling rate needs to be 80% or more. If it is lower than this, a high magnetic flux density steel sheet cannot be obtained. In this cold rolling, it is more preferable to perform warm rolling at 150 ° C to 300 ° C.
[0031]
Decarburization annealing is performed by a known method. Usually, it is performed at a temperature of about 800 ° C. to 870 ° C. in a mixed gas of wet hydrogen and nitrogen. The average grain size of the primary recrystallized grains after decarburization annealing is 20 to 27 μm. If it is smaller than 20 μm, a high magnetic flux density cannot be obtained, and if it is larger than 27 μm, secondary recrystallization does not occur.
[0032]
Nitriding is usually performed in a temperature range of 750 ° C. to 850 ° C. in a mixed gas of dry hydrogen, nitrogen, and ammonia. The amount of nitrogen in the steel sheet must be at least 120 ppm or more, preferably 150 ppm or more. If it is less than 120 ppm, the development of secondary recrystallization is worsened.
[0033]
Thereafter, a slurry mainly composed of MgO and TiO 2 is applied, and finish annealing is performed at a temperature of 1100 ° C. or higher.
< Reference Example 1>
C: 0.060%, Si: 3.5%, Mn: 0.10%, S: 0.010%, P: 0.025%, Cr: 12 %, acid-soluble Al: 0.028%, Sn A slab containing 0.05% B and N added as shown in Table 2 was hot-rolled at 1150 ° C. to produce a 2.6 mm hot-rolled sheet. This was heated to 1120 ° C., annealed to maintain 900 ° C. after soaking, and then cooled rapidly. Thereafter, it was pickled and cold-rolled to 0.27 mm. During this cold rolling, aging between passes at 200 ° C. was performed.
[0034]
This was decarburized and annealed at a temperature of 840 ° C. for 120 seconds in a mixed gas of wet hydrogen and nitrogen. Thereafter, a nitriding treatment at a temperature of 750 ° C. for 30 seconds was performed in a mixed gas of hydrogen, nitrogen and ammonia, and the nitrogen content of the steel sheet was adjusted to approximately 220 ppm. Next, an annealing separator mainly composed of MgO and TiO 2 was applied, and finish annealing was performed at a temperature of 1200 ° C. for 20 hours. Thereafter, a predetermined process was performed to measure the magnetic characteristics. The results are shown in Table 3.
[0035]
[Table 2]
Figure 0004653266
[0036]
[Table 3]
Figure 0004653266
( * N: Effective N for forming AlN)
From this result, in the samples 2 and 5 in which B is simply added, the effective recombination N with Al decreases, so the primary recrystallization grain size increases to 28 μm and 29 μm, resulting in secondary recrystallization failure . Samples 3, 4 and 7 to which N of 7/10 · B was additionally added showed good magnetic properties.
Reference Example 2 C: 0.055%, Si: 3.25%, Mn: 0.10%, S: 0.0070%, P: 0.020%, Cr: 12 %, acid-soluble Al: 0 0.026%, Sn: 0.05%, N: 0.0090, B: 0.0025%, no added Cu, 0.10%, 0.20% added slab at 1150 ° C A hot-rolled sheet having a thickness of 2.3 mm was formed by heating and hot-rolling. This was heated to 1120 ° C., annealed to maintain 900 ° C. after soaking, and then cooled rapidly. Thereafter, it was pickled and cold-rolled to 0.23 mm. During this cold rolling, aging between passes at 200 ° C. was performed. This was decarburized and annealed at a temperature of 840 ° C. for 90 seconds in a mixed gas of wet hydrogen and nitrogen. Thereafter, nitriding treatment was performed at a temperature of 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia, and the nitrogen content of the steel sheet was adjusted to 220 ppm. Subsequently, an annealing separator mainly composed of MgO and TiO 2 was applied, and finish annealing was performed at a temperature of 1200 ° C. for 20 hours. The results are shown in Table 4.
[0037]
It can be seen that the addition of Cu further improves the magnetic flux density.
[0038]
[Table 4]
Figure 0004653266
[0039]
【The invention's effect】
By defining the relationship between B and N in the components of the unidirectional electrical steel sheet as in the present invention, a unidirectional electrical steel sheet having a high magnetic flux density with enhanced inhibitor can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the B content and N content in steel with respect to the magnetic properties of a unidirectional electrical steel sheet.

Claims (1)

質量%で、C:0.020〜0.075%、
Si:2.5〜4.5%、
Mn:0.05〜0.45%、
S或いはSeを単独又は複合で≦0.015%、
酸可溶性Al:0.010〜0.050%、
B:0.0005〜0.0030%、かつ
0.0076+7/10・B ≦ N ≦0.0110%、
Cr:0.03〜0.20%、
Sn:0.02〜0.15%を含有し、
残部Fe及び不可避的不純物からなる電磁鋼スラブを、1280℃以下の温度に加熱した後熱延し、熱延板焼鈍をし、80%以上の冷間圧延をし、次いで行う脱炭焼鈍において一次再結晶平均粒径を20〜27μmに調整した後、ストリップを走行せしめる状態下で、水素、窒素、アンモニアの混合ガス中で窒化後の鋼板の窒素量が120ppm以上となるように窒化処理を行い、その後仕上げ焼鈍を行うことを特徴とする一方向性電磁鋼板の製造方法。
% By mass, C: 0.020 to 0.075%,
Si: 2.5-4.5%,
Mn: 0.05 to 0.45%,
S or Se alone or in combination ≦ 0.015%,
Acid-soluble Al: 0.010 to 0.050%
B: 0.0005 to 0.0030%, and 0.0076 + 7/10 · B ≦ N ≦ 0.0110%,
Cr: 0.03 to 0.20%,
Sn: 0.02 to 0.15% is contained,
The steel slab composed of the remaining Fe and inevitable impurities is heated to a temperature of 1280 ° C. or less, then hot-rolled, hot-rolled sheet annealed, cold-rolled 80% or more, and then primary in decarburization annealing. After adjusting the recrystallized average grain size to 20 to 27 μm, under the condition that the strip is running, nitriding is performed so that the nitrogen content of the steel sheet after nitriding in a mixed gas of hydrogen, nitrogen and ammonia is 120 ppm or more. Then, finish annealing is performed, and the manufacturing method of the unidirectional electrical steel sheet characterized by the above-mentioned.
JP30093098A 1998-10-22 1998-10-22 Manufacturing method of unidirectional electrical steel sheet Expired - Fee Related JP4653266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30093098A JP4653266B2 (en) 1998-10-22 1998-10-22 Manufacturing method of unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30093098A JP4653266B2 (en) 1998-10-22 1998-10-22 Manufacturing method of unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2000129352A JP2000129352A (en) 2000-05-09
JP4653266B2 true JP4653266B2 (en) 2011-03-16

Family

ID=17890836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30093098A Expired - Fee Related JP4653266B2 (en) 1998-10-22 1998-10-22 Manufacturing method of unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4653266B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100501003B1 (en) * 2000-06-16 2005-07-18 주식회사 포스코 A method for manufacturing grain oriented electric steel sheet
KR100482207B1 (en) * 2000-10-19 2005-04-13 주식회사 포스코 A method for manufacturing grain oriented electric steel sheet
KR100530056B1 (en) * 2001-11-13 2005-11-22 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheet with excellent productivity
KR100530064B1 (en) * 2001-12-13 2005-11-22 주식회사 포스코 A Method for Manufacturing Grain-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR100940720B1 (en) 2002-12-27 2010-02-08 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheets with excellent magnetic properties
EP3696288A3 (en) * 2009-03-23 2020-09-09 Nippon Steel Corporation Manufacturing method of grain oriented electrical steel sheet, grain oriented electrical steel sheet for wound core, and wound core
WO2011007771A1 (en) 2009-07-13 2011-01-20 新日本製鐵株式会社 Method for producing grain-oriented electromagnetic steel plate
US8409368B2 (en) 2009-07-17 2013-04-02 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented magnetic steel sheet
JP2012144777A (en) * 2011-01-12 2012-08-02 Nippon Steel Corp Raw material for electromagnetic steel sheet and method of manufacturing grain-oriented electromagnetic steel sheet
JP2012144776A (en) * 2011-01-12 2012-08-02 Nippon Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
EP2664689B1 (en) 2011-01-12 2019-04-03 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
US11469017B2 (en) * 2018-01-25 2022-10-11 Nippon Steel Corporation Grain oriented electrical steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176666A (en) * 1994-12-27 1996-07-09 Nippon Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
JPH09118920A (en) * 1995-10-25 1997-05-06 Nippon Steel Corp Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176666A (en) * 1994-12-27 1996-07-09 Nippon Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
JPH09118920A (en) * 1995-10-25 1997-05-06 Nippon Steel Corp Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Also Published As

Publication number Publication date
JP2000129352A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP4673937B2 (en) Method for processing steel for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP5428188B2 (en) Method for producing grain-oriented electrical steel sheet
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JPH0583612B2 (en)
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP6079580B2 (en) Method for producing grain-oriented electrical steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR20220128653A (en) Method for manufacturing grain-oriented electrical steel sheet
JP4873770B2 (en) Unidirectional electrical steel sheet
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP4258149B2 (en) Method for producing grain-oriented electrical steel sheet
JP2005146295A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP4268277B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
JP2020509209A (en) Grain-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees